summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/fallback.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/fallback.rs')
-rw-r--r--compiler/rustc_typeck/src/check/fallback.rs398
1 files changed, 0 insertions, 398 deletions
diff --git a/compiler/rustc_typeck/src/check/fallback.rs b/compiler/rustc_typeck/src/check/fallback.rs
deleted file mode 100644
index 4059b3403..000000000
--- a/compiler/rustc_typeck/src/check/fallback.rs
+++ /dev/null
@@ -1,398 +0,0 @@
-use crate::check::FnCtxt;
-use rustc_data_structures::{
- fx::{FxHashMap, FxHashSet},
- graph::WithSuccessors,
- graph::{iterate::DepthFirstSearch, vec_graph::VecGraph},
-};
-use rustc_middle::ty::{self, Ty};
-
-impl<'tcx> FnCtxt<'_, 'tcx> {
- /// Performs type inference fallback, returning true if any fallback
- /// occurs.
- pub(super) fn type_inference_fallback(&self) -> bool {
- debug!(
- "type-inference-fallback start obligations: {:#?}",
- self.fulfillment_cx.borrow_mut().pending_obligations()
- );
-
- // All type checking constraints were added, try to fallback unsolved variables.
- self.select_obligations_where_possible(false, |_| {});
-
- debug!(
- "type-inference-fallback post selection obligations: {:#?}",
- self.fulfillment_cx.borrow_mut().pending_obligations()
- );
-
- // Check if we have any unsolved variables. If not, no need for fallback.
- let unsolved_variables = self.unsolved_variables();
- if unsolved_variables.is_empty() {
- return false;
- }
-
- let diverging_fallback = self.calculate_diverging_fallback(&unsolved_variables);
-
- let mut fallback_has_occurred = false;
- // We do fallback in two passes, to try to generate
- // better error messages.
- // The first time, we do *not* replace opaque types.
- for ty in unsolved_variables {
- debug!("unsolved_variable = {:?}", ty);
- fallback_has_occurred |= self.fallback_if_possible(ty, &diverging_fallback);
- }
-
- // We now see if we can make progress. This might cause us to
- // unify inference variables for opaque types, since we may
- // have unified some other type variables during the first
- // phase of fallback. This means that we only replace
- // inference variables with their underlying opaque types as a
- // last resort.
- //
- // In code like this:
- //
- // ```rust
- // type MyType = impl Copy;
- // fn produce() -> MyType { true }
- // fn bad_produce() -> MyType { panic!() }
- // ```
- //
- // we want to unify the opaque inference variable in `bad_produce`
- // with the diverging fallback for `panic!` (e.g. `()` or `!`).
- // This will produce a nice error message about conflicting concrete
- // types for `MyType`.
- //
- // If we had tried to fallback the opaque inference variable to `MyType`,
- // we will generate a confusing type-check error that does not explicitly
- // refer to opaque types.
- self.select_obligations_where_possible(fallback_has_occurred, |_| {});
-
- fallback_has_occurred
- }
-
- // Tries to apply a fallback to `ty` if it is an unsolved variable.
- //
- // - Unconstrained ints are replaced with `i32`.
- //
- // - Unconstrained floats are replaced with with `f64`.
- //
- // - Non-numerics may get replaced with `()` or `!`, depending on
- // how they were categorized by `calculate_diverging_fallback`
- // (and the setting of `#![feature(never_type_fallback)]`).
- //
- // Fallback becomes very dubious if we have encountered
- // type-checking errors. In that case, fallback to Error.
- //
- // The return value indicates whether fallback has occurred.
- fn fallback_if_possible(
- &self,
- ty: Ty<'tcx>,
- diverging_fallback: &FxHashMap<Ty<'tcx>, Ty<'tcx>>,
- ) -> bool {
- // Careful: we do NOT shallow-resolve `ty`. We know that `ty`
- // is an unsolved variable, and we determine its fallback
- // based solely on how it was created, not what other type
- // variables it may have been unified with since then.
- //
- // The reason this matters is that other attempts at fallback
- // may (in principle) conflict with this fallback, and we wish
- // to generate a type error in that case. (However, this
- // actually isn't true right now, because we're only using the
- // builtin fallback rules. This would be true if we were using
- // user-supplied fallbacks. But it's still useful to write the
- // code to detect bugs.)
