summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/compare_method.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/compare_method.rs')
-rw-r--r--compiler/rustc_typeck/src/check/compare_method.rs1547
1 files changed, 1547 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/compare_method.rs b/compiler/rustc_typeck/src/check/compare_method.rs
new file mode 100644
index 000000000..666498403
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/compare_method.rs
@@ -0,0 +1,1547 @@
+use super::potentially_plural_count;
+use crate::check::regionck::OutlivesEnvironmentExt;
+use crate::check::wfcheck;
+use crate::errors::LifetimesOrBoundsMismatchOnTrait;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::intravisit;
+use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
+use rustc_infer::infer::outlives::env::OutlivesEnvironment;
+use rustc_infer::infer::{self, TyCtxtInferExt};
+use rustc_infer::traits::util;
+use rustc_middle::ty::error::{ExpectedFound, TypeError};
+use rustc_middle::ty::subst::{InternalSubsts, Subst};
+use rustc_middle::ty::util::ExplicitSelf;
+use rustc_middle::ty::{self, DefIdTree};
+use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
+use rustc_span::Span;
+use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
+use rustc_trait_selection::traits::{
+ self, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
+};
+use std::iter;
+
+/// Checks that a method from an impl conforms to the signature of
+/// the same method as declared in the trait.
+///
+/// # Parameters
+///
+/// - `impl_m`: type of the method we are checking
+/// - `impl_m_span`: span to use for reporting errors
+/// - `trait_m`: the method in the trait
+/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
+pub(crate) fn compare_impl_method<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ trait_item_span: Option<Span>,
+) {
+ debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
+
+ let impl_m_span = tcx.def_span(impl_m.def_id);
+
+ if let Err(_) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref) {
+ return;
+ }
+
+ if let Err(_) = compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span) {
+ return;
+ }
+
+ if let Err(_) = compare_generic_param_kinds(tcx, impl_m, trait_m) {
+ return;
+ }
+
+ if let Err(_) =
+ compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
+ {
+ return;
+ }
+
+ if let Err(_) = compare_synthetic_generics(tcx, impl_m, trait_m) {
+ return;
+ }
+
+ if let Err(_) = compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
+ {
+ return;
+ }
+}
+
+fn compare_predicate_entailment<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ // This node-id should be used for the `body_id` field on each
+ // `ObligationCause` (and the `FnCtxt`).
+ //
+ // FIXME(@lcnr): remove that after removing `cause.body_id` from
+ // obligations.
+ let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
+ // We sometimes modify the span further down.
+ let mut cause = ObligationCause::new(
+ impl_m_span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+
+ // This code is best explained by example. Consider a trait:
+ //
+ // trait Trait<'t, T> {
+ // fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
+ // }
+ //
+ // And an impl:
+ //
+ // impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
+ // fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
+ // }
+ //
+ // We wish to decide if those two method types are compatible.
+ //
+ // We start out with trait_to_impl_substs, that maps the trait
+ // type parameters to impl type parameters. This is taken from the
+ // impl trait reference:
+ //
+ // trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
+ //
+ // We create a mapping `dummy_substs` that maps from the impl type
+ // parameters to fresh types and regions. For type parameters,
+ // this is the identity transform, but we could as well use any
+ // placeholder types. For regions, we convert from bound to free
+ // regions (Note: but only early-bound regions, i.e., those
+ // declared on the impl or used in type parameter bounds).
+ //
+ // impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
+ //
+ // Now we can apply placeholder_substs to the type of the impl method
+ // to yield a new function type in terms of our fresh, placeholder
+ // types:
+ //
+ // <'b> fn(t: &'i0 U0, m: &'b) -> Foo
+ //
+ // We now want to extract and substitute the type of the *trait*
+ // method and compare it. To do so, we must create a compound
+ // substitution by combining trait_to_impl_substs and
+ // impl_to_placeholder_substs, and also adding a mapping for the method
+ // type parameters. We extend the mapping to also include
+ // the method parameters.
+ //
+ // trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
+ //
+ // Applying this to the trait method type yields:
+ //
+ // <'a> fn(t: &'i0 U0, m: &'a) -> Foo
+ //
+ // This type is also the same but the name of the bound region ('a
+ // vs 'b). However, the normal subtyping rules on fn types handle
+ // this kind of equivalency just fine.
+ //
+ // We now use these substitutions to ensure that all declared bounds are
+ // satisfied by the implementation's method.
+ //
+ // We do this by creating a parameter environment which contains a
+ // substitution corresponding to impl_to_placeholder_substs. We then build
+ // trait_to_placeholder_substs and use it to convert the predicates contained
+ // in the trait_m.generics to the placeholder form.
+ //
+ // Finally we register each of these predicates as an obligation in
+ // a fresh FulfillmentCtxt, and invoke select_all_or_error.
+
+ // Create mapping from impl to placeholder.
+ let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
+
+ // Create mapping from trait to placeholder.
+ let trait_to_placeholder_substs =
+ impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
+ debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
+
+ let impl_m_generics = tcx.generics_of(impl_m.def_id);
+ let trait_m_generics = tcx.generics_of(trait_m.def_id);
+ let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
+ let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
+
+ // Check region bounds.
+ check_region_bounds_on_impl_item(tcx, impl_m, trait_m, &trait_m_generics, &impl_m_generics)?;
+
+ // Create obligations for each predicate declared by the impl
+ // definition in the context of the trait's parameter
+ // environment. We can't just use `impl_env.caller_bounds`,
+ // however, because we want to replace all late-bound regions with
+ // region variables.
