summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_ty_utils/src/representability.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_ty_utils/src/representability.rs')
-rw-r--r--compiler/rustc_ty_utils/src/representability.rs451
1 files changed, 92 insertions, 359 deletions
diff --git a/compiler/rustc_ty_utils/src/representability.rs b/compiler/rustc_ty_utils/src/representability.rs
index eded78916..7f48fb804 100644
--- a/compiler/rustc_ty_utils/src/representability.rs
+++ b/compiler/rustc_ty_utils/src/representability.rs
@@ -1,386 +1,119 @@
-//! Check whether a type is representable.
-use rustc_data_structures::fx::FxHashMap;
-use rustc_hir as hir;
-use rustc_middle::ty::{self, Ty, TyCtxt};
-use rustc_span::Span;
-use std::cmp;
+#![allow(rustc::untranslatable_diagnostic, rustc::diagnostic_outside_of_impl)]
-/// Describes whether a type is representable. For types that are not
-/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
-/// distinguish between types that are recursive with themselves and types that
-/// contain a different recursive type. These cases can therefore be treated
-/// differently when reporting errors.
-///
-/// The ordering of the cases is significant. They are sorted so that cmp::max
-/// will keep the "more erroneous" of two values.
-#[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
-pub enum Representability {
- Representable,
- ContainsRecursive,
- /// Return a list of types that are included in themselves:
- /// the spans where they are self-included, and (if found)
- /// the HirId of the FieldDef that defines the self-inclusion.
- SelfRecursive(Vec<(Span, Option<hir::HirId>)>),
-}
+use rustc_hir::def::DefKind;
+use rustc_index::bit_set::BitSet;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, Representability, Ty, TyCtxt};
+use rustc_span::def_id::{DefId, LocalDefId};
-/// Check whether a type is representable. This means it cannot contain unboxed
-/// structural recursion. This check is needed for structs and enums.
-pub fn ty_is_representable<'tcx>(
- tcx: TyCtxt<'tcx>,
- ty: Ty<'tcx>,
- sp: Span,
- field_id: Option<hir::HirId>,
-) -> Representability {
- debug!("is_type_representable: {:?}", ty);
- // To avoid a stack overflow when checking an enum variant or struct that
- // contains a different, structurally recursive type, maintain a stack of
- // seen types and check recursion for each of them (issues #3008, #3779,
- // #74224, #84611). `shadow_seen` contains the full stack and `seen` only
- // the one for the current type (e.g. if we have structs A and B, B contains
- // a field of type A, and we're currently looking at B, then `seen` will be
- // cleared when recursing to check A, but `shadow_seen` won't, so that we
- // can catch cases of mutual recursion where A also contains B).
- let mut seen: Vec<Ty<'_>> = Vec::new();
- let mut shadow_seen: Vec<ty::AdtDef<'tcx>> = Vec::new();
- let mut representable_cache = FxHashMap::default();
- let mut force_result = false;
- let r = is_type_structurally_recursive(
- tcx,
- &mut seen,
- &mut shadow_seen,
- &mut representable_cache,
- ty,
- sp,
- field_id,
- &mut force_result,
- );
- debug!("is_type_representable: {:?} is {:?}", ty, r);
- r
+pub fn provide(providers: &mut Providers) {
+ *providers =
+ Providers { representability, representability_adt_ty, params_in_repr, ..*providers };
}
-// Iterate until something non-representable is found
-fn fold_repr<It: Iterator<Item = Representability>>(iter: It) -> Representability {
- iter.fold(Representability::Representable, |r1, r2| match (r1, r2) {
- (Representability::SelfRecursive(v1), Representability::SelfRecursive(v2)) => {
- Representability::SelfRecursive(v1.into_iter().chain(v2).collect())
+macro_rules! rtry {
+ ($e:expr) => {
+ match $e {
+ e @ Representability::Infinite => return e,
+ Representability::Representable => {}
}
- (r1, r2) => cmp::max(r1, r2),
- })
+ };
}
-fn are_inner_types_recursive<'tcx>(
- tcx: TyCtxt<'tcx>,
- seen: &mut Vec<Ty<'tcx>>,
- shadow_seen: &mut Vec<ty::AdtDef<'tcx>>,
- representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
- ty: Ty<'tcx>,
- sp: Span,
- field_id: Option<hir::HirId>,
- force_result: &mut bool,
-) -> Representability {
- debug!("are_inner_types_recursive({:?}, {:?}, {:?})", ty, seen, shadow_seen);
- match ty.kind() {
- ty::Tuple(fields) => {
- // Find non representable
- fold_repr(fields.iter().map(|ty| {
- is_type_structurally_recursive(
- tcx,
- seen,
- shadow_seen,
- representable_cache,
- ty,
- sp,
- field_id,
- force_result,
- )
- }))
- }
- // Fixed-length vectors.
