summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/fn_ctxt
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--compiler/rustc_hir_typeck/src/fn_ctxt/_impl.rs (renamed from compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs)198
-rw-r--r--compiler/rustc_hir_typeck/src/fn_ctxt/arg_matrix.rs (renamed from compiler/rustc_typeck/src/check/fn_ctxt/arg_matrix.rs)25
-rw-r--r--compiler/rustc_typeck/src/check/fn_ctxt/checks.rs1900
-rw-r--r--compiler/rustc_typeck/src/check/fn_ctxt/mod.rs296
-rw-r--r--compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs912
5 files changed, 130 insertions, 3201 deletions
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs b/compiler/rustc_hir_typeck/src/fn_ctxt/_impl.rs
index 3a8093345..6a1cffe3e 100644
--- a/compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs
+++ b/compiler/rustc_hir_typeck/src/fn_ctxt/_impl.rs
@@ -1,12 +1,7 @@
-use crate::astconv::{
- AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
- GenericArgCountResult, IsMethodCall, PathSeg,
-};
-use crate::check::callee::{self, DeferredCallResolution};
-use crate::check::method::{self, MethodCallee, SelfSource};
-use crate::check::rvalue_scopes;
-use crate::check::{BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy};
-
+use crate::callee::{self, DeferredCallResolution};
+use crate::method::{self, MethodCallee, SelfSource};
+use crate::rvalue_scopes;
+use crate::{BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{Applicability, Diagnostic, ErrorGuaranteed, MultiSpan};
@@ -15,26 +10,28 @@ use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ExprKind, GenericArg, Node, QPath};
+use rustc_hir_analysis::astconv::{
+ AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
+ GenericArgCountResult, IsMethodCall, PathSeg,
+};
use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
use rustc_infer::infer::{InferOk, InferResult};
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
use rustc_middle::ty::fold::TypeFoldable;
-use rustc_middle::ty::subst::{
- self, GenericArgKind, InternalSubsts, Subst, SubstsRef, UserSelfTy, UserSubsts,
-};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{
self, AdtKind, CanonicalUserType, DefIdTree, EarlyBinder, GenericParamDefKind, ToPolyTraitRef,
ToPredicate, Ty, UserType,
};
+use rustc_middle::ty::{GenericArgKind, InternalSubsts, SubstsRef, UserSelfTy, UserSubsts};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::infer::InferCtxtExt as _;
-use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::{
self, ObligationCause, ObligationCauseCode, TraitEngine, TraitEngineExt,
};
@@ -60,17 +57,20 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
- self.tcx().struct_span_lint_hir(lint::builtin::UNREACHABLE_CODE, id, span, |lint| {
- let msg = format!("unreachable {}", kind);
- lint.build(&msg)
- .span_label(span, &msg)
- .span_label(
+ let msg = format!("unreachable {}", kind);
+ self.tcx().struct_span_lint_hir(
+ lint::builtin::UNREACHABLE_CODE,
+ id,
+ span,
+ &msg,
+ |lint| {
+ lint.span_label(span, &msg).span_label(
orig_span,
custom_note
.unwrap_or("any code following this expression is unreachable"),
)
- .emit();
- })
+ },
+ )
}
}
}
@@ -83,21 +83,21 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
self.resolve_vars_with_obligations_and_mutate_fulfillment(ty, |_| {})
}
- #[instrument(skip(self, mutate_fulfillment_errors), level = "debug")]
+ #[instrument(skip(self, mutate_fulfillment_errors), level = "debug", ret)]
pub(in super::super) fn resolve_vars_with_obligations_and_mutate_fulfillment(
&self,
mut ty: Ty<'tcx>,
mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
) -> Ty<'tcx> {
// No Infer()? Nothing needs doing.
- if !ty.has_infer_types_or_consts() {
+ if !ty.has_non_region_infer() {
debug!("no inference var, nothing needs doing");
return ty;
}
// If `ty` is a type variable, see whether we already know what it is.
ty = self.resolve_vars_if_possible(ty);
- if !ty.has_infer_types_or_consts() {
+ if !ty.has_non_region_infer() {
debug!(?ty);
return ty;
}
@@ -107,10 +107,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// indirect dependencies that don't seem worth tracking
// precisely.
self.select_obligations_where_possible(false, mutate_fulfillment_errors);
- ty = self.resolve_vars_if_possible(ty);
-
- debug!(?ty);
- ty
+ self.resolve_vars_if_possible(ty)
}
pub(in super::super) fn record_deferred_call_resolution(
@@ -412,7 +409,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
rhs_span: opt_input_expr.map(|expr| expr.span),
is_lit: opt_input_expr
.map_or(false, |expr| matches!(expr.kind, ExprKind::Lit(_))),
- output_pred: None,
+ output_ty: None,
},
),
self.param_env,
@@ -492,21 +489,16 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn array_length_to_const(&self, length: &hir::ArrayLen) -> ty::Const<'tcx> {
match length {
&hir::ArrayLen::Infer(_, span) => self.ct_infer(self.tcx.types.usize, None, span),
- hir::ArrayLen::Body(anon_const) => self.to_const(anon_const),
+ hir::ArrayLen::Body(anon_const) => {
+ let const_def_id = self.tcx.hir().local_def_id(anon_const.hir_id);
+ let span = self.tcx.hir().span(anon_const.hir_id);
+ let c = ty::Const::from_anon_const(self.tcx, const_def_id);
+ self.register_wf_obligation(c.into(), span, ObligationCauseCode::WellFormed(None));
+ self.normalize_associated_types_in(span, c)
+ }
}
}
- pub fn to_const(&self, ast_c: &hir::AnonConst) -> ty::Const<'tcx> {
- let const_def_id = self.tcx.hir().local_def_id(ast_c.hir_id);
- let c = ty::Const::from_anon_const(self.tcx, const_def_id);
- self.register_wf_obligation(
- c.into(),
- self.tcx.hir().span(ast_c.hir_id),
- ObligationCauseCode::WellFormed(None),
- );
- c
- }
-
pub fn const_arg_to_const(
&self,
ast_c: &hir::AnonConst,
@@ -565,7 +557,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// Registers an obligation for checking later, during regionck, that `arg` is well-formed.
pub fn register_wf_obligation(
&self,
- arg: subst::GenericArg<'tcx>,
+ arg: ty::GenericArg<'tcx>,
span: Span,
code: traits::ObligationCauseCode<'tcx>,
) {
@@ -610,18 +602,17 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let mut generators = self.deferred_generator_interiors.borrow_mut();
for (body_id, interior, kind) in generators.drain(..) {
self.select_obligations_where_possible(false, |_| {});
- crate::check::generator_interior::resolve_interior(
- self, def_id, body_id, interior, kind,
- );
+ crate::generator_interior::resolve_interior(self, def_id, body_id, interior, kind);
}
}
#[instrument(skip(self), level = "debug")]
pub(in super::super) fn select_all_obligations_or_error(&self) {
- let errors = self.fulfillment_cx.borrow_mut().select_all_or_error(&self);
+ let mut errors = self.fulfillment_cx.borrow_mut().select_all_or_error(&self);
if !errors.is_empty() {
- self.report_fulfillment_errors(&errors, self.inh.body_id, false);
+ self.adjust_fulfillment_errors_for_expr_obligation(&mut errors);
+ self.err_ctxt().report_fulfillment_errors(&errors, self.inh.body_id, false);
}
}
@@ -634,7 +625,12 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let mut result = self.fulfillment_cx.borrow_mut().select_where_possible(self);
if !result.is_empty() {
mutate_fulfillment_errors(&mut result);
- self.report_fulfillment_errors(&result, self.inh.body_id, fallback_has_occurred);
+ self.adjust_fulfillment_errors_for_expr_obligation(&mut result);
+ self.err_ctxt().report_fulfillment_errors(
+ &result,
+ self.inh.body_id,
+ fallback_has_occurred,
+ );
}
}
@@ -831,23 +827,25 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let ty = item_ty.subst(self.tcx, substs);
self.write_resolution(hir_id, Ok((def_kind, def_id)));
- self.add_required_obligations_with_code(
- span,
- def_id,
- &substs,
- match lang_item {
- hir::LangItem::IntoFutureIntoFuture => {
- ObligationCauseCode::AwaitableExpr(expr_hir_id)
- }
- hir::LangItem::IteratorNext | hir::LangItem::IntoIterIntoIter => {
- ObligationCauseCode::ForLoopIterator
- }
- hir::LangItem::TryTraitFromOutput
- | hir::LangItem::TryTraitFromResidual
- | hir::LangItem::TryTraitBranch => ObligationCauseCode::QuestionMark,
- _ => traits::ItemObligation(def_id),
- },
- );
+
+ let code = match lang_item {
+ hir::LangItem::IntoFutureIntoFuture => {
+ Some(ObligationCauseCode::AwaitableExpr(expr_hir_id))
+ }
+ hir::LangItem::IteratorNext | hir::LangItem::IntoIterIntoIter => {
+ Some(ObligationCauseCode::ForLoopIterator)
+ }
+ hir::LangItem::TryTraitFromOutput
+ | hir::LangItem::TryTraitFromResidual
+ | hir::LangItem::TryTraitBranch => Some(ObligationCauseCode::QuestionMark),
+ _ => None,
+ };
+ if let Some(code) = code {
+ self.add_required_obligations_with_code(span, def_id, substs, move |_, _| code.clone());
+ } else {
+ self.add_required_obligations_for_hir(span, def_id, substs, hir_id);
+ }
+
(Res::Def(def_kind, def_id), ty)
}
@@ -986,7 +984,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
if found != self.tcx.types.unit {
return;
}
- if let ExprKind::MethodCall(path_segment, [rcvr, ..], _) = expr.kind {
+ if let ExprKind::MethodCall(path_segment, rcvr, ..) = expr.kind {
if self
.typeck_results
.borrow()
@@ -1273,7 +1271,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
&mut self,
param: &ty::GenericParamDef,
arg: &GenericArg<'_>,
- ) -> subst::GenericArg<'tcx> {
+ ) -> ty::GenericArg<'tcx> {
match (&param.kind, arg) {
(GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
<dyn AstConv<'_>>::ast_region_to_region(self.fcx, lt, Some(param)).into()
@@ -1297,10 +1295,10 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn inferred_kind(
&mut self,
- substs: Option<&[subst::GenericArg<'tcx>]>,
+ substs: Option<&[ty::GenericArg<'tcx>]>,
param: &ty::GenericParamDef,
infer_args: bool,
- ) -> subst::GenericArg<'tcx> {
+ ) -> ty::GenericArg<'tcx> {
let tcx = self.fcx.tcx();
match param.kind {
GenericParamDefKind::Lifetime => {
@@ -1359,7 +1357,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// First, store the "user substs" for later.
self.write_user_type_annotation_from_substs(hir_id, def_id, substs, user_self_ty);
- self.add_required_obligations(span, def_id, &substs);
+ self.add_required_obligations_for_hir(span, def_id, &substs, hir_id);
// Substitute the values for the type parameters into the type of
// the referenced item.
@@ -1396,35 +1394,66 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
/// Add all the obligations that are required, substituting and normalized appropriately.
- pub(crate) fn add_required_obligations(
+ pub(crate) fn add_required_obligations_for_hir(
&self,
span: Span,
def_id: DefId,
- substs: &SubstsRef<'tcx>,
+ substs: SubstsRef<'tcx>,
+ hir_id: hir::HirId,
) {
- self.add_required_obligations_with_code(
- span,
- def_id,
- substs,
- traits::ItemObligation(def_id),
- )
+ self.add_required_obligations_with_code(span, def_id, substs, |idx, span| {
+ if span.is_dummy() {
+ ObligationCauseCode::ExprItemObligation(def_id, hir_id, idx)
+ } else {
+ ObligationCauseCode::ExprBindingObligation(def_id, span, hir_id, idx)
+ }
+ })
}
- #[tracing::instrument(level = "debug", skip(self, span, def_id, substs))]
+ #[instrument(level = "debug", skip(self, code, span, substs))]
fn add_required_obligations_with_code(
&self,
span: Span,
def_id: DefId,
- substs: &SubstsRef<'tcx>,
- code: ObligationCauseCode<'tcx>,
+ substs: SubstsRef<'tcx>,
+ code: impl Fn(usize, Span) -> ObligationCauseCode<'tcx>,
) {
+ let param_env = self.param_env;
+
+ let remap = match self.tcx.def_kind(def_id) {
+ // Associated consts have `Self: ~const Trait` bounds that should be satisfiable when
+ // `Self: Trait` is satisfied because it does not matter whether the impl is `const`.
+ // Therefore we have to remap the param env here to be non-const.
+ hir::def::DefKind::AssocConst => true,
+ hir::def::DefKind::AssocFn
+ if self.tcx.def_kind(self.tcx.parent(def_id)) == hir::def::DefKind::Trait =>
+ {
+ // N.B.: All callsites to this function involve checking a path expression.
+ //
+ // When instantiating a trait method as a function item, it does not actually matter whether
+ // the trait is `const` or not, or whether `where T: ~const Tr` needs to be satisfied as
+ // `const`. If we were to introduce instantiating trait methods as `const fn`s, we would
+ // check that after this, either via a bound `where F: ~const FnOnce` or when coercing to a
+ // `const fn` pointer.
+ //
+ // FIXME(fee1-dead) FIXME(const_trait_impl): update this doc when trait methods can satisfy
+ // `~const FnOnce` or can be coerced to `const fn` pointer.