+ let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
+ let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
+
+ debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
+
+ // This is the only tricky bit of the new way we check implementation methods
+ // We need to build a set of predicates where only the method-level bounds
+ // are from the trait and we assume all other bounds from the implementation
+ // to be previously satisfied.
+ //
+ // We then register the obligations from the impl_m and check to see
+ // if all constraints hold.
+ hybrid_preds
+ .predicates
+ .extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
+
+ // Construct trait parameter environment and then shift it into the placeholder viewpoint.
+ // The key step here is to update the caller_bounds's predicates to be
+ // the new hybrid bounds we computed.
+ let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
+ let param_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&hybrid_preds.predicates),
+ Reveal::UserFacing,
+ hir::Constness::NotConst,
+ );
+ let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
+
+ tcx.infer_ctxt().enter(|ref infcx| {
+ let ocx = ObligationCtxt::new(infcx);
+
+ debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
+
+ let mut selcx = traits::SelectionContext::new(&infcx);
+ let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
+ for (predicate, span) in iter::zip(impl_m_own_bounds.predicates, impl_m_own_bounds.spans) {
+ let normalize_cause = traits::ObligationCause::misc(span, impl_m_hir_id);
+ let traits::Normalized { value: predicate, obligations } =
+ traits::normalize(&mut selcx, param_env, normalize_cause, predicate);
+
+ ocx.register_obligations(obligations);
+ let cause = ObligationCause::new(
+ span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+ ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
+ }
+
+ // We now need to check that the signature of the impl method is
+ // compatible with that of the trait method. We do this by
+ // checking that `impl_fty <: trait_fty`.
+ //
+ // FIXME. Unfortunately, this doesn't quite work right now because
+ // associated type normalization is not integrated into subtype
+ // checks. For the comparison to be valid, we need to
+ // normalize the associated types in the impl/trait methods
+ // first. However, because function types bind regions, just
+ // calling `normalize_associated_types_in` would have no effect on
+ // any associated types appearing in the fn arguments or return
+ // type.
+
+ // Compute placeholder form of impl and trait method tys.
+ let tcx = infcx.tcx;
+
+ let mut wf_tys = FxHashSet::default();
+
+ let impl_sig = infcx.replace_bound_vars_with_fresh_vars(
+ impl_m_span,
+ infer::HigherRankedType,
+ tcx.fn_sig(impl_m.def_id),
+ );
+
+ let norm_cause = ObligationCause::misc(impl_m_span, impl_m_hir_id);
+ let impl_sig = ocx.normalize(norm_cause.clone(), param_env, impl_sig);
+ let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
+ debug!("compare_impl_method: impl_fty={:?}", impl_fty);
+
+ let trait_sig = tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
+ let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
+ let trait_sig = ocx.normalize(norm_cause, param_env, trait_sig);
+ // Add the resulting inputs and output as well-formed.
+ wf_tys.extend(trait_sig.inputs_and_output.iter());
+ let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
+
+ debug!("compare_impl_method: trait_fty={:?}", trait_fty);
+
+ // FIXME: We'd want to keep more accurate spans than "the method signature" when
+ // processing the comparison between the trait and impl fn, but we sadly lose them
+ // and point at the whole signature when a trait bound or specific input or output
+ // type would be more appropriate. In other places we have a `Vec<Span>`
+ // corresponding to their `Vec<Predicate>`, but we don't have that here.
+ // Fixing this would improve the output of test `issue-83765.rs`.
+ let sub_result = infcx
+ .at(&cause, param_env)
+ .sup(trait_fty, impl_fty)
+ .map(|infer_ok| ocx.register_infer_ok_obligations(infer_ok));
+
+ if let Err(terr) = sub_result {
+ debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
+
+ let (impl_err_span, trait_err_span) =
+ extract_spans_for_error_reporting(&infcx, &terr, &cause, impl_m, trait_m);
+
+ cause.span = impl_err_span;
+
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ cause.span(),
+ E0053,
+ "method `{}` has an incompatible type for trait",
+ trait_m.name
+ );
+ match &terr {
+ TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
+ if trait_m.fn_has_self_parameter =>
+ {
+ let ty = trait_sig.inputs()[0];
+ let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty())
+ {
+ ExplicitSelf::ByValue => "self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Mut) => {
+ "&mut self".to_owned()
+ }
+ _ => format!("self: {ty}"),
+ };
+
+ // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
+ // span points only at the type `Box<Self`>, but we want to cover the whole
+ // argument pattern and type.
+ let span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref sig, body) => tcx
+ .hir()
+ .body_param_names(body)
+ .zip(sig.decl.inputs.iter())
+ .map(|(param, ty)| param.span.to(ty.span))
+ .next()
+ .unwrap_or(impl_err_span),
+ _ => bug!("{:?} is not a method", impl_m),
+ };
+
+ diag.span_suggestion(
+ span,
+ "change the self-receiver type to match the trait",
+ sugg,
+ Applicability::MachineApplicable,
+ );
+ }
+ TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
+ if trait_sig.inputs().len() == *i {
+ // Suggestion to change output type. We do not suggest in `async` functions
+ // to avoid complex logic or incorrect output.
