diff options
Diffstat (limited to 'compiler/rustc_ty_utils')
-rw-r--r-- | compiler/rustc_ty_utils/Cargo.toml | 2 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/abi.rs | 551 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/assoc.rs | 18 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/common_traits.rs | 11 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/consts.rs | 15 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/errors.rs | 56 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/instance.rs | 75 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/layout.rs | 1803 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/layout_sanity_check.rs | 303 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/lib.rs | 10 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/needs_drop.rs | 5 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/representability.rs | 451 | ||||
-rw-r--r-- | compiler/rustc_ty_utils/src/ty.rs | 20 |
13 files changed, 2846 insertions, 474 deletions
diff --git a/compiler/rustc_ty_utils/Cargo.toml b/compiler/rustc_ty_utils/Cargo.toml index 52fbd3ae0..5e4ba4730 100644 --- a/compiler/rustc_ty_utils/Cargo.toml +++ b/compiler/rustc_ty_utils/Cargo.toml @@ -4,6 +4,8 @@ version = "0.0.0" edition = "2021" [dependencies] +rand = "0.8.4" +rand_xoshiro = "0.6.0" tracing = "0.1" rustc_middle = { path = "../rustc_middle" } rustc_data_structures = { path = "../rustc_data_structures" } diff --git a/compiler/rustc_ty_utils/src/abi.rs b/compiler/rustc_ty_utils/src/abi.rs new file mode 100644 index 000000000..73c7eb699 --- /dev/null +++ b/compiler/rustc_ty_utils/src/abi.rs @@ -0,0 +1,551 @@ +use rustc_hir as hir; +use rustc_hir::lang_items::LangItem; +use rustc_middle::ty::layout::{ + fn_can_unwind, FnAbiError, HasParamEnv, HasTyCtxt, LayoutCx, LayoutOf, TyAndLayout, +}; +use rustc_middle::ty::{self, Ty, TyCtxt}; +use rustc_session::config::OptLevel; +use rustc_span::def_id::DefId; +use rustc_target::abi::call::{ + ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind, +}; +use rustc_target::abi::*; +use rustc_target::spec::abi::Abi as SpecAbi; + +use std::iter; + +pub fn provide(providers: &mut ty::query::Providers) { + *providers = ty::query::Providers { fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers }; +} + +// NOTE(eddyb) this is private to avoid using it from outside of +// `fn_abi_of_instance` - any other uses are either too high-level +// for `Instance` (e.g. typeck would use `Ty::fn_sig` instead), +// or should go through `FnAbi` instead, to avoid losing any +// adjustments `fn_abi_of_instance` might be performing. +#[tracing::instrument(level = "debug", skip(tcx, param_env))] +fn fn_sig_for_fn_abi<'tcx>( + tcx: TyCtxt<'tcx>, + instance: ty::Instance<'tcx>, + param_env: ty::ParamEnv<'tcx>, +) -> ty::PolyFnSig<'tcx> { + let ty = instance.ty(tcx, param_env); + match *ty.kind() { + ty::FnDef(..) => { + // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering + // parameters unused if they show up in the signature, but not in the `mir::Body` + // (i.e. due to being inside a projection that got normalized, see + // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping + // track of a polymorphization `ParamEnv` to allow normalizing later. + // + // We normalize the `fn_sig` again after substituting at a later point. + let mut sig = match *ty.kind() { + ty::FnDef(def_id, substs) => tcx + .bound_fn_sig(def_id) + .map_bound(|fn_sig| { + tcx.normalize_erasing_regions(tcx.param_env(def_id), fn_sig) + }) + .subst(tcx, substs), + _ => unreachable!(), + }; + + if let ty::InstanceDef::VTableShim(..) = instance.def { + // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`. + sig = sig.map_bound(|mut sig| { + let mut inputs_and_output = sig.inputs_and_output.to_vec(); + inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]); + sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output); + sig + }); + } + sig + } + ty::Closure(def_id, substs) => { + let sig = substs.as_closure().sig(); + + let bound_vars = tcx.mk_bound_variable_kinds( + sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), + ); + let br = ty::BoundRegion { + var: ty::BoundVar::from_usize(bound_vars.len() - 1), + kind: ty::BoundRegionKind::BrEnv, + }; + let env_region = ty::ReLateBound(ty::INNERMOST, br); + let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap(); + + let sig = sig.skip_binder(); + ty::Binder::bind_with_vars( + tcx.mk_fn_sig( + iter::once(env_ty).chain(sig.inputs().iter().cloned()), + sig.output(), + sig.c_variadic, + sig.unsafety, + sig.abi, + ), + bound_vars, + ) + } + ty::Generator(_, substs, _) => { + let sig = substs.as_generator().poly_sig(); + + let bound_vars = tcx.mk_bound_variable_kinds( + sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), + ); + let br = ty::BoundRegion { + var: ty::BoundVar::from_usize(bound_vars.len() - 1), + kind: ty::BoundRegionKind::BrEnv, + }; + let env_region = ty::ReLateBound(ty::INNERMOST, br); + let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty); + + let pin_did = tcx.require_lang_item(LangItem::Pin, None); + let pin_adt_ref = tcx.adt_def(pin_did); + let pin_substs = tcx.intern_substs(&[env_ty.into()]); + let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs); + + let sig = sig.skip_binder(); + let state_did = tcx.require_lang_item(LangItem::GeneratorState, None); + let state_adt_ref = tcx.adt_def(state_did); + let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]); + let ret_ty = tcx.mk_adt(state_adt_ref, state_substs); + ty::Binder::bind_with_vars( + tcx.mk_fn_sig( + [env_ty, sig.resume_ty].iter(), + &ret_ty, + false, + hir::Unsafety::Normal, + rustc_target::spec::abi::Abi::Rust, + ), + bound_vars, + ) + } + _ => bug!("unexpected type {:?} in Instance::fn_sig", ty), + } +} + +#[inline] +fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv { + use rustc_target::spec::abi::Abi::*; + match tcx.sess.target.adjust_abi(abi) { + RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust, + RustCold => Conv::RustCold, + + // It's the ABI's job to select this, not ours. + System { .. } => bug!("system abi should be selected elsewhere"), + EfiApi => bug!("eficall abi should be selected elsewhere"), + + Stdcall { .. } => Conv::X86Stdcall, + Fastcall { .. } => Conv::X86Fastcall, + Vectorcall { .. } => Conv::X86VectorCall, + Thiscall { .. } => Conv::X86ThisCall, + C { .. } => Conv::C, + Unadjusted => Conv::C, + Win64 { .. } => Conv::X86_64Win64, + SysV64 { .. } => Conv::X86_64SysV, + Aapcs { .. } => Conv::ArmAapcs, + CCmseNonSecureCall => Conv::CCmseNonSecureCall, + PtxKernel => Conv::PtxKernel, + Msp430Interrupt => Conv::Msp430Intr, + X86Interrupt => Conv::X86Intr, + AmdGpuKernel => Conv::AmdGpuKernel, + AvrInterrupt => Conv::AvrInterrupt, + AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt, + Wasm => Conv::C, + + // These API constants ought to be more specific... + Cdecl { .. } => Conv::C, + } +} + +fn fn_abi_of_fn_ptr<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let (param_env, (sig, extra_args)) = query.into_parts(); + + let cx = LayoutCx { tcx, param_env }; + fn_abi_new_uncached(&cx, sig, extra_args, None, None, false) +} + +fn fn_abi_of_instance<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let (param_env, (instance, extra_args)) = query.into_parts(); + + let sig = fn_sig_for_fn_abi(tcx, instance, param_env); + + let caller_location = if instance.def.requires_caller_location(tcx) { + Some(tcx.caller_location_ty()) + } else { + None + }; + + fn_abi_new_uncached( + &LayoutCx { tcx, param_env }, + sig, + extra_args, + caller_location, + Some(instance.def_id()), + matches!(instance.def, ty::InstanceDef::Virtual(..)), + ) +} + +// Handle safe Rust thin and fat pointers. +fn adjust_for_rust_scalar<'tcx>( + cx: LayoutCx<'tcx, TyCtxt<'tcx>>, + attrs: &mut ArgAttributes, + scalar: Scalar, + layout: TyAndLayout<'tcx>, + offset: Size, + is_return: bool, +) { + // Booleans are always a noundef i1 that needs to be zero-extended. + if scalar.is_bool() { + attrs.ext(ArgExtension::Zext); + attrs.set(ArgAttribute::NoUndef); + return; + } + + // Scalars which have invalid values cannot be undef. + if !scalar.is_always_valid(&cx) { + attrs.set(ArgAttribute::NoUndef); + } + + // Only pointer types handled below. + let Scalar::Initialized { value: Pointer, valid_range} = scalar else { return }; + + if !valid_range.contains(0) { + attrs.set(ArgAttribute::NonNull); + } + + if let Some(pointee) = layout.pointee_info_at(&cx, offset) { + if let Some(kind) = pointee.safe { + attrs.pointee_align = Some(pointee.align); + + // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable + // for the entire duration of the function as they can be deallocated + // at any time. Same for shared mutable references. If LLVM had a + // way to say "dereferenceable on entry" we could use it here. + attrs.pointee_size = match kind { + PointerKind::UniqueBorrowed + | PointerKind::UniqueBorrowedPinned + | PointerKind::Frozen => pointee.size, + PointerKind::SharedMutable | PointerKind::UniqueOwned => Size::ZERO, + }; + + // `Box`, `&T`, and `&mut T` cannot be undef. + // Note that this only applies to the value of the pointer itself; + // this attribute doesn't make it UB for the pointed-to data to be undef. + attrs.set(ArgAttribute::NoUndef); + + // The aliasing rules for `Box<T>` are still not decided, but currently we emit + // `noalias` for it. This can be turned off using an unstable flag. + // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326 + let noalias_for_box = cx.tcx.sess.opts.unstable_opts.box_noalias.unwrap_or(true); + + // `&mut` pointer parameters never alias other parameters, + // or mutable global data + // + // `&T` where `T` contains no `UnsafeCell<U>` is immutable, + // and can be marked as both `readonly` and `noalias`, as + // LLVM's definition of `noalias` is based solely on memory + // dependencies rather than pointer equality + // + // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute + // for UniqueBorrowed arguments, so that the codegen backend can decide whether + // or not to actually emit the attribute. It can also be controlled with the + // `-Zmutable-noalias` debugging option. + let no_alias = match kind { + PointerKind::SharedMutable + | PointerKind::UniqueBorrowed + | PointerKind::UniqueBorrowedPinned => false, + PointerKind::UniqueOwned => noalias_for_box, + PointerKind::Frozen => !is_return, + }; + if no_alias { + attrs.set(ArgAttribute::NoAlias); + } + + if kind == PointerKind::Frozen && !is_return { + attrs.set(ArgAttribute::ReadOnly); + } + + if kind == PointerKind::UniqueBorrowed && !is_return { + attrs.set(ArgAttribute::NoAliasMutRef); + } + } + } +} + +// FIXME(eddyb) perhaps group the signature/type-containing (or all of them?) +// arguments of this method, into a separate `struct`. +#[tracing::instrument(level = "debug", skip(cx, caller_location, fn_def_id, force_thin_self_ptr))] +fn fn_abi_new_uncached<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + sig: ty::PolyFnSig<'tcx>, + extra_args: &[Ty<'tcx>], + caller_location: Option<Ty<'tcx>>, + fn_def_id: Option<DefId>, + // FIXME(eddyb) replace this with something typed, like an `enum`. + force_thin_self_ptr: bool, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let sig = cx.tcx.normalize_erasing_late_bound_regions(cx.param_env, sig); + + let conv = conv_from_spec_abi(cx.tcx(), sig.abi); + + let mut inputs = sig.inputs(); + let extra_args = if sig.abi == RustCall { + assert!(!sig.c_variadic && extra_args.is_empty()); + + if let Some(input) = sig.inputs().last() { + if let ty::Tuple(tupled_arguments) = input.kind() { + inputs = &sig.inputs()[0..sig.inputs().len() - 1]; + tupled_arguments + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + assert!(sig.c_variadic || extra_args.is_empty()); + extra_args + }; + + let target = &cx.tcx.sess.target; + let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc"); + let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu"; + let linux_s390x_gnu_like = + target.os == "linux" && target.arch == "s390x" && target_env_gnu_like; + let linux_sparc64_gnu_like = + target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like; + let linux_powerpc_gnu_like = + target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like; + use SpecAbi::*; + let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall); + + let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| -> Result<_, FnAbiError<'tcx>> { + let span = tracing::debug_span!("arg_of"); + let _entered = span.enter(); + let is_return = arg_idx.is_none(); + + let layout = cx.layout_of(ty)?; + let layout = if force_thin_self_ptr && arg_idx == Some(0) { + // Don't pass the vtable, it's not an argument of the virtual fn. + // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait` + // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen + make_thin_self_ptr(cx, layout) + } else { + layout + }; + + let mut arg = ArgAbi::new(cx, layout, |layout, scalar, offset| { + let mut attrs = ArgAttributes::new(); + adjust_for_rust_scalar(*cx, &mut attrs, scalar, *layout, offset, is_return); + attrs + }); + + if arg.layout.is_zst() { + // For some forsaken reason, x86_64-pc-windows-gnu + // doesn't ignore zero-sized struct arguments. + // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}. + if is_return + || rust_abi + || (!win_x64_gnu + && !linux_s390x_gnu_like + && !linux_sparc64_gnu_like + && !linux_powerpc_gnu_like) + { + arg.mode = PassMode::Ignore; + } + } + + Ok(arg) + }; + + let mut fn_abi = FnAbi { + ret: arg_of(sig.output(), None)?, + args: inputs + .iter() + .copied() + .chain(extra_args.iter().copied()) + .chain(caller_location) + .enumerate() + .map(|(i, ty)| arg_of(ty, Some(i))) + .collect::<Result<_, _>>()?, + c_variadic: sig.c_variadic, + fixed_count: inputs.len() as u32, + conv, + can_unwind: fn_can_unwind(cx.tcx(), fn_def_id, sig.abi), + }; + fn_abi_adjust_for_abi(cx, &mut fn_abi, sig.abi, fn_def_id)?; + debug!("fn_abi_new_uncached = {:?