summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/compare_method.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--compiler/rustc_typeck/src/check/compare_method.rs1547
1 files changed, 0 insertions, 1547 deletions
diff --git a/compiler/rustc_typeck/src/check/compare_method.rs b/compiler/rustc_typeck/src/check/compare_method.rs
deleted file mode 100644
index 666498403..000000000
--- a/compiler/rustc_typeck/src/check/compare_method.rs
+++ /dev/null
@@ -1,1547 +0,0 @@
-use super::potentially_plural_count;
-use crate::check::regionck::OutlivesEnvironmentExt;
-use crate::check::wfcheck;
-use crate::errors::LifetimesOrBoundsMismatchOnTrait;
-use rustc_data_structures::fx::FxHashSet;
-use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed};
-use rustc_hir as hir;
-use rustc_hir::def::{DefKind, Res};
-use rustc_hir::intravisit;
-use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
-use rustc_infer::infer::outlives::env::OutlivesEnvironment;
-use rustc_infer::infer::{self, TyCtxtInferExt};
-use rustc_infer::traits::util;
-use rustc_middle::ty::error::{ExpectedFound, TypeError};
-use rustc_middle::ty::subst::{InternalSubsts, Subst};
-use rustc_middle::ty::util::ExplicitSelf;
-use rustc_middle::ty::{self, DefIdTree};
-use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
-use rustc_span::Span;
-use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
-use rustc_trait_selection::traits::{
- self, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
-};
-use std::iter;
-
-/// Checks that a method from an impl conforms to the signature of
-/// the same method as declared in the trait.
-///
-/// # Parameters
-///
-/// - `impl_m`: type of the method we are checking
-/// - `impl_m_span`: span to use for reporting errors
-/// - `trait_m`: the method in the trait
-/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
-pub(crate) fn compare_impl_method<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
- trait_item_span: Option<Span>,
-) {
- debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
-
- let impl_m_span = tcx.def_span(impl_m.def_id);
-
- if let Err(_) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref) {
- return;
- }
-
- if let Err(_) = compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span) {
- return;
- }
-
- if let Err(_) = compare_generic_param_kinds(tcx, impl_m, trait_m) {
- return;
- }
-
- if let Err(_) =
- compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
- {
- return;
- }
-
- if let Err(_) = compare_synthetic_generics(tcx, impl_m, trait_m) {
- return;
- }
-
- if let Err(_) = compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
- {
- return;
- }
-}
-
-fn compare_predicate_entailment<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- impl_m_span: Span,
- trait_m: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> Result<(), ErrorGuaranteed> {
- let trait_to_impl_substs = impl_trait_ref.substs;
-
- // This node-id should be used for the `body_id` field on each
- // `ObligationCause` (and the `FnCtxt`).
- //
- // FIXME(@lcnr): remove that after removing `cause.body_id` from
- // obligations.
- let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
- // We sometimes modify the span further down.
- let mut cause = ObligationCause::new(
- impl_m_span,
- impl_m_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_m.def_id.expect_local(),
- trait_item_def_id: trait_m.def_id,
- kind: impl_m.kind,
- },
- );
-
- // This code is best explained by example. Consider a trait:
- //
- // trait Trait<'t, T> {
- // fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
- // }
- //
- // And an impl:
- //
- // impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
- // fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
- // }
- //
- // We wish to decide if those two method types are compatible.
- //
- // We start out with trait_to_impl_substs, that maps the trait
- // type parameters to impl type parameters. This is taken from the
- // impl trait reference:
- //
- // trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
- //
- // We create a mapping `dummy_substs` that maps from the impl type
- // parameters to fresh types and regions. For type parameters,
- // this is the identity transform, but we could as well use any
- // placeholder types. For regions, we convert from bound to free
- // regions (Note: but only early-bound regions, i.e., those
- // declared on the impl or used in type parameter bounds).
- //
- // impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
- //
- // Now we can apply placeholder_substs to the type of the impl method
- // to yield a new function type in terms of our fresh, placeholder
- // types:
- //
- // <'b> fn(t: &'i0 U0, m: &'b) -> Foo
- //
- // We now want to extract and substitute the type of the *trait*
- // method and compare it. To do so, we must create a compound
- // substitution by combining trait_to_impl_substs and
- // impl_to_placeholder_substs, and also adding a mapping for the method
- // type parameters. We extend the mapping to also include
- // the method parameters.
- //
- // trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
- //
- // Applying this to the trait method type yields:
- //
- // <'a> fn(t: &'i0 U0, m: &'a) -> Foo
- //
- // This type is also the same but the name of the bound region ('a
- // vs 'b). However, the normal subtyping rules on fn types handle
- // this kind of equivalency just fine.
- //
- // We now use these substitutions to ensure that all declared bounds are
- // satisfied by the implementation's method.
- //
- // We do this by creating a parameter environment which contains a
- // substitution corresponding to impl_to_placeholder_substs. We then build
- // trait_to_placeholder_substs and use it to convert the predicates contained
- // in the trait_m.generics to the placeholder form.
- //
- // Finally we register each of these predicates as an obligation in
- // a fresh FulfillmentCtxt, and invoke select_all_or_error.
-
- // Create mapping from impl to placeholder.
- let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
-
- // Create mapping from trait to placeholder.
- let trait_to_placeholder_substs =
- impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
- debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
-
- let impl_m_generics = tcx.generics_of(impl_m.def_id);
- let trait_m_generics = tcx.generics_of(trait_m.def_id);
- let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
- let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
-
- // Check region bounds.