+ match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref sig, _)
+ if sig.header.asyncness == hir::IsAsync::NotAsync =>
+ {
+ let msg = "change the output type to match the trait";
+ let ap = Applicability::MachineApplicable;
+ match sig.decl.output {
+ hir::FnRetTy::DefaultReturn(sp) => {
+ let sugg = format!("-> {} ", trait_sig.output());
+ diag.span_suggestion_verbose(sp, msg, sugg, ap);
+ }
+ hir::FnRetTy::Return(hir_ty) => {
+ let sugg = trait_sig.output();
+ diag.span_suggestion(hir_ty.span, msg, sugg, ap);
+ }
+ };
+ }
+ _ => {}
+ };
+ } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
+ diag.span_suggestion(
+ impl_err_span,
+ "change the parameter type to match the trait",
+ trait_ty,
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ _ => {}
+ }
+
+ infcx.note_type_err(
+ &mut diag,
+ &cause,
+ trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
+ Some(infer::ValuePairs::Terms(ExpectedFound {
+ expected: trait_fty.into(),
+ found: impl_fty.into(),
+ })),
+ &terr,
+ false,
+ false,
+ );
+
+ return Err(diag.emit());
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let mut outlives_environment = OutlivesEnvironment::new(param_env);
+ outlives_environment.add_implied_bounds(infcx, wf_tys, impl_m_hir_id);
+ infcx.check_region_obligations_and_report_errors(
+ impl_m.def_id.expect_local(),
+ &outlives_environment,
+ );
+
+ Ok(())
+ })
+}
+
+fn check_region_bounds_on_impl_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+ trait_generics: &ty::Generics,
+ impl_generics: &ty::Generics,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_params = trait_generics.own_counts().lifetimes;
+ let impl_params = impl_generics.own_counts().lifetimes;
+
+ debug!(
+ "check_region_bounds_on_impl_item: \
+ trait_generics={:?} \
+ impl_generics={:?}",
+ trait_generics, impl_generics
+ );
+
+ // Must have same number of early-bound lifetime parameters.
+ // Unfortunately, if the user screws up the bounds, then this
+ // will change classification between early and late. E.g.,
+ // if in trait we have `<'a,'b:'a>`, and in impl we just have
+ // `<'a,'b>`, then we have 2 early-bound lifetime parameters
+ // in trait but 0 in the impl. But if we report "expected 2
+ // but found 0" it's confusing, because it looks like there
+ // are zero. Since I don't quite know how to phrase things at
+ // the moment, give a kind of vague error message.
+ if trait_params != impl_params {
+ let span = tcx
+ .hir()
+ .get_generics(impl_m.def_id.expect_local())
+ .expect("expected impl item to have generics or else we can't compare them")
+ .span;
+ let generics_span = if let Some(local_def_id) = trait_m.def_id.as_local() {
+ Some(
+ tcx.hir()
+ .get_generics(local_def_id)
+ .expect("expected trait item to have generics or else we can't compare them")
+ .span,
+ )
+ } else {
+ None
+ };
+
+ let reported = tcx.sess.emit_err(LifetimesOrBoundsMismatchOnTrait {
+ span,
+ item_kind: assoc_item_kind_str(impl_m),
+ ident: impl_m.ident(tcx),
+ generics_span,
+ });
+ return Err(reported);
+ }
+
+ Ok(())
+}
+
+#[instrument(level = "debug", skip(infcx))]
+fn extract_spans_for_error_reporting<'a, 'tcx>(
+ infcx: &infer::InferCtxt<'a, 'tcx>,
+ terr: &TypeError<'_>,
+ cause: &ObligationCause<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+) -> (Span, Option<Span>) {
+ let tcx = infcx.tcx;
+ let mut impl_args = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref sig, _) => {
+ sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
+ }
+ _ => bug!("{:?} is not a method", impl_m),
+ };
+ let trait_args =
+ trait_m.def_id.as_local().map(|def_id| match tcx.hir().expect_trait_item(def_id).kind {
+ TraitItemKind::Fn(ref sig, _) => {
+ sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
+ }
+ _ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
+ });
+
+ match *terr {
+ TypeError::ArgumentMutability(i) => {
+ (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
+ }
+ TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
+ (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
+ }
+ _ => (cause.span(), tcx.hir().span_if_local(trait_m.def_id)),
+ }
+}
+
+fn compare_self_type<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ // Try to give more informative error messages about self typing
+ // mismatches. Note that any mismatch will also be detected
+ // below, where we construct a canonical function type that
+ // includes the self parameter as a normal parameter. It's just
+ // that the error messages you get out of this code are a bit more
+ // inscrutable, particularly for cases where one method has no
+ // self.
+
+ let self_string = |method: &ty::AssocItem| {
+ let untransformed_self_ty = match method.container {
+ ty::ImplContainer => impl_trait_ref.self_ty(),
+ ty::TraitContainer => tcx.types.self_param,
+ };
+ let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
+ let param_env = ty::ParamEnv::reveal_all();
+
+ tcx.infer_ctxt().enter(|infcx| {
+ let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
+ let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
+ match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
+ ExplicitSelf::ByValue => "self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
+ _ => format!("self: {self_arg_ty}"),
+ }
+ })
+ };
+
+ match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
+ (false, false) | (true, true) => {}
+
+ (false, true) => {
+ let self_descr = self_string(impl_m);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_m_span,
+ E0185,
+ "method `{}` has a `{}` declaration in the impl, but not in the trait",
+ trait_m.name,
+ self_descr
+ );
+ err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
+ if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
+ err.span_label(span, format!("trait method declared without `{self_descr}`"));
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+ let reported = err.emit();
+ return Err(reported);
+ }
+
+ (true, false) => {
+ let self_descr = self_string(trait_m);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_m_span,
+ E0186,
+ "method `{}` has a `{}` declaration in the trait, but not in the impl",
+ trait_m.name,
+ self_descr
+ );
+ err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
+ if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
+ err.span_label(span, format!("`{self_descr}` used in trait"));
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+ let reported = err.emit();
+ return Err(reported);
+ }
+ }
+
+ Ok(())
+}
+
+/// Checks that the number of generics on a given assoc item in a trait impl is the same
+/// as the number of generics on the respective assoc item in the trait definition.