}", fn_abi); + Ok(cx.tcx.arena.alloc(fn_abi)) +} + +#[tracing::instrument(level = "trace", skip(cx))] +fn fn_abi_adjust_for_abi<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>, + abi: SpecAbi, + fn_def_id: Option<DefId>, +) -> Result<(), FnAbiError<'tcx>> { + if abi == SpecAbi::Unadjusted { + return Ok(()); + } + + if abi == SpecAbi::Rust + || abi == SpecAbi::RustCall + || abi == SpecAbi::RustIntrinsic + || abi == SpecAbi::PlatformIntrinsic + { + // Look up the deduced parameter attributes for this function, if we have its def ID and + // we're optimizing in non-incremental mode. We'll tag its parameters with those attributes + // as appropriate. + let deduced_param_attrs = if cx.tcx.sess.opts.optimize != OptLevel::No + && cx.tcx.sess.opts.incremental.is_none() + { + fn_def_id.map(|fn_def_id| cx.tcx.deduced_param_attrs(fn_def_id)).unwrap_or_default() + } else { + &[] + }; + + let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>, arg_idx: Option<usize>| { + if arg.is_ignore() { + return; + } + + match arg.layout.abi { + Abi::Aggregate { .. } => {} + + // This is a fun case! The gist of what this is doing is + // that we want callers and callees to always agree on the + // ABI of how they pass SIMD arguments. If we were to *not* + // make these arguments indirect then they'd be immediates + // in LLVM, which means that they'd used whatever the + // appropriate ABI is for the callee and the caller. That + // means, for example, if the caller doesn't have AVX + // enabled but the callee does, then passing an AVX argument + // across this boundary would cause corrupt data to show up. + // + // This problem is fixed by unconditionally passing SIMD + // arguments through memory between callers and callees + // which should get them all to agree on ABI regardless of + // target feature sets. Some more information about this + // issue can be found in #44367. + // + // Note that the platform intrinsic ABI is exempt here as + // that's how we connect up to LLVM and it's unstable + // anyway, we control all calls to it in libstd. + Abi::Vector { .. } + if abi != SpecAbi::PlatformIntrinsic + && cx.tcx.sess.target.simd_types_indirect => + { + arg.make_indirect(); + return; + } + + _ => return, + } + + let size = arg.layout.size; + if arg.layout.is_unsized() || size > Pointer.size(cx) { + arg.make_indirect(); + } else { + // We want to pass small aggregates as immediates, but using + // a LLVM aggregate type for this leads to bad optimizations, + // so we pick an appropriately sized integer type instead. + arg.cast_to(Reg { kind: RegKind::Integer, size }); + } + + // If we deduced that this parameter was read-only, add that to the attribute list now. + // + // The `readonly` parameter only applies to pointers, so we can only do this if the + // argument was passed indirectly. (If the argument is passed directly, it's an SSA + // value, so it's implicitly immutable.) + if let (Some(arg_idx), &mut PassMode::Indirect { ref mut attrs, .. }) = + (arg_idx, &mut arg.mode) + { + // The `deduced_param_attrs` list could be empty if this is a type of function + // we can't deduce any parameters for, so make sure the argument index is in + // bounds. + if let Some(deduced_param_attrs) = deduced_param_attrs.get(arg_idx) { + if deduced_param_attrs.read_only { + attrs.regular.insert(ArgAttribute::ReadOnly); + debug!("added deduced read-only attribute"); + } + } + } + }; + + fixup(&mut fn_abi.ret, None); + for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() { + fixup(arg, Some(arg_idx)); + } + } else { + fn_abi.adjust_for_foreign_abi(cx, abi)?; + } + + Ok(()) +} + +#[tracing::instrument(level = "debug", skip(cx))] +fn make_thin_self_ptr<'tcx>( + cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>), + layout: TyAndLayout<'tcx>, +) -> TyAndLayout<'tcx> { + let tcx = cx.tcx(); + let fat_pointer_ty = if layout.is_unsized() { + // unsized `self` is passed as a pointer to `self` + // FIXME (mikeyhew) change this to use &own if it is ever added to the language + tcx.mk_mut_ptr(layout.ty) + } else { + match layout.abi { + Abi::ScalarPair(..) | Abi::Scalar(..) => (), + _ => bug!("receiver type has unsupported layout: {:?}", layout), + } + + // In the case of Rc<Self>, we need to explicitly pass a *mut RcBox<Self> + // with a Scalar (not ScalarPair) ABI. This is a hack that is understood + // elsewhere in the compiler as a method on a `dyn Trait`. + // To get the type `*mut RcBox<Self>`, we just keep unwrapping newtypes until we + // get a built-in pointer type + let mut fat_pointer_layout = layout; + 'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr() + && !fat_pointer_layout.ty.is_region_ptr() + { + for i in 0..fat_pointer_layout.fields.count() { + let field_layout = fat_pointer_layout.field(cx, i); + + if !field_layout.is_zst() { + fat_pointer_layout = field_layout; + continue 'descend_newtypes; + } + } + + bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout); + } + + fat_pointer_layout.ty + }; + + // we now have a type like `*mut RcBox<dyn Trait>` + // change its layout to that of `*mut ()`, a thin pointer, but keep the same type + // this is understood as a special case elsewhere in the compiler + let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit()); + + TyAndLayout { + ty: fat_pointer_ty, + + // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result` + // should always work because the type is always `*mut ()`. + ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap() + } +} diff --git a/compiler/rustc_ty_utils/src/assoc.rs b/compiler/rustc_ty_utils/src/assoc.rs index 515a73ead..424b52309 100644 --- a/compiler/rustc_ty_utils/src/assoc.rs +++ b/compiler/rustc_ty_utils/src/assoc.rs @@ -17,10 +17,10 @@ fn associated_item_def_ids(tcx: TyCtxt<'_>, def_id: DefId) -> &[DefId] { let item = tcx.hir().expect_item(def_id.expect_local()); match item.kind { hir::ItemKind::Trait(.., ref trait_item_refs) => tcx.arena.alloc_from_iter( - trait_item_refs.iter().map(|trait_item_ref| trait_item_ref.id.def_id.to_def_id()), + trait_item_refs.iter().map(|trait_item_ref| trait_item_ref.id.owner_id.to_def_id()), ), hir::ItemKind::Impl(ref impl_) => tcx.arena.alloc_from_iter( - impl_.items.iter().map(|impl_item_ref| impl_item_ref.id.def_id.to_def_id()), + impl_.items.iter().map(|impl_item_ref| impl_item_ref.id.owner_id.to_def_id()), ), hir::ItemKind::TraitAlias(..) => &[], _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait"), @@ -42,11 +42,11 @@ fn impl_item_implementor_ids(tcx: TyCtxt<'_>, impl_id: DefId) -> FxHashMap<DefId fn associated_item(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AssocItem { let id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); let parent_def_id = tcx.hir().get_parent_item(id); - let parent_item = tcx.hir().expect_item(parent_def_id); + let parent_item = tcx.hir().expect_item(parent_def_id.def_id); match parent_item.kind { hir::ItemKind::Impl(ref impl_) => { if let Some(impl_item_ref) = - impl_.items.iter().find(|i| i.id.def_id.to_def_id() == def_id) + impl_.items.iter().find(|i| i.id.owner_id.to_def_id() == def_id) { let assoc_item = associated_item_from_impl_item_ref(impl_item_ref); debug_assert_eq!(assoc_item.def_id, def_id); @@ -56,7 +56,7 @@ fn associated_item(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AssocItem { hir::ItemKind::Trait(.., ref trait_item_refs) => { if let Some(trait_item_ref) = - trait_item_refs.iter().find(|i| i.id.def_id.to_def_id() == def_id) + trait_item_refs.iter().find(|i| i.id.owner_id.to_def_id() == def_id) { let assoc_item = associated_item_from_trait_item_ref(trait_item_ref); debug_assert_eq!(assoc_item.def_id, def_id); @@ -75,7 +75,7 @@ fn associated_item(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AssocItem { } fn associated_item_from_trait_item_ref(trait_item_ref: &hir::TraitItemRef) -> ty::AssocItem { - let def_id = trait_item_ref.id.def_id; + let owner_id = trait_item_ref.id.owner_id; let (kind, has_self) = match trait_item_ref.kind { hir::AssocItemKind::Const => (ty::AssocKind::Const, false), hir::AssocItemKind::Fn { has_self } => (ty::AssocKind::Fn, has_self), @@ -85,15 +85,15 @@ fn associated_item_from_trait_item_ref(trait_item_ref: &hir::TraitItemRef) -> ty ty::AssocItem { name: trait_item_ref.ident.name, kind, - def_id: def_id.to_def_id(), - trait_item_def_id: Some(def_id.to_def_id()), + def_id: owner_id.to_def_id(), + trait_item_def_id: Some(owner_id.to_def_id()), container: ty::TraitContainer, fn_has_self_parameter: has_self, } } fn associated_item_from_impl_item_ref(impl_item_ref: &hir::ImplItemRef) -> ty::AssocItem { - let def_id = impl_item_ref.id.def_id; + let def_id = impl_item_ref.id.owner_id; let (kind, has_self) = match impl_item_ref.kind { hir::AssocItemKind::Const => (ty::AssocKind::Const, false), hir::AssocItemKind::Fn { has_self } => (ty::AssocKind::Fn, has_self), diff --git a/compiler/rustc_ty_utils/src/common_traits.rs b/compiler/rustc_ty_utils/src/common_traits.rs index cedc84d97..d3169b6d9 100644 --- a/compiler/rustc_ty_utils/src/common_traits.rs +++ b/compiler/rustc_ty_utils/src/common_traits.rs @@ -29,15 +29,8 @@ fn is_item_raw<'tcx>( ) -> bool { let (param_env, ty) = query.into_parts(); let trait_def_id = tcx.require_lang_item(item, None); - tcx.infer_ctxt().enter(|infcx| { - traits::type_known_to_meet_bound_modulo_regions( - &infcx, - param_env, - ty, - trait_def_id, - DUMMY_SP, - ) - }) + let infcx = tcx.infer_ctxt().build(); + traits::type_known_to_meet_bound_modulo_regions(&infcx, param_env, ty, trait_def_id, DUMMY_SP) } pub(crate) fn provide(providers: &mut ty::query::Providers) { diff --git a/compiler/rustc_ty_utils/src/consts.rs b/compiler/rustc_ty_utils/src/consts.rs index 44c4fc48d..e057bb668 100644 --- a/compiler/rustc_ty_utils/src/consts.rs +++ b/compiler/rustc_ty_utils/src/consts.rs @@ -135,30 +135,30 @@ impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> { impl<'a, 'tcx> IsThirPolymorphic<'a, 'tcx> { fn expr_is_poly(&mut self, expr: &thir::Expr<'tcx>) -> bool { - if expr.ty.has_param_types_or_consts() { + if expr.ty.has_non_region_param() { return true; } match expr.kind { - thir::ExprKind::NamedConst { substs, .. } => substs.has_param_types_or_consts(), + thir::ExprKind::NamedConst { substs, .. } => substs.has_non_region_param(), thir::ExprKind::ConstParam { .. } => true, thir::ExprKind::Repeat { value, count } => { self.visit_expr(&self.thir()[value]); - count.has_param_types_or_consts() + count.has_non_region_param() } _ => false, } } fn pat_is_poly(&mut self, pat: &thir::Pat<'tcx>) -> bool { - if pat.ty.has_param_types_or_consts() { + if pat.ty.has_non_region_param() { return true; } match pat.kind { - thir::PatKind::Constant { value } => value.has_param_types_or_consts(), + thir::PatKind::Constant { value } => value.has_non_region_param(), thir::PatKind::Range(box thir::PatRange { lo, hi, .. }) => { - lo.has_param_types_or_consts() || hi.has_param_types_or_consts() + lo.has_non_region_param() || hi.has_non_region_param() } _ => false, } @@ -258,7 +258,8 @@ impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> { self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty))) } &ExprKind::NamedConst { def_id, substs, user_ty: _ } => { - let uneval = ty::Unevaluated::new(ty::WithOptConstParam::unknown(def_id), substs); + let uneval = + ty::UnevaluatedConst::new(ty::WithOptConstParam::unknown(def_id), substs); let constant = self .tcx diff --git a/compiler/rustc_ty_utils/src/errors.rs b/compiler/rustc_ty_utils/src/errors.rs index 3a8ef96c9..c05eeb353 100644 --- a/compiler/rustc_ty_utils/src/errors.rs +++ b/compiler/rustc_ty_utils/src/errors.rs @@ -1,69 +1,69 @@ //! Errors emitted by ty_utils -use rustc_macros::{SessionDiagnostic, SessionSubdiagnostic}; +use rustc_macros::{Diagnostic, Subdiagnostic}; use rustc_middle::ty::Ty; use rustc_span::Span; -#[derive(SessionDiagnostic)] -#[diag(ty_utils::needs_drop_overflow)] +#[derive(Diagnostic)] +#[diag(ty_utils_needs_drop_overflow)] pub struct NeedsDropOverflow<'tcx> { pub query_ty: Ty<'tcx>, } -#[derive(SessionDiagnostic)] -#[diag(ty_utils::generic_constant_too_complex)] +#[derive(Diagnostic)] +#[diag(ty_utils_generic_constant_too_complex)] #[help] pub struct GenericConstantTooComplex { #[primary_span] pub span: Span, - #[note(ty_utils::maybe_supported)] + #[note(maybe_supported)] pub maybe_supported: Option<()>, #[subdiagnostic] pub sub: GenericConstantTooComplexSub, } -#[derive(SessionSubdiagnostic)] +#[derive(Subdiagnostic)] pub enum GenericConstantTooComplexSub { - #[label(ty_utils::borrow_not_supported)] + #[label(ty_utils_borrow_not_supported)] BorrowNotSupported(#[primary_span] Span), - #[label(ty_utils::address_and_deref_not_supported)] + #[label(ty_utils_address_and_deref_not_supported)] AddressAndDerefNotSupported(#[primary_span] Span), - #[label(ty_utils::array_not_supported)] + #[label(ty_utils_array_not_supported)] ArrayNotSupported(#[primary_span] Span), - #[label(ty_utils::block_not_supported)] + #[label(ty_utils_block_not_supported)] BlockNotSupported(#[primary_span] Span), - #[label(ty_utils::never_to_any_not_supported)] + #[label(ty_utils_never_to_any_not_supported)] NeverToAnyNotSupported(#[primary_span] Span), - #[label(ty_utils::tuple_not_supported)] + #[label(ty_utils_tuple_not_supported)] TupleNotSupported(#[primary_span] Span), - #[label(ty_utils::index_not_supported)] + #[label(ty_utils_index_not_supported)] IndexNotSupported(#[primary_span] Span), - #[label(ty_utils::field_not_supported)] + #[label(ty_utils_field_not_supported)] FieldNotSupported(#[primary_span] Span), - #[label(ty_utils::const_block_not_supported)] + #[label(ty_utils_const_block_not_supported)] ConstBlockNotSupported(#[primary_span] Span), - #[label(ty_utils::adt_not_supported)] + #[label(ty_utils_adt_not_supported)] AdtNotSupported(#[primary_span] Span), - #[label(ty_utils::pointer_not_supported)] + #[label(ty_utils_pointer_not_supported)] PointerNotSupported(#[primary_span] Span), - #[label(ty_utils::yield_not_supported)] + #[label(ty_utils_yield_not_supported)] YieldNotSupported(#[primary_span] Span), - #[label(ty_utils::loop_not_supported)] + #[label(ty_utils_loop_not_supported)] LoopNotSupported(#[primary_span] Span), - #[label(ty_utils::box_not_supported)] + #[label(ty_utils_box_not_supported)] BoxNotSupported(#[primary_span] Span), - #[label(ty_utils::binary_not_supported)] + #[label(ty_utils_binary_not_supported)] BinaryNotSupported(#[primary_span] Span), - #[label(ty_utils::logical_op_not_supported)] + #[label(ty_utils_logical_op_not_supported)] LogicalOpNotSupported(#[primary_span] Span), - #[label(ty_utils::assign_not_supported)] + #[label(ty_utils_assign_not_supported)] AssignNotSupported(#[primary_span] Span), - #[label(ty_utils::closure_and_return_not_supported)] + #[label(ty_utils_closure_and_return_not_supported)] ClosureAndReturnNotSupported(#[primary_span] Span), - #[label(ty_utils::control_flow_not_supported)] + #[label(ty_utils_control_flow_not_supported)] ControlFlowNotSupported(#[primary_span] Span), - #[label(ty_utils::inline_asm_not_supported)] + #[label(ty_utils_inline_asm_not_supported)] InlineAsmNotSupported(#[primary_span] Span), - #[label(ty_utils::operation_not_supported)] + #[label(ty_utils_operation_not_supported)] OperationNotSupported(#[primary_span] Span), } diff --git a/compiler/rustc_ty_utils/src/instance.rs b/compiler/rustc_ty_utils/src/instance.rs index 05738b6c4..6436713b3 100644 --- a/compiler/rustc_ty_utils/src/instance.rs +++ b/compiler/rustc_ty_utils/src/instance.rs @@ -4,7 +4,7 @@ use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::traits::CodegenObligationError; use rustc_middle::ty::subst::SubstsRef; use rustc_middle::ty::{self, Instance, TyCtxt, TypeVisitable}; -use rustc_span::{sym, DUMMY_SP}; +use rustc_span::sym; use rustc_trait_selection::traits; use traits::{translate_substs, Reveal}; @@ -134,19 +134,17 @@ fn resolve_associated_item<'tcx>( .unwrap_or_else(|| { bug!