+ true
+ }
+ _ => false,
+ };
let (bounds, _) = self.instantiate_bounds(span, def_id, &substs);
- for obligation in traits::predicates_for_generics(
- traits::ObligationCause::new(span, self.body_id, code),
- self.param_env,
+ for mut obligation in traits::predicates_for_generics(
+ |idx, predicate_span| {
+ traits::ObligationCause::new(span, self.body_id, code(idx, predicate_span))
+ },
+ param_env,
bounds,
) {
+ if remap {
+ obligation = obligation.without_const(self.tcx);
+ }
self.register_predicate(obligation);
}
}
@@ -1438,7 +1467,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
ty
} else {
if !self.is_tainted_by_errors() {
- self.emit_inference_failure_err((**self).body_id, sp, ty.into(), E0282, true)
+ self.err_ctxt()
+ .emit_inference_failure_err((**self).body_id, sp, ty.into(), E0282, true)
.emit();
}
let err = self.tcx.ty_error();
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/arg_matrix.rs b/compiler/rustc_hir_typeck/src/fn_ctxt/arg_matrix.rs
index 7602f2550..fc83994ca 100644
--- a/compiler/rustc_typeck/src/check/fn_ctxt/arg_matrix.rs
+++ b/compiler/rustc_hir_typeck/src/fn_ctxt/arg_matrix.rs
@@ -130,14 +130,17 @@ impl<'tcx> ArgMatrix<'tcx> {
let ai = &self.expected_indices;
let ii = &self.provided_indices;
+ // Issue: 100478, when we end the iteration,
+ // `next_unmatched_idx` will point to the index of the first unmatched
+ let mut next_unmatched_idx = 0;
for i in 0..cmp::max(ai.len(), ii.len()) {
- // If we eliminate the last row, any left-over inputs are considered missing
+ // If we eliminate the last row, any left-over arguments are considered missing
if i >= mat.len() {
- return Some(Issue::Missing(i));
+ return Some(Issue::Missing(next_unmatched_idx));
}
- // If we eliminate the last column, any left-over arguments are extra
+ // If we eliminate the last column, any left-over inputs are extra
if mat[i].len() == 0 {
- return Some(Issue::Extra(i));
+ return Some(Issue::Extra(next_unmatched_idx));
}
// Make sure we don't pass the bounds of our matrix
@@ -145,6 +148,7 @@ impl<'tcx> ArgMatrix<'tcx> {
let is_input = i < ii.len();
if is_arg && is_input && matches!(mat[i][i], Compatibility::Compatible) {
// This is a satisfied input, so move along
+ next_unmatched_idx += 1;
continue;
}
@@ -163,7 +167,7 @@ impl<'tcx> ArgMatrix<'tcx> {
if is_input {
for j in 0..ai.len() {
// If we find at least one argument that could satisfy this input
- // this argument isn't useless
+ // this input isn't useless
if matches!(mat[i][j], Compatibility::Compatible) {
useless = false;
break;
@@ -232,8 +236,8 @@ impl<'tcx> ArgMatrix<'tcx> {
if matches!(c, Compatibility::Compatible) { Some(i) } else { None }
})
.collect();
- if compat.len() != 1 {
- // this could go into multiple slots, don't bother exploring both
+ if compat.len() < 1 {
+ // try to find a cycle even when this could go into multiple slots, see #101097
is_cycle = false;
break;
}
@@ -309,7 +313,8 @@ impl<'tcx> ArgMatrix<'tcx> {
}
while !self.provided_indices.is_empty() || !self.expected_indices.is_empty() {
- match self.find_issue() {
+ let res = self.find_issue();
+ match res {
Some(Issue::Invalid(idx)) => {
let compatibility = self.compatibility_matrix[idx][idx].clone();
let input_idx = self.provided_indices[idx];
@@ -364,7 +369,9 @@ impl<'tcx> ArgMatrix<'tcx> {
None => {
// We didn't find any issues, so we need to push the algorithm forward
// First, eliminate any arguments that currently satisfy their inputs
- for (inp, arg) in self.eliminate_satisfied() {
+ let eliminated = self.eliminate_satisfied();
+ assert!(!eliminated.is_empty(), "didn't eliminated any indice in this round");
+ for (inp, arg) in eliminated {
matched_inputs[arg] = Some(inp);
}
}
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/checks.rs b/compiler/rustc_typeck/src/check/fn_ctxt/checks.rs
deleted file mode 100644
index 660e7e4e3..000000000
--- a/compiler/rustc_typeck/src/check/fn_ctxt/checks.rs
+++ /dev/null
@@ -1,1900 +0,0 @@
-use crate::astconv::AstConv;
-use crate::check::coercion::CoerceMany;
-use crate::check::fn_ctxt::arg_matrix::{
- ArgMatrix, Compatibility, Error, ExpectedIdx, ProvidedIdx,
-};
-use crate::check::gather_locals::Declaration;
-use crate::check::intrinsicck::InlineAsmCtxt;
-use crate::check::method::MethodCallee;
-use crate::check::Expectation::*;
-use crate::check::TupleArgumentsFlag::*;
-use crate::check::{
- potentially_plural_count, struct_span_err, BreakableCtxt, Diverges, Expectation, FnCtxt,
- LocalTy, Needs, TupleArgumentsFlag,
-};
-use crate::structured_errors::StructuredDiagnostic;
-
-use rustc_ast as ast;
-use rustc_errors::{pluralize, Applicability, Diagnostic, DiagnosticId, MultiSpan};
-use rustc_hir as hir;
-use rustc_hir::def::{CtorOf, DefKind, Res};
-use rustc_hir::def_id::DefId;
-use rustc_hir::{ExprKind, Node, QPath};
-use rustc_index::vec::IndexVec;
-use rustc_infer::infer::error_reporting::{FailureCode, ObligationCauseExt};
-use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
-use rustc_infer::infer::InferOk;
-use rustc_infer::infer::TypeTrace;
-use rustc_middle::ty::adjustment::AllowTwoPhase;
-use rustc_middle::ty::visit::TypeVisitable;
-use rustc_middle::ty::{self, DefIdTree, IsSuggestable, Ty};
-use rustc_session::Session;
-use rustc_span::symbol::Ident;
-use rustc_span::{self, Span};
-use rustc_trait_selection::traits::{self, ObligationCauseCode, SelectionContext};
-
-use std::iter;
-use std::slice;
-
-impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
- pub(in super::super) fn check_casts(&self) {
- let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
- debug!("FnCtxt::check_casts: {} deferred checks", deferred_cast_checks.len());
- for cast in deferred_cast_checks.drain(..) {
- cast.check(self);
- }
- }
-
- pub(in super::super) fn check_transmutes(&self) {
- let mut deferred_transmute_checks = self.deferred_transmute_checks.borrow_mut();
- debug!("FnCtxt::check_transmutes: {} deferred checks", deferred_transmute_checks.len());
- for (from, to, span) in deferred_transmute_checks.drain(..) {
- self.check_transmute(span, from, to);
- }
- }
-
- pub(in super::super) fn check_asms(&self) {
- let mut deferred_asm_checks = self.deferred_asm_checks.borrow_mut();
- debug!("FnCtxt::check_asm: {} deferred checks", deferred_asm_checks.len());
- for (asm, hir_id) in deferred_asm_checks.drain(..) {
- let enclosing_id = self.tcx.hir().enclosing_body_owner(hir_id);
- InlineAsmCtxt::new_in_fn(self)
- .check_asm(asm, self.tcx.hir().local_def_id_to_hir_id(enclosing_id));
- }
- }
-
- pub(in super::super) fn check_method_argument_types(
- &self,
- sp: Span,
- expr: &'tcx hir::Expr<'tcx>,
- method: Result<MethodCallee<'tcx>, ()>,
- args_no_rcvr: &'tcx [hir::Expr<'tcx>],
- tuple_arguments: TupleArgumentsFlag,
- expected: Expectation<'tcx>,
- ) -> Ty<'tcx> {
- let has_error = match method {
- Ok(method) => method.substs.references_error() || method.sig.references_error(),
- Err(_) => true,
- };
- if has_error {
- let err_inputs = self.err_args(args_no_rcvr.len());
-
- let err_inputs = match tuple_arguments {
- DontTupleArguments => err_inputs,
- TupleArguments => vec![self.tcx.intern_tup(&err_inputs)],
- };
-
- self.check_argument_types(
- sp,
- expr,
- &err_inputs,
- None,
- args_no_rcvr,
- false,
- tuple_arguments,
- method.ok().map(|method| method.def_id),
- );
- return self.tcx.ty_error();
- }
-
- let method = method.unwrap();
- // HACK(eddyb) ignore self in the definition (see above).
- let expected_input_tys = self.expected_inputs_for_expected_output(
- sp,
- expected,
- method.sig.output(),
- &method.sig.inputs()[1..],
- );
- self.check_argument_types(
- sp,
- expr,
- &method.sig.inputs()[1..],
- expected_input_tys,
- args_no_rcvr,
- method.sig.c_variadic,
- tuple_arguments,
- Some(method.def_id),
- );
- method.sig.output()
- }
-
- /// Generic function that factors out common logic from function calls,
- /// method calls and overloaded operators.
- pub(in super::super) fn check_argument_types(
- &self,
- // Span enclosing the call site
- call_span: Span,
- // Expression of the call site
- call_expr: &'tcx hir::Expr<'tcx>,
- // Types (as defined in the *signature* of the target function)
- formal_input_tys: &[Ty<'tcx>],
- // More specific expected types, after unifying with caller output types
- expected_input_tys: Option<Vec<Ty<'tcx>>>,
- // The expressions for each provided argument
- provided_args: &'tcx [hir::Expr<'tcx>],
- // Whether the function is variadic, for example when imported from C
- c_variadic: bool,
- // Whether the arguments have been bundled in a tuple (ex: closures)
- tuple_arguments: TupleArgumentsFlag,
- // The DefId for the function being called, for better error messages
- fn_def_id: Option<DefId>,
- ) {
- let tcx = self.tcx;
-
- // Conceptually, we've got some number of expected inputs, and some number of provided aguments
- // and we can form a grid of whether each argument could satisfy a given input:
- // in1 | in2 | in3 | ...
- // arg1 ? | | |
- // arg2 | ? | |
- // arg3 | | ? |
- // ...
- // Initially, we just check the diagonal, because in the case of correct code
- // these are the only checks that matter
- // However, in the unhappy path, we'll fill in this whole grid to attempt to provide
- // better error messages about invalid method calls.
-
- // All the input types from the fn signature must outlive the call
- // so as to validate implied bounds.
- for (&fn_input_ty, arg_expr) in iter::zip(formal_input_tys, provided_args) {
- self.register_wf_obligation(fn_input_ty.into(), arg_expr.span, traits::MiscObligation);
- }
-
- let mut err_code = "E0061";
-
- // If the arguments should be wrapped in a tuple (ex: closures), unwrap them here
- let (formal_input_tys, expected_input_tys) = if tuple_arguments == TupleArguments {
- let tuple_type = self.structurally_resolved_type(call_span, formal_input_tys[0]);
- match tuple_type.kind() {
- // We expected a tuple and got a tuple
- ty::Tuple(arg_types) => {
- // Argument length differs
- if arg_types.len() != provided_args.len() {
- err_code = "E0057";
- }
- let expected_input_tys = match expected_input_tys {
- Some(expected_input_tys) => match expected_input_tys.get(0) {
- Some(ty) => match ty.kind() {
- ty::Tuple(tys) => Some(tys.iter().collect()),
- _ => None,
- },
- None => None,
- },
- None => None,
- };
- (arg_types.iter().collect(), expected_input_tys)
- }
- _ => {
- // Otherwise, there's a mismatch, so clear out what we're expecting, and set
- // our input types to err_args so we don't blow up the error messages
- struct_span_err!(
- tcx.sess,
- call_span,
- E0059,
- "cannot use call notation; the first type parameter \
- for the function trait is neither a tuple nor unit"
- )
- .emit();
- (self.err_args(provided_args.len()), None)
- }
- }
- } else {
- (formal_input_tys.to_vec(), expected_input_tys)
- };
-
- // If there are no external expectations at the call site, just use the types from the function defn
- let expected_input_tys = if let Some(expected_input_tys) = expected_input_tys {
- assert_eq!(expected_input_tys.len(), formal_input_tys.len());
- expected_input_tys
- } else {
- formal_input_tys.clone()
- };
-
- let minimum_input_count = expected_input_tys.len();
- let provided_arg_count = provided_args.len();
-
- // We introduce a helper function to demand that a given argument satisfy a given input
- // This is more complicated than just checking type equality, as arguments could be coerced
- // This version writes those types back so further type checking uses the narrowed types
- let demand_compatible = |idx| {
- let formal_input_ty: Ty<'tcx> = formal_input_tys[idx];
- let expected_input_ty: Ty<'tcx> = expected_input_tys[idx];
- let provided_arg = &provided_args[idx];
-
- debug!("checking argument {}: {:?} = {:?}", idx, provided_arg, formal_input_ty);
-
- // We're on the happy path here, so we'll do a more involved check and write back types
- // To check compatibility, we'll do 3 things:
- // 1. Unify the provided argument with the expected type
- let expectation = Expectation::rvalue_hint(self, expected_input_ty);
-
- let checked_ty = self.check_expr_with_expectation(provided_arg, expectation);
-
- // 2. Coerce to the most detailed type that could be coerced
- // to, which is `expected_ty` if `rvalue_hint` returns an
- // `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
- let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
-
- // Cause selection errors caused by resolving a single argument to point at the
- // argument and not the call. This lets us customize the span pointed to in the
- // fulfillment error to be more accurate.
- let coerced_ty =
- self.resolve_vars_with_obligations_and_mutate_fulfillment(coerced_ty, |errors| {
- self.point_at_type_arg_instead_of_call_if_possible(errors, call_expr);
- self.point_at_arg_instead_of_call_if_possible(
- errors,
- call_expr,
- call_span,
- provided_args,
- &expected_input_tys,
- );
- });
-
- let coerce_error = self
- .try_coerce(provided_arg, checked_ty, coerced_ty, AllowTwoPhase::Yes, None)
- .err();
-
- if coerce_error.is_some() {
- return Compatibility::Incompatible(coerce_error);
- }
-
- // 3. Check if the formal type is a supertype of the checked one
- // and register any such obligations for future type checks
- let supertype_error = self
- .at(&self.misc(provided_arg.span), self.param_env)
- .sup(formal_input_ty, coerced_ty);
- let subtyping_error = match supertype_error {
- Ok(InferOk { obligations, value: () }) => {
- self.register_predicates(obligations);
- None
- }
- Err(err) => Some(err),
- };
-
- // If neither check failed, the types are compatible
- match subtyping_error {
- None => Compatibility::Compatible,
- Some(_) => Compatibility::Incompatible(subtyping_error),
- }
- };
-
- // To start, we only care "along the diagonal", where we expect every
- // provided arg to be in the right spot
- let mut compatibility_diagonal =
- vec![Compatibility::Incompatible(None); provided_args.len()];
-
- // Keep track of whether we *could possibly* be satisfied, i.e. whether we're on the happy path
- // if the wrong number of arguments were supplied, we CAN'T be satisfied,
- // and if we're c_variadic, the supplied arguments must be >= the minimum count from the function
- // otherwise, they need to be identical, because rust doesn't currently support variadic functions
- let mut call_appears_satisfied = if c_variadic {
- provided_arg_count >= minimum_input_count
- } else {
- provided_arg_count == minimum_input_count
- };
-
- // Check the arguments.