+///
+/// For example this code emits the errors in the following code:
+/// ```
+/// trait Trait {
+/// fn foo();
+/// type Assoc<T>;
+/// }
+///
+/// impl Trait for () {
+/// fn foo<T>() {}
+/// //~^ error
+/// type Assoc = u32;
+/// //~^ error
+/// }
+/// ```
+///
+/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
+/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
+/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
+fn compare_number_of_generics<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_: &ty::AssocItem,
+ _impl_span: Span,
+ trait_: &ty::AssocItem,
+ trait_span: Option<Span>,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
+ let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
+
+ // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
+ // in `compare_generic_param_kinds` which will give a nicer error message than something like:
+ // "expected 1 type parameter, found 0 type parameters"
+ if (trait_own_counts.types + trait_own_counts.consts)
+ == (impl_own_counts.types + impl_own_counts.consts)
+ {
+ return Ok(());
+ }
+
+ let matchings = [
+ ("type", trait_own_counts.types, impl_own_counts.types),
+ ("const", trait_own_counts.consts, impl_own_counts.consts),
+ ];
+
+ let item_kind = assoc_item_kind_str(impl_);
+
+ let mut err_occurred = None;
+ for (kind, trait_count, impl_count) in matchings {
+ if impl_count != trait_count {
+ let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
+ let mut spans = generics
+ .params
+ .iter()
+ .filter(|p| match p.kind {
+ hir::GenericParamKind::Lifetime {
+ kind: hir::LifetimeParamKind::Elided,
+ } => {
+ // A fn can have an arbitrary number of extra elided lifetimes for the
+ // same signature.
+ !matches!(kind, ty::AssocKind::Fn)
+ }
+ _ => true,
+ })
+ .map(|p| p.span)
+ .collect::<Vec<Span>>();
+ if spans.is_empty() {
+ spans = vec![generics.span]
+ }
+ spans
+ };
+ let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
+ let trait_item = tcx.hir().expect_trait_item(def_id);
+ let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
+ let impl_trait_spans: Vec<Span> = trait_item
+ .generics
+ .params
+ .iter()
+ .filter_map(|p| match p.kind {
+ GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
+ _ => None,
+ })
+ .collect();
+ (Some(arg_spans), impl_trait_spans)
+ } else {
+ (trait_span.map(|s| vec![s]), vec![])
+ };
+
+ let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
+ let impl_item_impl_trait_spans: Vec<Span> = impl_item
+ .generics
+ .params
+ .iter()
+ .filter_map(|p| match p.kind {
+ GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
+ _ => None,
+ })
+ .collect();
+ let spans = arg_spans(impl_.kind, impl_item.generics);
+ let span = spans.first().copied();
+
+ let mut err = tcx.sess.struct_span_err_with_code(
+ spans,
+ &format!(
+ "{} `{}` has {} {kind} parameter{} but its trait \
+ declaration has {} {kind} parameter{}",
+ item_kind,
+ trait_.name,
+ impl_count,
+ pluralize!(impl_count),
+ trait_count,
+ pluralize!(trait_count),
+ kind = kind,
+ ),
+ DiagnosticId::Error("E0049".into()),
+ );
+
+ let mut suffix = None;
+
+ if let Some(spans) = trait_spans {
+ let mut spans = spans.iter();
+ if let Some(span) = spans.next() {
+ err.span_label(
+ *span,
+ format!(
+ "expected {} {} parameter{}",
+ trait_count,
+ kind,
+ pluralize!(trait_count),
+ ),
+ );
+ }
+ for span in spans {
+ err.span_label(*span, "");
+ }
+ } else {
+ suffix = Some(format!(", expected {trait_count}"));
+ }
+
+ if let Some(span) = span {
+ err.span_label(
+ span,
+ format!(
+ "found {} {} parameter{}{}",
+ impl_count,
+ kind,
+ pluralize!(impl_count),
+ suffix.unwrap_or_else(String::new),
+ ),
+ );
+ }
+
+ for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
+ err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
+ }
+
+ let reported = err.emit();
+ err_occurred = Some(reported);
+ }
+ }
+
+ if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
+}
+
+fn compare_number_of_method_arguments<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ trait_item_span: Option<Span>,
+) -> Result<(), ErrorGuaranteed> {
+ let impl_m_fty = tcx.fn_sig(impl_m.def_id);
+ let trait_m_fty = tcx.fn_sig(trait_m.def_id);
+ let trait_number_args = trait_m_fty.inputs().skip_binder().len();
+ let impl_number_args = impl_m_fty.inputs().skip_binder().len();
+ if trait_number_args != impl_number_args {
+ let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
+ match tcx.hir().expect_trait_item(def_id).kind {
+ TraitItemKind::Fn(ref trait_m_sig, _) => {
+ let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
+ if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
+ Some(if pos == 0 {
+ arg.span
+ } else {
+ arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
+ })
+ } else {
+ trait_item_span
+ }
+ }
+ _ => bug!("{:?} is not a method", impl_m),
+ }
+ } else {
+ trait_item_span
+ };
+ let impl_span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref impl_m_sig, _) => {
+ let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
+ if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
+ if pos == 0 {
+ arg.span
+ } else {
+ arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
+ }
+ } else {
+ impl_m_span
+ }
+ }
+ _ => bug!("{:?} is not a method", impl_m),
+ };
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0050,
+ "method `{}` has {} but the declaration in trait `{}` has {}",
+ trait_m.name,
+ potentially_plural_count(impl_number_args, "parameter"),
+ tcx.def_path_str(trait_m.def_id),
+ trait_number_args
+ );
+ if let Some(trait_span) = trait_span {
+ err.span_label(
+ trait_span,
+ format!(
+ "trait requires {}",
+ potentially_plural_count(trait_number_args, "parameter")
+ ),
+ );
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+ err.span_label(
+ impl_span,
+ format!(
+ "expected {}, found {}",
+ potentially_plural_count(trait_number_args, "parameter"),
+ impl_number_args
+ ),
+ );
+ let reported = err.emit();
+ return Err(reported);
+ }
+
+ Ok(())
+}
+
+fn compare_synthetic_generics<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+) -> Result<(), ErrorGuaranteed> {
+ // FIXME(chrisvittal) Clean up this function, list of FIXME items:
+ // 1. Better messages for the span labels
+ // 2. Explanation as to what is going on
+ // If we get here, we already have the same number of generics, so the zip will
+ // be okay.