- // FIXME(#11924) Behavior undecided for zero-length vectors.
- ty::Array(ty, _) => is_type_structurally_recursive(
- tcx,
- seen,
- shadow_seen,
- representable_cache,
- *ty,
- sp,
- field_id,
- force_result,
- ),
- ty::Adt(def, substs) => {
- // Find non representable fields with their spans
- fold_repr(def.all_fields().map(|field| {
- let ty = field.ty(tcx, substs);
- let (sp, field_id) = match field
- .did
- .as_local()
- .map(|id| tcx.hir().local_def_id_to_hir_id(id))
- .and_then(|id| tcx.hir().find(id))
- {
- Some(hir::Node::Field(field)) => (field.ty.span, Some(field.hir_id)),
- _ => (sp, field_id),
- };
-
- let mut result = None;
-
- // First, we check whether the field type per se is representable.
- // This catches cases as in #74224 and #84611. There is a special
- // case related to mutual recursion, though; consider this example:
- //
- // struct A<T> {
- // z: T,
- // x: B<T>,
- // }
- //
- // struct B<T> {
- // y: A<T>
- // }
- //
- // Here, without the following special case, both A and B are
- // ContainsRecursive, which is a problem because we only report
- // errors for SelfRecursive. We fix this by detecting this special
- // case (shadow_seen.first() is the type we are originally
- // interested in, and if we ever encounter the same AdtDef again,
- // we know that it must be SelfRecursive) and "forcibly" returning
- // SelfRecursive (by setting force_result, which tells the calling
- // invocations of are_inner_types_representable to forward the
- // result without adjusting).
- if shadow_seen.len() > seen.len() && shadow_seen.first() == Some(def) {
- *force_result = true;
- result = Some(Representability::SelfRecursive(vec![(sp, field_id)]));
- }
-
- if result == None {
- result = Some(Representability::Representable);
-
- // Now, we check whether the field types per se are representable, e.g.
- // for struct Foo { x: Option<Foo> }, we first check whether Option<_>
- // by itself is representable (which it is), and the nesting of Foo
- // will be detected later. This is necessary for #74224 and #84611.
-
- // If we have encountered an ADT definition that we have not seen
- // before (no need to check them twice), recurse to see whether that
- // definition is SelfRecursive. If so, we must be ContainsRecursive.
- if shadow_seen.len() > 1
- && !shadow_seen
- .iter()
- .take(shadow_seen.len() - 1)
- .any(|seen_def| seen_def == def)
- {
- let adt_def_id = def.did();
- let raw_adt_ty = tcx.type_of(adt_def_id);
- debug!("are_inner_types_recursive: checking nested type: {:?}", raw_adt_ty);
-
- // Check independently whether the ADT is SelfRecursive. If so,
- // we must be ContainsRecursive (except for the special case
- // mentioned above).
- let mut nested_seen: Vec<Ty<'_>> = vec![];
- result = Some(
- match is_type_structurally_recursive(
- tcx,
- &mut nested_seen,
- shadow_seen,
- representable_cache,
- raw_adt_ty,
- sp,
- field_id,
- force_result,
- ) {
- Representability::SelfRecursive(_) => {
- if *force_result {
- Representability::SelfRecursive(vec![(sp, field_id)])
- } else {
- Representability::ContainsRecursive
- }
- }
- x => x,
- },
- );
- }
-
- // We only enter the following block if the type looks representable
- // so far. This is necessary for cases such as this one (#74224):
- //
- // struct A<T> {
- // x: T,
- // y: A<A<T>>,
- // }
- //
- // struct B {
- // z: A<usize>
- // }
- //
- // When checking B, we recurse into A and check field y of type
- // A<A<usize>>. We haven't seen this exact type before, so we recurse
- // into A<A<usize>>, which contains, A<A<A<usize>>>, and so forth,
- // ad infinitum. We can prevent this from happening by first checking
- // A separately (the code above) and only checking for nested Bs if
- // A actually looks representable (which it wouldn't in this example).