- //
- // (Note though that if we have a general type variable `?T`
- // that is then unified with an integer type variable `?I`
- // that ultimately never gets resolved to a special integral
- // type, `?T` is not considered unsolved, but `?I` is. The
- // same is true for float variables.)
- let fallback = match ty.kind() {
- _ if self.is_tainted_by_errors() => self.tcx.ty_error(),
- ty::Infer(ty::IntVar(_)) => self.tcx.types.i32,
- ty::Infer(ty::FloatVar(_)) => self.tcx.types.f64,
- _ => match diverging_fallback.get(&ty) {
- Some(&fallback_ty) => fallback_ty,
- None => return false,
- },
- };
- debug!("fallback_if_possible(ty={:?}): defaulting to `{:?}`", ty, fallback);
-
- let span = self
- .infcx
- .type_var_origin(ty)
- .map(|origin| origin.span)
- .unwrap_or(rustc_span::DUMMY_SP);
- self.demand_eqtype(span, ty, fallback);
- true
- }
-
- /// The "diverging fallback" system is rather complicated. This is
- /// a result of our need to balance 'do the right thing' with
- /// backwards compatibility.
- ///
- /// "Diverging" type variables are variables created when we
- /// coerce a `!` type into an unbound type variable `?X`. If they
- /// never wind up being constrained, the "right and natural" thing
- /// is that `?X` should "fallback" to `!`. This means that e.g. an
- /// expression like `Some(return)` will ultimately wind up with a
- /// type like `Option<!>` (presuming it is not assigned or
- /// constrained to have some other type).
- ///
- /// However, the fallback used to be `()` (before the `!` type was
- /// added). Moreover, there are cases where the `!` type 'leaks
- /// out' from dead code into type variables that affect live
- /// code. The most common case is something like this:
- ///
- /// ```rust
- /// # fn foo() -> i32 { 4 }
- /// match foo() {
- /// 22 => Default::default(), // call this type `?D`
- /// _ => return, // return has type `!`
- /// } // call the type of this match `?M`
- /// ```
- ///
- /// Here, coercing the type `!` into `?M` will create a diverging
- /// type variable `?X` where `?X <: ?M`. We also have that `?D <:
- /// ?M`. If `?M` winds up unconstrained, then `?X` will
- /// fallback. If it falls back to `!`, then all the type variables
- /// will wind up equal to `!` -- this includes the type `?D`
- /// (since `!` doesn't implement `Default`, we wind up a "trait
- /// not implemented" error in code like this). But since the
- /// original fallback was `()`, this code used to compile with `?D
- /// = ()`. This is somewhat surprising, since `Default::default()`
- /// on its own would give an error because the types are
- /// insufficiently constrained.
- ///
- /// Our solution to this dilemma is to modify diverging variables
- /// so that they can *either* fallback to `!` (the default) or to
- /// `()` (the backwards compatibility case). We decide which
- /// fallback to use based on whether there is a coercion pattern
- /// like this:
- ///
- /// ```ignore (not-rust)
- /// ?Diverging -> ?V
- /// ?NonDiverging -> ?V
- /// ?V != ?NonDiverging
- /// ```
- ///
- /// Here `?Diverging` represents some diverging type variable and
- /// `?NonDiverging` represents some non-diverging type
- /// variable. `?V` can be any type variable (diverging or not), so
- /// long as it is not equal to `?NonDiverging`.
- ///
- /// Intuitively, what we are looking for is a case where a
- /// "non-diverging" type variable (like `?M` in our example above)
- /// is coerced *into* some variable `?V` that would otherwise
- /// fallback to `!`. In that case, we make `?V` fallback to `!`,
- /// along with anything that would flow into `?V`.
- ///
- /// The algorithm we use:
- /// * Identify all variables that are coerced *into* by a
- /// diverging variable. Do this by iterating over each
- /// diverging, unsolved variable and finding all variables
- /// reachable from there. Call that set `D`.
- /// * Walk over all unsolved, non-diverging variables, and find
- /// any variable that has an edge into `D`.