("{:?} not found in {:?}", trait_item_id, impl_data.impl_def_id); }); - - let substs = tcx.infer_ctxt().enter(|infcx| { - let param_env = param_env.with_reveal_all_normalized(tcx); - let substs = rcvr_substs.rebase_onto(tcx, trait_def_id, impl_data.substs); - let substs = translate_substs( - &infcx, - param_env, - impl_data.impl_def_id, - substs, - leaf_def.defining_node, - ); - infcx.tcx.erase_regions(substs) - }); + let infcx = tcx.infer_ctxt().build(); + let param_env = param_env.with_reveal_all_normalized(tcx); + let substs = rcvr_substs.rebase_onto(tcx, trait_def_id, impl_data.substs); + let substs = translate_substs( + &infcx, + param_env, + impl_data.impl_def_id, + substs, + leaf_def.defining_node, + ); + let substs = infcx.tcx.erase_regions(substs); // Since this is a trait item, we need to see if the item is either a trait default item // or a specialization because we can't resolve those unless we can `Reveal::All`. @@ -171,9 +169,13 @@ fn resolve_associated_item<'tcx>( return Ok(None); } - // If the item does not have a value, then we cannot return an instance. + // Any final impl is required to define all associated items. if !leaf_def.item.defaultness(tcx).has_value() { - return Ok(None); + let guard = tcx.sess.delay_span_bug( + tcx.def_span(leaf_def.item.def_id), + "missing value for assoc item in impl", + ); + return Err(guard); } let substs = tcx.erase_regions(substs); @@ -182,40 +184,14 @@ fn resolve_associated_item<'tcx>( // a `trait` to an associated `const` definition in an `impl`, where // the definition in the `impl` has the wrong type (for which an // error has already been/will be emitted elsewhere). - // - // NB: this may be expensive, we try to skip it in all the cases where - // we know the error would've been caught (e.g. in an upstream crate). - // - // A better approach might be to just introduce a query (returning - // `Result<(), ErrorGuaranteed>`) for the check that `rustc_typeck` - // performs (i.e. that the definition's type in the `impl` matches - // the declaration in the `trait`), so that we can cheaply check - // here if it failed, instead of approximating it. if leaf_def.item.kind == ty::AssocKind::Const && trait_item_id != leaf_def.item.def_id - && leaf_def.item.def_id.is_local() + && let Some(leaf_def_item) = leaf_def.item.def_id.as_local() { - let normalized_type_of = |def_id, substs| { - tcx.subst_and_normalize_erasing_regions(substs, param_env, tcx.type_of(def_id)) - }; - - let original_ty = normalized_type_of(trait_item_id, rcvr_substs); - let resolved_ty = normalized_type_of(leaf_def.item.def_id, substs); - - if original_ty != resolved_ty { - let msg = format!( - "Instance::resolve: inconsistent associated `const` type: \ - was `{}: {}` but resolved to `{}: {}`", - tcx.def_path_str_with_substs(trait_item_id, rcvr_substs), - original_ty, - tcx.def_path_str_with_substs(leaf_def.item.def_id, substs), - resolved_ty, - ); - let span = tcx.def_span(leaf_def.item.def_id); - let reported = tcx.sess.delay_span_bug(span, &msg); - - return Err(reported); - } + tcx.compare_assoc_const_impl_item_with_trait_item(( + leaf_def_item, + trait_item_id, + ))?; } Some(ty::Instance::new(leaf_def.item.def_id, substs)) @@ -260,7 +236,7 @@ fn resolve_associated_item<'tcx>( if name == sym::clone { let self_ty = trait_ref.self_ty(); - let is_copy = self_ty.is_copy_modulo_regions(tcx.at(DUMMY_SP), param_env); + let is_copy = self_ty.is_copy_modulo_regions(tcx, param_env); match self_ty.kind() { _ if is_copy => (), ty::Generator(..) @@ -291,8 +267,7 @@ fn resolve_associated_item<'tcx>( | traits::ImplSource::DiscriminantKind(..) | traits::ImplSource::Pointee(..) | traits::ImplSource::TraitUpcasting(_) - | traits::ImplSource::ConstDestruct(_) - | traits::ImplSource::Tuple => None, + | traits::ImplSource::ConstDestruct(_) => None, }) } diff --git a/compiler/rustc_ty_utils/src/layout.rs b/compiler/rustc_ty_utils/src/layout.rs new file mode 100644 index 000000000..52ba0eee9 --- /dev/null +++ b/compiler/rustc_ty_utils/src/layout.rs @@ -0,0 +1,1803 @@ +use rustc_hir as hir; +use rustc_index::bit_set::BitSet; +use rustc_index::vec::{Idx, IndexVec}; +use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal}; +use rustc_middle::ty::layout::{ + IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES, +}; +use rustc_middle::ty::{ + self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable, +}; +use rustc_session::{DataTypeKind, FieldInfo, SizeKind, VariantInfo}; +use rustc_span::symbol::Symbol; +use rustc_span::DUMMY_SP; +use rustc_target::abi::*; + +use std::cmp::{self, Ordering}; +use std::iter; +use std::num::NonZeroUsize; +use std::ops::Bound; + +use rand::{seq::SliceRandom, SeedableRng}; +use rand_xoshiro::Xoshiro128StarStar; + +use crate::layout_sanity_check::sanity_check_layout; + +pub fn provide(providers: &mut ty::query::Providers) { + *providers = ty::query::Providers { layout_of, ..*providers }; +} + +#[instrument(skip(tcx, query), level = "debug")] +fn layout_of<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, +) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> { + let (param_env, ty) = query.into_parts(); + debug!(?ty); + + let param_env = param_env.with_reveal_all_normalized(tcx); + let unnormalized_ty = ty; + + // FIXME: We might want to have two different versions of `layout_of`: + // One that can be called after typecheck has completed and can use + // `normalize_erasing_regions` here and another one that can be called + // before typecheck has completed and uses `try_normalize_erasing_regions`. + let ty = match tcx.try_normalize_erasing_regions(param_env, ty) { + Ok(t) => t, + Err(normalization_error) => { + return Err(LayoutError::NormalizationFailure(ty, normalization_error)); + } + }; + + if ty != unnormalized_ty { + // Ensure this layout is also cached for the normalized type. + return tcx.layout_of(param_env.and(ty)); + } + + let cx = LayoutCx { tcx, param_env }; + + let layout = layout_of_uncached(&cx, ty)?; + let layout = TyAndLayout { ty, layout }; + + record_layout_for_printing(&cx, layout); + + sanity_check_layout(&cx, &layout); + + Ok(layout) +} + +#[derive(Copy, Clone, Debug)] +enum StructKind { + /// A tuple, closure, or univariant which cannot be coerced to unsized. + AlwaysSized, + /// A univariant, the last field of which may be coerced to unsized. + MaybeUnsized, + /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). + Prefixed(Size, Align), +} + +// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`. +// This is used to go between `memory_index` (source field order to memory order) +// and `inverse_memory_index` (memory order to source field order). +// See also `FieldsShape::Arbitrary::memory_index` for more details. +// FIXME(eddyb) build a better abstraction for permutations, if possible. +fn invert_mapping(map: &[u32]) -> Vec<u32> { + let mut inverse = vec![0; map.len()]; + for i in 0..map.len() { + inverse[map[i] as usize] = i as u32; + } + inverse +} + +fn scalar_pair<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, a: Scalar, b: Scalar) -> LayoutS<'tcx> { + let dl = cx.data_layout(); + let b_align = b.align(dl); + let align = a.align(dl).max(b_align).max(dl.aggregate_align); + let b_offset = a.size(dl).align_to(b_align.abi); + let size = (b_offset + b.size(dl)).align_to(align.abi); + + // HACK(nox): We iter on `b` and then `a` because `max_by_key` + // returns the last maximum. + let largest_niche = Niche::from_scalar(dl, b_offset, b) + .into_iter() + .chain(Niche::from_scalar(dl, Size::ZERO, a)) + .max_by_key(|niche| niche.available(dl)); + + LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { + offsets: vec![Size::ZERO, b_offset], + memory_index: vec![0, 1], + }, + abi: Abi::ScalarPair(a, b), + largest_niche, + align, + size, + } +} + +fn univariant_uninterned<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + ty: Ty<'tcx>, + fields: &[TyAndLayout<'_>], + repr: &ReprOptions, + kind: StructKind, +) -> Result<LayoutS<'tcx>, LayoutError<'tcx>> { + let dl = cx.data_layout(); + let pack = repr.pack; + if pack.is_some() && repr.align.is_some() { + cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned"); + return Err(LayoutError::Unknown(ty)); + } + + let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect(); + + let optimize = !repr.inhibit_struct_field_reordering_opt(); + if optimize { + let end = if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() }; + let optimizing = &mut inverse_memory_index[..end]; + let field_align = |f: &TyAndLayout<'_>| { + if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi } + }; + + // If `-Z randomize-layout` was enabled for the type definition we can shuffle + // the field ordering to try and catch some code making assumptions about layouts + // we don't guarantee + if repr.can_randomize_type_layout() { + // `ReprOptions.layout_seed` is a deterministic seed that we can use to + // randomize field ordering with + let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed); + + // Shuffle the ordering of the fields + optimizing.shuffle(&mut rng); + + // Otherwise we just leave things alone and actually optimize the type's fields + } else { + match kind { + StructKind::AlwaysSized | StructKind::MaybeUnsized => { + optimizing.sort_by_key(|&x| { + // Place ZSTs first to avoid "interesting offsets", + // especially with only one or two non-ZST fields. + let f = &fields[x as usize]; + (!f.is_zst(), cmp::Reverse(field_align(f))) + }); + } + + StructKind::Prefixed(..) => { + // Sort in ascending alignment so that the layout stays optimal + // regardless of the prefix + optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); + } + } + + // FIXME(Kixiron): We can always shuffle fields within a given alignment class + // regardless of the status of `-Z randomize-layout` + } + } + + // inverse_memory_index holds field indices by increasing memory offset. + // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. + // We now write field offsets to the corresponding offset slot; + // field 5 with offset 0 puts 0 in offsets[5]. + // At the bottom of this function, we invert `inverse_memory_index` to + // produce `memory_index` (see `invert_mapping`). + + let mut sized = true; + let mut offsets = vec![Size::ZERO; fields.len()]; + let mut offset = Size::ZERO; + let mut largest_niche = None; + let mut largest_niche_available = 0; + + if let StructKind::Prefixed(prefix_size, prefix_align) = kind { + let prefix_align = + if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align }; + align = align.max(AbiAndPrefAlign::new(prefix_align)); + offset = prefix_size.align_to(prefix_align); + } + + for &i in &inverse_memory_index { + let field = fields[i as usize]; + if !sized { + cx.tcx.sess.delay_span_bug( + DUMMY_SP, + &format!( + "univariant: field #{} of `{}` comes after unsized field", + offsets.len(), + ty + ), + ); + } + + if field.is_unsized() { + sized = false; + } + + // Invariant: offset < dl.obj_size_bound() <= 1<<61 + let field_align = if let Some(pack) = pack { + field.align.min(AbiAndPrefAlign::new(pack)) + } else { + field.align + }; + offset = offset.align_to(field_align.abi); + align = align.max(field_align); + + debug!("univariant offset: {:?} field: {:#?}", offset, field); + offsets[i as usize] = offset; + + if let Some(mut niche) = field.largest_niche { + let available = niche.available(dl); + if available > largest_niche_available { + largest_niche_available = available; + niche.offset += offset; + largest_niche = Some(niche); + } + } + + offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?; + } + + if let Some(repr_align) = repr.align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + debug!("univariant min_size: {:?}", offset); + let min_size = offset; + + // As stated above, inverse_memory_index holds field indices by increasing offset. + // This makes it an already-sorted view of the offsets vec. + // To invert it, consider: + // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. + // Field 5 would be the first element, so memory_index is i: + // Note: if we didn't optimize, it's already right. + + let memory_index = + if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index }; + + let size = min_size.align_to(align.abi); + let mut abi = Abi::Aggregate { sized }; + + // Unpack newtype ABIs and find scalar pairs. + if sized && size.bytes() > 0 { + // All other fields must be ZSTs. + let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); + + match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { + // We have exactly one non-ZST field. + (Some((i, field)), None, None) => { + // Field fills the struct and it has a scalar or scalar pair ABI. + if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size { + match field.abi { + // For plain scalars, or vectors of them, we can't unpack + // newtypes for `#[repr(C)]`, as that affects C ABIs. + Abi::Scalar(_) | Abi::Vector { .. } if optimize => { + abi = field.abi; + } + // But scalar pairs are Rust-specific and get + // treated as aggregates by C ABIs anyway. + Abi::ScalarPair(..) => { + abi = field.abi; + } + _ => {} + } + } + } + + // Two non-ZST fields, and they're both scalars. + (Some((i, a)), Some((j, b)), None) => { + match (a.abi, b.abi) { + (Abi::Scalar(a), Abi::Scalar(b)) => { + // Order by the memory placement, not source order. + let ((i, a), (j, b)) = if offsets[i] < offsets[j] { + ((i, a), (j, b)) + } else { + ((j, b), (i, a)) + }; + let pair = scalar_pair(cx, a, b); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if offsets[i] == pair_offsets[0] + && offsets[j] == pair_offsets[1] + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + _ => {} + } + } + + _ => {} + } + } + + if fields.iter().any(|f| f.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } + + Ok(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { offsets, memory_index }, + abi, + largest_niche, + align, + size, + }) +} + +fn layout_of_uncached<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + ty: Ty<'tcx>, +) -> Result<Layout<'tcx>, LayoutError<'tcx>> { + let tcx = cx.tcx; + let param_env = cx.param_env; + let dl = cx.data_layout(); + let scalar_unit = |value: Primitive| { + let size = value.size(dl); + assert!(size.bits() <= 128); + Scalar::Initialized { value, valid_range: WrappingRange::full(size) } + }; + let scalar = |value: Primitive| tcx.intern_layout(LayoutS::scalar(cx, scalar_unit(value))); + + let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| { + Ok(tcx.intern_layout(univariant_uninterned(cx, ty, fields, repr, kind)?)) + }; + debug_assert!