- check_region_bounds_on_impl_item(tcx, impl_m, trait_m, &trait_m_generics, &impl_m_generics)?;
-
- // Create obligations for each predicate declared by the impl
- // definition in the context of the trait's parameter
- // environment. We can't just use `impl_env.caller_bounds`,
- // however, because we want to replace all late-bound regions with
- // region variables.
- let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
- let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
-
- debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
-
- // This is the only tricky bit of the new way we check implementation methods
- // We need to build a set of predicates where only the method-level bounds
- // are from the trait and we assume all other bounds from the implementation
- // to be previously satisfied.
- //
- // We then register the obligations from the impl_m and check to see
- // if all constraints hold.
- hybrid_preds
- .predicates
- .extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
-
- // Construct trait parameter environment and then shift it into the placeholder viewpoint.
- // The key step here is to update the caller_bounds's predicates to be
- // the new hybrid bounds we computed.
- let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
- let param_env = ty::ParamEnv::new(
- tcx.intern_predicates(&hybrid_preds.predicates),
- Reveal::UserFacing,
- hir::Constness::NotConst,
- );
- let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
-
- tcx.infer_ctxt().enter(|ref infcx| {
- let ocx = ObligationCtxt::new(infcx);
-
- debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
-
- let mut selcx = traits::SelectionContext::new(&infcx);
- let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
- for (predicate, span) in iter::zip(impl_m_own_bounds.predicates, impl_m_own_bounds.spans) {
- let normalize_cause = traits::ObligationCause::misc(span, impl_m_hir_id);
- let traits::Normalized { value: predicate, obligations } =
- traits::normalize(&mut selcx, param_env, normalize_cause, predicate);
-
- ocx.register_obligations(obligations);
- let cause = ObligationCause::new(
- span,
- impl_m_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_m.def_id.expect_local(),
- trait_item_def_id: trait_m.def_id,
- kind: impl_m.kind,
- },
- );
- ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
- }
-
- // We now need to check that the signature of the impl method is
- // compatible with that of the trait method. We do this by
- // checking that `impl_fty <: trait_fty`.
- //
- // FIXME. Unfortunately, this doesn't quite work right now because
- // associated type normalization is not integrated into subtype
- // checks. For the comparison to be valid, we need to
- // normalize the associated types in the impl/trait methods
- // first. However, because function types bind regions, just
- // calling `normalize_associated_types_in` would have no effect on
- // any associated types appearing in the fn arguments or return
- // type.
-
- // Compute placeholder form of impl and trait method tys.
- let tcx = infcx.tcx;
-
- let mut wf_tys = FxHashSet::default();
-
- let impl_sig = infcx.replace_bound_vars_with_fresh_vars(
- impl_m_span,
- infer::HigherRankedType,
- tcx.fn_sig(impl_m.def_id),
- );
-
- let norm_cause = ObligationCause::misc(impl_m_span, impl_m_hir_id);
- let impl_sig = ocx.normalize(norm_cause.clone(), param_env, impl_sig);
- let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
- debug!("compare_impl_method: impl_fty={:?}", impl_fty);
-
- let trait_sig = tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
- let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
- let trait_sig = ocx.normalize(norm_cause, param_env, trait_sig);
- // Add the resulting inputs and output as well-formed.
- wf_tys.extend(trait_sig.inputs_and_output.iter());
- let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
-
- debug!("compare_impl_method: trait_fty={:?}", trait_fty);
-
- // FIXME: We'd want to keep more accurate spans than "the method signature" when
- // processing the comparison between the trait and impl fn, but we sadly lose them
- // and point at the whole signature when a trait bound or specific input or output
- // type would be more appropriate. In other places we have a `Vec<Span>`
- // corresponding to their `Vec<Predicate>`, but we don't have that here.
- // Fixing this would improve the output of test `issue-83765.rs`.
- let sub_result = infcx
- .at(&cause, param_env)
- .sup(trait_fty, impl_fty)
- .map(|infer_ok| ocx.register_infer_ok_obligations(infer_ok));
-
- if let Err(terr) = sub_result {
- debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
-
- let (impl_err_span, trait_err_span) =
- extract_spans_for_error_reporting(&infcx, &terr, &cause, impl_m, trait_m);
-
- cause.span = impl_err_span;
-
- let mut diag = struct_span_err!(
- tcx.sess,
- cause.span(),
- E0053,
- "method `{}` has an incompatible type for trait",
- trait_m.name
- );
- match &terr {
- TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
- if trait_m.fn_has_self_parameter =>
- {
- let ty = trait_sig.inputs()[0];
- let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty())
- {
- ExplicitSelf::ByValue => "self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Mut) => {
- "&mut self".to_owned()
- }
- _ => format!("self: {ty}"),
- };
-
- // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
- // span points only at the type `Box<Self`>, but we want to cover the whole
- // argument pattern and type.
- let span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref sig, body) => tcx
- .hir()
- .body_param_names(body)
- .zip(sig.decl.inputs.iter())
- .map(|(param, ty)| param.span.to(ty.span))
- .next()
- .unwrap_or(impl_err_span),
- _ => bug!("{:?} is not a method", impl_m),
- };
-
- diag.span_suggestion(
- span,
- "change the self-receiver type to match the trait",
- sugg,
- Applicability::MachineApplicable,
- );
- }
- TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
- if trait_sig.inputs().len() == *i {
- // Suggestion to change output type. We do not suggest in `async` functions
- // to avoid complex logic or incorrect output.