- fn calculate_diverging_fallback(
- &self,
- unsolved_variables: &[Ty<'tcx>],
- ) -> FxHashMap<Ty<'tcx>, Ty<'tcx>> {
- debug!("calculate_diverging_fallback({:?})", unsolved_variables);
-
- let relationships = self.fulfillment_cx.borrow_mut().relationships().clone();
-
- // Construct a coercion graph where an edge `A -> B` indicates
- // a type variable is that is coerced
- let coercion_graph = self.create_coercion_graph();
-
- // Extract the unsolved type inference variable vids; note that some
- // unsolved variables are integer/float variables and are excluded.
- let unsolved_vids = unsolved_variables.iter().filter_map(|ty| ty.ty_vid());
-
- // Compute the diverging root vids D -- that is, the root vid of
- // those type variables that (a) are the target of a coercion from
- // a `!` type and (b) have not yet been solved.
- //
- // These variables are the ones that are targets for fallback to
- // either `!` or `()`.
- let diverging_roots: FxHashSet<ty::TyVid> = self
- .diverging_type_vars
- .borrow()
- .iter()
- .map(|&ty| self.shallow_resolve(ty))
- .filter_map(|ty| ty.ty_vid())
- .map(|vid| self.root_var(vid))
- .collect();
- debug!(
- "calculate_diverging_fallback: diverging_type_vars={:?}",
- self.diverging_type_vars.borrow()
- );
- debug!("calculate_diverging_fallback: diverging_roots={:?}", diverging_roots);
-
- // Find all type variables that are reachable from a diverging
- // type variable. These will typically default to `!`, unless
- // we find later that they are *also* reachable from some
- // other type variable outside this set.
- let mut roots_reachable_from_diverging = DepthFirstSearch::new(&coercion_graph);
- let mut diverging_vids = vec![];
- let mut non_diverging_vids = vec![];
- for unsolved_vid in unsolved_vids {
- let root_vid = self.root_var(unsolved_vid);
- debug!(
- "calculate_diverging_fallback: unsolved_vid={:?} root_vid={:?} diverges={:?}",
- unsolved_vid,
- root_vid,
- diverging_roots.contains(&root_vid),
- );
- if diverging_roots.contains(&root_vid) {
- diverging_vids.push(unsolved_vid);
- roots_reachable_from_diverging.push_start_node(root_vid);
-
- debug!(
- "calculate_diverging_fallback: root_vid={:?} reaches {:?}",
- root_vid,
- coercion_graph.depth_first_search(root_vid).collect::<Vec<_>>()
- );
-
- // drain the iterator to visit all nodes reachable from this node
- roots_reachable_from_diverging.complete_search();
- } else {
- non_diverging_vids.push(unsolved_vid);
- }
- }
-
- debug!(
- "calculate_diverging_fallback: roots_reachable_from_diverging={:?}",
- roots_reachable_from_diverging,
- );
-
- // Find all type variables N0 that are not reachable from a
- // diverging variable, and then compute the set reachable from
- // N0, which we call N. These are the *non-diverging* type
- // variables. (Note that this set consists of "root variables".)
- let mut roots_reachable_from_non_diverging = DepthFirstSearch::new(&coercion_graph);
- for &non_diverging_vid in &non_diverging_vids {
- let root_vid = self.root_var(non_diverging_vid);
- if roots_reachable_from_diverging.visited(root_vid) {
- continue;
- }
- roots_reachable_from_non_diverging.push_start_node(root_vid);
- roots_reachable_from_non_diverging.complete_search();
- }
- debug!(
- "calculate_diverging_fallback: roots_reachable_from_non_diverging={:?}",
- roots_reachable_from_non_diverging,
- );
-
- debug!("inherited: {:#?}", self.inh.fulfillment_cx.borrow_mut().pending_obligations());
- debug!("obligations: {:#?}", self.fulfillment_cx.borrow_mut().pending_obligations());
- debug!("relationships: {:#?}", relationships);
-
- // For each diverging variable, figure out whether it can
- // reach a member of N. If so, it falls back to `()`. Else
- // `!`.