(!ty.has_non_region_infer()); + + Ok(match *ty.kind() { + // Basic scalars. + ty::Bool => tcx.intern_layout(LayoutS::scalar( + cx, + Scalar::Initialized { + value: Int(I8, false), + valid_range: WrappingRange { start: 0, end: 1 }, + }, + )), + ty::Char => tcx.intern_layout(LayoutS::scalar( + cx, + Scalar::Initialized { + value: Int(I32, false), + valid_range: WrappingRange { start: 0, end: 0x10FFFF }, + }, + )), + ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)), + ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)), + ty::Float(fty) => scalar(match fty { + ty::FloatTy::F32 => F32, + ty::FloatTy::F64 => F64, + }), + ty::FnPtr(_) => { + let mut ptr = scalar_unit(Pointer); + ptr.valid_range_mut().start = 1; + tcx.intern_layout(LayoutS::scalar(cx, ptr)) + } + + // The never type. + ty::Never => tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Primitive, + abi: Abi::Uninhabited, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Potentially-wide pointers. + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + let mut data_ptr = scalar_unit(Pointer); + if !ty.is_unsafe_ptr() { + data_ptr.valid_range_mut().start = 1; + } + + let pointee = tcx.normalize_erasing_regions(param_env, pointee); + if pointee.is_sized(tcx, param_env) { + return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr))); + } + + let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env); + let metadata = match unsized_part.kind() { + ty::Foreign(..) => { + return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr))); + } + ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)), + ty::Dynamic(..) => { + let mut vtable = scalar_unit(Pointer); + vtable.valid_range_mut().start = 1; + vtable + } + _ => return Err(LayoutError::Unknown(unsized_part)), + }; + + // Effectively a (ptr, meta) tuple. + tcx.intern_layout(scalar_pair(cx, data_ptr, metadata)) + } + + ty::Dynamic(_, _, ty::DynStar) => { + let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false)); + data.valid_range_mut().start = 0; + let mut vtable = scalar_unit(Pointer); + vtable.valid_range_mut().start = 1; + tcx.intern_layout(scalar_pair(cx, data, vtable)) + } + + // Arrays and slices. + ty::Array(element, mut count) => { + if count.has_projections() { + count = tcx.normalize_erasing_regions(param_env, count); + if count.has_projections() { + return Err(LayoutError::Unknown(ty)); + } + } + + let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?; + let element = cx.layout_of(element)?; + let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; + + let abi = if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) + { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let largest_niche = if count != 0 { element.largest_niche } else { None }; + + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count }, + abi, + largest_niche, + align: element.align, + size, + }) + } + ty::Slice(element) => { + let element = cx.layout_of(element)?; + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: element.align, + size: Size::ZERO, + }) + } + ty::Str => tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Odd unit types. + ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?, + ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => { + let mut unit = univariant_uninterned( + cx, + ty, + &[], + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + match unit.abi { + Abi::Aggregate { ref mut sized } => *sized = false, + _ => bug!(), + } + tcx.intern_layout(unit) + } + + ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?, + + ty::Closure(_, ref substs) => { + let tys = substs.as_closure().upvar_tys(); + univariant( + &tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?, + &ReprOptions::default(), + StructKind::AlwaysSized, + )? + } + + ty::Tuple(tys) => { + let kind = + if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; + + univariant( + &tys.iter().map(|k| cx.layout_of(k)).collect::<Result<Vec<_>, _>>()?, + &ReprOptions::default(), + kind, + )? + } + + // SIMD vector types. + ty::Adt(def, substs) if def.repr().simd() => { + if !def.is_struct() { + // Should have yielded E0517 by now. + tcx.sess.delay_span_bug( + DUMMY_SP, + "#[repr(simd)] was applied to an ADT that is not a struct", + ); + return Err(LayoutError::Unknown(ty)); + } + + // Supported SIMD vectors are homogeneous ADTs with at least one field: + // + // * #[repr(simd)] struct S(T, T, T, T); + // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T } + // * #[repr(simd)] struct S([T; 4]) + // + // where T is a primitive scalar (integer/float/pointer). + + // SIMD vectors with zero fields are not supported. + // (should be caught by typeck) + if def.non_enum_variant().fields.is_empty() { + tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); + } + + // Type of the first ADT field: + let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs); + + // Heterogeneous SIMD vectors are not supported: + // (should be caught by typeck) + for fi in &def.non_enum_variant().fields { + if fi.ty(tcx, substs) != f0_ty { + tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty)); + } + } + + // The element type and number of elements of the SIMD vector + // are obtained from: + // + // * the element type and length of the single array field, if + // the first field is of array type, or + // + // * the homogeneous field type and the number of fields. + let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() { + // First ADT field is an array: + + // SIMD vectors with multiple array fields are not supported: + // (should be caught by typeck) + if def.non_enum_variant().fields.len() != 1 { + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` with more than one array field", + ty + )); + } + + // Extract the number of elements from the layout of the array field: + let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else { + return Err(LayoutError::Unknown(ty)); + }; + + (*e_ty, *count, true) + } else { + // First ADT field is not an array: + (f0_ty, def.non_enum_variant().fields.len() as _, false) + }; + + // SIMD vectors of zero length are not supported. + // Additionally, lengths are capped at 2^16 as a fixed maximum backends must + // support. + // + // Can't be caught in typeck if the array length is generic. + if e_len == 0 { + tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); + } else if e_len > MAX_SIMD_LANES { + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` of length greater than {}", + ty, MAX_SIMD_LANES, + )); + } + + // Compute the ABI of the element type: + let e_ly = cx.layout_of(e_ty)?; + let Abi::Scalar(e_abi) = e_ly.abi else { + // This error isn't caught in typeck, e.g., if + // the element type of the vector is generic. + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` with a non-primitive-scalar \ + (integer/float/pointer) element type `{}`", + ty, e_ty + )) + }; + + // Compute the size and alignment of the vector: + let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?; + let align = dl.vector_align(size); + let size = size.align_to(align.abi); + + // Compute the placement of the vector fields: + let fields = if is_array { + FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] } + } else { + FieldsShape::Array { stride: e_ly.size, count: e_len } + }; + + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields, + abi: Abi::Vector { element: e_abi, count: e_len }, + largest_niche: e_ly.largest_niche, + size, + align, + }) + } + + // ADTs. + ty::Adt(def, substs) => { + // Cache the field layouts. + let variants = def + .variants() + .iter() + .map(|v| { + v.fields + .iter() + .map(|field| cx.layout_of(field.ty(tcx, substs))) + .collect::<Result<Vec<_>, _>>() + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + if def.is_union() { + if def.repr().pack.is_some() && def.repr().align.is_some() { + cx.tcx.sess.delay_span_bug( + tcx.def_span(def.did()), + "union cannot be packed and aligned", + ); + return Err(LayoutError::Unknown(ty)); + } + + let mut align = + if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + if let Some(repr_align) = def.repr().align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + let optimize = !def.repr().inhibit_union_abi_opt(); + let mut size = Size::ZERO; + let mut abi = Abi::Aggregate { sized: true }; + let index = VariantIdx::new(0); + for field in &variants[index] { + assert!(!field.is_unsized()); + align = align.max(field.align); + + // If all non-ZST fields have the same ABI, forward this ABI + if optimize && !field.is_zst() { + // Discard valid range information and allow undef + let field_abi = match field.abi { + Abi::Scalar(x) => Abi::Scalar(x.to_union()), + Abi::ScalarPair(x, y) => Abi::ScalarPair(x.to_union(), y.to_union()), + Abi::Vector { element: x, count } => { + Abi::Vector { element: x.to_union(), count } + } + Abi::Uninhabited | Abi::Aggregate { .. } => { + Abi::Aggregate { sized: true } + } + }; + + if size == Size::ZERO { + // first non ZST: initialize 'abi' + abi = field_abi; + } else if abi != field_abi { + // different fields have different ABI: reset to Aggregate + abi = Abi::Aggregate { sized: true }; + } + } + + size = cmp::max(size, field.size); + } + + if let Some(pack) = def.repr().pack { + align = align.min(AbiAndPrefAlign::new(pack)); + } + + return Ok(tcx.intern_layout(LayoutS { + variants: Variants::Single { index }, + fields: FieldsShape::Union( + NonZeroUsize::new(variants[index].len()).ok_or(LayoutError::Unknown(ty))?, + ), + abi, + largest_niche: None, + align, + size: size.align_to(align.abi), + })); + } + + // A variant is absent if it's uninhabited and only has ZST fields. + // Present uninhabited variants only require space for their fields, + // but *not* an encoding of the discriminant (e.g., a tag value). + // See issue #49298 for more details on the need to leave space + // for non-ZST uninhabited data (mostly partial initialization). + let absent = |fields: &[TyAndLayout<'_>]| { + let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited()); + let is_zst = fields.iter().all(|f| f.is_zst()); + uninhabited && is_zst + }; + let (present_first, present_second) = { + let mut present_variants = variants + .iter_enumerated() + .filter_map(|(i, v)| if absent(v) { None } else { Some(i) }); + (present_variants.next(), present_variants.next()) + }; + let present_first = match present_first { + Some(present_first) => present_first, + // Uninhabited because it has no variants, or only absent ones. + None if def.is_enum() => { + return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout); + } + // If it's a struct, still compute a layout so that we can still compute the + // field offsets. + None => VariantIdx::new(0), + }; + + let is_struct = !def.is_enum() || + // Only one variant is present. + (present_second.is_none() && + // Representation optimizations are allowed. + !def.repr().inhibit_enum_layout_opt()); + if is_struct { + // Struct, or univariant enum equivalent to a struct. + // (Typechecking will reject discriminant-sizing attrs.) + + let v = present_first; + let kind = if def.is_enum() || variants[v].is_empty() { + StructKind::AlwaysSized + } else { + let param_env = tcx.param_env(def.did()); + let last_field = def.variant(v).fields.last().unwrap(); + let always_sized = tcx.type_of(last_field.did).is_sized(tcx, param_env); + if !always_sized { StructKind::MaybeUnsized } else { StructKind::AlwaysSized } + }; + + let mut st = univariant_uninterned(cx, ty, &variants[v], &def.repr(), kind)?; + st.variants = Variants::Single { index: v }; + + if def.is_unsafe_cell() { + let hide_niches = |scalar: &mut _| match scalar { + Scalar::Initialized { value, valid_range } => { + *valid_range = WrappingRange::full(value.size(dl)) + } + // Already doesn't have any niches + Scalar::Union { .. } => {} + }; + match &mut st.abi { + Abi::Uninhabited => {} + Abi::Scalar(scalar) => hide_niches(scalar), + Abi::ScalarPair(a, b) => { + hide_niches(a); + hide_niches(b); + } + Abi::Vector { element, count: _ } => hide_niches(element), + Abi::Aggregate { sized: _ } => {} + } + st.largest_niche = None; + return Ok(tcx.intern_layout(st)); + } + + let (start, end) = cx.tcx.layout_scalar_valid_range(def.did()); + match st.abi { + Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { + // the asserts ensure that we are not using the + // `#[rustc_layout_scalar_valid_range(n)]` + // attribute to widen the range of anything as that would probably + // result in UB somewhere + // FIXME(eddyb) the asserts are probably not needed, + // as larger validity ranges would result in missed + // optimizations, *not* wrongly assuming the inner + // value is valid. e.g. unions enlarge validity ranges, + // because the values may be uninitialized. + if let Bound::Included(start) = start { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + let valid_range = scalar.valid_range_mut(); + assert!(valid_range.start <= start); + valid_range.start = start; + } + if let Bound::Included(end) = end { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + let valid_range = scalar.valid_range_mut(); + assert!(valid_range.end >= end); + valid_range.end = end; + } + + // Update `largest_niche` if we have introduced a larger niche. + let niche = Niche::from_scalar(dl, Size::ZERO, *scalar); + if let Some(niche) = niche { + match st.largest_niche { + Some(largest_niche) => { + // Replace the existing niche even if they're equal, + // because this one is at a lower offset. + if largest_niche.available(dl) <= niche.available(dl) { + st.largest_niche = Some(niche); + } + } + None => st.largest_niche = Some(niche), + } + } + } + _ => assert!( + start == Bound::Unbounded && end == Bound::Unbounded, + "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}", + def, + st, + ), + } + + return Ok(tcx.intern_layout(st)); + } + + // At this point, we have handled all unions and + // structs. (We have also handled univariant enums + // that allow representation optimization.) + assert!(def.is_enum()); + + // Until we've decided whether to use the tagged or + // niche filling LayoutS, we don't want to intern the + // variant layouts, so we can't store them in the + // overall LayoutS. Store the overall LayoutS + // and the variant LayoutSs here until then. + struct TmpLayout<'tcx> { + layout: LayoutS<'tcx>, + variants: IndexVec<VariantIdx, LayoutS<'tcx>>, + } + + let calculate_niche_filling_layout = + || -> Result<Option<TmpLayout<'tcx>>, LayoutError<'tcx>> { + // The current code for niche-filling relies on variant indices + // instead of actual discriminants, so enums with + // explicit discriminants (RFC #2363) would misbehave. + if def.repr().inhibit_enum_layout_opt() + || def + .variants() + .iter_enumerated() + .