- match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref sig, _)
- if sig.header.asyncness == hir::IsAsync::NotAsync =>
- {
- let msg = "change the output type to match the trait";
- let ap = Applicability::MachineApplicable;
- match sig.decl.output {
- hir::FnRetTy::DefaultReturn(sp) => {
- let sugg = format!("-> {} ", trait_sig.output());
- diag.span_suggestion_verbose(sp, msg, sugg, ap);
- }
- hir::FnRetTy::Return(hir_ty) => {
- let sugg = trait_sig.output();
- diag.span_suggestion(hir_ty.span, msg, sugg, ap);
- }
- };
- }
- _ => {}
- };
- } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
- diag.span_suggestion(
- impl_err_span,
- "change the parameter type to match the trait",
- trait_ty,
- Applicability::MachineApplicable,
- );
- }
- }
- _ => {}
- }
-
- infcx.note_type_err(
- &mut diag,
- &cause,
- trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
- Some(infer::ValuePairs::Terms(ExpectedFound {
- expected: trait_fty.into(),
- found: impl_fty.into(),
- })),
- &terr,
- false,
- false,
- );
-
- return Err(diag.emit());
- }
-
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- let reported = infcx.report_fulfillment_errors(&errors, None, false);
- return Err(reported);
- }
-
- // Finally, resolve all regions. This catches wily misuses of
- // lifetime parameters.
- let mut outlives_environment = OutlivesEnvironment::new(param_env);
- outlives_environment.add_implied_bounds(infcx, wf_tys, impl_m_hir_id);
- infcx.check_region_obligations_and_report_errors(
- impl_m.def_id.expect_local(),
- &outlives_environment,
- );
-
- Ok(())
- })
-}
-
-fn check_region_bounds_on_impl_item<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
- trait_generics: &ty::Generics,
- impl_generics: &ty::Generics,
-) -> Result<(), ErrorGuaranteed> {
- let trait_params = trait_generics.own_counts().lifetimes;
- let impl_params = impl_generics.own_counts().lifetimes;
-
- debug!(
- "check_region_bounds_on_impl_item: \
- trait_generics={:?} \
- impl_generics={:?}",
- trait_generics, impl_generics
- );
-
- // Must have same number of early-bound lifetime parameters.
- // Unfortunately, if the user screws up the bounds, then this
- // will change classification between early and late. E.g.,
- // if in trait we have `<'a,'b:'a>`, and in impl we just have
- // `<'a,'b>`, then we have 2 early-bound lifetime parameters
- // in trait but 0 in the impl. But if we report "expected 2
- // but found 0" it's confusing, because it looks like there
- // are zero. Since I don't quite know how to phrase things at
- // the moment, give a kind of vague error message.
- if trait_params != impl_params {
- let span = tcx
- .hir()
- .get_generics(impl_m.def_id.expect_local())
- .expect("expected impl item to have generics or else we can't compare them")
- .span;
- let generics_span = if let Some(local_def_id) = trait_m.def_id.as_local() {
- Some(
- tcx.hir()
- .get_generics(local_def_id)
- .expect("expected trait item to have generics or else we can't compare them")
- .span,
- )
- } else {
- None
- };
-
- let reported = tcx.sess.emit_err(LifetimesOrBoundsMismatchOnTrait {
- span,
- item_kind: assoc_item_kind_str(impl_m),
- ident: impl_m.ident(tcx),
- generics_span,
- });
- return Err(reported);
- }
-
- Ok(())
-}
-
-#[instrument(level = "debug", skip(infcx))]
-fn extract_spans_for_error_reporting<'a, 'tcx>(
- infcx: &infer::InferCtxt<'a, 'tcx>,
- terr: &TypeError<'_>,
- cause: &ObligationCause<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
-) -> (Span, Option<Span>) {
- let tcx = infcx.tcx;
- let mut impl_args = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref sig, _) => {
- sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
- }
- _ => bug!("{:?} is not a method", impl_m),
- };
- let trait_args =
- trait_m.def_id.as_local().map(|def_id| match tcx.hir().expect_trait_item(def_id).kind {
- TraitItemKind::Fn(ref sig, _) => {
- sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
- }
- _ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
- });
-
- match *terr {
- TypeError::ArgumentMutability(i) => {
- (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
- }
- TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
- (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
- }
- _ => (cause.span(), tcx.hir().span_if_local(trait_m.def_id)),
- }
-}
-
-fn compare_self_type<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- impl_m_span: Span,
- trait_m: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> Result<(), ErrorGuaranteed> {
- // Try to give more informative error messages about self typing
- // mismatches. Note that any mismatch will also be detected
- // below, where we construct a canonical function type that
- // includes the self parameter as a normal parameter. It's just
- // that the error messages you get out of this code are a bit more
- // inscrutable, particularly for cases where one method has no
- // self.