+ let mut error_found = None;
+ let impl_m_generics = tcx.generics_of(impl_m.def_id);
+ let trait_m_generics = tcx.generics_of(trait_m.def_id);
+ let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
+ });
+ let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
+ });
+ for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
+ iter::zip(impl_m_type_params, trait_m_type_params)
+ {
+ if impl_synthetic != trait_synthetic {
+ let impl_def_id = impl_def_id.expect_local();
+ let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_def_id);
+ let impl_span = tcx.hir().span(impl_hir_id);
+ let trait_span = tcx.def_span(trait_def_id);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0643,
+ "method `{}` has incompatible signature for trait",
+ trait_m.name
+ );
+ err.span_label(trait_span, "declaration in trait here");
+ match (impl_synthetic, trait_synthetic) {
+ // The case where the impl method uses `impl Trait` but the trait method uses
+ // explicit generics
+ (true, false) => {
+ err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
+ (|| {
+ // try taking the name from the trait impl
+ // FIXME: this is obviously suboptimal since the name can already be used
+ // as another generic argument
+ let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
+ let trait_m = trait_m.def_id.as_local()?;
+ let trait_m = tcx.hir().trait_item(hir::TraitItemId { def_id: trait_m });
+
+ let impl_m = impl_m.def_id.as_local()?;
+ let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
+
+ // in case there are no generics, take the spot between the function name
+ // and the opening paren of the argument list
+ let new_generics_span =
+ tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
+ // in case there are generics, just replace them
+ let generics_span =
+ impl_m.generics.span.substitute_dummy(new_generics_span);
+ // replace with the generics from the trait
+ let new_generics =
+ tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
+
+ err.multipart_suggestion(
+ "try changing the `impl Trait` argument to a generic parameter",
+ vec![
+ // replace `impl Trait` with `T`
+ (impl_span, new_name),
+ // replace impl method generics with trait method generics
+ // This isn't quite right, as users might have changed the names
+ // of the generics, but it works for the common case
+ (generics_span, new_generics),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ Some(())
+ })();
+ }
+ // The case where the trait method uses `impl Trait`, but the impl method uses
+ // explicit generics.
+ (false, true) => {
+ err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
+ (|| {
+ let impl_m = impl_m.def_id.as_local()?;
+ let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
+ let input_tys = match impl_m.kind {
+ hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
+ _ => unreachable!(),
+ };
+ struct Visitor(Option<Span>, hir::def_id::LocalDefId);
+ impl<'v> intravisit::Visitor<'v> for Visitor {
+ fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
+ intravisit::walk_ty(self, ty);
+ if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
+ ty.kind
+ && let Res::Def(DefKind::TyParam, def_id) = path.res
+ && def_id == self.1.to_def_id()
+ {
+ self.0 = Some(ty.span);
+ }
+ }
+ }
+ let mut visitor = Visitor(None, impl_def_id);
+ for ty in input_tys {
+ intravisit::Visitor::visit_ty(&mut visitor, ty);
+ }
+ let span = visitor.0?;
+
+ let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
+ let bounds = bounds.first()?.span().to(bounds.last()?.span());
+ let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
+
+ err.multipart_suggestion(
+ "try removing the generic parameter and using `impl Trait` instead",
+ vec![
+ // delete generic parameters
+ (impl_m.generics.span, String::new()),
+ // replace param usage with `impl Trait`
+ (span, format!("impl {bounds}")),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ Some(())
+ })();
+ }
+ _ => unreachable!(),
+ }
+ let reported = err.emit();
+ error_found = Some(reported);
+ }
+ }
+ if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
+}
+
+/// Checks that all parameters in the generics of a given assoc item in a trait impl have
+/// the same kind as the respective generic parameter in the trait def.