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32())) + { + return Ok(None); + } + + if variants.len() < 2 { + return Ok(None); + } + + let mut align = dl.aggregate_align; + let mut variant_layouts = variants + .iter_enumerated() + .map(|(j, v)| { + let mut st = univariant_uninterned( + cx, + ty, + v, + &def.repr(), + StructKind::AlwaysSized, + )?; + st.variants = Variants::Single { index: j }; + + align = align.max(st.align); + + Ok(st) + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + let largest_variant_index = match variant_layouts + .iter_enumerated() + .max_by_key(|(_i, layout)| layout.size.bytes()) + .map(|(i, _layout)| i) + { + None => return Ok(None), + Some(i) => i, + }; + + let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1); + let needs_disc = |index: VariantIdx| { + index != largest_variant_index && !absent(&variants[index]) + }; + let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap() + ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap(); + + let count = niche_variants.size_hint().1.unwrap() as u128; + + // Find the field with the largest niche + let (field_index, niche, (niche_start, niche_scalar)) = match variants + [largest_variant_index] + .iter() + .enumerate() + .filter_map(|(j, field)| Some((j, field.largest_niche?))) + .max_by_key(|(_, niche)| niche.available(dl)) + .and_then(|(j, niche)| Some((j, niche, niche.reserve(cx, count)?))) + { + None => return Ok(None), + Some(x) => x, + }; + + let niche_offset = niche.offset + + variant_layouts[largest_variant_index].fields.offset(field_index); + let niche_size = niche.value.size(dl); + let size = variant_layouts[largest_variant_index].size.align_to(align.abi); + + let all_variants_fit = + variant_layouts.iter_enumerated_mut().all(|(i, layout)| { + if i == largest_variant_index { + return true; + } + + layout.largest_niche = None; + + if layout.size <= niche_offset { + // This variant will fit before the niche. + return true; + } + + // Determine if it'll fit after the niche. + let this_align = layout.align.abi; + let this_offset = (niche_offset + niche_size).align_to(this_align); + + if this_offset + layout.size > size { + return false; + } + + // It'll fit, but we need to make some adjustments. + match layout.fields { + FieldsShape::Arbitrary { ref mut offsets, .. } => { + for (j, offset) in offsets.iter_mut().enumerate() { + if !variants[i][j].is_zst() { + *offset += this_offset; + } + } + } + _ => { + panic!("Layout of fields should be Arbitrary for variants") + } + } + + // It can't be a Scalar or ScalarPair because the offset isn't 0. + if !layout.abi.is_uninhabited() { + layout.abi = Abi::Aggregate { sized: true }; + } + layout.size += this_offset; + + true + }); + + if !all_variants_fit { + return Ok(None); + } + + let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar); + + let others_zst = variant_layouts + .iter_enumerated() + .all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO); + let same_size = size == variant_layouts[largest_variant_index].size; + let same_align = align == variant_layouts[largest_variant_index].align; + + let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) { + Abi::Uninhabited + } else if same_size && same_align && others_zst { + match variant_layouts[largest_variant_index].abi { + // When the total alignment and size match, we can use the + // same ABI as the scalar variant with the reserved niche. + Abi::Scalar(_) => Abi::Scalar(niche_scalar), + Abi::ScalarPair(first, second) => { + // Only the niche is guaranteed to be initialised, + // so use union layouts for the other primitive. + if niche_offset == Size::ZERO { + Abi::ScalarPair(niche_scalar, second.to_union()) + } else { + Abi::ScalarPair(first.to_union(), niche_scalar) + } + } + _ => Abi::Aggregate { sized: true }, + } + } else { + Abi::Aggregate { sized: true } + }; + + let layout = LayoutS { + variants: Variants::Multiple { + tag: niche_scalar, + tag_encoding: TagEncoding::Niche { + untagged_variant: largest_variant_index, + niche_variants, + niche_start, + }, + tag_field: 0, + variants: IndexVec::new(), + }, + fields: FieldsShape::Arbitrary { + offsets: vec![niche_offset], + memory_index: vec![0], + }, + abi, + largest_niche, + size, + align, + }; + + Ok(Some(TmpLayout { layout, variants: variant_layouts })) + }; + + let niche_filling_layout = calculate_niche_filling_layout()?; + + let (mut min, mut max) = (i128::MAX, i128::MIN); + let discr_type = def.repr().discr_type(); + let bits = Integer::from_attr(cx, discr_type).size().bits(); + for (i, discr) in def.discriminants(tcx) { + if variants[i].iter().any(|f| f.abi.is_uninhabited()) { + continue; + } + let mut x = discr.val as i128; + if discr_type.is_signed() { + // sign extend the raw representation to be an i128 + x = (x << (128 - bits)) >> (128 - bits); + } + if x < min { + min = x; + } + if x > max { + max = x; + } + } + // We might have no inhabited variants, so pretend there's at least one. + if (min, max) == (i128::MAX, i128::MIN) { + min = 0; + max = 0; + } + assert!(min <= max, "discriminant range is {}...{}", min, max); + let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max); + + let mut align = dl.aggregate_align; + let mut size = Size::ZERO; + + // We're interested in the smallest alignment, so start large. + let mut start_align = Align::from_bytes(256).unwrap(); + assert_eq!(Integer::for_align(dl, start_align), None); + + // repr(C) on an enum tells us to make a (tag, union) layout, + // so we need to grow the prefix alignment to be at least + // the alignment of the union. (This value is used both for + // determining the alignment of the overall enum, and the + // determining the alignment of the payload after the tag.) + let mut prefix_align = min_ity.align(dl).abi; + if def.repr().c() { + for fields in &variants { + for field in fields { + prefix_align = prefix_align.max(field.align.abi); + } + } + } + + // Create the set of structs that represent each variant. + let mut layout_variants = variants + .iter_enumerated() + .map(|(i, field_layouts)| { + let mut st = univariant_uninterned( + cx, + ty, + &field_layouts, + &def.repr(), + StructKind::Prefixed(min_ity.size(), prefix_align), + )?; + st.variants = Variants::Single { index: i }; + // Find the first field we can't move later + // to make room for a larger discriminant. + for field in st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) { + if !field.is_zst() || field.align.abi.bytes() != 1 { + start_align = start_align.min(field.align.abi); + break; + } + } + size = cmp::max(size, st.size); + align = align.max(st.align); + Ok(st) + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + // Align the maximum variant size to the largest alignment. + size = size.align_to(align.abi); + + if size.bytes() >= dl.obj_size_bound() { + return Err(LayoutError::SizeOverflow(ty)); + } + + let typeck_ity = Integer::from_attr(dl, def.repr().discr_type()); + if typeck_ity < min_ity { + // It is a bug if Layout decided on a greater discriminant size than typeck for + // some reason at this point (based on values discriminant can take on). Mostly + // because this discriminant will be loaded, and then stored into variable of + // type calculated by typeck. Consider such case (a bug): typeck decided on + // byte-sized discriminant, but layout thinks we need a 16-bit to store all + // discriminant values. That would be a bug, because then, in codegen, in order + // to store this 16-bit discriminant into 8-bit sized temporary some of the + // space necessary to represent would have to be discarded (or layout is wrong + // on thinking it needs 16 bits) + bug!( + "layout decided on a larger discriminant type ({:?}) than typeck ({:?})", + min_ity, + typeck_ity + ); + // However, it is fine to make discr type however large (as an optimisation) + // after this point – we’ll just truncate the value we load in codegen. + } + + // Check to see if we should use a different type for the + // discriminant. We can safely use a type with the same size + // as the alignment of the first field of each variant. + // We increase the size of the discriminant to avoid LLVM copying + // padding when it doesn't need to. This normally causes unaligned + // load/stores and excessive memcpy/memset operations. By using a + // bigger integer size, LLVM can be sure about its contents and + // won't be so conservative. + + // Use the initial field alignment + let mut ity = if def.repr().c() || def.repr().int.is_some() { + min_ity + } else { + Integer::for_align(dl, start_align).unwrap_or(min_ity) + }; + + // If the alignment is not larger than the chosen discriminant size, + // don't use the alignment as the final size. + if ity <= min_ity { + ity = min_ity; + } else { + // Patch up the variants' first few fields. + let old_ity_size = min_ity.size(); + let new_ity_size = ity.size(); + for variant in &mut layout_variants { + match variant.fields { + FieldsShape::Arbitrary { ref mut offsets, .. } => { + for i in offsets { + if *i <= old_ity_size { + assert_eq!(*i, old_ity_size); + *i = new_ity_size; + } + } + // We might be making the struct larger. + if variant.size <= old_ity_size { + variant.size = new_ity_size; + } + } + _ => bug!(), + } + } + } + + let tag_mask = ity.size().unsigned_int_max(); + let tag = Scalar::Initialized { + value: Int(ity, signed), + valid_range: WrappingRange { + start: (min as u128 & tag_mask), + end: (max as u128 & tag_mask), + }, + }; + let mut abi = Abi::Aggregate { sized: true }; + + if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } else if tag.size(dl) == size { + // Make sure we only use scalar layout when the enum is entirely its + // own tag (i.e. it has no padding nor any non-ZST variant fields). + abi = Abi::Scalar(tag); + } else { + // Try to use a ScalarPair for all tagged enums. + let mut common_prim = None; + let mut common_prim_initialized_in_all_variants = true; + for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) { + let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else { + bug!(); + }; + let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst()); + let (field, offset) = match (fields.next(), fields.next()) { + (None, None) => { + common_prim_initialized_in_all_variants = false; + continue; + } + (Some(pair), None) => pair, + _ => { + common_prim = None; + break; + } + }; + let prim = match field.abi { + Abi::Scalar(scalar) => { + common_prim_initialized_in_all_variants &= + matches!(scalar, Scalar::Initialized { .. }); + scalar.primitive() + } + _ => { + common_prim = None; + break; + } + }; + if let Some(pair) = common_prim { + // This is pretty conservative. We could go fancier + // by conflating things like i32 and u32, or even + // realising that (u8, u8) could just cohabit with + // u16 or even u32. + if pair != (prim, offset) { + common_prim = None; + break; + } + } else { + common_prim = Some((prim, offset)); + } + } + if let Some((prim, offset)) = common_prim { + let prim_scalar = if common_prim_initialized_in_all_variants { + scalar_unit(prim) + } else { + // Common prim might be uninit. + Scalar::Union { value: prim } + }; + let pair = scalar_pair(cx, tag, prim_scalar); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if pair_offsets[0] == Size::ZERO + && pair_offsets[1] == *offset + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + } + + // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the + // variants to ensure they are consistent. This is because a downcast is + // semantically a NOP, and thus should not affect layout. + if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) { + for variant in &mut layout_variants { + // We only do this for variants with fields; the others are not accessed anyway. + // Also do not overwrite any already existing "clever" ABIs. + if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) { + variant.abi = abi; + // Also need to bump up the size and alignment, so that the entire value fits in here. + variant.size = cmp::max(variant.size, size); + variant.align.abi = cmp::max(variant.align.abi, align.abi); + } + } + } + + let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag); + + let tagged_layout = LayoutS { + variants: Variants::Multiple { + tag, + tag_encoding: TagEncoding::Direct, + tag_field: 0, + variants: IndexVec::new(), + }, + fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }, + largest_niche, + abi, + align, + size, + }; + + let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants }; + + let mut best_layout = match (tagged_layout, niche_filling_layout) { + (tl, Some(nl)) => { + // Pick the smaller layout; otherwise, + // pick the layout with the larger niche; otherwise, + // pick tagged as it has simpler codegen. + use Ordering::*; + let niche_size = |tmp_l: &TmpLayout<'_>| { + tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl)) + }; + match ( + tl.layout.size.cmp(&nl.layout.size), + niche_size(&tl).cmp(&niche_size(&nl)), + ) { + (Greater, _) => nl, + (Equal, Less) => nl, + _ => tl, + } + } + (tl, None) => tl, + }; + + // Now we can intern the variant layouts and store them in the enum layout. + best_layout.layout.variants = match best_layout.layout.variants { + Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple { + tag, + tag_encoding, + tag_field, + variants: best_layout + .variants + .into_iter() + .map(|layout| tcx.intern_layout(layout)) + .collect(), + }, + _ => bug!(), + }; + + tcx.intern_layout(best_layout.layout) + } + + // Types with no meaningful known layout. + ty::Projection(_) | ty::Opaque(..) => { + // NOTE(eddyb) `layout_of` query should've normalized these away, + // if that was possible, so there's no reason to try again here. + return Err(LayoutError::Unknown(ty)); + } + + ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => { + bug!