-
- let self_string = |method: &ty::AssocItem| {
- let untransformed_self_ty = match method.container {
- ty::ImplContainer => impl_trait_ref.self_ty(),
- ty::TraitContainer => tcx.types.self_param,
- };
- let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
- let param_env = ty::ParamEnv::reveal_all();
-
- tcx.infer_ctxt().enter(|infcx| {
- let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
- let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
- match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
- ExplicitSelf::ByValue => "self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
- _ => format!("self: {self_arg_ty}"),
- }
- })
- };
-
- match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
- (false, false) | (true, true) => {}
-
- (false, true) => {
- let self_descr = self_string(impl_m);
- let mut err = struct_span_err!(
- tcx.sess,
- impl_m_span,
- E0185,
- "method `{}` has a `{}` declaration in the impl, but not in the trait",
- trait_m.name,
- self_descr
- );
- err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
- if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
- err.span_label(span, format!("trait method declared without `{self_descr}`"));
- } else {
- err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
- }
- let reported = err.emit();
- return Err(reported);
- }
-
- (true, false) => {
- let self_descr = self_string(trait_m);
- let mut err = struct_span_err!(
- tcx.sess,
- impl_m_span,
- E0186,
- "method `{}` has a `{}` declaration in the trait, but not in the impl",
- trait_m.name,
- self_descr
- );
- err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
- if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
- err.span_label(span, format!("`{self_descr}` used in trait"));
- } else {
- err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
- }
- let reported = err.emit();
- return Err(reported);
- }
- }
-
- Ok(())
-}
-
-/// Checks that the number of generics on a given assoc item in a trait impl is the same
-/// as the number of generics on the respective assoc item in the trait definition.
-///
-/// For example this code emits the errors in the following code:
-/// ```
-/// trait Trait {
-/// fn foo();
-/// type Assoc<T>;
-/// }
-///
-/// impl Trait for () {
-/// fn foo<T>() {}
-/// //~^ error
-/// type Assoc = u32;
-/// //~^ error
-/// }
-/// ```
-///
-/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
-/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
-/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
-fn compare_number_of_generics<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_: &ty::AssocItem,
- _impl_span: Span,
- trait_: &ty::AssocItem,
- trait_span: Option<Span>,
-) -> Result<(), ErrorGuaranteed> {
- let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
- let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
-
- // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
- // in `compare_generic_param_kinds` which will give a nicer error message than something like:
- // "expected 1 type parameter, found 0 type parameters"
- if (trait_own_counts.types + trait_own_counts.consts)
- == (impl_own_counts.types + impl_own_counts.consts)
- {
- return Ok(());
- }
-
- let matchings = [
- ("type", trait_own_counts.types, impl_own_counts.types),
- ("const", trait_own_counts.consts, impl_own_counts.consts),
- ];
-
- let item_kind = assoc_item_kind_str(impl_);
-
- let mut err_occurred = None;
- for (kind, trait_count, impl_count) in matchings {
- if impl_count != trait_count {
- let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
- let mut spans = generics
- .params
- .iter()
- .filter(|p| match p.kind {
- hir::GenericParamKind::Lifetime {
- kind: hir::LifetimeParamKind::Elided,
- } => {
- // A fn can have an arbitrary number of extra elided lifetimes for the
- // same signature.
- !matches!(kind, ty::AssocKind::Fn)
- }
- _ => true,
- })
- .map(|p| p.span)
- .collect::<Vec<Span>>();
- if spans.is_empty() {
- spans = vec![generics.span]
- }
- spans
- };
- let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
- let trait_item = tcx.hir().expect_trait_item(def_id);
- let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
- let impl_trait_spans: Vec<Span> = trait_item
- .generics
- .params
- .iter()
- .filter_map(|p| match p.kind {
- GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
- _ => None,
- })
- .collect();
- (Some(arg_spans), impl_trait_spans)
- } else {
- (trait_span.map(|s| vec![s]), vec![])
- };
-
- let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
- let impl_item_impl_trait_spans: Vec<Span> = impl_item
- .generics
- .params
- .iter()
- .filter_map(|p| match p.kind {
- GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
- _ => None,
- })
- .collect();
- let spans = arg_spans(impl_.kind, impl_item.generics);
- let span = spans.first().copied();
-
- let mut err = tcx.sess.struct_span_err_with_code(
- spans,
- &format!(
- "{} `{}` has {} {kind} parameter{} but its trait \
- declaration has {} {kind} parameter{}",
- item_kind,
- trait_.name,
- impl_count,
- pluralize!(impl_count),
- trait_count,
- pluralize!(trait_count),
- kind = kind,
- ),
- DiagnosticId::Error("E0049".into()),
- );
-
- let mut suffix = None;
-
- if let Some(spans) = trait_spans {
- let mut spans = spans.iter();
- if let Some(span) = spans.next() {
- err.span_label(
- *span,
- format!(
- "expected {} {} parameter{}",
- trait_count,
- kind,
- pluralize!(trait_count),
- ),
- );
- }
- for span in spans {
- err.span_label(*span, "");
- }
- } else {
- suffix = Some(format!(", expected {trait_count}"));
- }
-
- if let Some(span) = span {
- err.span_label(
- span,
- format!(
- "found {} {} parameter{}{}",
- impl_count,
- kind,
- pluralize!(impl_count),
- suffix.unwrap_or_else(String::new),
- ),
- );
- }
-
- for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
- err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
- }
-
- let reported = err.emit();
- err_occurred = Some(reported);
- }
- }
-
- if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
-}
-
-fn compare_number_of_method_arguments<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- impl_m_span: Span,
- trait_m: &ty::AssocItem,
- trait_item_span: Option<Span>,
-) -> Result<(), ErrorGuaranteed> {
- let impl_m_fty = tcx.fn_sig(impl_m.def_id);
- let trait_m_fty = tcx.fn_sig(trait_m.def_id);
- let trait_number_args = trait_m_fty.inputs().skip_binder().len();
- let impl_number_args = impl_m_fty.inputs().skip_binder().len();