+///
+/// For example all 4 errors in the following code are emitted here:
+/// ```
+/// trait Foo {
+/// fn foo<const N: u8>();
+/// type bar<const N: u8>;
+/// fn baz<const N: u32>();
+/// type blah<T>;
+/// }
+///
+/// impl Foo for () {
+/// fn foo<const N: u64>() {}
+/// //~^ error
+/// type bar<const N: u64> {}
+/// //~^ error
+/// fn baz<T>() {}
+/// //~^ error
+/// type blah<const N: i64> = u32;
+/// //~^ error
+/// }
+/// ```
+///
+/// This function does not handle lifetime parameters
+fn compare_generic_param_kinds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_item: &ty::AssocItem,
+ trait_item: &ty::AssocItem,
+) -> Result<(), ErrorGuaranteed> {
+ assert_eq!(impl_item.kind, trait_item.kind);
+
+ let ty_const_params_of = |def_id| {
+ tcx.generics_of(def_id).params.iter().filter(|param| {
+ matches!(
+ param.kind,
+ GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
+ )
+ })
+ };
+
+ for (param_impl, param_trait) in
+ iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
+ {
+ use GenericParamDefKind::*;
+ if match (&param_impl.kind, &param_trait.kind) {
+ (Const { .. }, Const { .. })
+ if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
+ {
+ true
+ }
+ (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
+ // this is exhaustive so that anyone adding new generic param kinds knows
+ // to make sure this error is reported for them.
+ (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
+ (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
+ } {
+ let param_impl_span = tcx.def_span(param_impl.def_id);
+ let param_trait_span = tcx.def_span(param_trait.def_id);
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ param_impl_span,
+ E0053,
+ "{} `{}` has an incompatible generic parameter for trait `{}`",
+ assoc_item_kind_str(&impl_item),
+ trait_item.name,
+ &tcx.def_path_str(tcx.parent(trait_item.def_id))
+ );
+
+ let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
+ Const { .. } => {
+ format!("{} const parameter of type `{}`", prefix, tcx.type_of(param.def_id))
+ }
+ Type { .. } => format!("{} type parameter", prefix),
+ Lifetime { .. } => unreachable!(),
+ };
+
+ let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
+ err.span_label(trait_header_span, "");
+ err.span_label(param_trait_span, make_param_message("expected", param_trait));
+
+ let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
+ err.span_label(impl_header_span, "");
+ err.span_label(param_impl_span, make_param_message("found", param_impl));
+
+ let reported = err.emit();
+ return Err(reported);
+ }
+ }
+
+ Ok(())
+}
+
+pub(crate) fn compare_const_impl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_c: &ty::AssocItem,
+ impl_c_span: Span,
+ trait_c: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) {
+ debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
+
+ tcx.infer_ctxt().enter(|infcx| {
+ let param_env = tcx.param_env(impl_c.def_id);
+ let ocx = ObligationCtxt::new(&infcx);
+
+ // The below is for the most part highly similar to the procedure
+ // for methods above. It is simpler in many respects, especially
+ // because we shouldn't really have to deal with lifetimes or
+ // predicates. In fact some of this should probably be put into
+ // shared functions because of DRY violations...
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ // Create a parameter environment that represents the implementation's
+ // method.
+ let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_c.def_id.expect_local());
+
+ // Compute placeholder form of impl and trait const tys.
+ let impl_ty = tcx.type_of(impl_c.def_id);
+ let trait_ty = tcx.bound_type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
+ let mut cause = ObligationCause::new(
+ impl_c_span,
+ impl_c_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_c.def_id.expect_local(),
+ trait_item_def_id: trait_c.def_id,
+ kind: impl_c.kind,
+ },
+ );
+
+ // There is no "body" here, so just pass dummy id.
+ let impl_ty = ocx.normalize(cause.clone(), param_env, impl_ty);
+
+ debug!("compare_const_impl: impl_ty={:?}", impl_ty);
+
+ let trait_ty = ocx.normalize(cause.clone(), param_env, trait_ty);
+
+ debug!("compare_const_impl: trait_ty={:?}", trait_ty);
+
+ let err = infcx
+ .at(&cause, param_env)
+ .sup(trait_ty, impl_ty)
+ .map(|ok| ocx.register_infer_ok_obligations(ok));
+
+ if let Err(terr) = err {
+ debug!(
+ "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
+ impl_ty, trait_ty
+ );
+
+ // Locate the Span containing just the type of the offending impl
+ match tcx.hir().expect_impl_item(impl_c.def_id.expect_local()).kind {
+ ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
+ _ => bug!("{:?} is not a impl const", impl_c),
+ }
+
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ cause.span,
+ E0326,
+ "implemented const `{}` has an incompatible type for trait",
+ trait_c.name
+ );
+
+ let trait_c_span = trait_c.def_id.as_local().map(|trait_c_def_id| {
+ // Add a label to the Span containing just the type of the const
+ match tcx.hir().expect_trait_item(trait_c_def_id).kind {
+ TraitItemKind::Const(ref ty, _) => ty.span,
+ _ => bug!("{:?} is not a trait const", trait_c),
+ }
+ });
+
+ infcx.note_type_err(
+ &mut diag,
+ &cause,
+ trait_c_span.map(|span| (span, "type in trait".to_owned())),
+ Some(infer::ValuePairs::Terms(ExpectedFound {
+ expected: trait_ty.into(),
+ found: impl_ty.into(),
+ })),
+ &terr,
+ false,
+ false,
+ );
+ diag.emit();
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ infcx.report_fulfillment_errors(&errors, None, false);
+ return;
+ }
+
+ let outlives_environment = OutlivesEnvironment::new(param_env);
+ infcx.check_region_obligations_and_report_errors(
+ impl_c.def_id.expect_local(),
+ &outlives_environment,
+ );
+ });
+}
+
+pub(crate) fn compare_ty_impl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ trait_ty: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ trait_item_span: Option<Span>,
+) {
+ debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
+
+ let _: Result<(), ErrorGuaranteed> = (|| {
+ compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
+
+ compare_generic_param_kinds(tcx, impl_ty, trait_ty)?;
+
+ let sp = tcx.def_span(impl_ty.def_id);
+ compare_type_predicate_entailment(tcx, impl_ty, sp, trait_ty, impl_trait_ref)?;
+
+ check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
+ })();
+}
+
+/// The equivalent of [compare_predicate_entailment], but for associated types
+/// instead of associated functions.