- // We do this in a pretty awful way: first we type-check any arguments
- // that are not closures, then we type-check the closures. This is so
- // that we have more information about the types of arguments when we
- // type-check the functions. This isn't really the right way to do this.
- for check_closures in [false, true] {
- // More awful hacks: before we check argument types, try to do
- // an "opportunistic" trait resolution of any trait bounds on
- // the call. This helps coercions.
- if check_closures {
- self.select_obligations_where_possible(false, |errors| {
- self.point_at_type_arg_instead_of_call_if_possible(errors, call_expr);
- self.point_at_arg_instead_of_call_if_possible(
- errors,
- call_expr,
- call_span,
- &provided_args,
- &expected_input_tys,
- );
- })
- }
-
- // Check each argument, to satisfy the input it was provided for
- // Visually, we're traveling down the diagonal of the compatibility matrix
- for (idx, arg) in provided_args.iter().enumerate() {
- // Warn only for the first loop (the "no closures" one).
- // Closure arguments themselves can't be diverging, but
- // a previous argument can, e.g., `foo(panic!(), || {})`.
- if !check_closures {
- self.warn_if_unreachable(arg.hir_id, arg.span, "expression");
- }
-
- // For C-variadic functions, we don't have a declared type for all of
- // the arguments hence we only do our usual type checking with
- // the arguments who's types we do know. However, we *can* check
- // for unreachable expressions (see above).
- // FIXME: unreachable warning current isn't emitted
- if idx >= minimum_input_count {
- continue;
- }
-
- let is_closure = matches!(arg.kind, ExprKind::Closure { .. });
- if is_closure != check_closures {
- continue;
- }
-
- let compatible = demand_compatible(idx);
- let is_compatible = matches!(compatible, Compatibility::Compatible);
- compatibility_diagonal[idx] = compatible;
-
- if !is_compatible {
- call_appears_satisfied = false;
- }
- }
- }
-
- if c_variadic && provided_arg_count < minimum_input_count {
- err_code = "E0060";
- }
-
- for arg in provided_args.iter().skip(minimum_input_count) {
- // Make sure we've checked this expr at least once.
- let arg_ty = self.check_expr(&arg);
-
- // If the function is c-style variadic, we skipped a bunch of arguments
- // so we need to check those, and write out the types
- // Ideally this would be folded into the above, for uniform style
- // but c-variadic is already a corner case
- if c_variadic {
- fn variadic_error<'tcx>(
- sess: &'tcx Session,
- span: Span,
- ty: Ty<'tcx>,
- cast_ty: &str,
- ) {
- use crate::structured_errors::MissingCastForVariadicArg;
-
- MissingCastForVariadicArg { sess, span, ty, cast_ty }.diagnostic().emit();
- }
-
- // There are a few types which get autopromoted when passed via varargs
- // in C but we just error out instead and require explicit casts.
- let arg_ty = self.structurally_resolved_type(arg.span, arg_ty);
- match arg_ty.kind() {
- ty::Float(ty::FloatTy::F32) => {
- variadic_error(tcx.sess, arg.span, arg_ty, "c_double");
- }
- ty::Int(ty::IntTy::I8 | ty::IntTy::I16) | ty::Bool => {
- variadic_error(tcx.sess, arg.span, arg_ty, "c_int");
- }
- ty::Uint(ty::UintTy::U8 | ty::UintTy::U16) => {
- variadic_error(tcx.sess, arg.span, arg_ty, "c_uint");
- }
- ty::FnDef(..) => {
- let ptr_ty = self.tcx.mk_fn_ptr(arg_ty.fn_sig(self.tcx));
- let ptr_ty = self.resolve_vars_if_possible(ptr_ty);
- variadic_error(tcx.sess, arg.span, arg_ty, &ptr_ty.to_string());
- }
- _ => {}
- }
- }
- }
-
- if !call_appears_satisfied {
- let compatibility_diagonal = IndexVec::from_raw(compatibility_diagonal);
- let provided_args = IndexVec::from_iter(provided_args.iter().take(if c_variadic {
- minimum_input_count
- } else {
- provided_arg_count
- }));
- debug_assert_eq!(
- formal_input_tys.len(),
- expected_input_tys.len(),
- "expected formal_input_tys to be the same size as expected_input_tys"
- );
- let formal_and_expected_inputs = IndexVec::from_iter(
- formal_input_tys
- .iter()
- .copied()
- .zip(expected_input_tys.iter().copied())
- .map(|vars| self.resolve_vars_if_possible(vars)),
- );
-
- self.report_arg_errors(
- compatibility_diagonal,
- formal_and_expected_inputs,
- provided_args,
- c_variadic,
- err_code,
- fn_def_id,
- call_span,
- call_expr,
- );
- }
- }
-
- fn report_arg_errors(
- &self,
- compatibility_diagonal: IndexVec<ProvidedIdx, Compatibility<'tcx>>,
- formal_and_expected_inputs: IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
- provided_args: IndexVec<ProvidedIdx, &'tcx hir::Expr<'tcx>>,
- c_variadic: bool,
- err_code: &str,
- fn_def_id: Option<DefId>,
- call_span: Span,
- call_expr: &hir::Expr<'tcx>,
- ) {
- // Next, let's construct the error
- let (error_span, full_call_span, ctor_of) = match &call_expr.kind {
- hir::ExprKind::Call(
- hir::Expr { hir_id, span, kind: hir::ExprKind::Path(qpath), .. },
- _,
- ) => {
- if let Res::Def(DefKind::Ctor(of, _), _) =
- self.typeck_results.borrow().qpath_res(qpath, *hir_id)
- {
- (call_span, *span, Some(of))
- } else {
- (call_span, *span, None)
- }
- }
- hir::ExprKind::Call(hir::Expr { span, .. }, _) => (call_span, *span, None),
- hir::ExprKind::MethodCall(path_segment, _, span) => {
- let ident_span = path_segment.ident.span;
- let ident_span = if let Some(args) = path_segment.args {
- ident_span.with_hi(args.span_ext.hi())
- } else {
- ident_span
- };
- (
- *span, ident_span, None, // methods are never ctors
- )
- }
- k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
- };
- let args_span = error_span.trim_start(full_call_span).unwrap_or(error_span);
- let call_name = match ctor_of {
- Some(CtorOf::Struct) => "struct",
- Some(CtorOf::Variant) => "enum variant",
- None => "function",
- };
-
- // Don't print if it has error types or is just plain `_`
- fn has_error_or_infer<'tcx>(tys: impl IntoIterator<Item = Ty<'tcx>>) -> bool {
- tys.into_iter().any(|ty| ty.references_error() || ty.is_ty_var())
- }
-
- self.set_tainted_by_errors();
- let tcx = self.tcx;
-
- // Get the argument span in the context of the call span so that
- // suggestions and labels are (more) correct when an arg is a
- // macro invocation.
- let normalize_span = |span: Span| -> Span {
- let normalized_span = span.find_ancestor_inside(error_span).unwrap_or(span);
- // Sometimes macros mess up the spans, so do not normalize the
- // arg span to equal the error span, because that's less useful
- // than pointing out the arg expr in the wrong context.
- if normalized_span.source_equal(error_span) { span } else { normalized_span }
- };
-
- // Precompute the provided types and spans, since that's all we typically need for below
- let provided_arg_tys: IndexVec<ProvidedIdx, (Ty<'tcx>, Span)> = provided_args
- .iter()
- .map(|expr| {
- let ty = self
- .typeck_results
- .borrow()
- .expr_ty_adjusted_opt(*expr)
- .unwrap_or_else(|| tcx.ty_error());
- (self.resolve_vars_if_possible(ty), normalize_span(expr.span))
- })
- .collect();
- let callee_expr = match &call_expr.peel_blocks().kind {
- hir::ExprKind::Call(callee, _) => Some(*callee),
- hir::ExprKind::MethodCall(_, callee, _) => {
- if let Some((DefKind::AssocFn, def_id)) =
- self.typeck_results.borrow().type_dependent_def(call_expr.hir_id)
- && let Some(assoc) = tcx.opt_associated_item(def_id)
- && assoc.fn_has_self_parameter
- {
- Some(&callee[0])
- } else {
- None
- }
- }
- _ => None,
- };
- let callee_ty = callee_expr
- .and_then(|callee_expr| self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr));
-
- // A "softer" version of the `demand_compatible`, which checks types without persisting them,
- // and treats error types differently
- // This will allow us to "probe" for other argument orders that would likely have been correct
- let check_compatible = |provided_idx: ProvidedIdx, expected_idx: ExpectedIdx| {
- if provided_idx.as_usize() == expected_idx.as_usize() {
- return compatibility_diagonal[provided_idx].clone();
- }
-
- let (formal_input_ty, expected_input_ty) = formal_and_expected_inputs[expected_idx];
- // If either is an error type, we defy the usual convention and consider them to *not* be
- // coercible. This prevents our error message heuristic from trying to pass errors into
- // every argument.
- if (formal_input_ty, expected_input_ty).references_error() {
- return Compatibility::Incompatible(None);
- }
-
- let (arg_ty, arg_span) = provided_arg_tys[provided_idx];
-
- let expectation = Expectation::rvalue_hint(self, expected_input_ty);
- let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
- let can_coerce = self.can_coerce(arg_ty, coerced_ty);
- if !can_coerce {
- return Compatibility::Incompatible(None);
- }
-
- // Using probe here, since we don't want this subtyping to affect inference.
- let subtyping_error = self.probe(|_| {
- self.at(&self.misc(arg_span), self.param_env).sup(formal_input_ty, coerced_ty).err()
- });
-
- // Same as above: if either the coerce type or the checked type is an error type,
- // consider them *not* compatible.
- let references_error = (coerced_ty, arg_ty).references_error();
- match (references_error, subtyping_error) {
- (false, None) => Compatibility::Compatible,
- (_, subtyping_error) => Compatibility::Incompatible(subtyping_error),
- }
- };
-
- // The algorithm here is inspired by levenshtein distance and longest common subsequence.
- // We'll try to detect 4 different types of mistakes:
- // - An extra parameter has been provided that doesn't satisfy *any* of the other inputs
- // - An input is missing, which isn't satisfied by *any* of the other arguments
- // - Some number of arguments have been provided in the wrong order
- // - A type is straight up invalid
-
- // First, let's find the errors
- let (mut errors, matched_inputs) =
- ArgMatrix::new(provided_args.len(), formal_and_expected_inputs.len(), check_compatible)
- .find_errors();
-
- // First, check if we just need to wrap some arguments in a tuple.
- if let Some((mismatch_idx, terr)) =
- compatibility_diagonal.iter().enumerate().find_map(|(i, c)| {
- if let Compatibility::Incompatible(Some(terr)) = c { Some((i, terr)) } else { None }
- })
- {
- // Is the first bad expected argument a tuple?
- // Do we have as many extra provided arguments as the tuple's length?
- // If so, we might have just forgotten to wrap some args in a tuple.
- if let Some(ty::Tuple(tys)) =
- formal_and_expected_inputs.get(mismatch_idx.into()).map(|tys| tys.1.kind())
- // If the tuple is unit, we're not actually wrapping any arguments.
- && !tys.is_empty()
- && provided_arg_tys.len() == formal_and_expected_inputs.len() - 1 + tys.len()
- {
- // Wrap up the N provided arguments starting at this position in a tuple.
- let provided_as_tuple = tcx.mk_tup(
- provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx).take(tys.len()),
- );
-
- let mut satisfied = true;
- // Check if the newly wrapped tuple + rest of the arguments are compatible.
- for ((_, expected_ty), provided_ty) in std::iter::zip(
- formal_and_expected_inputs.iter().skip(mismatch_idx),
- [provided_as_tuple].into_iter().chain(
- provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx + tys.len()),
- ),
- ) {
- if !self.can_coerce(provided_ty, *expected_ty) {
- satisfied = false;
- break;
- }
- }
-
- // If they're compatible, suggest wrapping in an arg, and we're done!
- // Take some care with spans, so we don't suggest wrapping a macro's
- // innards in parenthesis, for example.
- if satisfied
- && let Some((_, lo)) =
- provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx))
- && let Some((_, hi)) =
- provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx + tys.len() - 1))
- {
- let mut err;
- if tys.len() == 1 {
- // A tuple wrap suggestion actually occurs within,
- // so don't do anything special here.
- err = self.report_and_explain_type_error(
- TypeTrace::types(
- &self.misc(*lo),
- true,
- formal_and_expected_inputs[mismatch_idx.into()].1,
- provided_arg_tys[mismatch_idx.into()].0,
- ),
- terr,
- );
- err.span_label(
- full_call_span,
- format!("arguments to this {} are incorrect", call_name),
- );
- } else {
- err = tcx.sess.struct_span_err_with_code(
- full_call_span,
- &format!(
- "this {} takes {}{} but {} {} supplied",
- call_name,
- if c_variadic { "at least " } else { "" },
- potentially_plural_count(
- formal_and_expected_inputs.len(),
- "argument"
- ),
- potentially_plural_count(provided_args.len(), "argument"),
- pluralize!("was", provided_args.len())
- ),
- DiagnosticId::Error(err_code.to_owned()),
- );
- err.multipart_suggestion_verbose(
- "wrap these arguments in parentheses to construct a tuple",
- vec![
- (lo.shrink_to_lo(), "(".to_string()),
- (hi.shrink_to_hi(), ")".to_string()),
- ],
- Applicability::MachineApplicable,
- );
- };
- self.label_fn_like(&mut err, fn_def_id, callee_ty);
- err.emit();
- return;
- }
- }
- }
-
- // Okay, so here's where it gets complicated in regards to what errors
- // we emit and how.