- if result == Some(Representability::Representable) {
- // Now, even if the type is representable (e.g. Option<_>),
- // it might still contribute to a recursive type, e.g.:
- // struct Foo { x: Option<Option<Foo>> }
- // These cases are handled by passing the full `seen`
- // stack to is_type_structurally_recursive (instead of the
- // empty `nested_seen` above):
- result = Some(
- match is_type_structurally_recursive(
- tcx,
- seen,
- shadow_seen,
- representable_cache,
- ty,
- sp,
- field_id,
- force_result,
- ) {
- Representability::SelfRecursive(_) => {
- Representability::SelfRecursive(vec![(sp, field_id)])
- }
- x => x,
- },
- );
- }
+fn representability(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Representability {
+ match tcx.def_kind(def_id) {
+ DefKind::Struct | DefKind::Union | DefKind::Enum => {
+ let adt_def = tcx.adt_def(def_id);
+ for variant in adt_def.variants() {
+ for field in variant.fields.iter() {
+ rtry!(tcx.representability(field.did.expect_local()));
}
-
- result.unwrap()
- }))
- }
- ty::Closure(..) => {
- // this check is run on type definitions, so we don't expect
- // to see closure types
- bug!("requires check invoked on inapplicable type: {:?}", ty)
+ }
+ Representability::Representable
}
- _ => Representability::Representable,
+ DefKind::Field => representability_ty(tcx, tcx.type_of(def_id)),
+ def_kind => bug!("unexpected {def_kind:?}"),
}
}
-fn same_adt<'tcx>(ty: Ty<'tcx>, def: ty::AdtDef<'tcx>) -> bool {
+fn representability_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Representability {
match *ty.kind() {
- ty::Adt(ty_def, _) => ty_def == def,
- _ => false,
+ ty::Adt(..) => tcx.representability_adt_ty(ty),
+ // FIXME(#11924) allow zero-length arrays?
+ ty::Array(ty, _) => representability_ty(tcx, ty),
+ ty::Tuple(tys) => {
+ for ty in tys {
+ rtry!(representability_ty(tcx, ty));
+ }
+ Representability::Representable
+ }
+ _ => Representability::Representable,
}
}
-// Does the type `ty` directly (without indirection through a pointer)
-// contain any types on stack `seen`?
-fn is_type_structurally_recursive<'tcx>(
- tcx: TyCtxt<'tcx>,
- seen: &mut Vec<Ty<'tcx>>,
- shadow_seen: &mut Vec<ty::AdtDef<'tcx>>,
- representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
- ty: Ty<'tcx>,
- sp: Span,
- field_id: Option<hir::HirId>,
- force_result: &mut bool,
-) -> Representability {
- debug!("is_type_structurally_recursive: {:?} {:?} {:?}", ty, sp, field_id);
- if let Some(representability) = representable_cache.get(&ty) {
- debug!(
- "is_type_structurally_recursive: {:?} {:?} {:?} - (cached) {:?}",
- ty, sp, field_id, representability
- );
- return representability.clone();
+/*
+The reason for this being a separate query is very subtle:
+Consider this infinitely sized struct: `struct Foo(Box<Foo>, Bar<Foo>)`:
+When calling representability(Foo), a query cycle will occur:
+ representability(Foo)
+ -> representability_adt_ty(Bar<Foo>)
+ -> representability(Foo)
+For the diagnostic output (in `Value::from_cycle_error`), we want to detect that
+the `Foo` in the *second* field of the struct is culpable. This requires
+traversing the HIR of the struct and calling `params_in_repr(Bar)`. But we can't
+call params_in_repr for a given type unless it is known to be representable.
+params_in_repr will cycle/panic on infinitely sized types. Looking at the query
+cycle above, we know that `Bar` is representable because
+representability_adt_ty(Bar<..>) is in the cycle and representability(Bar) is
+*not* in the cycle.