- if trait_number_args != impl_number_args {
- let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
- match tcx.hir().expect_trait_item(def_id).kind {
- TraitItemKind::Fn(ref trait_m_sig, _) => {
- let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
- if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
- Some(if pos == 0 {
- arg.span
- } else {
- arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
- })
- } else {
- trait_item_span
- }
- }
- _ => bug!("{:?} is not a method", impl_m),
- }
- } else {
- trait_item_span
- };
- let impl_span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref impl_m_sig, _) => {
- let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
- if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
- if pos == 0 {
- arg.span
- } else {
- arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
- }
- } else {
- impl_m_span
- }
- }
- _ => bug!("{:?} is not a method", impl_m),
- };
- let mut err = struct_span_err!(
- tcx.sess,
- impl_span,
- E0050,
- "method `{}` has {} but the declaration in trait `{}` has {}",
- trait_m.name,
- potentially_plural_count(impl_number_args, "parameter"),
- tcx.def_path_str(trait_m.def_id),
- trait_number_args
- );
- if let Some(trait_span) = trait_span {
- err.span_label(
- trait_span,
- format!(
- "trait requires {}",
- potentially_plural_count(trait_number_args, "parameter")
- ),
- );
- } else {
- err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
- }
- err.span_label(
- impl_span,
- format!(
- "expected {}, found {}",
- potentially_plural_count(trait_number_args, "parameter"),
- impl_number_args
- ),
- );
- let reported = err.emit();
- return Err(reported);
- }
-
- Ok(())
-}
-
-fn compare_synthetic_generics<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
-) -> Result<(), ErrorGuaranteed> {
- // FIXME(chrisvittal) Clean up this function, list of FIXME items:
- // 1. Better messages for the span labels
- // 2. Explanation as to what is going on
- // If we get here, we already have the same number of generics, so the zip will
- // be okay.
- let mut error_found = None;
- let impl_m_generics = tcx.generics_of(impl_m.def_id);
- let trait_m_generics = tcx.generics_of(trait_m.def_id);
- let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
- GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
- GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
- });
- let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
- GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
- GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
- });
- for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
- iter::zip(impl_m_type_params, trait_m_type_params)
- {
- if impl_synthetic != trait_synthetic {
- let impl_def_id = impl_def_id.expect_local();
- let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_def_id);
- let impl_span = tcx.hir().span(impl_hir_id);
- let trait_span = tcx.def_span(trait_def_id);
- let mut err = struct_span_err!(
- tcx.sess,
- impl_span,
- E0643,
- "method `{}` has incompatible signature for trait",
- trait_m.name
- );
- err.span_label(trait_span, "declaration in trait here");
- match (impl_synthetic, trait_synthetic) {
- // The case where the impl method uses `impl Trait` but the trait method uses
- // explicit generics
- (true, false) => {
- err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
- (|| {
- // try taking the name from the trait impl
- // FIXME: this is obviously suboptimal since the name can already be used
- // as another generic argument
- let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
- let trait_m = trait_m.def_id.as_local()?;
- let trait_m = tcx.hir().trait_item(hir::TraitItemId { def_id: trait_m });
-
- let impl_m = impl_m.def_id.as_local()?;
- let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
-
- // in case there are no generics, take the spot between the function name
- // and the opening paren of the argument list
- let new_generics_span =
- tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
- // in case there are generics, just replace them
- let generics_span =
- impl_m.generics.span.substitute_dummy(new_generics_span);
- // replace with the generics from the trait
- let new_generics =
- tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
-
- err.multipart_suggestion(
- "try changing the `impl Trait` argument to a generic parameter",
- vec![
- // replace `impl Trait` with `T`
- (impl_span, new_name),
- // replace impl method generics with trait method generics
- // This isn't quite right, as users might have changed the names
- // of the generics, but it works for the common case
- (generics_span, new_generics),
- ],
- Applicability::MaybeIncorrect,
- );
- Some(())
- })();
- }
- // The case where the trait method uses `impl Trait`, but the impl method uses
- // explicit generics.
- (false, true) => {
- err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
- (|| {
- let impl_m = impl_m.def_id.as_local()?;
- let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
- let input_tys = match impl_m.kind {
- hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
- _ => unreachable!(),
- };
- struct Visitor(Option<Span>, hir::def_id::LocalDefId);
- impl<'v> intravisit::Visitor<'v> for Visitor {
- fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
- intravisit::walk_ty(self, ty);
- if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
- ty.kind
- && let Res::Def(DefKind::TyParam, def_id) = path.res
- && def_id == self.1.to_def_id()
- {
- self.0 = Some(ty.span);
- }
- }
- }
- let mut visitor = Visitor(None, impl_def_id);
- for ty in input_tys {
- intravisit::Visitor::visit_ty(&mut visitor, ty);
- }
- let span = visitor.0?;
-
- let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
- let bounds = bounds.first()?.span().to(bounds.last()?.span());
- let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
-
- err.multipart_suggestion(
- "try removing the generic parameter and using `impl Trait` instead",
- vec![
- // delete generic parameters
- (impl_m.generics.span, String::new()),
- // replace param usage with `impl Trait`
- (span, format!("impl {bounds}")),
- ],
- Applicability::MaybeIncorrect,
- );
- Some(())
- })();
- }
- _ => unreachable!(),
- }
- let reported = err.emit();
- error_found = Some(reported);
- }
- }
- if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
-}
-
-/// Checks that all parameters in the generics of a given assoc item in a trait impl have
-/// the same kind as the respective generic parameter in the trait def.