- // There are 3 different "types" of errors we might encounter.
- // 1) Missing/extra/swapped arguments
- // 2) Valid but incorrect arguments
- // 3) Invalid arguments
- // - Currently I think this only comes up with `CyclicTy`
- //
- // We first need to go through, remove those from (3) and emit those
- // as their own error, particularly since they're error code and
- // message is special. From what I can tell, we *must* emit these
- // here (vs somewhere prior to this function) since the arguments
- // become invalid *because* of how they get used in the function.
- // It is what it is.
-
- if errors.is_empty() {
- if cfg!(debug_assertions) {
- span_bug!(error_span, "expected errors from argument matrix");
- } else {
- tcx.sess
- .struct_span_err(
- error_span,
- "argument type mismatch was detected, \
- but rustc had trouble determining where",
- )
- .note(
- "we would appreciate a bug report: \
- https://github.com/rust-lang/rust/issues/new",
- )
- .emit();
- }
- return;
- }
-
- errors.drain_filter(|error| {
- let Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(error)) = error else { return false };
- let (provided_ty, provided_span) = provided_arg_tys[*provided_idx];
- let (expected_ty, _) = formal_and_expected_inputs[*expected_idx];
- let cause = &self.misc(provided_span);
- let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
- if let Some(e) = error {
- if !matches!(trace.cause.as_failure_code(e), FailureCode::Error0308(_)) {
- self.report_and_explain_type_error(trace, e).emit();
- return true;
- }
- }
- false
- });
-
- // We're done if we found errors, but we already emitted them.
- if errors.is_empty() {
- return;
- }
-
- // Okay, now that we've emitted the special errors separately, we
- // are only left missing/extra/swapped and mismatched arguments, both
- // can be collated pretty easily if needed.
-
- // Next special case: if there is only one "Incompatible" error, just emit that
- if let [
- Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(err))),
- ] = &errors[..]
- {
- let (formal_ty, expected_ty) = formal_and_expected_inputs[*expected_idx];
- let (provided_ty, provided_arg_span) = provided_arg_tys[*provided_idx];
- let cause = &self.misc(provided_arg_span);
- let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
- let mut err = self.report_and_explain_type_error(trace, err);
- self.emit_coerce_suggestions(
- &mut err,
- &provided_args[*provided_idx],
- provided_ty,
- Expectation::rvalue_hint(self, expected_ty)
- .only_has_type(self)
- .unwrap_or(formal_ty),
- None,
- None,
- );
- err.span_label(
- full_call_span,
- format!("arguments to this {} are incorrect", call_name),
- );
- // Call out where the function is defined
- self.label_fn_like(&mut err, fn_def_id, callee_ty);
- err.emit();
- return;
- }
-
- let mut err = if formal_and_expected_inputs.len() == provided_args.len() {
- struct_span_err!(
- tcx.sess,
- full_call_span,
- E0308,
- "arguments to this {} are incorrect",
- call_name,
- )
- } else {
- tcx.sess.struct_span_err_with_code(
- full_call_span,
- &format!(
- "this {} takes {}{} but {} {} supplied",
- call_name,
- if c_variadic { "at least " } else { "" },
- potentially_plural_count(formal_and_expected_inputs.len(), "argument"),
- potentially_plural_count(provided_args.len(), "argument"),
- pluralize!("was", provided_args.len())
- ),
- DiagnosticId::Error(err_code.to_owned()),
- )
- };
-
- // As we encounter issues, keep track of what we want to provide for the suggestion
- let mut labels = vec![];
- // If there is a single error, we give a specific suggestion; otherwise, we change to
- // "did you mean" with the suggested function call
- enum SuggestionText {
- None,
- Provide(bool),
- Remove(bool),
- Swap,
- Reorder,
- DidYouMean,
- }
- let mut suggestion_text = SuggestionText::None;
-
- let mut errors = errors.into_iter().peekable();
- while let Some(error) = errors.next() {
- match error {
- Error::Invalid(provided_idx, expected_idx, compatibility) => {
- let (formal_ty, expected_ty) = formal_and_expected_inputs[expected_idx];
- let (provided_ty, provided_span) = provided_arg_tys[provided_idx];
- if let Compatibility::Incompatible(error) = &compatibility {
- let cause = &self.misc(provided_span);
- let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
- if let Some(e) = error {
- self.note_type_err(
- &mut err,
- &trace.cause,
- None,
- Some(trace.values),
- e,
- false,
- true,
- );
- }
- }
-
- self.emit_coerce_suggestions(
- &mut err,
- &provided_args[provided_idx],
- provided_ty,
- Expectation::rvalue_hint(self, expected_ty)
- .only_has_type(self)
- .unwrap_or(formal_ty),
- None,
- None,
- );
- }
- Error::Extra(arg_idx) => {
- let (provided_ty, provided_span) = provided_arg_tys[arg_idx];
- let provided_ty_name = if !has_error_or_infer([provided_ty]) {
- // FIXME: not suggestable, use something else
- format!(" of type `{}`", provided_ty)
- } else {
- "".to_string()
- };
- labels
- .push((provided_span, format!("argument{} unexpected", provided_ty_name)));
- suggestion_text = match suggestion_text {
- SuggestionText::None => SuggestionText::Remove(false),
- SuggestionText::Remove(_) => SuggestionText::Remove(true),
- _ => SuggestionText::DidYouMean,
- };
- }
- Error::Missing(expected_idx) => {
- // If there are multiple missing arguments adjacent to each other,
- // then we can provide a single error.
-
- let mut missing_idxs = vec![expected_idx];
- while let Some(e) = errors.next_if(|e| {
- matches!(e, Error::Missing(next_expected_idx)
- if *next_expected_idx == *missing_idxs.last().unwrap() + 1)
- }) {
- match e {
- Error::Missing(expected_idx) => missing_idxs.push(expected_idx),
- _ => unreachable!(),
- }
- }
-
- // NOTE: Because we might be re-arranging arguments, might have extra
- // arguments, etc. it's hard to *really* know where we should provide
- // this error label, so as a heuristic, we point to the provided arg, or
- // to the call if the missing inputs pass the provided args.
- match &missing_idxs[..] {
- &[expected_idx] => {
- let (_, input_ty) = formal_and_expected_inputs[expected_idx];
- let span = if let Some((_, arg_span)) =
- provided_arg_tys.get(expected_idx.to_provided_idx())
- {
- *arg_span
- } else {
- args_span
- };
- let rendered = if !has_error_or_infer([input_ty]) {
- format!(" of type `{}`", input_ty)
- } else {
- "".to_string()
- };
- labels.push((span, format!("an argument{} is missing", rendered)));
- suggestion_text = match suggestion_text {
- SuggestionText::None => SuggestionText::Provide(false),
- SuggestionText::Provide(_) => SuggestionText::Provide(true),
- _ => SuggestionText::DidYouMean,
- };
- }
- &[first_idx, second_idx] => {
- let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
- let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
- let span = if let (Some((_, first_span)), Some((_, second_span))) = (
- provided_arg_tys.get(first_idx.to_provided_idx()),
- provided_arg_tys.get(second_idx.to_provided_idx()),
- ) {
- first_span.to(*second_span)
- } else {
- args_span
- };
- let rendered =
- if !has_error_or_infer([first_expected_ty, second_expected_ty]) {
- format!(
- " of type `{}` and `{}`",
- first_expected_ty, second_expected_ty
- )
- } else {
- "".to_string()
- };
- labels.push((span, format!("two arguments{} are missing", rendered)));
- suggestion_text = match suggestion_text {
- SuggestionText::None | SuggestionText::Provide(_) => {
- SuggestionText::Provide(true)
- }
- _ => SuggestionText::DidYouMean,
- };
- }
- &[first_idx, second_idx, third_idx] => {
- let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
- let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
- let (_, third_expected_ty) = formal_and_expected_inputs[third_idx];
- let span = if let (Some((_, first_span)), Some((_, third_span))) = (
- provided_arg_tys.get(first_idx.to_provided_idx()),
- provided_arg_tys.get(third_idx.to_provided_idx()),
- ) {
- first_span.to(*third_span)
- } else {
- args_span
- };
- let rendered = if !has_error_or_infer([
- first_expected_ty,
- second_expected_ty,
- third_expected_ty,
- ]) {
- format!(
- " of type `{}`, `{}`, and `{}`",
- first_expected_ty, second_expected_ty, third_expected_ty
- )
- } else {
- "".to_string()
- };
- labels.push((span, format!("three arguments{} are missing", rendered)));
- suggestion_text = match suggestion_text {
- SuggestionText::None | SuggestionText::Provide(_) => {
- SuggestionText::Provide(true)
- }
- _ => SuggestionText::DidYouMean,
- };
- }
- missing_idxs => {
- let first_idx = *missing_idxs.first().unwrap();
- let last_idx = *missing_idxs.last().unwrap();
- // NOTE: Because we might be re-arranging arguments, might have extra arguments, etc.
- // It's hard to *really* know where we should provide this error label, so this is a
- // decent heuristic
- let span = if let (Some((_, first_span)), Some((_, last_span))) = (
- provided_arg_tys.get(first_idx.to_provided_idx()),
- provided_arg_tys.get(last_idx.to_provided_idx()),
- ) {
- first_span.to(*last_span)
- } else {
- args_span
- };
- labels.push((span, format!("multiple arguments are missing")));
- suggestion_text = match suggestion_text {
- SuggestionText::None | SuggestionText::Provide(_) => {
- SuggestionText::Provide(true)
- }
- _ => SuggestionText::DidYouMean,
- };
- }
- }
- }
- Error::Swap(
- first_provided_idx,
- second_provided_idx,
- first_expected_idx,
- second_expected_idx,
- ) => {
- let (first_provided_ty, first_span) = provided_arg_tys[first_provided_idx];
- let (_, first_expected_ty) = formal_and_expected_inputs[first_expected_idx];
- let first_provided_ty_name = if !has_error_or_infer([first_provided_ty]) {
- format!(", found `{}`", first_provided_ty)
- } else {
- String::new()
- };
- labels.push((
- first_span,
- format!("expected `{}`{}", first_expected_ty, first_provided_ty_name),
- ));
-
- let (second_provided_ty, second_span) = provided_arg_tys[second_provided_idx];
- let (_, second_expected_ty) = formal_and_expected_inputs[second_expected_idx];
- let second_provided_ty_name = if !has_error_or_infer([second_provided_ty]) {
- format!(", found `{}`", second_provided_ty)
- } else {
- String::new()
- };
- labels.push((
- second_span,
- format!("expected `{}`{}", second_expected_ty, second_provided_ty_name),
- ));
-
- suggestion_text = match suggestion_text {
- SuggestionText::None => SuggestionText::Swap,
- _ => SuggestionText::DidYouMean,
- };
- }
- Error::Permutation(args) => {
- for (dst_arg, dest_input) in args {
- let (_, expected_ty) = formal_and_expected_inputs[dst_arg];
- let (provided_ty, provided_span) = provided_arg_tys[dest_input];
- let provided_ty_name = if !has_error_or_infer([provided_ty]) {
- format!(", found `{}`", provided_ty)
- } else {
- String::new()
- };
- labels.push((
- provided_span,
- format!("expected `{}`{}", expected_ty, provided_ty_name),
- ));
- }
-
- suggestion_text = match suggestion_text {
- SuggestionText::None => SuggestionText::Reorder,
- _ => SuggestionText::DidYouMean,
- };
- }
- }
- }
-
- // If we have less than 5 things to say, it would be useful to call out exactly what's wrong
- if labels.len() <= 5 {
- for (span, label) in labels {
- err.span_label(span, label);
- }
- }
-
- // Call out where the function is defined
- self.label_fn_like(&mut err, fn_def_id, callee_ty);
-
- // And add a suggestion block for all of the parameters
- let suggestion_text = match suggestion_text {
- SuggestionText::None => None,
- SuggestionText::Provide(plural) => {
- Some(format!("provide the argument{}", if plural { "s" } else { "" }))
- }
- SuggestionText::Remove(plural) => {
- Some(format!("remove the extra argument{}", if plural { "s" } else { "" }))
- }
- SuggestionText::Swap => Some("swap these arguments".to_string()),
- SuggestionText::Reorder => Some("reorder these arguments".to_string()),
- SuggestionText::DidYouMean => Some("did you mean".to_string()),
- };
- if let Some(suggestion_text) = suggestion_text {
- let source_map = self.sess().source_map();
- let mut suggestion = format!(
- "{}(",
- source_map.span_to_snippet(full_call_span).unwrap_or_else(|_| fn_def_id
- .map_or("".to_string(), |fn_def_id| tcx.item_name(fn_def_id).to_string()))
- );
- let mut needs_comma = false;
- for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
- if needs_comma {
- suggestion += ", ";
- } else {
- needs_comma = true;
- }
- let suggestion_text = if let Some(provided_idx) = provided_idx
- && let (_, provided_span) = provided_arg_tys[*provided_idx]
- && let Ok(arg_text) =
- source_map.span_to_snippet(provided_span)
- {
- arg_text
- } else {
- // Propose a placeholder of the correct type
- let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
- if expected_ty.is_unit() {
- "()".to_string()
- } else if expected_ty.is_suggestable(tcx, false) {
- format!("/* {} */", expected_ty)
- } else {
- "/* value */".to_string()
- }
- };
- suggestion += &suggestion_text;
- }
- suggestion += ")";
- err.span_suggestion_verbose(
- error_span,
- &suggestion_text,
- suggestion,
- Applicability::HasPlaceholders,
- );
- }
-
- err.emit();
- }
-
- // AST fragment checking
- pub(in super::super) fn check_lit(
- &self,
- lit: &hir::Lit,
- expected: Expectation<'tcx>,
- ) -> Ty<'tcx> {
- let tcx = self.tcx;
-
- match lit.node {
- ast::LitKind::Str(..) => tcx.mk_static_str(),
- ast::LitKind::ByteStr(ref v) => {
- tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_array(tcx.types.u8, v.len() as u64))
- }
- ast::LitKind::Byte(_) => tcx.types.u8,
- ast::LitKind::Char(_) => tcx.types.char,
- ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(ty::int_ty(t)),
- ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(ty::uint_ty(t)),
- ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
- let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
- ty::Int(_) | ty::Uint(_) => Some(ty),
- ty::Char => Some(tcx.types.u8),
- ty::RawPtr(..) => Some(tcx.types.usize),
- ty::FnDef(..) | ty::FnPtr(_) => Some(tcx.types.usize),
- _ => None,
- });
- opt_ty.unwrap_or_else(|| self.next_int_var())
- }
- ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => {
- tcx.mk_mach_float(ty::float_ty(t))
- }
- ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => {
- let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
- ty::Float(_) => Some(ty),
- _ => None,
- });
- opt_ty.unwrap_or_else(|| self.next_float_var())
- }
- ast::LitKind::Bool(_) => tcx.types.bool,
- ast::LitKind::Err(_) => tcx.ty_error(),
- }
- }
-
- pub fn check_struct_path(
- &self,
- qpath: &QPath<'_>,
- hir_id: hir::HirId,
- ) -> Option<(&'tcx ty::VariantDef, Ty<'tcx>)> {
- let path_span = qpath.span();
- let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id);
- let variant = match def {
- Res::Err => {
- self.set_tainted_by_errors();
- return None;
- }
- Res::Def(DefKind::Variant, _) => match ty.kind() {
- ty::Adt(adt, substs) => Some((adt.variant_of_res(def), adt.did(), substs)),
- _ => bug!("unexpected type: {:?}", ty),
- },
- Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _)
- | Res::SelfTy { .. } => match ty.kind() {
- ty::Adt(adt, substs) if !adt.is_enum() => {
- Some((adt.non_enum_variant(), adt.did(), substs))
- }
- _ => None,
- },
- _ => bug!("unexpected definition: {:?}", def),
- };
-
- if let Some((variant, did, substs)) = variant {
- debug!("check_struct_path: did={:?} substs={:?}", did, substs);
- self.write_user_type_annotation_from_substs(hir_id, did, substs, None);
-
- // Check bounds on type arguments used in the path.