("Layout::compute: unexpected type `{}`", ty) + } + + ty::Bound(..) | ty::Param(_) | ty::Error(_) => { + return Err(LayoutError::Unknown(ty)); + } + }) +} + +/// Overlap eligibility and variant assignment for each GeneratorSavedLocal. +#[derive(Clone, Debug, PartialEq)] +enum SavedLocalEligibility { + Unassigned, + Assigned(VariantIdx), + // FIXME: Use newtype_index so we aren't wasting bytes + Ineligible(Option<u32>), +} + +// When laying out generators, we divide our saved local fields into two +// categories: overlap-eligible and overlap-ineligible. +// +// Those fields which are ineligible for overlap go in a "prefix" at the +// beginning of the layout, and always have space reserved for them. +// +// Overlap-eligible fields are only assigned to one variant, so we lay +// those fields out for each variant and put them right after the +// prefix. +// +// Finally, in the layout details, we point to the fields from the +// variants they are assigned to. It is possible for some fields to be +// included in multiple variants. No field ever "moves around" in the +// layout; its offset is always the same. +// +// Also included in the layout are the upvars and the discriminant. +// These are included as fields on the "outer" layout; they are not part +// of any variant. + +/// Compute the eligibility and assignment of each local. +fn generator_saved_local_eligibility<'tcx>( + info: &GeneratorLayout<'tcx>, +) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) { + use SavedLocalEligibility::*; + + let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> = + IndexVec::from_elem_n(Unassigned, info.field_tys.len()); + + // The saved locals not eligible for overlap. These will get + // "promoted" to the prefix of our generator. + let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); + + // Figure out which of our saved locals are fields in only + // one variant. The rest are deemed ineligible for overlap. + for (variant_index, fields) in info.variant_fields.iter_enumerated() { + for local in fields { + match assignments[*local] { + Unassigned => { + assignments[*local] = Assigned(variant_index); + } + Assigned(idx) => { + // We've already seen this local at another suspension + // point, so it is no longer a candidate. + trace!( + "removing local {:?} in >1 variant ({:?}, {:?})", + local, + variant_index, + idx + ); + ineligible_locals.insert(*local); + assignments[*local] = Ineligible(None); + } + Ineligible(_) => {} + } + } + } + + // Next, check every pair of eligible locals to see if they + // conflict. + for local_a in info.storage_conflicts.rows() { + let conflicts_a = info.storage_conflicts.count(local_a); + if ineligible_locals.contains(local_a) { + continue; + } + + for local_b in info.storage_conflicts.iter(local_a) { + // local_a and local_b are storage live at the same time, therefore they + // cannot overlap in the generator layout. The only way to guarantee + // this is if they are in the same variant, or one is ineligible + // (which means it is stored in every variant). + if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] { + continue; + } + + // If they conflict, we will choose one to make ineligible. + // This is not always optimal; it's just a greedy heuristic that + // seems to produce good results most of the time. + let conflicts_b = info.storage_conflicts.count(local_b); + let (remove, other) = + if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) }; + ineligible_locals.insert(remove); + assignments[remove] = Ineligible(None); + trace!("removing local {:?} due to conflict with {:?}", remove, other); + } + } + + // Count the number of variants in use. If only one of them, then it is + // impossible to overlap any locals in our layout. In this case it's + // always better to make the remaining locals ineligible, so we can + // lay them out with the other locals in the prefix and eliminate + // unnecessary padding bytes. + { + let mut used_variants = BitSet::new_empty(info.variant_fields.len()); + for assignment in &assignments { + if let Assigned(idx) = assignment { + used_variants.insert(*idx); + } + } + if used_variants.count() < 2 { + for assignment in assignments.iter_mut() { + *assignment = Ineligible(None); + } + ineligible_locals.insert_all(); + } + } + + // Write down the order of our locals that will be promoted to the prefix. + { + for (idx, local) in ineligible_locals.iter().enumerate() { + assignments[local] = Ineligible(Some(idx as u32)); + } + } + debug!("generator saved local assignments: {:?}", assignments); + + (ineligible_locals, assignments) +} + +/// Compute the full generator layout. +fn generator_layout<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + ty: Ty<'tcx>, + def_id: hir::def_id::DefId, + substs: SubstsRef<'tcx>, +) -> Result<Layout<'tcx>, LayoutError<'tcx>> { + use SavedLocalEligibility::*; + let tcx = cx.tcx; + let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs); + + let Some(info) = tcx.generator_layout(def_id) else { + return Err(LayoutError::Unknown(ty)); + }; + let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info); + + // Build a prefix layout, including "promoting" all ineligible + // locals as part of the prefix. We compute the layout of all of + // these fields at once to get optimal packing. + let tag_index = substs.as_generator().prefix_tys().count(); + + // `info.variant_fields` already accounts for the reserved variants, so no need to add them. + let max_discr = (info.variant_fields.len() - 1) as u128; + let discr_int = Integer::fit_unsigned(max_discr); + let discr_int_ty = discr_int.to_ty(tcx, false); + let tag = Scalar::Initialized { + value: Primitive::Int(discr_int, false), + valid_range: WrappingRange { start: 0, end: max_discr }, + }; + let tag_layout = cx.tcx.intern_layout(LayoutS::scalar(cx, tag)); + let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout }; + + let promoted_layouts = ineligible_locals + .iter() + .map(|local| subst_field(info.field_tys[local])) + .map(|ty| tcx.mk_maybe_uninit(ty)) + .map(|ty| cx.layout_of(ty)); + let prefix_layouts = substs + .as_generator() + .prefix_tys() + .map(|ty| cx.layout_of(ty)) + .chain(iter::once(Ok(tag_layout))) + .chain(promoted_layouts) + .collect::<Result<Vec<_>, _>>()?; + let prefix = univariant_uninterned( + cx, + ty, + &prefix_layouts, + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + + let (prefix_size, prefix_align) = (prefix.size, prefix.align); + + // Split the prefix layout into the "outer" fields (upvars and + // discriminant) and the "promoted" fields. Promoted fields will + // get included in each variant that requested them in + // GeneratorLayout. + debug!("prefix = {:#?}", prefix); + let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields { + FieldsShape::Arbitrary { mut offsets, memory_index } => { + let mut inverse_memory_index = invert_mapping(&memory_index); + + // "a" (`0..b_start`) and "b" (`b_start..`) correspond to + // "outer" and "promoted" fields respectively. + let b_start = (tag_index + 1) as u32; + let offsets_b = offsets.split_off(b_start as usize); + let offsets_a = offsets; + + // Disentangle the "a" and "b" components of `inverse_memory_index` + // by preserving the order but keeping only one disjoint "half" each. + // FIXME(eddyb) build a better abstraction for permutations, if possible. + let inverse_memory_index_b: Vec<_> = + inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect(); + inverse_memory_index.retain(|&i| i < b_start); + let inverse_memory_index_a = inverse_memory_index; + + // Since `inverse_memory_index_{a,b}` each only refer to their + // respective fields, they can be safely inverted + let memory_index_a = invert_mapping(&inverse_memory_index_a); + let memory_index_b = invert_mapping(&inverse_memory_index_b); + + let outer_fields = + FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a }; + (outer_fields, offsets_b, memory_index_b) + } + _ => bug!(), + }; + + let mut size = prefix.size; + let mut align = prefix.align; + let variants = info + .variant_fields + .iter_enumerated() + .map(|(index, variant_fields)| { + // Only include overlap-eligible fields when we compute our variant layout. + let variant_only_tys = variant_fields + .iter() + .filter(|local| match assignments[**local] { + Unassigned => bug!(), + Assigned(v) if v == index => true, + Assigned(_) => bug!("assignment does not match variant"), + Ineligible(_) => false, + }) + .map(|local| subst_field(info.field_tys[*local])); + + let mut variant = univariant_uninterned( + cx, + ty, + &variant_only_tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?, + &ReprOptions::default(), + StructKind::Prefixed(prefix_size, prefix_align.abi), + )?; + variant.variants = Variants::Single { index }; + + let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else { + bug!(); + }; + + // Now, stitch the promoted and variant-only fields back together in + // the order they are mentioned by our GeneratorLayout. + // Because we only use some subset (that can differ between variants) + // of the promoted fields, we can't just pick those elements of the + // `promoted_memory_index` (as we'd end up with gaps). + // So instead, we build an "inverse memory_index", as if all of the + // promoted fields were being used, but leave the elements not in the + // subset as `INVALID_FIELD_IDX`, which we can filter out later to + // obtain a valid (bijective) mapping. + const INVALID_FIELD_IDX: u32 = !0; + let mut combined_inverse_memory_index = + vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()]; + let mut offsets_and_memory_index = iter::zip(offsets, memory_index); + let combined_offsets = variant_fields + .iter() + .enumerate() + .map(|(i, local)| { + let (offset, memory_index) = match assignments[*local] { + Unassigned => bug!(), + Assigned(_) => { + let (offset, memory_index) = offsets_and_memory_index.next().unwrap(); + (offset, promoted_memory_index.len() as u32 + memory_index) + } + Ineligible(field_idx) => { + let field_idx = field_idx.unwrap() as usize; + (promoted_offsets[field_idx], promoted_memory_index[field_idx]) + } + }; + combined_inverse_memory_index[memory_index as usize] = i as u32; + offset + }) + .collect(); + + // Remove the unused slots and invert the mapping to obtain the + // combined `memory_index` (also see previous comment). + combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX); + let combined_memory_index = invert_mapping(&combined_inverse_memory_index); + + variant.fields = FieldsShape::Arbitrary { + offsets: combined_offsets, + memory_index: combined_memory_index, + }; + + size = size.max(variant.size); + align = align.max(variant.align); + Ok(tcx.intern_layout(variant)) + }) + .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; + + size = size.align_to(align.abi); + + let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let layout = tcx.intern_layout(LayoutS { + variants: Variants::Multiple { + tag, + tag_encoding: TagEncoding::Direct, + tag_field: tag_index, + variants, + }, + fields: outer_fields, + abi, + largest_niche: prefix.largest_niche, + size, + align, + }); + debug!("generator layout ({:?}): {:#?}", ty, layout); + Ok(layout) +} + +/// This is invoked by the `layout_of` query to record the final +/// layout of each type. +#[inline(always)] +fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) { + // If we are running with `-Zprint-type-sizes`, maybe record layouts + // for dumping later. + if cx.tcx.sess.opts.unstable_opts.print_type_sizes { + record_layout_for_printing_outlined(cx, layout) + } +} + +fn record_layout_for_printing_outlined<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + layout: TyAndLayout<'tcx>, +) { + // Ignore layouts that are done with non-empty environments or + // non-monomorphic layouts, as the user only wants to see the stuff + // resulting from the final codegen session. + if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() { + return; + } + + // (delay format until we actually need it) + let record = |kind, packed, opt_discr_size, variants| { + let type_desc = format!("{:?}", layout.ty); + cx.tcx.sess.code_stats.record_type_size( + kind, + type_desc, + layout.align.abi, + layout.size, + packed, + opt_discr_size, + variants, + ); + }; + + let adt_def = match *layout.ty.kind() { + ty::Adt(ref adt_def, _) => { + debug!("print-type-size t: `{:?}` process adt", layout.ty); + adt_def + } + + ty::Closure(..) => { + debug!("print-type-size t: `{:?}` record closure", layout.ty); + record(DataTypeKind::Closure, false, None, vec![]); + return; + } + + _ => { + debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty); + return; + } + }; + + let adt_kind = adt_def.adt_kind(); + let adt_packed = adt_def.repr().pack.is_some(); + + let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| { + let mut min_size = Size::ZERO; + let field_info: Vec<_> = flds + .iter() + .enumerate() + .map(|(i, &name)| { + let field_layout = layout.field(cx, i); + let offset = layout.fields.offset(i); + let field_end = offset + field_layout.size; + if min_size < field_end { + min_size = field_end; + } + FieldInfo { + name, + offset: offset.bytes(), + size: field_layout.size.bytes(), + align: field_layout.align.abi.bytes(), + } + }) + .collect(); + + VariantInfo { + name: n, + kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact }, + align: layout.align.abi.bytes(), + size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() }, + fields: field_info, + } + }; + + match layout.variants { + Variants::Single { index } => { + if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive { + debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name); + let variant_def = &adt_def.variant(index); + let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); + record( + adt_kind.into(), + adt_packed, + None, + vec![build_variant_info(Some(variant_def.name), &fields, layout)], + ); + } else { + // (This case arises for *empty* enums; so give it + // zero variants.) + record(adt_kind.into(), adt_packed, None, vec![]); + } + } + + Variants::Multiple { tag, ref tag_encoding, .. } => { + debug!( + "print-type-size `{:#?}` adt general variants def {}", + layout.ty, + adt_def.variants().len() + ); + let variant_infos: Vec<_> = adt_def + .variants() + .iter_enumerated() + .map(|(i, variant_def)| { + let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); + build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i)) + }) + .collect(); + record( + adt_kind.into(), + adt_packed, + match tag_encoding { + TagEncoding::Direct => Some(tag.size(cx)), + _ => None, + }, + variant_infos, + ); + } + } +} diff --git a/compiler/rustc_ty_utils/src/layout_sanity_check.rs b/compiler/rustc_ty_utils/src/layout_sanity_check.rs new file mode 100644 index 000000000..100926ad4 --- /dev/null +++ b/compiler/rustc_ty_utils/src/layout_sanity_check.rs @@ -0,0 +1,303 @@ +use rustc_middle::ty::{ + layout::{LayoutCx, TyAndLayout}, + TyCtxt, +}; +use rustc_target::abi::*; + +use std::cmp; + +/// Enforce some basic invariants on layouts. +pub(super) fn sanity_check_layout<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + layout: &TyAndLayout<'tcx>, +) { + // Type-level uninhabitedness should always imply ABI uninhabitedness. + if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) { + assert!(layout.abi.is_uninhabited()); + } + + if layout.size.bytes() % layout.align.abi.bytes() != 0 { + bug!("size is not a multiple of align, in the following layout:\n{layout:#?}"); + } + + if cfg!