-///
-/// For example all 4 errors in the following code are emitted here:
-/// ```
-/// trait Foo {
-/// fn foo<const N: u8>();
-/// type bar<const N: u8>;
-/// fn baz<const N: u32>();
-/// type blah<T>;
-/// }
-///
-/// impl Foo for () {
-/// fn foo<const N: u64>() {}
-/// //~^ error
-/// type bar<const N: u64> {}
-/// //~^ error
-/// fn baz<T>() {}
-/// //~^ error
-/// type blah<const N: i64> = u32;
-/// //~^ error
-/// }
-/// ```
-///
-/// This function does not handle lifetime parameters
-fn compare_generic_param_kinds<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_item: &ty::AssocItem,
- trait_item: &ty::AssocItem,
-) -> Result<(), ErrorGuaranteed> {
- assert_eq!(impl_item.kind, trait_item.kind);
-
- let ty_const_params_of = |def_id| {
- tcx.generics_of(def_id).params.iter().filter(|param| {
- matches!(
- param.kind,
- GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
- )
- })
- };
-
- for (param_impl, param_trait) in
- iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
- {
- use GenericParamDefKind::*;
- if match (&param_impl.kind, &param_trait.kind) {
- (Const { .. }, Const { .. })
- if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
- {
- true
- }
- (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
- // this is exhaustive so that anyone adding new generic param kinds knows
- // to make sure this error is reported for them.
- (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
- (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
- } {
- let param_impl_span = tcx.def_span(param_impl.def_id);
- let param_trait_span = tcx.def_span(param_trait.def_id);
-
- let mut err = struct_span_err!(
- tcx.sess,
- param_impl_span,
- E0053,
- "{} `{}` has an incompatible generic parameter for trait `{}`",
- assoc_item_kind_str(&impl_item),
- trait_item.name,
- &tcx.def_path_str(tcx.parent(trait_item.def_id))
- );
-
- let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
- Const { .. } => {
- format!("{} const parameter of type `{}`", prefix, tcx.type_of(param.def_id))
- }
- Type { .. } => format!("{} type parameter", prefix),
- Lifetime { .. } => unreachable!(),
- };
-
- let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
- err.span_label(trait_header_span, "");
- err.span_label(param_trait_span, make_param_message("expected", param_trait));
-
- let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
- err.span_label(impl_header_span, "");
- err.span_label(param_impl_span, make_param_message("found", param_impl));
-
- let reported = err.emit();
- return Err(reported);
- }
- }
-
- Ok(())
-}
-
-pub(crate) fn compare_const_impl<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_c: &ty::AssocItem,
- impl_c_span: Span,
- trait_c: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) {
- debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
-
- tcx.infer_ctxt().enter(|infcx| {
- let param_env = tcx.param_env(impl_c.def_id);
- let ocx = ObligationCtxt::new(&infcx);
-
- // The below is for the most part highly similar to the procedure
- // for methods above. It is simpler in many respects, especially
- // because we shouldn't really have to deal with lifetimes or
- // predicates. In fact some of this should probably be put into
- // shared functions because of DRY violations...
- let trait_to_impl_substs = impl_trait_ref.substs;
-
- // Create a parameter environment that represents the implementation's
- // method.
- let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_c.def_id.expect_local());
-
- // Compute placeholder form of impl and trait const tys.
- let impl_ty = tcx.type_of(impl_c.def_id);
- let trait_ty = tcx.bound_type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
- let mut cause = ObligationCause::new(
- impl_c_span,
- impl_c_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_c.def_id.expect_local(),
- trait_item_def_id: trait_c.def_id,
- kind: impl_c.kind,
- },
- );
-
- // There is no "body" here, so just pass dummy id.
- let impl_ty = ocx.normalize(cause.clone(), param_env, impl_ty);
-
- debug!("compare_const_impl: impl_ty={:?}", impl_ty);
-
- let trait_ty = ocx.normalize(cause.clone(), param_env, trait_ty);
-
- debug!("compare_const_impl: trait_ty={:?}", trait_ty);
-
- let err = infcx
- .at(&cause, param_env)
- .sup(trait_ty, impl_ty)
- .map(|ok| ocx.register_infer_ok_obligations(ok));
-
- if let Err(terr) = err {
- debug!(
- "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
- impl_ty, trait_ty
- );
-
- // Locate the Span containing just the type of the offending impl
- match tcx.hir().expect_impl_item(impl_c.def_id.expect_local()).kind {
- ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
- _ => bug!("{:?} is not a impl const", impl_c),
- }
-
- let mut diag = struct_span_err!(
- tcx.sess,
- cause.span,
- E0326,
- "implemented const `{}` has an incompatible type for trait",
- trait_c.name
- );
-
- let trait_c_span = trait_c.def_id.as_local().map(|trait_c_def_id| {
- // Add a label to the Span containing just the type of the const
- match tcx.hir().expect_trait_item(trait_c_def_id).kind {
- TraitItemKind::Const(ref ty, _) => ty.span,
- _ => bug!("{:?} is not a trait const", trait_c),
- }
- });
-
- infcx.note_type_err(
- &mut diag,
- &cause,
- trait_c_span.map(|span| (span, "type in trait".to_owned())),
- Some(infer::ValuePairs::Terms(ExpectedFound {
- expected: trait_ty.into(),
- found: impl_ty.into(),
- })),
- &terr,
- false,
- false,
- );
- diag.emit();
- }
-
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- infcx.report_fulfillment_errors(&errors, None, false);
- return;
- }
-
- let outlives_environment = OutlivesEnvironment::new(param_env);
- infcx.check_region_obligations_and_report_errors(
- impl_c.def_id.expect_local(),
- &outlives_environment,
- );
- });
-}
-
-pub(crate) fn compare_ty_impl<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_ty: &ty::AssocItem,
- impl_ty_span: Span,
- trait_ty: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
- trait_item_span: Option<Span>,
-) {
- debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
-
- let _: Result<(), ErrorGuaranteed> = (|| {
- compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
-
- compare_generic_param_kinds(tcx, impl_ty, trait_ty)?;
-
- let sp = tcx.def_span(impl_ty.def_id);
- compare_type_predicate_entailment(tcx, impl_ty, sp, trait_ty, impl_trait_ref)?;
-
- check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
- })();
-}
-
-/// The equivalent of [compare_predicate_entailment], but for associated types
-/// instead of associated functions.