- self.add_required_obligations(path_span, did, substs);
-
- Some((variant, ty))
- } else {
- match ty.kind() {
- ty::Error(_) => {
- // E0071 might be caused by a spelling error, which will have
- // already caused an error message and probably a suggestion
- // elsewhere. Refrain from emitting more unhelpful errors here
- // (issue #88844).
- }
- _ => {
- struct_span_err!(
- self.tcx.sess,
- path_span,
- E0071,
- "expected struct, variant or union type, found {}",
- ty.sort_string(self.tcx)
- )
- .span_label(path_span, "not a struct")
- .emit();
- }
- }
- None
- }
- }
-
- pub fn check_decl_initializer(
- &self,
- hir_id: hir::HirId,
- pat: &'tcx hir::Pat<'tcx>,
- init: &'tcx hir::Expr<'tcx>,
- ) -> Ty<'tcx> {
- // FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed
- // for #42640 (default match binding modes).
- //
- // See #44848.
- let ref_bindings = pat.contains_explicit_ref_binding();
-
- let local_ty = self.local_ty(init.span, hir_id).revealed_ty;
- if let Some(m) = ref_bindings {
- // Somewhat subtle: if we have a `ref` binding in the pattern,
- // we want to avoid introducing coercions for the RHS. This is
- // both because it helps preserve sanity and, in the case of
- // ref mut, for soundness (issue #23116). In particular, in
- // the latter case, we need to be clear that the type of the
- // referent for the reference that results is *equal to* the
- // type of the place it is referencing, and not some
- // supertype thereof.
- let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m));
- self.demand_eqtype(init.span, local_ty, init_ty);
- init_ty
- } else {
- self.check_expr_coercable_to_type(init, local_ty, None)
- }
- }
-
- pub(in super::super) fn check_decl(&self, decl: Declaration<'tcx>) {
- // Determine and write the type which we'll check the pattern against.
- let decl_ty = self.local_ty(decl.span, decl.hir_id).decl_ty;
- self.write_ty(decl.hir_id, decl_ty);
-
- // Type check the initializer.
- if let Some(ref init) = decl.init {
- let init_ty = self.check_decl_initializer(decl.hir_id, decl.pat, &init);
- self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, decl_ty, init_ty);
- }
-
- // Does the expected pattern type originate from an expression and what is the span?
- let (origin_expr, ty_span) = match (decl.ty, decl.init) {
- (Some(ty), _) => (false, Some(ty.span)), // Bias towards the explicit user type.
- (_, Some(init)) => {
- (true, Some(init.span.find_ancestor_inside(decl.span).unwrap_or(init.span)))
- } // No explicit type; so use the scrutinee.
- _ => (false, None), // We have `let $pat;`, so the expected type is unconstrained.
- };
-
- // Type check the pattern. Override if necessary to avoid knock-on errors.
- self.check_pat_top(&decl.pat, decl_ty, ty_span, origin_expr);
- let pat_ty = self.node_ty(decl.pat.hir_id);
- self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, decl_ty, pat_ty);
-
- if let Some(blk) = decl.els {
- let previous_diverges = self.diverges.get();
- let else_ty = self.check_block_with_expected(blk, NoExpectation);
- let cause = self.cause(blk.span, ObligationCauseCode::LetElse);
- if let Some(mut err) =
- self.demand_eqtype_with_origin(&cause, self.tcx.types.never, else_ty)
- {
- err.emit();
- }
- self.diverges.set(previous_diverges);
- }
- }
-
- /// Type check a `let` statement.
- pub fn check_decl_local(&self, local: &'tcx hir::Local<'tcx>) {
- self.check_decl(local.into());
- }
-
- pub fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>, is_last: bool) {
- // Don't do all the complex logic below for `DeclItem`.
- match stmt.kind {
- hir::StmtKind::Item(..) => return,
- hir::StmtKind::Local(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
- }
-
- self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement");
-
- // Hide the outer diverging and `has_errors` flags.
- let old_diverges = self.diverges.replace(Diverges::Maybe);
- let old_has_errors = self.has_errors.replace(false);
-
- match stmt.kind {
- hir::StmtKind::Local(l) => {
- self.check_decl_local(l);
- }
- // Ignore for now.
- hir::StmtKind::Item(_) => {}
- hir::StmtKind::Expr(ref expr) => {
- // Check with expected type of `()`.
- self.check_expr_has_type_or_error(&expr, self.tcx.mk_unit(), |err| {
- if expr.can_have_side_effects() {
- self.suggest_semicolon_at_end(expr.span, err);
- }
- });
- }
- hir::StmtKind::Semi(ref expr) => {
- // All of this is equivalent to calling `check_expr`, but it is inlined out here
- // in order to capture the fact that this `match` is the last statement in its
- // function. This is done for better suggestions to remove the `;`.
- let expectation = match expr.kind {
- hir::ExprKind::Match(..) if is_last => IsLast(stmt.span),
- _ => NoExpectation,
- };
- self.check_expr_with_expectation(expr, expectation);
- }
- }
-
- // Combine the diverging and `has_error` flags.
- self.diverges.set(self.diverges.get() | old_diverges);
- self.has_errors.set(self.has_errors.get() | old_has_errors);
- }
-
- pub fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) {
- let unit = self.tcx.mk_unit();
- let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
-
- // if the block produces a `!` value, that can always be
- // (effectively) coerced to unit.
- if !ty.is_never() {
- self.demand_suptype(blk.span, unit, ty);
- }
- }
-
- pub(in super::super) fn check_block_with_expected(
- &self,
- blk: &'tcx hir::Block<'tcx>,
- expected: Expectation<'tcx>,
- ) -> Ty<'tcx> {
- let prev = self.ps.replace(self.ps.get().recurse(blk));
-
- // In some cases, blocks have just one exit, but other blocks
- // can be targeted by multiple breaks. This can happen both
- // with labeled blocks as well as when we desugar
- // a `try { ... }` expression.
- //
- // Example 1:
- //
- // 'a: { if true { break 'a Err(()); } Ok(()) }
- //
- // Here we would wind up with two coercions, one from
- // `Err(())` and the other from the tail expression
- // `Ok(())`. If the tail expression is omitted, that's a
- // "forced unit" -- unless the block diverges, in which
- // case we can ignore the tail expression (e.g., `'a: {
- // break 'a 22; }` would not force the type of the block
- // to be `()`).
- let tail_expr = blk.expr.as_ref();
- let coerce_to_ty = expected.coercion_target_type(self, blk.span);
- let coerce = if blk.targeted_by_break {
- CoerceMany::new(coerce_to_ty)
- } else {
- let tail_expr: &[&hir::Expr<'_>] = match tail_expr {
- Some(e) => slice::from_ref(e),
- None => &[],
- };
- CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
- };
-
- let prev_diverges = self.diverges.get();
- let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false };
-
- let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || {
- for (pos, s) in blk.stmts.iter().enumerate() {
- self.check_stmt(s, blk.stmts.len() - 1 == pos);
- }
-
- // check the tail expression **without** holding the
- // `enclosing_breakables` lock below.
- let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
-
- let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
- let ctxt = enclosing_breakables.find_breakable(blk.hir_id);
- let coerce = ctxt.coerce.as_mut().unwrap();
- if let Some(tail_expr_ty) = tail_expr_ty {
- let tail_expr = tail_expr.unwrap();
- let span = self.get_expr_coercion_span(tail_expr);
- let cause = self.cause(span, ObligationCauseCode::BlockTailExpression(blk.hir_id));
- let ty_for_diagnostic = coerce.merged_ty();
- // We use coerce_inner here because we want to augment the error
- // suggesting to wrap the block in square brackets if it might've
- // been mistaken array syntax
- coerce.coerce_inner(
- self,
- &cause,
- Some(tail_expr),
- tail_expr_ty,
- Some(&mut |diag: &mut Diagnostic| {
- self.suggest_block_to_brackets(diag, blk, tail_expr_ty, ty_for_diagnostic);
- }),
- false,
- );
- } else {
- // Subtle: if there is no explicit tail expression,
- // that is typically equivalent to a tail expression
- // of `()` -- except if the block diverges. In that
- // case, there is no value supplied from the tail
- // expression (assuming there are no other breaks,
- // this implies that the type of the block will be
- // `!`).
- //
- // #41425 -- label the implicit `()` as being the
- // "found type" here, rather than the "expected type".
- if !self.diverges.get().is_always() {
- // #50009 -- Do not point at the entire fn block span, point at the return type
- // span, as it is the cause of the requirement, and
- // `consider_hint_about_removing_semicolon` will point at the last expression
- // if it were a relevant part of the error. This improves usability in editors
- // that highlight errors inline.
- let mut sp = blk.span;
- let mut fn_span = None;
- if let Some((decl, ident)) = self.get_parent_fn_decl(blk.hir_id) {
- let ret_sp = decl.output.span();
- if let Some(block_sp) = self.parent_item_span(blk.hir_id) {
- // HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the
- // output would otherwise be incorrect and even misleading. Make sure
- // the span we're aiming at correspond to a `fn` body.
- if block_sp == blk.span {
- sp = ret_sp;
- fn_span = Some(ident.span);
- }
- }
- }
- coerce.coerce_forced_unit(
- self,
- &self.misc(sp),
- &mut |err| {
- if let Some(expected_ty) = expected.only_has_type(self) {
- if !self.consider_removing_semicolon(blk, expected_ty, err) {
- self.consider_returning_binding(blk, expected_ty, err);
- }
- if expected_ty == self.tcx.types.bool {
- // If this is caused by a missing `let` in a `while let`,
- // silence this redundant error, as we already emit E0070.
-
- // Our block must be a `assign desugar local; assignment`
- if let Some(hir::Node::Block(hir::Block {
- stmts:
- [
- hir::Stmt {
- kind:
- hir::StmtKind::Local(hir::Local {
- source:
- hir::LocalSource::AssignDesugar(_),
- ..
- }),
- ..
- },
- hir::Stmt {
- kind:
- hir::StmtKind::Expr(hir::Expr {
- kind: hir::ExprKind::Assign(..),
- ..
- }),
- ..
- },
- ],
- ..
- })) = self.tcx.hir().find(blk.hir_id)
- {
- self.comes_from_while_condition(blk.hir_id, |_| {
- err.downgrade_to_delayed_bug();
- })
- }
- }
- }
- if let Some(fn_span) = fn_span {
- err.span_label(
- fn_span,
- "implicitly returns `()` as its body has no tail or `return` \
- expression",
- );
- }
- },
- false,
- );
- }
- }
- });
-
- if ctxt.may_break {
- // If we can break from the block, then the block's exit is always reachable
- // (... as long as the entry is reachable) - regardless of the tail of the block.
- self.diverges.set(prev_diverges);
- }
-
- let mut ty = ctxt.coerce.unwrap().complete(self);
-
- if self.has_errors.get() || ty.references_error() {
- ty = self.tcx.ty_error()
- }
-
- self.write_ty(blk.hir_id, ty);
-
- self.ps.set(prev);
- ty
- }
-
- fn parent_item_span(&self, id: hir::HirId) -> Option<Span> {
- let node = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(id));
- match node {
- Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })
- | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => {
- let body = self.tcx.hir().body(body_id);
- if let ExprKind::Block(block, _) = &body.value.kind {
- return Some(block.span);
- }
- }
- _ => {}
- }
- None
- }
-
- /// Given a function block's `HirId`, returns its `FnDecl` if it exists, or `None` otherwise.