(debug_assertions) { + /// Yields non-ZST fields of the type + fn non_zst_fields<'tcx, 'a>( + cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>, + layout: &'a TyAndLayout<'tcx>, + ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a { + (0..layout.layout.fields().count()).filter_map(|i| { + let field = layout.field(cx, i); + // Also checking `align == 1` here leads to test failures in + // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with + // alignment 4 that still gets ignored during layout computation (which is okay + // since other fields already force alignment 4). + let zst = field.is_zst(); + (!zst).then(|| (layout.fields.offset(i), field)) + }) + } + + fn skip_newtypes<'tcx>( + cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, + layout: &TyAndLayout<'tcx>, + ) -> TyAndLayout<'tcx> { + if matches!(layout.layout.variants(), Variants::Multiple { .. }) { + // Definitely not a newtype of anything. + return *layout; + } + let mut fields = non_zst_fields(cx, layout); + let Some(first) = fields.next() else { + // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing + return *layout + }; + if fields.next().is_none() { + let (offset, first) = first; + if offset == Size::ZERO && first.layout.size() == layout.size { + // This is a newtype, so keep recursing. + // FIXME(RalfJung): I don't think it would be correct to do any checks for + // alignment here, so we don't. Is that correct? + return skip_newtypes(cx, &first); + } + } + // No more newtypes here. + *layout + } + + fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) { + match layout.layout.abi() { + Abi::Scalar(scalar) => { + // No padding in scalars. + let size = scalar.size(cx); + let align = scalar.align(cx).abi; + assert_eq!( + layout.layout.size(), + size, + "size mismatch between ABI and layout in {layout:#?}" + ); + assert_eq!( + layout.layout.align().abi, + align, + "alignment mismatch between ABI and layout in {layout:#?}" + ); + // Check that this matches the underlying field. + let inner = skip_newtypes(cx, layout); + assert!( + matches!(inner.layout.abi(), Abi::Scalar(_)), + "`Scalar` type {} is newtype around non-`Scalar` type {}", + layout.ty, + inner.ty + ); + match inner.layout.fields() { + FieldsShape::Primitive => { + // Fine. + } + FieldsShape::Union(..) => { + // FIXME: I guess we could also check something here? Like, look at all fields? + return; + } + FieldsShape::Arbitrary { .. } => { + // Should be an enum, the only field is the discriminant. + assert!( + inner.ty.is_enum(), + "`Scalar` layout for non-primitive non-enum type {}", + inner.ty + ); + assert_eq!( + inner.layout.fields().count(), + 1, + "`Scalar` layout for multiple-field type in {inner:#?}", + ); + let offset = inner.layout.fields().offset(0); + let field = inner.field(cx, 0); + // The field should be at the right offset, and match the `scalar` layout. + assert_eq!( + offset, + Size::ZERO, + "`Scalar` field at non-0 offset in {inner:#?}", + ); + assert_eq!( + field.size, size, + "`Scalar` field with bad size in {inner:#?}", + ); + assert_eq!( + field.align.abi, align, + "`Scalar` field with bad align in {inner:#?}", + ); + assert!( + matches!(field.abi, Abi::Scalar(_)), + "`Scalar` field with bad ABI in {inner:#?}", + ); + } + _ => { + panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty); + } + } + } + Abi::ScalarPair(scalar1, scalar2) => { + // Sanity-check scalar pairs. These are a bit more flexible and support + // padding, but we can at least ensure both fields actually fit into the layout + // and the alignment requirement has not been weakened. + let size1 = scalar1.size(cx); + let align1 = scalar1.align(cx).abi; + let size2 = scalar2.size(cx); + let align2 = scalar2.align(cx).abi; + assert!( + layout.layout.align().abi >= cmp::max(align1, align2), + "alignment mismatch between ABI and layout in {layout:#?}", + ); + let field2_offset = size1.align_to(align2); + assert!( + layout.layout.size() >= field2_offset + size2, + "size mismatch between ABI and layout in {layout:#?}" + ); + // Check that the underlying pair of fields matches. + let inner = skip_newtypes(cx, layout); + assert!( + matches!(inner.layout.abi(), Abi::ScalarPair(..)), + "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}", + layout.ty, + inner.ty + ); + if matches!(inner.layout.variants(), Variants::Multiple { .. }) { + // FIXME: ScalarPair for enums is enormously complicated and it is very hard + // to check anything about them. + return; + } + match inner.layout.fields() { + FieldsShape::Arbitrary { .. } => { + // Checked below. + } + FieldsShape::Union(..) => { + // FIXME: I guess we could also check something here? Like, look at all fields? + return; + } + _ => { + panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}"); + } + } + let mut fields = non_zst_fields(cx, &inner); + let (offset1, field1) = fields.next().unwrap_or_else(|| { + panic!("`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}") + }); + let (offset2, field2) = fields.next().unwrap_or_else(|| { + panic!("`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}") + }); + assert!( + fields.next().is_none(), + "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}" + ); + // The fields might be in opposite order. + let (offset1, field1, offset2, field2) = if offset1 <= offset2 { + (offset1, field1, offset2, field2) + } else { + (offset2, field2, offset1, field1) + }; + // The fields should be at the right offset, and match the `scalar` layout. + assert_eq!( + offset1, + Size::ZERO, + "`ScalarPair` first field at non-0 offset in {inner:#?}", + ); + assert_eq!( + field1.size, size1, + "`ScalarPair` first field with bad size in {inner:#?}", + ); + assert_eq!( + field1.align.abi, align1, + "`ScalarPair` first field with bad align in {inner:#?}", + ); + assert!( + matches!(field1.abi, Abi::Scalar(_)), + "`ScalarPair` first field with bad ABI in {inner:#?}", + ); + assert_eq!( + offset2, field2_offset, + "`ScalarPair` second field at bad offset in {inner:#?}", + ); + assert_eq!( + field2.size, size2, + "`ScalarPair` second field with bad size in {inner:#?}", + ); + assert_eq!( + field2.align.abi, align2, + "`ScalarPair` second field with bad align in {inner:#?}", + ); + assert!( + matches!(field2.abi, Abi::Scalar(_)), + "`ScalarPair` second field with bad ABI in {inner:#?}", + ); + } + Abi::Vector { count, element } => { + // No padding in vectors. Alignment can be strengthened, though. + assert!( + layout.layout.align().abi >= element.align(cx).abi, + "alignment mismatch between ABI and layout in {layout:#?}" + ); + let size = element.size(cx) * count; + assert_eq!( + layout.layout.size(), + size.align_to(cx.data_layout().vector_align(size).abi), + "size mismatch between ABI and layout in {layout:#?}" + ); + } + Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check. + } + } + + check_layout_abi(cx, layout); + + if let Variants::Multiple { variants, .. } = &layout.variants { + for variant in variants.iter() { + // No nested "multiple". + assert!(matches!(variant.variants(), Variants::Single { .. })); + // Variants should have the same or a smaller size as the full thing, + // and same for alignment. + if variant.size() > layout.size { + bug!( + "Type with size {} bytes has variant with size {} bytes: {layout:#?}", + layout.size.bytes(), + variant.size().bytes(), + ) + } + if variant.align().abi > layout.align.abi { + bug!( + "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}", + layout.align.abi.bytes(), + variant.align().abi.bytes(), + ) + } + // Skip empty variants. + if variant.size() == Size::ZERO + || variant.fields().count() == 0 + || variant.abi().is_uninhabited() + { + // These are never actually accessed anyway, so we can skip the coherence check + // for them. They also fail that check, since they have + // `Aggregate`/`Uninhbaited` ABI even when the main type is + // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size + // 0, and sometimes, variants without fields have non-0 size.) + continue; + } + // The top-level ABI and the ABI of the variants should be coherent. + let scalar_coherent = |s1: Scalar, s2: Scalar| { + s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx) + }; + let abi_coherent = match (layout.abi, variant.abi()) { + (Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2), + (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => { + scalar_coherent(a1, a2) && scalar_coherent(b1, b2) + } + (Abi::Uninhabited, _) => true, + (Abi::Aggregate { .. }, _) => true, + _ => false, + }; + if !abi_coherent { + bug!( + "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}", + variant + ); + } + } + } + } +} diff --git a/compiler/rustc_ty_utils/src/lib.rs b/compiler/rustc_ty_utils/src/lib.rs index 8524e57cb..cce5a79dd 100644 --- a/compiler/rustc_ty_utils/src/lib.rs +++ b/compiler/rustc_ty_utils/src/lib.rs @@ -5,13 +5,11 @@ //! This API is completely unstable and subject to change. #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")] +#![feature(let_chains)] #![feature(control_flow_enum)] -#![cfg_attr(bootstrap, feature(let_else))] #![feature(never_type)] #![feature(box_patterns)] #![recursion_limit = "256"] -#![deny(rustc::untranslatable_diagnostic)] -#![deny(rustc::diagnostic_outside_of_impl)] #[macro_use] extern crate rustc_middle; @@ -20,22 +18,28 @@ extern crate tracing; use rustc_middle::ty::query::Providers; +mod abi; mod assoc; mod common_traits; mod consts; mod errors; mod implied_bounds; pub mod instance; +mod layout; +mod layout_sanity_check; mod needs_drop; pub mod representability; mod ty; pub fn provide(providers: &mut Providers) { + abi::provide(providers); assoc::provide(providers); common_traits::provide(providers); consts::provide(providers); implied_bounds::provide(providers); + layout::provide(providers); needs_drop::provide(providers); + representability::provide(providers); ty::provide(providers); instance::provide(providers); } diff --git a/compiler/rustc_ty_utils/src/needs_drop.rs b/compiler/rustc_ty_utils/src/needs_drop.rs index ab5a3d8ae..024dcd591 100644 --- a/compiler/rustc_ty_utils/src/needs_drop.rs +++ b/compiler/rustc_ty_utils/src/needs_drop.rs @@ -2,7 +2,6 @@ use rustc_data_structures::fx::FxHashSet; use rustc_hir::def_id::DefId; -use rustc_middle::ty::subst::Subst; use rustc_middle::ty::subst::SubstsRef; use rustc_middle::ty::util::{needs_drop_components, AlwaysRequiresDrop}; use rustc_middle::ty::{self, EarlyBinder, Ty, TyCtxt}; @@ -110,7 +109,7 @@ where for component in components { match *component.kind() { - _ if component.is_copy_modulo_regions(tcx.at(DUMMY_SP), self.param_env) => (), + _ if component.is_copy_modulo_regions(tcx, self.param_env) => (), ty::Closure(_, substs) => { queue_type(self, substs.as_closure().tupled_upvars_ty()); @@ -265,7 +264,7 @@ fn adt_consider_insignificant_dtor<'tcx>( if is_marked_insig { // In some cases like `std::collections::HashMap` where the struct is a wrapper around // a type that is a Drop type, and the wrapped type (eg: `hashbrown::HashMap`) lies - // outside stdlib, we might choose to still annotate the the wrapper (std HashMap) with + // outside stdlib, we might choose to still annotate the wrapper (std HashMap) with // `rustc_insignificant_dtor`, even if the type itself doesn't have a `Drop` impl. Some(DtorType::Insignificant) } else if adt_def.destructor(tcx).is_some() { diff --git a/compiler/rustc_ty_utils/src/representability.rs b/compiler/rustc_ty_utils/src/representability.rs index eded78916..7f48fb804 100644 --- a/compiler/rustc_ty_utils/src/representability.rs +++ b/compiler/rustc_ty_utils/src/representability.rs @@ -1,386 +1,119 @@ -//! Check whether a type is representable. -use rustc_data_structures::fx::FxHashMap; -use rustc_hir as hir; -use rustc_middle::ty::{self, Ty, TyCtxt}; -use rustc_span::Span; -use std::cmp; +#![allow(rustc::untranslatable_diagnostic, rustc::diagnostic_outside_of_impl)] -/// Describes whether a type is representable. For types that are not -/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to -/// distinguish between types that are recursive with themselves and types that -/// contain a different recursive type. These cases can therefore be treated -/// differently when reporting errors. -/// -/// The ordering of the cases is significant. They are sorted so that cmp::max -/// will keep the "more erroneous" of two values. -#[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)] -pub enum Representability { - Representable, - ContainsRecursive, - /// Return a list of types that are included in themselves: - /// the spans where they are self-included, and (if found) - /// the HirId of the FieldDef that defines the self-inclusion. - SelfRecursive(Vec<(Span, Option<hir::HirId>)>), -} +use rustc_hir::def::DefKind; +use rustc_index::bit_set::BitSet; +use rustc_middle::ty::query::Providers; +use rustc_middle::ty::{self, Representability, Ty, TyCtxt}; +use rustc_span::def_id::{DefId, LocalDefId}; -/// Check whether a type is representable. This means it cannot contain unboxed -/// structural recursion. This check is needed for structs and enums. -pub fn ty_is_representable<'tcx>( - tcx: TyCtxt<'tcx>, - ty: Ty<'tcx>, - sp: Span, - field_id: Option<hir::HirId>, -) -> Representability { - debug!("is_type_representable: {:?}", ty); - // To avoid a stack overflow when checking an enum variant or struct that - // contains a different, structurally recursive type, maintain a stack of - // seen types and check recursion for each of them (issues #3008, #3779, - // #74224, #84611). `shadow_seen` contains the full stack and `seen` only - // the one for the current type (e.g. if we have structs A and B, B contains - // a field of type A, and we're currently looking at B, then `seen` will be - // cleared when recursing to check A, but `shadow_seen` won't, so that we - // can catch cases of mutual recursion where A also contains B). - let mut seen: Vec<Ty<'_>> = Vec::new(); - let mut shadow_seen: Vec<ty::AdtDef<'tcx>> = Vec::new(); - let mut representable_cache = FxHashMap::default(); - let mut force_result = false; - let r = is_type_structurally_recursive( - tcx, - &mut seen, - &mut shadow_seen, - &mut representable_cache, - ty, - sp, - field_id, - &mut force_result, - ); - debug!("is_type_representable: {:?} is {:?}", ty, r); - r +pub fn provide(providers: &mut Providers) { + *providers = + Providers { representability, representability_adt_ty, params_in_repr, ..*providers }; } -// Iterate until something non-representable is found -fn fold_repr<It: Iterator<Item = Representability>>(iter: It) -> Representability { - iter.fold(Representability::Representable, |r1, r2| match (r1, r2) { - (Representability::SelfRecursive(v1), Representability::SelfRecursive(v2)) => { - Representability::SelfRecursive(v1.into_iter().chain(v2).collect()) +macro_rules! rtry { + ($e:expr) => { + match $e { + e @ Representability::Infinite => return e, + Representability::Representable => {} } - (r1, r2) => cmp::max(r1, r2), - }) + }; } -fn are_inner_types_recursive<'tcx>( - tcx: TyCtxt<'tcx>, - seen: &mut Vec<Ty<'tcx>>, - shadow_seen: &mut Vec<ty::AdtDef<'tcx>>, - representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>, - ty: Ty<'tcx>, - sp: Span, - field_id: Option<hir::HirId>, - force_result: &mut bool, -) -> Representability { - debug!