-fn compare_type_predicate_entailment<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_ty: &ty::AssocItem,
- impl_ty_span: Span,
- trait_ty: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> Result<(), ErrorGuaranteed> {
- let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
- let trait_to_impl_substs =
- impl_substs.rebase_onto(tcx, impl_ty.container_id(tcx), impl_trait_ref.substs);
-
- let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
- let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
- let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
- let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
-
- check_region_bounds_on_impl_item(
- tcx,
- impl_ty,
- trait_ty,
- &trait_ty_generics,
- &impl_ty_generics,
- )?;
-
- let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
-
- if impl_ty_own_bounds.is_empty() {
- // Nothing to check.
- return Ok(());
- }
-
- // This `HirId` should be used for the `body_id` field on each
- // `ObligationCause` (and the `FnCtxt`). This is what
- // `regionck_item` expects.
- let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
- debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
-
- // The predicates declared by the impl definition, the trait and the
- // associated type in the trait are assumed.
- let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
- let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
- hybrid_preds
- .predicates
- .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
-
- debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
-
- let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
- let param_env = ty::ParamEnv::new(
- tcx.intern_predicates(&hybrid_preds.predicates),
- Reveal::UserFacing,
- hir::Constness::NotConst,
- );
- let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
- tcx.infer_ctxt().enter(|infcx| {
- let ocx = ObligationCtxt::new(&infcx);
-
- debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
-
- let mut selcx = traits::SelectionContext::new(&infcx);
-
- assert_eq!(impl_ty_own_bounds.predicates.len(), impl_ty_own_bounds.spans.len());
- for (span, predicate) in
- std::iter::zip(impl_ty_own_bounds.spans, impl_ty_own_bounds.predicates)
- {
- let cause = ObligationCause::misc(span, impl_ty_hir_id);
- let traits::Normalized { value: predicate, obligations } =
- traits::normalize(&mut selcx, param_env, cause, predicate);
-
- let cause = ObligationCause::new(
- span,
- impl_ty_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_ty.def_id.expect_local(),
- trait_item_def_id: trait_ty.def_id,
- kind: impl_ty.kind,
- },
- );
- ocx.register_obligations(obligations);
- ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
- }
-
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- let reported = infcx.report_fulfillment_errors(&errors, None, false);
- return Err(reported);
- }
-
- // Finally, resolve all regions. This catches wily misuses of
- // lifetime parameters.
- let outlives_environment = OutlivesEnvironment::new(param_env);
- infcx.check_region_obligations_and_report_errors(
- impl_ty.def_id.expect_local(),
- &outlives_environment,
- );
-
- Ok(())
- })
-}
-
-/// Validate that `ProjectionCandidate`s created for this associated type will
-/// be valid.
-///
-/// Usually given
-///
-/// trait X { type Y: Copy } impl X for T { type Y = S; }
-///
-/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
-/// impl is well-formed we have to prove `S: Copy`.
-///
-/// For default associated types the normalization is not possible (the value
-/// from the impl could be overridden). We also can't normalize generic
-/// associated types (yet) because they contain bound parameters.
-#[tracing::instrument(level = "debug", skip(tcx))]
-pub fn check_type_bounds<'tcx>(
- tcx: TyCtxt<'tcx>,
- trait_ty: &ty::AssocItem,
- impl_ty: &ty::AssocItem,
- impl_ty_span: Span,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> Result<(), ErrorGuaranteed> {
- // Given
- //
- // impl<A, B> Foo<u32> for (A, B) {
- // type Bar<C> =...
- // }
- //
- // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
- // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
- // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
- // the *trait* with the generic associated type parameters (as bound vars).
- //
- // A note regarding the use of bound vars here:
- // Imagine as an example
- // ```
- // trait Family {
- // type Member<C: Eq>;
- // }
- //
- // impl Family for VecFamily {
- // type Member<C: Eq> = i32;
- // }
- // ```
- // Here, we would generate
- // ```notrust
- // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
- // ```
- // when we really would like to generate
- // ```notrust
- // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
- // ```
- // But, this is probably fine, because although the first clause can be used with types C that
- // do not implement Eq, for it to cause some kind of problem, there would have to be a
- // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
- // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
- // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
- // the trait (notably, that X: Eq and T: Family).