- fn get_parent_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident)> {
- let parent = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(blk_id));
- self.get_node_fn_decl(parent).map(|(fn_decl, ident, _)| (fn_decl, ident))
- }
-
- /// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail
- /// expression's `Span`, otherwise return `expr.span`. This is done to give better errors
- /// when given code like the following:
- /// ```text
- /// if false { return 0i32; } else { 1u32 }
- /// // ^^^^ point at this instead of the whole `if` expression
- /// ```
- fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span {
- let check_in_progress = |elem: &hir::Expr<'_>| {
- self.typeck_results.borrow().node_type_opt(elem.hir_id).filter(|ty| !ty.is_never()).map(
- |_| match elem.kind {
- // Point at the tail expression when possible.
- hir::ExprKind::Block(block, _) => block.expr.map_or(block.span, |e| e.span),
- _ => elem.span,
- },
- )
- };
-
- if let hir::ExprKind::If(_, _, Some(el)) = expr.kind {
- if let Some(rslt) = check_in_progress(el) {
- return rslt;
- }
- }
-
- if let hir::ExprKind::Match(_, arms, _) = expr.kind {
- let mut iter = arms.iter().filter_map(|arm| check_in_progress(arm.body));
- if let Some(span) = iter.next() {
- if iter.next().is_none() {
- return span;
- }
- }
- }
-
- expr.span
- }
-
- fn overwrite_local_ty_if_err(
- &self,
- hir_id: hir::HirId,
- pat: &'tcx hir::Pat<'tcx>,
- decl_ty: Ty<'tcx>,
- ty: Ty<'tcx>,
- ) {
- if ty.references_error() {
- // Override the types everywhere with `err()` to avoid knock on errors.
- self.write_ty(hir_id, ty);
- self.write_ty(pat.hir_id, ty);
- let local_ty = LocalTy { decl_ty, revealed_ty: ty };
- self.locals.borrow_mut().insert(hir_id, local_ty);
- self.locals.borrow_mut().insert(pat.hir_id, local_ty);
- }
- }
-
- // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
- // The newly resolved definition is written into `type_dependent_defs`.
- fn finish_resolving_struct_path(
- &self,
- qpath: &QPath<'_>,
- path_span: Span,
- hir_id: hir::HirId,
- ) -> (Res, Ty<'tcx>) {
- match *qpath {
- QPath::Resolved(ref maybe_qself, ref path) => {
- let self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
- let ty = <dyn AstConv<'_>>::res_to_ty(self, self_ty, path, true);
- (path.res, ty)
- }
- QPath::TypeRelative(ref qself, ref segment) => {
- let ty = self.to_ty(qself);
-
- let result = <dyn AstConv<'_>>::associated_path_to_ty(
- self, hir_id, path_span, ty, qself, segment, true,
- );
- let ty = result.map(|(ty, _, _)| ty).unwrap_or_else(|_| self.tcx().ty_error());
- let result = result.map(|(_, kind, def_id)| (kind, def_id));
-
- // Write back the new resolution.
- self.write_resolution(hir_id, result);
-
- (result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), ty)
- }
- QPath::LangItem(lang_item, span, id) => {
- self.resolve_lang_item_path(lang_item, span, hir_id, id)
- }
- }
- }
-
- /// Given a vec of evaluated `FulfillmentError`s and an `fn` call argument expressions, we walk
- /// the checked and coerced types for each argument to see if any of the `FulfillmentError`s
- /// reference a type argument. The reason to walk also the checked type is that the coerced type
- /// can be not easily comparable with predicate type (because of coercion). If the types match
- /// for either checked or coerced type, and there's only *one* argument that does, we point at
- /// the corresponding argument's expression span instead of the `fn` call path span.
- fn point_at_arg_instead_of_call_if_possible(
- &self,
- errors: &mut Vec<traits::FulfillmentError<'tcx>>,
- expr: &'tcx hir::Expr<'tcx>,
- call_sp: Span,
- args: &'tcx [hir::Expr<'tcx>],
- expected_tys: &[Ty<'tcx>],
- ) {
- // We *do not* do this for desugared call spans to keep good diagnostics when involving
- // the `?` operator.
- if call_sp.desugaring_kind().is_some() {
- return;
- }
-
- 'outer: for error in errors {
- // Only if the cause is somewhere inside the expression we want try to point at arg.
- // Otherwise, it means that the cause is somewhere else and we should not change
- // anything because we can break the correct span.
- if !call_sp.contains(error.obligation.cause.span) {
- continue;
- }
-
- // Peel derived obligation, because it's the type that originally
- // started this inference chain that matters, not the one we wound
- // up with at the end.
- fn unpeel_to_top<'a, 'tcx>(
- mut code: &'a ObligationCauseCode<'tcx>,
- ) -> &'a ObligationCauseCode<'tcx> {
- let mut result_code = code;
- loop {
- let parent = match code {
- ObligationCauseCode::ImplDerivedObligation(c) => &c.derived.parent_code,
- ObligationCauseCode::BuiltinDerivedObligation(c)
- | ObligationCauseCode::DerivedObligation(c) => &c.parent_code,
- _ => break result_code,
- };
- (result_code, code) = (code, parent);
- }
- }
- let self_: ty::subst::GenericArg<'_> =
- match unpeel_to_top(error.obligation.cause.code()) {
- ObligationCauseCode::BuiltinDerivedObligation(code)
- | ObligationCauseCode::DerivedObligation(code) => {
- code.parent_trait_pred.self_ty().skip_binder().into()
- }
- ObligationCauseCode::ImplDerivedObligation(code) => {
- code.derived.parent_trait_pred.self_ty().skip_binder().into()
- }
- _ if let ty::PredicateKind::Trait(predicate) =
- error.obligation.predicate.kind().skip_binder() =>
- {
- predicate.self_ty().into()
- }
- _ => continue,
- };
- let self_ = self.resolve_vars_if_possible(self_);
- let ty_matches_self = |ty: Ty<'tcx>| ty.walk().any(|arg| arg == self_);
-
- let typeck_results = self.typeck_results.borrow();
-
- for (idx, arg) in args.iter().enumerate() {
- // Don't adjust the span if we already have a more precise span
- // within one of the args.
- if arg.span.contains(error.obligation.cause.span) {
- let references_arg =
- typeck_results.expr_ty_opt(arg).map_or(false, &ty_matches_self)
- || expected_tys.get(idx).copied().map_or(false, &ty_matches_self);
- if references_arg && !arg.span.from_expansion() {
- error.obligation.cause.map_code(|parent_code| {
- ObligationCauseCode::FunctionArgumentObligation {
- arg_hir_id: args[idx].hir_id,
- call_hir_id: expr.hir_id,
- parent_code,
- }
- })
- }
- continue 'outer;
- }
- }
-
- // Collect the argument position for all arguments that could have caused this
- // `FulfillmentError`.
- let mut referenced_in: Vec<_> = std::iter::zip(expected_tys, args)
- .enumerate()
- .flat_map(|(idx, (expected_ty, arg))| {
- if let Some(arg_ty) = typeck_results.expr_ty_opt(arg) {
- vec![(idx, arg_ty), (idx, *expected_ty)]
- } else {
- vec![]
- }
- })
- .filter_map(|(i, ty)| {
- let ty = self.resolve_vars_if_possible(ty);
- // We walk the argument type because the argument's type could have
- // been `Option<T>`, but the `FulfillmentError` references `T`.
- if ty_matches_self(ty) { Some(i) } else { None }
- })
- .collect();
-
- // Both checked and coerced types could have matched, thus we need to remove
- // duplicates.
-
- // We sort primitive type usize here and can use unstable sort
- referenced_in.sort_unstable();
- referenced_in.dedup();
-
- if let &[idx] = &referenced_in[..] {
- // Do not point at the inside of a macro.
- // That would often result in poor error messages.
- if args[idx].span.from_expansion() {
- continue;
- }
- // We make sure that only *one* argument matches the obligation failure
- // and we assign the obligation's span to its expression's.
- error.obligation.cause.span = args[idx].span;
- error.obligation.cause.map_code(|parent_code| {
- ObligationCauseCode::FunctionArgumentObligation {
- arg_hir_id: args[idx].hir_id,
- call_hir_id: expr.hir_id,
- parent_code,
- }
- });
- } else if error.obligation.cause.span == call_sp {
- // Make function calls point at the callee, not the whole thing.
- if let hir::ExprKind::Call(callee, _) = expr.kind {
- error.obligation.cause.span = callee.span;
- }
- }
- }
- }
-
- /// Given a vec of evaluated `FulfillmentError`s and an `fn` call expression, we walk the
- /// `PathSegment`s and resolve their type parameters to see if any of the `FulfillmentError`s
- /// were caused by them. If they were, we point at the corresponding type argument's span
- /// instead of the `fn` call path span.
- fn point_at_type_arg_instead_of_call_if_possible(
- &self,
- errors: &mut Vec<traits::FulfillmentError<'tcx>>,
- call_expr: &'tcx hir::Expr<'tcx>,
- ) {
- if let hir::ExprKind::Call(path, _) = &call_expr.kind {
- if let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = &path.kind {
- for error in errors {
- if let ty::PredicateKind::Trait(predicate) =
- error.obligation.predicate.kind().skip_binder()
- {
- // If any of the type arguments in this path segment caused the
- // `FulfillmentError`, point at its span (#61860).
- for arg in path
- .segments
- .iter()
- .filter_map(|seg| seg.args.as_ref())
- .flat_map(|a| a.args.iter())
- {
- if let hir::GenericArg::Type(hir_ty) = &arg
- && let Some(ty) =
- self.typeck_results.borrow().node_type_opt(hir_ty.hir_id)
- && self.resolve_vars_if_possible(ty) == predicate.self_ty()
- {
- error.obligation.cause.span = hir_ty.span;
- break;
- }
- }
- }
- }
- }
- }
- }
-
- fn label_fn_like(
- &self,
- err: &mut rustc_errors::DiagnosticBuilder<'tcx, rustc_errors::ErrorGuaranteed>,
- callable_def_id: Option<DefId>,
- callee_ty: Option<Ty<'tcx>>,
- ) {
- let Some(mut def_id) = callable_def_id else {
- return;
- };
-
- if let Some(assoc_item) = self.tcx.opt_associated_item(def_id)
- // Possibly points at either impl or trait item, so try to get it
- // to point to trait item, then get the parent.
- // This parent might be an impl in the case of an inherent function,
- // but the next check will fail.
- && let maybe_trait_item_def_id = assoc_item.trait_item_def_id.unwrap_or(def_id)
- && let maybe_trait_def_id = self.tcx.parent(maybe_trait_item_def_id)
- // Just an easy way to check "trait_def_id == Fn/FnMut/FnOnce"
- && let Some(call_kind) = ty::ClosureKind::from_def_id(self.tcx, maybe_trait_def_id)
- && let Some(callee_ty) = callee_ty
- {
- let callee_ty = callee_ty.peel_refs();
- match *callee_ty.kind() {
- ty::Param(param) => {
- let param =
- self.tcx.generics_of(self.body_id.owner).type_param(&param, self.tcx);
- if param.kind.is_synthetic() {
- // if it's `impl Fn() -> ..` then just fall down to the def-id based logic
- def_id = param.def_id;
- } else {
- // Otherwise, find the predicate that makes this generic callable,
- // and point at that.
- let instantiated = self
- .tcx
- .explicit_predicates_of(self.body_id.owner)
- .instantiate_identity(self.tcx);
- // FIXME(compiler-errors): This could be problematic if something has two
- // fn-like predicates with different args, but callable types really never
- // do that, so it's OK.
- for (predicate, span) in
- std::iter::zip(instantiated.predicates, instantiated.spans)
- {
- if let ty::PredicateKind::Trait(pred) = predicate.kind().skip_binder()
- && pred.self_ty().peel_refs() == callee_ty
- && ty::ClosureKind::from_def_id(self.tcx, pred.def_id()).is_some()
- {
- err.span_note(span, "callable defined here");
- return;
- }
- }
- }
- }
- ty::Opaque(new_def_id, _)
- | ty::Closure(new_def_id, _)
- | ty::FnDef(new_def_id, _) => {
- def_id = new_def_id;
- }
- _ => {
- // Look for a user-provided impl of a `Fn` trait, and point to it.
- let new_def_id = self.probe(|_| {
- let trait_ref = ty::TraitRef::new(
- call_kind.to_def_id(self.tcx),
- self.tcx.mk_substs([
- ty::GenericArg::from(callee_ty),
- self.next_ty_var(TypeVariableOrigin {
- kind: TypeVariableOriginKind::MiscVariable,
- span: rustc_span::DUMMY_SP,
- })
- .into(),
- ].into_iter()),
- );
- let obligation = traits::Obligation::new(
- traits::ObligationCause::dummy(),
- self.param_env,
- ty::Binder::dummy(ty::TraitPredicate {
- trait_ref,
- constness: ty::BoundConstness::NotConst,
- polarity: ty::ImplPolarity::Positive,
- }),
- );
- match SelectionContext::new(&self).select(&obligation) {
- Ok(Some(traits::ImplSource::UserDefined(impl_source))) => {
- Some(impl_source.impl_def_id)
- }
- _ => None
- }
- });
- if let Some(new_def_id) = new_def_id {
- def_id = new_def_id;
- } else {
- return;
- }
- }
- }
- }
-
- if let Some(def_span) = self.tcx.def_ident_span(def_id) && !def_span.is_dummy() {
- let mut spans: MultiSpan = def_span.into();
-
- let params = self
- .tcx
- .hir()
- .get_if_local(def_id)
- .and_then(|node| node.body_id())
- .into_iter()
- .flat_map(|id| self.tcx.hir().body(id).params);
-
- for param in params {
- spans.push_span_label(param.span, "");
- }
-
- let def_kind = self.tcx.def_kind(def_id);
- err.span_note(spans, &format!("{} defined here", def_kind.descr(def_id)));
- } else {
- let def_kind = self.tcx.def_kind(def_id);
- err.span_note(
- self.tcx.def_span(def_id),
- &format!("{} defined here", def_kind.descr(def_id)),
- );
- }
- }
-}
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/mod.rs b/compiler/rustc_typeck/src/check/fn_ctxt/mod.rs
deleted file mode 100644
index 05bcc710e..000000000
--- a/compiler/rustc_typeck/src/check/fn_ctxt/mod.rs
+++ /dev/null
@@ -1,296 +0,0 @@
-mod _impl;
-mod arg_matrix;
-mod checks;
-mod suggestions;
-
-pub use _impl::*;
-pub use suggestions::*;
-
-use crate::astconv::AstConv;
-use crate::check::coercion::DynamicCoerceMany;
-use crate::check::{Diverges, EnclosingBreakables, Inherited, UnsafetyState};
-
-use rustc_hir as hir;
-use rustc_hir::def_id::DefId;
-use rustc_infer::infer;
-use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
-use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
-use rustc_middle::ty::subst::GenericArgKind;
-use rustc_middle::ty::visit::TypeVisitable;
-use rustc_middle::ty::{self, Const, Ty, TyCtxt};
-use rustc_session::Session;
-use rustc_span::symbol::Ident;
-use rustc_span::{self, Span};
-use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode};
-
-use std::cell::{Cell, RefCell};
-use std::ops::Deref;
-
-pub struct FnCtxt<'a, 'tcx> {
- pub(super) body_id: hir::HirId,
-
- /// The parameter environment used for proving trait obligations
- /// in this function. This can change when we descend into
- /// closures (as they bring new things into scope), hence it is
- /// not part of `Inherited` (as of the time of this writing,
- /// closures do not yet change the environment, but they will
- /// eventually).