("are_inner_types_recursive({:?}, {:?}, {:?})", ty, seen, shadow_seen); - match ty.kind() { - ty::Tuple(fields) => { - // Find non representable - fold_repr(fields.iter().map(|ty| { - is_type_structurally_recursive( - tcx, - seen, - shadow_seen, - representable_cache, - ty, - sp, - field_id, - force_result, - ) - })) - } - // Fixed-length vectors. - // FIXME(#11924) Behavior undecided for zero-length vectors. - ty::Array(ty, _) => is_type_structurally_recursive( - tcx, - seen, - shadow_seen, - representable_cache, - *ty, - sp, - field_id, - force_result, - ), - ty::Adt(def, substs) => { - // Find non representable fields with their spans - fold_repr(def.all_fields().map(|field| { - let ty = field.ty(tcx, substs); - let (sp, field_id) = match field - .did - .as_local() - .map(|id| tcx.hir().local_def_id_to_hir_id(id)) - .and_then(|id| tcx.hir().find(id)) - { - Some(hir::Node::Field(field)) => (field.ty.span, Some(field.hir_id)), - _ => (sp, field_id), - }; - - let mut result = None; - - // First, we check whether the field type per se is representable. - // This catches cases as in #74224 and #84611. There is a special - // case related to mutual recursion, though; consider this example: - // - // struct A<T> { - // z: T, - // x: B<T>, - // } - // - // struct B<T> { - // y: A<T> - // } - // - // Here, without the following special case, both A and B are - // ContainsRecursive, which is a problem because we only report - // errors for SelfRecursive. We fix this by detecting this special - // case (shadow_seen.first() is the type we are originally - // interested in, and if we ever encounter the same AdtDef again, - // we know that it must be SelfRecursive) and "forcibly" returning - // SelfRecursive (by setting force_result, which tells the calling - // invocations of are_inner_types_representable to forward the - // result without adjusting). - if shadow_seen.len() > seen.len() && shadow_seen.first() == Some(def) { - *force_result = true; - result = Some(Representability::SelfRecursive(vec![(sp, field_id)])); - } - - if result == None { - result = Some(Representability::Representable); - - // Now, we check whether the field types per se are representable, e.g. - // for struct Foo { x: Option<Foo> }, we first check whether Option<_> - // by itself is representable (which it is), and the nesting of Foo - // will be detected later. This is necessary for #74224 and #84611. - - // If we have encountered an ADT definition that we have not seen - // before (no need to check them twice), recurse to see whether that - // definition is SelfRecursive. If so, we must be ContainsRecursive. - if shadow_seen.len() > 1 - && !shadow_seen - .iter() - .take(shadow_seen.len() - 1) - .any(|seen_def| seen_def == def) - { - let adt_def_id = def.did(); - let raw_adt_ty = tcx.type_of(adt_def_id); - debug!("are_inner_types_recursive: checking nested type: {:?}", raw_adt_ty); - - // Check independently whether the ADT is SelfRecursive. If so, - // we must be ContainsRecursive (except for the special case - // mentioned above). - let mut nested_seen: Vec<Ty<'_>> = vec![]; - result = Some( - match is_type_structurally_recursive( - tcx, - &mut nested_seen, - shadow_seen, - representable_cache, - raw_adt_ty, - sp, - field_id, - force_result, - ) { - Representability::SelfRecursive(_) => { - if *force_result { - Representability::SelfRecursive(vec![(sp, field_id)]) - } else { - Representability::ContainsRecursive - } - } - x => x, - }, - ); - } - - // We only enter the following block if the type looks representable - // so far. This is necessary for cases such as this one (#74224): - // - // struct A<T> { - // x: T, - // y: A<A<T>>, - // } - // - // struct B { - // z: A<usize> - // } - // - // When checking B, we recurse into A and check field y of type - // A<A<usize>>. We haven't seen this exact type before, so we recurse - // into A<A<usize>>, which contains, A<A<A<usize>>>, and so forth, - // ad infinitum. We can prevent this from happening by first checking - // A separately (the code above) and only checking for nested Bs if - // A actually looks representable (which it wouldn't in this example). - if result == Some(Representability::Representable) { - // Now, even if the type is representable (e.g. Option<_>), - // it might still contribute to a recursive type, e.g.: - // struct Foo { x: Option<Option<Foo>> } - // These cases are handled by passing the full `seen` - // stack to is_type_structurally_recursive (instead of the - // empty `nested_seen` above): - result = Some( - match is_type_structurally_recursive( - tcx, - seen, - shadow_seen, - representable_cache, - ty, - sp, - field_id, - force_result, - ) { - Representability::SelfRecursive(_) => { - Representability::SelfRecursive(vec![(sp, field_id)]) - } - x => x, - }, - ); - } +fn representability(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Representability { + match tcx.def_kind(def_id) { + DefKind::Struct | DefKind::Union | DefKind::Enum => { + let adt_def = tcx.adt_def(def_id); + for variant in adt_def.variants() { + for field in variant.fields.iter() { + rtry!(tcx.representability(field.did.expect_local())); } - - result.unwrap() - })) - } - ty::Closure(..) => { - // this check is run on type definitions, so we don't expect - // to see closure types - bug!("requires check invoked on inapplicable type: {:?}", ty) + } + Representability::Representable } - _ => Representability::Representable, + DefKind::Field => representability_ty(tcx, tcx.type_of(def_id)), + def_kind => bug!("unexpected {def_kind:?}"), } } -fn same_adt<'tcx>(ty: Ty<'tcx>, def: ty::AdtDef<'tcx>) -> bool { +fn representability_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Representability { match *ty.kind() { - ty::Adt(ty_def, _) => ty_def == def, - _ => false, + ty::Adt(..) => tcx.representability_adt_ty(ty), + // FIXME(#11924) allow zero-length arrays? + ty::Array(ty, _) => representability_ty(tcx, ty), + ty::Tuple(tys) => { + for ty in tys { + rtry!(representability_ty(tcx, ty)); + } + Representability::Representable + } + _ => Representability::Representable, } } -// Does the type `ty` directly (without indirection through a pointer) -// contain any types on stack `seen`? -fn is_type_structurally_recursive<'tcx>( - tcx: TyCtxt<'tcx>, - seen: &mut Vec<Ty<'tcx>>, - shadow_seen: &mut Vec<ty::AdtDef<'tcx>>, - representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>, - ty: Ty<'tcx>, - sp: Span, - field_id: Option<hir::HirId>, - force_result: &mut bool, -) -> Representability { - debug!("is_type_structurally_recursive: {:?} {:?} {:?}", ty, sp, field_id); - if let Some(representability) = representable_cache.get(&ty) { - debug!( - "is_type_structurally_recursive: {:?} {:?} {:?} - (cached) {:?}", - ty, sp, field_id, representability - ); - return representability.clone(); +/* +The reason for this being a separate query is very subtle: +Consider this infinitely sized struct: `struct Foo(Box<Foo>, Bar<Foo>)`: +When calling representability(Foo), a query cycle will occur: + representability(Foo) + -> representability_adt_ty(Bar<Foo>) + -> representability(Foo) +For the diagnostic output (in `Value::from_cycle_error`), we want to detect that +the `Foo` in the *second* field of the struct is culpable. This requires +traversing the HIR of the struct and calling `params_in_repr(Bar)`. But we can't +call params_in_repr for a given type unless it is known to be representable. +params_in_repr will cycle/panic on infinitely sized types. Looking at the query +cycle above, we know that `Bar` is representable because +representability_adt_ty(Bar<..>) is in the cycle and representability(Bar) is +*not* in the cycle. +*/ +fn representability_adt_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Representability { + let ty::Adt(adt, substs) = ty.kind() else { bug!("expected adt") }; + if let Some(def_id) = adt.did().as_local() { + rtry!(tcx.representability(def_id)); } - - let representability = is_type_structurally_recursive_inner( - tcx, - seen, - shadow_seen, - representable_cache, - ty, - sp, - field_id, - force_result, - ); - - representable_cache.insert(ty, representability.clone()); - representability + // At this point, we know that the item of the ADT type is representable; + // but the type parameters may cause a cycle with an upstream type + let params_in_repr = tcx.params_in_repr(adt.did()); + for (i, subst) in substs.iter().enumerate() { + if let ty::GenericArgKind::Type(ty) = subst.unpack() { + if params_in_repr.contains(i as u32) { + rtry!(representability_ty(tcx, ty)); + } + } + } + Representability::Representable } -fn is_type_structurally_recursive_inner<'tcx>( - tcx: TyCtxt<'tcx>, - seen: &mut Vec<Ty<'tcx>>, - shadow_seen: &mut Vec<ty::AdtDef<'tcx>>, - representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>, - ty: Ty<'tcx>, - sp: Span, - field_id: Option<hir::HirId>, - force_result: &mut bool, -) -> Representability { - match ty.kind() { - ty::Adt(def, _) => { - { - debug!("is_type_structurally_recursive_inner: adt: {:?}, seen: {:?}", ty, seen); - - // Iterate through stack of previously seen types. - let mut iter = seen.iter(); - - // The first item in `seen` is the type we are actually curious about. - // We want to return SelfRecursive if this type contains itself. - // It is important that we DON'T take generic parameters into account - // for this check, so that Bar<T> in this example counts as SelfRecursive: - // - // struct Foo; - // struct Bar<T> { x: Bar<Foo> } - - if let Some(&seen_adt) = iter.next() { - if same_adt(seen_adt, *def) { - debug!("SelfRecursive: {:?} contains {:?}", seen_adt, ty); - return Representability::SelfRecursive(vec![(sp, field_id)]); - } - } - - // We also need to know whether the first item contains other types - // that are structurally recursive. If we don't catch this case, we - // will recurse infinitely for some inputs. - // - // It is important that we DO take generic parameters into account - // here, because nesting e.g. Options is allowed (as long as the - // definition of Option doesn't itself include an Option field, which - // would be a case of SelfRecursive above). The following, too, counts - // as SelfRecursive: - // - // struct Foo { Option<Option<Foo>> } +fn params_in_repr(tcx: TyCtxt<'_>, def_id: DefId) -> BitSet<u32> { + let adt_def = tcx.adt_def(def_id); + let generics = tcx.generics_of(def_id); + let mut params_in_repr = BitSet::new_empty(generics.params.len()); + for variant in adt_def.variants() { + for field in variant.fields.iter() { + params_in_repr_ty(tcx, tcx.type_of(field.did), &mut params_in_repr); + } + } + params_in_repr +} - for &seen_adt in iter { - if ty == seen_adt { - debug!("ContainsRecursive: {:?} contains {:?}", seen_adt, ty); - return Representability::ContainsRecursive; +fn params_in_repr_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, params_in_repr: &mut BitSet<u32>) { + match *ty.kind() { + ty::Adt(adt, substs) => { + let inner_params_in_repr = tcx.params_in_repr(adt.did()); + for (i, subst) in substs.iter().enumerate() { + if let ty::GenericArgKind::Type(ty) = subst.unpack() { + if inner_params_in_repr.contains(i as u32) { + params_in_repr_ty(tcx, ty, params_in_repr); } } } - - // For structs and enums, track all previously seen types by pushing them - // onto the 'seen' stack. - seen.push(ty); - shadow_seen.push(*def); - let out = are_inner_types_recursive( - tcx, - seen, - shadow_seen, - representable_cache, - ty, - sp, - field_id, - force_result, - ); - shadow_seen.pop(); - seen.pop(); - out } - _ => { - // No need to push in other cases. - are_inner_types_recursive( - tcx, - seen, - shadow_seen, - representable_cache, - ty, - sp, - field_id, - force_result, - ) + ty::Array(ty, _) => params_in_repr_ty(tcx, ty, params_in_repr), + ty::Tuple(tys) => tys.iter().for_each(|ty| params_in_repr_ty(tcx, ty, params_in_repr)), + ty::Param(param) => { + params_in_repr.insert(param.index); } + _ => {} } } diff --git a/compiler/rustc_ty_utils/src/ty.rs b/compiler/rustc_ty_utils/src/ty.rs index 9266e4e3f..3eebb4ace 100644 --- a/compiler/rustc_ty_utils/src/ty.rs +++ b/compiler/rustc_ty_utils/src/ty.rs @@ -1,7 +1,6 @@ use rustc_data_structures::fx::FxIndexSet; use rustc_hir as hir; use rustc_hir::def_id::DefId; -use rustc_middle::ty::subst::Subst; use rustc_middle::ty::{self, Binder, Predicate, PredicateKind, ToPredicate, Ty, TyCtxt}; use rustc_trait_selection::traits; @@ -86,9 +85,13 @@ fn impl_defaultness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::Defaultness { /// - a type parameter or projection whose Sizedness can't be known /// - a tuple of type parameters or projections, if there are multiple /// such. -/// - an Error, if a type contained itself. The representability -/// check should catch this case. -fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AdtSizedConstraint<'_> { +/// - an Error, if a type is infinitely sized +fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> &[Ty<'_>] { + if let Some(def_id) = def_id.as_local() { + if matches!(tcx.representability(def_id), ty::Representability::Infinite) { + return tcx.intern_type_list(&[tcx.ty_error()]); + } + } let def = tcx.adt_def(def_id); let result = tcx.mk_type_list( @@ -100,7 +103,7 @@ fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AdtSizedConstrain debug!("adt_sized_constraint: {:?} => {:?}", def, result); - ty::AdtSizedConstraint(result) + result } /// See `ParamEnv` struct definition for details. @@ -134,6 +137,7 @@ fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { let local_did = def_id.as_local(); let hir_id = local_did.map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id)); + // FIXME(consts): This is not exactly in line with the constness query. let constness = match hir_id { Some(hir_id) => match tcx.hir().get(hir_id) { hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn(..), .. }) @@ -162,7 +166,7 @@ fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { }) => hir::Constness::Const, hir::Node::ImplItem(hir::ImplItem { - kind: hir::ImplItemKind::TyAlias(..) | hir::ImplItemKind::Fn(..), + kind: hir::ImplItemKind::Type(..) | hir::ImplItemKind::Fn(..), .. }) => { let parent_hir_id = tcx.hir().get_parent_node(hir_id); @@ -198,6 +202,10 @@ fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { _ => hir::Constness::NotConst, }, + // FIXME(consts): It's suspicious that a param-env for a foreign item + // will always have NotConst param-env, though we don't typically use + // that param-env for anything meaningful right now, so it's likely + // not an issue. None => hir::Constness::NotConst, }; |