- let mut diverging_fallback = FxHashMap::default();
- diverging_fallback.reserve(diverging_vids.len());
- for &diverging_vid in &diverging_vids {
- let diverging_ty = self.tcx.mk_ty_var(diverging_vid);
- let root_vid = self.root_var(diverging_vid);
- let can_reach_non_diverging = coercion_graph
- .depth_first_search(root_vid)
- .any(|n| roots_reachable_from_non_diverging.visited(n));
-
- let mut relationship = ty::FoundRelationships { self_in_trait: false, output: false };
-
- for (vid, rel) in relationships.iter() {
- if self.root_var(*vid) == root_vid {
- relationship.self_in_trait |= rel.self_in_trait;
- relationship.output |= rel.output;
- }
- }
-
- if relationship.self_in_trait && relationship.output {
- // This case falls back to () to ensure that the code pattern in
- // src/test/ui/never_type/fallback-closure-ret.rs continues to
- // compile when never_type_fallback is enabled.
- //
- // This rule is not readily explainable from first principles,
- // but is rather intended as a patchwork fix to ensure code
- // which compiles before the stabilization of never type
- // fallback continues to work.
- //
- // Typically this pattern is encountered in a function taking a
- // closure as a parameter, where the return type of that closure
- // (checked by `relationship.output`) is expected to implement
- // some trait (checked by `relationship.self_in_trait`). This
- // can come up in non-closure cases too, so we do not limit this
- // rule to specifically `FnOnce`.
- //
- // When the closure's body is something like `panic!()`, the
- // return type would normally be inferred to `!`. However, it
- // needs to fall back to `()` in order to still compile, as the
- // trait is specifically implemented for `()` but not `!`.
- //
- // For details on the requirements for these relationships to be
- // set, see the relationship finding module in
- // compiler/rustc_trait_selection/src/traits/relationships.rs.
- debug!("fallback to () - found trait and projection: {:?}", diverging_vid);
- diverging_fallback.insert(diverging_ty, self.tcx.types.unit);
- } else if can_reach_non_diverging {
- debug!("fallback to () - reached non-diverging: {:?}", diverging_vid);
- diverging_fallback.insert(diverging_ty, self.tcx.types.unit);
- } else {
- debug!("fallback to ! - all diverging: {:?}", diverging_vid);
- diverging_fallback.insert(diverging_ty, self.tcx.mk_diverging_default());
- }
- }
-
- diverging_fallback
- }
-
- /// Returns a graph whose nodes are (unresolved) inference variables and where
- /// an edge `?A -> ?B` indicates that the variable `?A` is coerced to `?B`.
- fn create_coercion_graph(&self) -> VecGraph<ty::TyVid> {
- let pending_obligations = self.fulfillment_cx.borrow_mut().pending_obligations();
- debug!("create_coercion_graph: pending_obligations={:?}", pending_obligations);
- let coercion_edges: Vec<(ty::TyVid, ty::TyVid)> = pending_obligations
- .into_iter()
- .filter_map(|obligation| {
- // The predicates we are looking for look like `Coerce(?A -> ?B)`.
- // They will have no bound variables.
- obligation.predicate.kind().no_bound_vars()
- })
- .filter_map(|atom| {
- // We consider both subtyping and coercion to imply 'flow' from
- // some position in the code `a` to a different position `b`.
- // This is then used to determine which variables interact with
- // live code, and as such must fall back to `()` to preserve
- // soundness.
- //
- // In practice currently the two ways that this happens is
- // coercion and subtyping.
- let (a, b) = if let ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) = atom {
- (a, b)
- } else if let ty::PredicateKind::Subtype(ty::SubtypePredicate {
- a_is_expected: _,
- a,
- b,
- }) = atom
- {
- (a, b)
- } else {
- return None;
- };
-
- let a_vid = self.root_vid(a)?;
- let b_vid = self.root_vid(b)?;
- Some((a_vid, b_vid))
- })
- .collect();
- debug!("create_coercion_graph: coercion_edges={:?}", coercion_edges);
- let num_ty_vars = self.num_ty_vars();
- VecGraph::new(num_ty_vars, coercion_edges)
- }
-
- /// If `ty` is an unresolved type variable, returns its root vid.
- fn root_vid(&self, ty: Ty<'tcx>) -> Option<ty::TyVid> {
- Some(self.root_var(self.shallow_resolve(ty).ty_vid()?))
- }
-}