- pub(super) param_env: ty::ParamEnv<'tcx>,
-
- /// Number of errors that had been reported when we started
- /// checking this function. On exit, if we find that *more* errors
- /// have been reported, we will skip regionck and other work that
- /// expects the types within the function to be consistent.
- // FIXME(matthewjasper) This should not exist, and it's not correct
- // if type checking is run in parallel.
- err_count_on_creation: usize,
-
- /// If `Some`, this stores coercion information for returned
- /// expressions. If `None`, this is in a context where return is
- /// inappropriate, such as a const expression.
- ///
- /// This is a `RefCell<DynamicCoerceMany>`, which means that we
- /// can track all the return expressions and then use them to
- /// compute a useful coercion from the set, similar to a match
- /// expression or other branching context. You can use methods
- /// like `expected_ty` to access the declared return type (if
- /// any).
- pub(super) ret_coercion: Option<RefCell<DynamicCoerceMany<'tcx>>>,
-
- pub(super) ret_type_span: Option<Span>,
-
- /// Used exclusively to reduce cost of advanced evaluation used for
- /// more helpful diagnostics.
- pub(super) in_tail_expr: bool,
-
- /// First span of a return site that we find. Used in error messages.
- pub(super) ret_coercion_span: Cell<Option<Span>>,
-
- pub(super) resume_yield_tys: Option<(Ty<'tcx>, Ty<'tcx>)>,
-
- pub(super) ps: Cell<UnsafetyState>,
-
- /// Whether the last checked node generates a divergence (e.g.,
- /// `return` will set this to `Always`). In general, when entering
- /// an expression or other node in the tree, the initial value
- /// indicates whether prior parts of the containing expression may
- /// have diverged. It is then typically set to `Maybe` (and the
- /// old value remembered) for processing the subparts of the
- /// current expression. As each subpart is processed, they may set
- /// the flag to `Always`, etc. Finally, at the end, we take the
- /// result and "union" it with the original value, so that when we
- /// return the flag indicates if any subpart of the parent
- /// expression (up to and including this part) has diverged. So,
- /// if you read it after evaluating a subexpression `X`, the value
- /// you get indicates whether any subexpression that was
- /// evaluating up to and including `X` diverged.
- ///
- /// We currently use this flag only for diagnostic purposes:
- ///
- /// - To warn about unreachable code: if, after processing a
- /// sub-expression but before we have applied the effects of the
- /// current node, we see that the flag is set to `Always`, we
- /// can issue a warning. This corresponds to something like
- /// `foo(return)`; we warn on the `foo()` expression. (We then
- /// update the flag to `WarnedAlways` to suppress duplicate
- /// reports.) Similarly, if we traverse to a fresh statement (or
- /// tail expression) from an `Always` setting, we will issue a
- /// warning. This corresponds to something like `{return;
- /// foo();}` or `{return; 22}`, where we would warn on the
- /// `foo()` or `22`.
- ///
- /// An expression represents dead code if, after checking it,
- /// the diverges flag is set to something other than `Maybe`.
- pub(super) diverges: Cell<Diverges>,
-
- /// Whether any child nodes have any type errors.
- pub(super) has_errors: Cell<bool>,
-
- pub(super) enclosing_breakables: RefCell<EnclosingBreakables<'tcx>>,
-
- pub(super) inh: &'a Inherited<'a, 'tcx>,
-
- /// True if the function or closure's return type is known before
- /// entering the function/closure, i.e. if the return type is
- /// either given explicitly or inferred from, say, an `Fn*` trait
- /// bound. Used for diagnostic purposes only.
- pub(super) return_type_pre_known: bool,
-
- /// True if the return type has an Opaque type
- pub(super) return_type_has_opaque: bool,
-}
-
-impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
- pub fn new(
- inh: &'a Inherited<'a, 'tcx>,
- param_env: ty::ParamEnv<'tcx>,
- body_id: hir::HirId,
- ) -> FnCtxt<'a, 'tcx> {
- FnCtxt {
- body_id,
- param_env,
- err_count_on_creation: inh.tcx.sess.err_count(),
- ret_coercion: None,
- ret_type_span: None,
- in_tail_expr: false,
- ret_coercion_span: Cell::new(None),
- resume_yield_tys: None,
- ps: Cell::new(UnsafetyState::function(hir::Unsafety::Normal, hir::CRATE_HIR_ID)),
- diverges: Cell::new(Diverges::Maybe),
- has_errors: Cell::new(false),
- enclosing_breakables: RefCell::new(EnclosingBreakables {
- stack: Vec::new(),
- by_id: Default::default(),
- }),
- inh,
- return_type_pre_known: true,
- return_type_has_opaque: false,
- }
- }
-
- pub fn cause(&self, span: Span, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> {
- ObligationCause::new(span, self.body_id, code)
- }
-
- pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
- self.cause(span, ObligationCauseCode::MiscObligation)
- }
-
- pub fn sess(&self) -> &Session {
- &self.tcx.sess
- }
-
- pub fn errors_reported_since_creation(&self) -> bool {
- self.tcx.sess.err_count() > self.err_count_on_creation
- }
-}
-
-impl<'a, 'tcx> Deref for FnCtxt<'a, 'tcx> {
- type Target = Inherited<'a, 'tcx>;
- fn deref(&self) -> &Self::Target {
- &self.inh
- }
-}
-
-impl<'a, 'tcx> AstConv<'tcx> for FnCtxt<'a, 'tcx> {
- fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
- self.tcx
- }
-
- fn item_def_id(&self) -> Option<DefId> {
- None
- }
-
- fn get_type_parameter_bounds(
- &self,
- _: Span,
- def_id: DefId,
- _: Ident,
- ) -> ty::GenericPredicates<'tcx> {
- let tcx = self.tcx;
- let item_def_id = tcx.hir().ty_param_owner(def_id.expect_local());
- let generics = tcx.generics_of(item_def_id);
- let index = generics.param_def_id_to_index[&def_id];
- ty::GenericPredicates {
- parent: None,
- predicates: tcx.arena.alloc_from_iter(
- self.param_env.caller_bounds().iter().filter_map(|predicate| {
- match predicate.kind().skip_binder() {
- ty::PredicateKind::Trait(data) if data.self_ty().is_param(index) => {
- // HACK(eddyb) should get the original `Span`.
- let span = tcx.def_span(def_id);
- Some((predicate, span))
- }
- _ => None,
- }
- }),
- ),
- }
- }
-
- fn re_infer(&self, def: Option<&ty::GenericParamDef>, span: Span) -> Option<ty::Region<'tcx>> {
- let v = match def {
- Some(def) => infer::EarlyBoundRegion(span, def.name),
- None => infer::MiscVariable(span),
- };
- Some(self.next_region_var(v))
- }
-
- fn allow_ty_infer(&self) -> bool {
- true
- }
-
- fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
- if let Some(param) = param {
- if let GenericArgKind::Type(ty) = self.var_for_def(span, param).unpack() {
- return ty;
- }
- unreachable!()
- } else {
- self.next_ty_var(TypeVariableOrigin {
- kind: TypeVariableOriginKind::TypeInference,
- span,
- })
- }
- }
-
- fn ct_infer(
- &self,
- ty: Ty<'tcx>,
- param: Option<&ty::GenericParamDef>,
- span: Span,
- ) -> Const<'tcx> {
- if let Some(param) = param {
- if let GenericArgKind::Const(ct) = self.var_for_def(span, param).unpack() {
- return ct;
- }
- unreachable!()
- } else {
- self.next_const_var(
- ty,
- ConstVariableOrigin { kind: ConstVariableOriginKind::ConstInference, span },
- )
- }
- }
-
- fn projected_ty_from_poly_trait_ref(
- &self,
- span: Span,
- item_def_id: DefId,
- item_segment: &hir::PathSegment<'_>,
- poly_trait_ref: ty::PolyTraitRef<'tcx>,
- ) -> Ty<'tcx> {
- let trait_ref = self.replace_bound_vars_with_fresh_vars(
- span,
- infer::LateBoundRegionConversionTime::AssocTypeProjection(item_def_id),
- poly_trait_ref,
- );
-
- let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
- self,
- self.tcx,
- span,
- item_def_id,
- item_segment,
- trait_ref.substs,
- );
-
- self.tcx().mk_projection(item_def_id, item_substs)
- }
-
- fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
- if ty.has_escaping_bound_vars() {
- ty // FIXME: normalization and escaping regions
- } else {
- self.normalize_associated_types_in(span, ty)
- }
- }
-
- fn set_tainted_by_errors(&self) {
- self.infcx.set_tainted_by_errors()
- }
-
- fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, _span: Span) {
- self.write_ty(hir_id, ty)
- }
-}
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs b/compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs
deleted file mode 100644
index 57771e096..000000000
--- a/compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs
+++ /dev/null
@@ -1,912 +0,0 @@
-use super::FnCtxt;
-use crate::astconv::AstConv;
-use crate::errors::{AddReturnTypeSuggestion, ExpectedReturnTypeLabel};
-
-use rustc_ast::util::parser::ExprPrecedence;
-use rustc_errors::{Applicability, Diagnostic, MultiSpan};
-use rustc_hir as hir;
-use rustc_hir::def::{CtorOf, DefKind};
-use rustc_hir::lang_items::LangItem;
-use rustc_hir::{
- Expr, ExprKind, GenericBound, Node, Path, QPath, Stmt, StmtKind, TyKind, WherePredicate,
-};
-use rustc_infer::infer::{self, TyCtxtInferExt};
-use rustc_infer::traits::{self, StatementAsExpression};
-use rustc_middle::lint::in_external_macro;
-use rustc_middle::ty::{self, Binder, IsSuggestable, Subst, ToPredicate, Ty};
-use rustc_span::symbol::sym;
-use rustc_span::Span;
-use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
-
-impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
- pub(in super::super) fn suggest_semicolon_at_end(&self, span: Span, err: &mut Diagnostic) {
- err.span_suggestion_short(
- span.shrink_to_hi(),
- "consider using a semicolon here",
- ";",
- Applicability::MachineApplicable,
- );
- }
-
- /// On implicit return expressions with mismatched types, provides the following suggestions:
- ///
- /// - Points out the method's return type as the reason for the expected type.
- /// - Possible missing semicolon.
- /// - Possible missing return type if the return type is the default, and not `fn main()`.
- pub fn suggest_mismatched_types_on_tail(
- &self,
- err: &mut Diagnostic,
- expr: &'tcx hir::Expr<'tcx>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- blk_id: hir::HirId,
- ) -> bool {
- let expr = expr.peel_drop_temps();
- self.suggest_missing_semicolon(err, expr, expected, false);
- let mut pointing_at_return_type = false;
- if let Some((fn_decl, can_suggest)) = self.get_fn_decl(blk_id) {
- let fn_id = self.tcx.hir().get_return_block(blk_id).unwrap();
- pointing_at_return_type = self.suggest_missing_return_type(
- err,
- &fn_decl,
- expected,
- found,
- can_suggest,
- fn_id,
- );
- self.suggest_missing_break_or_return_expr(
- err, expr, &fn_decl, expected, found, blk_id, fn_id,
- );
- }
- pointing_at_return_type
- }
-
- /// When encountering an fn-like ctor that needs to unify with a value, check whether calling
- /// the ctor would successfully solve the type mismatch and if so, suggest it:
- /// ```compile_fail,E0308
- /// fn foo(x: usize) -> usize { x }
- /// let x: usize = foo; // suggest calling the `foo` function: `foo(42)`
- /// ```
- fn suggest_fn_call(
- &self,
- err: &mut Diagnostic,
- expr: &hir::Expr<'_>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- ) -> bool {
- let (def_id, output, inputs) = match *found.kind() {
- ty::FnDef(def_id, _) => {
- let fn_sig = found.fn_sig(self.tcx);
- (def_id, fn_sig.output(), fn_sig.inputs().skip_binder().len())
- }
- ty::Closure(def_id, substs) => {
- let fn_sig = substs.as_closure().sig();
- (def_id, fn_sig.output(), fn_sig.inputs().skip_binder().len() - 1)
- }
- ty::Opaque(def_id, substs) => {
- let sig = self.tcx.bound_item_bounds(def_id).subst(self.tcx, substs).iter().find_map(|pred| {
- if let ty::PredicateKind::Projection(proj) = pred.kind().skip_binder()
- && Some(proj.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output()
- // args tuple will always be substs[1]
- && let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
- {
- Some((
- pred.kind().rebind(proj.term.ty().unwrap()),
- args.len(),
- ))
- } else {
- None
- }
- });
- if let Some((output, inputs)) = sig {
- (def_id, output, inputs)
- } else {
- return false;
- }
- }
- _ => return false,
- };
-
- let output = self.replace_bound_vars_with_fresh_vars(expr.span, infer::FnCall, output);
- let output = self.normalize_associated_types_in(expr.span, output);
- if !output.is_ty_var() && self.can_coerce(output, expected) {
- let (sugg_call, mut applicability) = match inputs {
- 0 => ("".to_string(), Applicability::MachineApplicable),
- 1..=4 => (
- (0..inputs).map(|_| "_").collect::<Vec<_>>().join(", "),
- Applicability::MachineApplicable,
- ),
- _ => ("...".to_string(), Applicability::HasPlaceholders),
- };
-
- let msg = match self.tcx.def_kind(def_id) {
- DefKind::Fn => "call this function",
- DefKind::Closure | DefKind::OpaqueTy => "call this closure",
- DefKind::Ctor(CtorOf::Struct, _) => "instantiate this tuple struct",
- DefKind::Ctor(CtorOf::Variant, _) => "instantiate this tuple variant",
- _ => "call this function",
- };
-
- let sugg = match expr.kind {
- hir::ExprKind::Call(..)