+fn compare_type_predicate_entailment<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ trait_ty: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
+ let trait_to_impl_substs =
+ impl_substs.rebase_onto(tcx, impl_ty.container_id(tcx), impl_trait_ref.substs);
+
+ let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
+ let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
+ let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
+ let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
+
+ check_region_bounds_on_impl_item(
+ tcx,
+ impl_ty,
+ trait_ty,
+ &trait_ty_generics,
+ &impl_ty_generics,
+ )?;
+
+ let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
+
+ if impl_ty_own_bounds.is_empty() {
+ // Nothing to check.
+ return Ok(());
+ }
+
+ // This `HirId` should be used for the `body_id` field on each
+ // `ObligationCause` (and the `FnCtxt`). This is what
+ // `regionck_item` expects.
+ let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
+ debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
+
+ // The predicates declared by the impl definition, the trait and the
+ // associated type in the trait are assumed.
+ let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
+ let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
+ hybrid_preds
+ .predicates
+ .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
+
+ debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
+
+ let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
+ let param_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&hybrid_preds.predicates),
+ Reveal::UserFacing,
+ hir::Constness::NotConst,
+ );
+ let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
+ tcx.infer_ctxt().enter(|infcx| {
+ let ocx = ObligationCtxt::new(&infcx);
+
+ debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
+
+ let mut selcx = traits::SelectionContext::new(&infcx);
+
+ assert_eq!(impl_ty_own_bounds.predicates.len(), impl_ty_own_bounds.spans.len());
+ for (span, predicate) in
+ std::iter::zip(impl_ty_own_bounds.spans, impl_ty_own_bounds.predicates)
+ {
+ let cause = ObligationCause::misc(span, impl_ty_hir_id);
+ let traits::Normalized { value: predicate, obligations } =
+ traits::normalize(&mut selcx, param_env, cause, predicate);
+
+ let cause = ObligationCause::new(
+ span,
+ impl_ty_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_ty.def_id.expect_local(),
+ trait_item_def_id: trait_ty.def_id,
+ kind: impl_ty.kind,
+ },
+ );
+ ocx.register_obligations(obligations);
+ ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let outlives_environment = OutlivesEnvironment::new(param_env);
+ infcx.check_region_obligations_and_report_errors(
+ impl_ty.def_id.expect_local(),
+ &outlives_environment,
+ );
+
+ Ok(())
+ })
+}
+
+/// Validate that `ProjectionCandidate`s created for this associated type will
+/// be valid.
+///
+/// Usually given
+///
+/// trait X { type Y: Copy } impl X for T { type Y = S; }
+///
+/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
+/// impl is well-formed we have to prove `S: Copy`.
+///
+/// For default associated types the normalization is not possible (the value
+/// from the impl could be overridden). We also can't normalize generic
+/// associated types (yet) because they contain bound parameters.
+#[tracing::instrument(level = "debug", skip(tcx))]
+pub fn check_type_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ty: &ty::AssocItem,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ // Given
+ //
+ // impl<A, B> Foo<u32> for (A, B) {
+ // type Bar<C> =...
+ // }
+ //
+ // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
+ // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
+ // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
+ // the *trait* with the generic associated type parameters (as bound vars).
+ //
+ // A note regarding the use of bound vars here:
+ // Imagine as an example
+ // ```
+ // trait Family {
+ // type Member<C: Eq>;
+ // }
+ //
+ // impl Family for VecFamily {
+ // type Member<C: Eq> = i32;
+ // }
+ // ```
+ // Here, we would generate
+ // ```notrust
+ // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
+ // ```
+ // when we really would like to generate
+ // ```notrust
+ // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
+ // ```
+ // But, this is probably fine, because although the first clause can be used with types C that
+ // do not implement Eq, for it to cause some kind of problem, there would have to be a
+ // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
+ // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
+ // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
+ // the trait (notably, that X: Eq and T: Family).