- let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
- let mut substs = smallvec::SmallVec::with_capacity(defs.count());
- if let Some(def_id) = defs.parent {
- let parent_defs = tcx.generics_of(def_id);
- InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
- tcx.mk_param_from_def(param)
- });
- }
- let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
- smallvec::SmallVec::with_capacity(defs.count());
- InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
- GenericParamDefKind::Type { .. } => {
- let kind = ty::BoundTyKind::Param(param.name);
- let bound_var = ty::BoundVariableKind::Ty(kind);
- bound_vars.push(bound_var);
- tcx.mk_ty(ty::Bound(
- ty::INNERMOST,
- ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
- ))
- .into()
- }
- GenericParamDefKind::Lifetime => {
- let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
- let bound_var = ty::BoundVariableKind::Region(kind);
- bound_vars.push(bound_var);
- tcx.mk_region(ty::ReLateBound(
- ty::INNERMOST,
- ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
- ))
- .into()
- }
- GenericParamDefKind::Const { .. } => {
- let bound_var = ty::BoundVariableKind::Const;
- bound_vars.push(bound_var);
- tcx.mk_const(ty::ConstS {
- ty: tcx.type_of(param.def_id),
- kind: ty::ConstKind::Bound(
- ty::INNERMOST,
- ty::BoundVar::from_usize(bound_vars.len() - 1),
- ),
- })
- .into()
- }
- });
- let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
- let impl_ty_substs = tcx.intern_substs(&substs);
- let container_id = impl_ty.container_id(tcx);
-
- let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
- let impl_ty_value = tcx.type_of(impl_ty.def_id);
-
- let param_env = tcx.param_env(impl_ty.def_id);
-
- // When checking something like
- //
- // trait X { type Y: PartialEq<<Self as X>::Y> }
- // impl X for T { default type Y = S; }
- //
- // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
- // we want <T as X>::Y to normalize to S. This is valid because we are
- // checking the default value specifically here. Add this equality to the
- // ParamEnv for normalization specifically.
- let normalize_param_env = {
- let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
- match impl_ty_value.kind() {
- ty::Projection(proj)
- if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
- {
- // Don't include this predicate if the projected type is
- // exactly the same as the projection. This can occur in
- // (somewhat dubious) code like this:
- //
- // impl<T> X for T where T: X { type Y = <T as X>::Y; }
- }
- _ => predicates.push(
- ty::Binder::bind_with_vars(
- ty::ProjectionPredicate {
- projection_ty: ty::ProjectionTy {
- item_def_id: trait_ty.def_id,
- substs: rebased_substs,
- },
- term: impl_ty_value.into(),
- },
- bound_vars,
- )
- .to_predicate(tcx),
- ),
- };
- ty::ParamEnv::new(
- tcx.intern_predicates(&predicates),
- Reveal::UserFacing,
- param_env.constness(),
- )
- };
- debug!(?normalize_param_env);
-
- let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
- let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
-
- tcx.infer_ctxt().enter(move |infcx| {
- let ocx = ObligationCtxt::new(&infcx);
-
- let mut selcx = traits::SelectionContext::new(&infcx);
- let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
- let normalize_cause = ObligationCause::new(
- impl_ty_span,
- impl_ty_hir_id,
- ObligationCauseCode::CheckAssociatedTypeBounds {
- impl_item_def_id: impl_ty.def_id.expect_local(),
- trait_item_def_id: trait_ty.def_id,
- },
- );
- let mk_cause = |span: Span| {
- let code = if span.is_dummy() {
- traits::MiscObligation
- } else {
- traits::BindingObligation(trait_ty.def_id, span)
- };
- ObligationCause::new(impl_ty_span, impl_ty_hir_id, code)
- };
-
- let obligations = tcx
- .bound_explicit_item_bounds(trait_ty.def_id)
- .transpose_iter()
- .map(|e| e.map_bound(|e| *e).transpose_tuple2())
- .map(|(bound, span)| {
- debug!(?bound);
- // this is where opaque type is found
- let concrete_ty_bound = bound.subst(tcx, rebased_substs);
- debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
-
- traits::Obligation::new(mk_cause(span.0), param_env, concrete_ty_bound)
- })
- .collect();
- debug!("check_type_bounds: item_bounds={:?}", obligations);
-
- for mut obligation in util::elaborate_obligations(tcx, obligations) {
- let traits::Normalized { value: normalized_predicate, obligations } = traits::normalize(
- &mut selcx,
- normalize_param_env,
- normalize_cause.clone(),
- obligation.predicate,
- );
- debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
- obligation.predicate = normalized_predicate;
-
- ocx.register_obligations(obligations);
- ocx.register_obligation(obligation);
- }
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- let reported = infcx.report_fulfillment_errors(&errors, None, false);
- return Err(reported);
- }
-
- // Finally, resolve all regions. This catches wily misuses of
- // lifetime parameters.
- let implied_bounds = match impl_ty.container {
- ty::TraitContainer => FxHashSet::default(),
- ty::ImplContainer => wfcheck::impl_implied_bounds(
- tcx,
- param_env,
- container_id.expect_local(),
- impl_ty_span,
- ),
- };
- let mut outlives_environment = OutlivesEnvironment::new(param_env);
- outlives_environment.add_implied_bounds(&infcx, implied_bounds, impl_ty_hir_id);
- infcx.check_region_obligations_and_report_errors(
- impl_ty.def_id.expect_local(),
- &outlives_environment,
- );
-
- let constraints = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
- for (key, value) in constraints {
- infcx
- .report_mismatched_types(
- &ObligationCause::misc(
- value.hidden_type.span,
- tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local()),
- ),
- tcx.mk_opaque(key.def_id.to_def_id(), key.substs),
- value.hidden_type.ty,
- TypeError::Mismatch,
- )
- .emit();
- }
-
- Ok(())
- })
-}
-
-fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
- match impl_item.kind {
- ty::AssocKind::Const => "const",
- ty::AssocKind::Fn => "method",
- ty::AssocKind::Type => "type",
- }
-}