+*/
+fn representability_adt_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Representability {
+ let ty::Adt(adt, substs) = ty.kind() else { bug!("expected adt") };
+ if let Some(def_id) = adt.did().as_local() {
+ rtry!(tcx.representability(def_id));
}
-
- let representability = is_type_structurally_recursive_inner(
- tcx,
- seen,
- shadow_seen,
- representable_cache,
- ty,
- sp,
- field_id,
- force_result,
- );
-
- representable_cache.insert(ty, representability.clone());
- representability
+ // At this point, we know that the item of the ADT type is representable;
+ // but the type parameters may cause a cycle with an upstream type
+ let params_in_repr = tcx.params_in_repr(adt.did());
+ for (i, subst) in substs.iter().enumerate() {
+ if let ty::GenericArgKind::Type(ty) = subst.unpack() {
+ if params_in_repr.contains(i as u32) {
+ rtry!(representability_ty(tcx, ty));
+ }
+ }
+ }
+ Representability::Representable
}
-fn is_type_structurally_recursive_inner<'tcx>(
- tcx: TyCtxt<'tcx>,
- seen: &mut Vec<Ty<'tcx>>,
- shadow_seen: &mut Vec<ty::AdtDef<'tcx>>,
- representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
- ty: Ty<'tcx>,
- sp: Span,
- field_id: Option<hir::HirId>,
- force_result: &mut bool,
-) -> Representability {
- match ty.kind() {
- ty::Adt(def, _) => {
- {
- debug!("is_type_structurally_recursive_inner: adt: {:?}, seen: {:?}", ty, seen);
-
- // Iterate through stack of previously seen types.
- let mut iter = seen.iter();
-
- // The first item in `seen` is the type we are actually curious about.
- // We want to return SelfRecursive if this type contains itself.
- // It is important that we DON'T take generic parameters into account
- // for this check, so that Bar<T> in this example counts as SelfRecursive:
- //
- // struct Foo;
- // struct Bar<T> { x: Bar<Foo> }
-
- if let Some(&seen_adt) = iter.next() {
- if same_adt(seen_adt, *def) {
- debug!("SelfRecursive: {:?} contains {:?}", seen_adt, ty);
- return Representability::SelfRecursive(vec![(sp, field_id)]);
- }
- }
-
- // We also need to know whether the first item contains other types
- // that are structurally recursive. If we don't catch this case, we
- // will recurse infinitely for some inputs.
- //
- // It is important that we DO take generic parameters into account
- // here, because nesting e.g. Options is allowed (as long as the
- // definition of Option doesn't itself include an Option field, which
- // would be a case of SelfRecursive above). The following, too, counts
- // as SelfRecursive:
- //
- // struct Foo { Option<Option<Foo>> }
+fn params_in_repr(tcx: TyCtxt<'_>, def_id: DefId) -> BitSet<u32> {
+ let adt_def = tcx.adt_def(def_id);
+ let generics = tcx.generics_of(def_id);
+ let mut params_in_repr = BitSet::new_empty(generics.params.len());
+ for variant in adt_def.variants() {
+ for field in variant.fields.iter() {
+ params_in_repr_ty(tcx, tcx.type_of(field.did), &mut params_in_repr);
+ }
+ }
+ params_in_repr
+}
- for &seen_adt in iter {
- if ty == seen_adt {
- debug!("ContainsRecursive: {:?} contains {:?}", seen_adt, ty);
- return Representability::ContainsRecursive;
+fn params_in_repr_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, params_in_repr: &mut BitSet<u32>) {
+ match *ty.kind() {
+ ty::Adt(adt, substs) => {
+ let inner_params_in_repr = tcx.params_in_repr(adt.did());
+ for (i, subst) in substs.iter().enumerate() {
+ if let ty::GenericArgKind::Type(ty) = subst.unpack() {
+ if inner_params_in_repr.contains(i as u32) {
+ params_in_repr_ty(tcx, ty, params_in_repr);
}
}
}
-
- // For structs and enums, track all previously seen types by pushing them
- // onto the 'seen' stack.
- seen.push(ty);
- shadow_seen.push(*def);
- let out = are_inner_types_recursive(
- tcx,
- seen,
- shadow_seen,
- representable_cache,
- ty,
- sp,
- field_id,
- force_result,
- );
- shadow_seen.pop();
- seen.pop();
- out
}
- _ => {
- // No need to push in other cases.
- are_inner_types_recursive(
- tcx,
- seen,
- shadow_seen,
- representable_cache,
- ty,
- sp,
- field_id,
- force_result,
- )
+ ty::Array(ty, _) => params_in_repr_ty(tcx, ty, params_in_repr),
+ ty::Tuple(tys) => tys.iter().for_each(|ty| params_in_repr_ty(tcx, ty, params_in_repr)),
+ ty::Param(param) => {
+ params_in_repr.insert(param.index);
}
+ _ => {}
}
}