+ let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
+ let mut substs = smallvec::SmallVec::with_capacity(defs.count());
+ if let Some(def_id) = defs.parent {
+ let parent_defs = tcx.generics_of(def_id);
+ InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
+ tcx.mk_param_from_def(param)
+ });
+ }
+ let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
+ smallvec::SmallVec::with_capacity(defs.count());
+ InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
+ GenericParamDefKind::Type { .. } => {
+ let kind = ty::BoundTyKind::Param(param.name);
+ let bound_var = ty::BoundVariableKind::Ty(kind);
+ bound_vars.push(bound_var);
+ tcx.mk_ty(ty::Bound(
+ ty::INNERMOST,
+ ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
+ ))
+ .into()
+ }
+ GenericParamDefKind::Lifetime => {
+ let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
+ let bound_var = ty::BoundVariableKind::Region(kind);
+ bound_vars.push(bound_var);
+ tcx.mk_region(ty::ReLateBound(
+ ty::INNERMOST,
+ ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
+ ))
+ .into()
+ }
+ GenericParamDefKind::Const { .. } => {
+ let bound_var = ty::BoundVariableKind::Const;
+ bound_vars.push(bound_var);
+ tcx.mk_const(ty::ConstS {
+ ty: tcx.type_of(param.def_id),
+ kind: ty::ConstKind::Bound(
+ ty::INNERMOST,
+ ty::BoundVar::from_usize(bound_vars.len() - 1),
+ ),
+ })
+ .into()
+ }
+ });
+ let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
+ let impl_ty_substs = tcx.intern_substs(&substs);
+ let container_id = impl_ty.container_id(tcx);
+
+ let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
+ let impl_ty_value = tcx.type_of(impl_ty.def_id);
+
+ let param_env = tcx.param_env(impl_ty.def_id);
+
+ // When checking something like
+ //
+ // trait X { type Y: PartialEq<<Self as X>::Y> }
+ // impl X for T { default type Y = S; }
+ //
+ // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
+ // we want <T as X>::Y to normalize to S. This is valid because we are
+ // checking the default value specifically here. Add this equality to the
+ // ParamEnv for normalization specifically.
+ let normalize_param_env = {
+ let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
+ match impl_ty_value.kind() {
+ ty::Projection(proj)
+ if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
+ {
+ // Don't include this predicate if the projected type is
+ // exactly the same as the projection. This can occur in
+ // (somewhat dubious) code like this:
+ //
+ // impl<T> X for T where T: X { type Y = <T as X>::Y; }
+ }
+ _ => predicates.push(
+ ty::Binder::bind_with_vars(
+ ty::ProjectionPredicate {
+ projection_ty: ty::ProjectionTy {
+ item_def_id: trait_ty.def_id,
+ substs: rebased_substs,
+ },
+ term: impl_ty_value.into(),
+ },
+ bound_vars,
+ )
+ .to_predicate(tcx),
+ ),
+ };
+ ty::ParamEnv::new(
+ tcx.intern_predicates(&predicates),
+ Reveal::UserFacing,
+ param_env.constness(),
+ )
+ };
+ debug!(?normalize_param_env);
+
+ let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
+ let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
+
+ tcx.infer_ctxt().enter(move |infcx| {
+ let ocx = ObligationCtxt::new(&infcx);
+
+ let mut selcx = traits::SelectionContext::new(&infcx);
+ let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
+ let normalize_cause = ObligationCause::new(
+ impl_ty_span,
+ impl_ty_hir_id,
+ ObligationCauseCode::CheckAssociatedTypeBounds {
+ impl_item_def_id: impl_ty.def_id.expect_local(),
+ trait_item_def_id: trait_ty.def_id,
+ },
+ );
+ let mk_cause = |span: Span| {
+ let code = if span.is_dummy() {
+ traits::MiscObligation
+ } else {
+ traits::BindingObligation(trait_ty.def_id, span)
+ };
+ ObligationCause::new(impl_ty_span, impl_ty_hir_id, code)
+ };
+
+ let obligations = tcx
+ .bound_explicit_item_bounds(trait_ty.def_id)
+ .transpose_iter()
+ .map(|e| e.map_bound(|e| *e).transpose_tuple2())
+ .map(|(bound, span)| {
+ debug!(?bound);
+ // this is where opaque type is found
+ let concrete_ty_bound = bound.subst(tcx, rebased_substs);
+ debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
+
+ traits::Obligation::new(mk_cause(span.0), param_env, concrete_ty_bound)
+ })
+ .collect();
+ debug!("check_type_bounds: item_bounds={:?}", obligations);
+
+ for mut obligation in util::elaborate_obligations(tcx, obligations) {
+ let traits::Normalized { value: normalized_predicate, obligations } = traits::normalize(
+ &mut selcx,
+ normalize_param_env,
+ normalize_cause.clone(),
+ obligation.predicate,
+ );
+ debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
+ obligation.predicate = normalized_predicate;
+
+ ocx.register_obligations(obligations);
+ ocx.register_obligation(obligation);
+ }
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let implied_bounds = match impl_ty.container {
+ ty::TraitContainer => FxHashSet::default(),
+ ty::ImplContainer => wfcheck::impl_implied_bounds(
+ tcx,
+ param_env,
+ container_id.expect_local(),
+ impl_ty_span,
+ ),
+ };
+ let mut outlives_environment = OutlivesEnvironment::new(param_env);
+ outlives_environment.add_implied_bounds(&infcx, implied_bounds, impl_ty_hir_id);
+ infcx.check_region_obligations_and_report_errors(
+ impl_ty.def_id.expect_local(),
+ &outlives_environment,
+ );
+
+ let constraints = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
+ for (key, value) in constraints {
+ infcx
+ .report_mismatched_types(
+ &ObligationCause::misc(
+ value.hidden_type.span,
+ tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local()),
+ ),
+ tcx.mk_opaque(key.def_id.to_def_id(), key.substs),
+ value.hidden_type.ty,
+ TypeError::Mismatch,
+ )
+ .emit();
+ }
+
+ Ok(())
+ })
+}
+
+fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
+ match impl_item.kind {
+ ty::AssocKind::Const => "const",
+ ty::AssocKind::Fn => "method",
+ ty::AssocKind::Type => "type",
+ }
+}