- | hir::ExprKind::Path(..)
- | hir::ExprKind::Index(..)
- | hir::ExprKind::Lit(..) => {
- vec![(expr.span.shrink_to_hi(), format!("({sugg_call})"))]
- }
- hir::ExprKind::Closure { .. } => {
- // Might be `{ expr } || { bool }`
- applicability = Applicability::MaybeIncorrect;
- vec![
- (expr.span.shrink_to_lo(), "(".to_string()),
- (expr.span.shrink_to_hi(), format!(")({sugg_call})")),
- ]
- }
- _ => {
- vec![
- (expr.span.shrink_to_lo(), "(".to_string()),
- (expr.span.shrink_to_hi(), format!(")({sugg_call})")),
- ]
- }
- };
-
- err.multipart_suggestion_verbose(
- format!("use parentheses to {msg}"),
- sugg,
- applicability,
- );
-
- return true;
- }
- false
- }
-
- pub fn suggest_deref_ref_or_into(
- &self,
- err: &mut Diagnostic,
- expr: &hir::Expr<'tcx>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
- ) {
- let expr = expr.peel_blocks();
- if let Some((sp, msg, suggestion, applicability, verbose)) =
- self.check_ref(expr, found, expected)
- {
- if verbose {
- err.span_suggestion_verbose(sp, &msg, suggestion, applicability);
- } else {
- err.span_suggestion(sp, &msg, suggestion, applicability);
- }
- } else if let (ty::FnDef(def_id, ..), true) =
- (&found.kind(), self.suggest_fn_call(err, expr, expected, found))
- {
- if let Some(sp) = self.tcx.hir().span_if_local(*def_id) {
- err.span_label(sp, format!("{found} defined here"));
- }
- } else if !self.check_for_cast(err, expr, found, expected, expected_ty_expr) {
- let methods = self.get_conversion_methods(expr.span, expected, found, expr.hir_id);
- if !methods.is_empty() {
- let mut suggestions = methods.iter()
- .filter_map(|conversion_method| {
- let receiver_method_ident = expr.method_ident();
- if let Some(method_ident) = receiver_method_ident
- && method_ident.name == conversion_method.name
- {
- return None // do not suggest code that is already there (#53348)
- }
-
- let method_call_list = [sym::to_vec, sym::to_string];
- let mut sugg = if let ExprKind::MethodCall(receiver_method, ..) = expr.kind
- && receiver_method.ident.name == sym::clone
- && method_call_list.contains(&conversion_method.name)
- // If receiver is `.clone()` and found type has one of those methods,
- // we guess that the user wants to convert from a slice type (`&[]` or `&str`)
- // to an owned type (`Vec` or `String`). These conversions clone internally,
- // so we remove the user's `clone` call.
- {
- vec![(
- receiver_method.ident.span,
- conversion_method.name.to_string()
- )]
- } else if expr.precedence().order()
- < ExprPrecedence::MethodCall.order()
- {
- vec![
- (expr.span.shrink_to_lo(), "(".to_string()),
- (expr.span.shrink_to_hi(), format!(").{}()", conversion_method.name)),
- ]
- } else {
- vec![(expr.span.shrink_to_hi(), format!(".{}()", conversion_method.name))]
- };
- let struct_pat_shorthand_field = self.maybe_get_struct_pattern_shorthand_field(expr);
- if let Some(name) = struct_pat_shorthand_field {
- sugg.insert(
- 0,
- (expr.span.shrink_to_lo(), format!("{}: ", name)),
- );
- }
- Some(sugg)
- })
- .peekable();
- if suggestions.peek().is_some() {
- err.multipart_suggestions(
- "try using a conversion method",
- suggestions,
- Applicability::MaybeIncorrect,
- );
- }
- } else if let ty::Adt(found_adt, found_substs) = found.kind()
- && self.tcx.is_diagnostic_item(sym::Option, found_adt.did())
- && let ty::Adt(expected_adt, expected_substs) = expected.kind()
- && self.tcx.is_diagnostic_item(sym::Option, expected_adt.did())
- && let ty::Ref(_, inner_ty, _) = expected_substs.type_at(0).kind()
- && inner_ty.is_str()
- {
- let ty = found_substs.type_at(0);
- let mut peeled = ty;
- let mut ref_cnt = 0;
- while let ty::Ref(_, inner, _) = peeled.kind() {
- peeled = *inner;
- ref_cnt += 1;
- }
- if let ty::Adt(adt, _) = peeled.kind()
- && self.tcx.is_diagnostic_item(sym::String, adt.did())
- {
- err.span_suggestion_verbose(
- expr.span.shrink_to_hi(),
- "try converting the passed type into a `&str`",
- format!(".map(|x| &*{}x)", "*".repeat(ref_cnt)),
- Applicability::MaybeIncorrect,
- );
- }
- }
- }
- }
-
- /// When encountering the expected boxed value allocated in the stack, suggest allocating it
- /// in the heap by calling `Box::new()`.
- pub(in super::super) fn suggest_boxing_when_appropriate(
- &self,
- err: &mut Diagnostic,
- expr: &hir::Expr<'_>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- ) {
- if self.tcx.hir().is_inside_const_context(expr.hir_id) {
- // Do not suggest `Box::new` in const context.
- return;
- }
- if !expected.is_box() || found.is_box() {
- return;
- }
- let boxed_found = self.tcx.mk_box(found);
- if self.can_coerce(boxed_found, expected) {
- err.multipart_suggestion(
- "store this in the heap by calling `Box::new`",
- vec![
- (expr.span.shrink_to_lo(), "Box::new(".to_string()),
- (expr.span.shrink_to_hi(), ")".to_string()),
- ],
- Applicability::MachineApplicable,
- );
- err.note(
- "for more on the distinction between the stack and the heap, read \
- https://doc.rust-lang.org/book/ch15-01-box.html, \
- https://doc.rust-lang.org/rust-by-example/std/box.html, and \
- https://doc.rust-lang.org/std/boxed/index.html",
- );
- }
- }
-
- /// When encountering a closure that captures variables, where a FnPtr is expected,
- /// suggest a non-capturing closure
- pub(in super::super) fn suggest_no_capture_closure(
- &self,
- err: &mut Diagnostic,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- ) {
- if let (ty::FnPtr(_), ty::Closure(def_id, _)) = (expected.kind(), found.kind()) {
- if let Some(upvars) = self.tcx.upvars_mentioned(*def_id) {
- // Report upto four upvars being captured to reduce the amount error messages
- // reported back to the user.
- let spans_and_labels = upvars
- .iter()
- .take(4)
- .map(|(var_hir_id, upvar)| {
- let var_name = self.tcx.hir().name(*var_hir_id).to_string();
- let msg = format!("`{}` captured here", var_name);
- (upvar.span, msg)
- })
- .collect::<Vec<_>>();
-
- let mut multi_span: MultiSpan =
- spans_and_labels.iter().map(|(sp, _)| *sp).collect::<Vec<_>>().into();
- for (sp, label) in spans_and_labels {
- multi_span.push_span_label(sp, label);
- }
- err.span_note(
- multi_span,
- "closures can only be coerced to `fn` types if they do not capture any variables"
- );
- }
- }
- }
-
- /// When encountering an `impl Future` where `BoxFuture` is expected, suggest `Box::pin`.
- #[instrument(skip(self, err))]
- pub(in super::super) fn suggest_calling_boxed_future_when_appropriate(
- &self,
- err: &mut Diagnostic,
- expr: &hir::Expr<'_>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- ) -> bool {
- // Handle #68197.
-
- if self.tcx.hir().is_inside_const_context(expr.hir_id) {
- // Do not suggest `Box::new` in const context.
- return false;
- }
- let pin_did = self.tcx.lang_items().pin_type();
- // This guards the `unwrap` and `mk_box` below.
- if pin_did.is_none() || self.tcx.lang_items().owned_box().is_none() {
- return false;
- }
- let box_found = self.tcx.mk_box(found);
- let pin_box_found = self.tcx.mk_lang_item(box_found, LangItem::Pin).unwrap();
- let pin_found = self.tcx.mk_lang_item(found, LangItem::Pin).unwrap();
- match expected.kind() {
- ty::Adt(def, _) if Some(def.did()) == pin_did => {
- if self.can_coerce(pin_box_found, expected) {
- debug!("can coerce {:?} to {:?}, suggesting Box::pin", pin_box_found, expected);
- match found.kind() {
- ty::Adt(def, _) if def.is_box() => {
- err.help("use `Box::pin`");
- }
- _ => {
- err.multipart_suggestion(
- "you need to pin and box this expression",
- vec![
- (expr.span.shrink_to_lo(), "Box::pin(".to_string()),
- (expr.span.shrink_to_hi(), ")".to_string()),
- ],
- Applicability::MaybeIncorrect,
- );
- }
- }
- true
- } else if self.can_coerce(pin_found, expected) {
- match found.kind() {
- ty::Adt(def, _) if def.is_box() => {
- err.help("use `Box::pin`");
- true
- }
- _ => false,
- }
- } else {
- false
- }
- }
- ty::Adt(def, _) if def.is_box() && self.can_coerce(box_found, expected) => {
- // Check if the parent expression is a call to Pin::new. If it
- // is and we were expecting a Box, ergo Pin<Box<expected>>, we
- // can suggest Box::pin.
- let parent = self.tcx.hir().get_parent_node(expr.hir_id);
- let Some(Node::Expr(Expr { kind: ExprKind::Call(fn_name, _), .. })) = self.tcx.hir().find(parent) else {
- return false;
- };
- match fn_name.kind {
- ExprKind::Path(QPath::TypeRelative(
- hir::Ty {
- kind: TyKind::Path(QPath::Resolved(_, Path { res: recv_ty, .. })),
- ..
- },
- method,
- )) if recv_ty.opt_def_id() == pin_did && method.ident.name == sym::new => {
- err.span_suggestion(
- fn_name.span,
- "use `Box::pin` to pin and box this expression",
- "Box::pin",
- Applicability::MachineApplicable,
- );
- true
- }
- _ => false,
- }
- }
- _ => false,
- }
- }
-
- /// A common error is to forget to add a semicolon at the end of a block, e.g.,
- ///
- /// ```compile_fail,E0308
- /// # fn bar_that_returns_u32() -> u32 { 4 }
- /// fn foo() {
- /// bar_that_returns_u32()
- /// }
- /// ```
- ///
- /// This routine checks if the return expression in a block would make sense on its own as a
- /// statement and the return type has been left as default or has been specified as `()`. If so,
- /// it suggests adding a semicolon.
- ///
- /// If the expression is the expression of a closure without block (`|| expr`), a
- /// block is needed to be added too (`|| { expr; }`). This is denoted by `needs_block`.
- pub fn suggest_missing_semicolon(
- &self,
- err: &mut Diagnostic,
- expression: &'tcx hir::Expr<'tcx>,
- expected: Ty<'tcx>,
- needs_block: bool,
- ) {
- if expected.is_unit() {
- // `BlockTailExpression` only relevant if the tail expr would be
- // useful on its own.
- match expression.kind {
- ExprKind::Call(..)
- | ExprKind::MethodCall(..)
- | ExprKind::Loop(..)
- | ExprKind::If(..)
- | ExprKind::Match(..)
- | ExprKind::Block(..)
- if expression.can_have_side_effects()
- // If the expression is from an external macro, then do not suggest
- // adding a semicolon, because there's nowhere to put it.
- // See issue #81943.
- && !in_external_macro(self.tcx.sess, expression.span) =>
- {
- if needs_block {
- err.multipart_suggestion(
- "consider using a semicolon here",
- vec![
- (expression.span.shrink_to_lo(), "{ ".to_owned()),
- (expression.span.shrink_to_hi(), "; }".to_owned()),
- ],
- Applicability::MachineApplicable,
- );
- } else {
- err.span_suggestion(
- expression.span.shrink_to_hi(),
- "consider using a semicolon here",
- ";",
- Applicability::MachineApplicable,
- );
- }
- }
- _ => (),
- }
- }
- }
-
- /// A possible error is to forget to add a return type that is needed:
- ///
- /// ```compile_fail,E0308
- /// # fn bar_that_returns_u32() -> u32 { 4 }
- /// fn foo() {
- /// bar_that_returns_u32()
- /// }
- /// ```
- ///
- /// This routine checks if the return type is left as default, the method is not part of an
- /// `impl` block and that it isn't the `main` method. If so, it suggests setting the return
- /// type.
- pub(in super::super) fn suggest_missing_return_type(
- &self,
- err: &mut Diagnostic,
- fn_decl: &hir::FnDecl<'_>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- can_suggest: bool,
- fn_id: hir::HirId,
- ) -> bool {
- let found =
- self.resolve_numeric_literals_with_default(self.resolve_vars_if_possible(found));
- // Only suggest changing the return type for methods that
- // haven't set a return type at all (and aren't `fn main()` or an impl).
- match (
- &fn_decl.output,
- found.is_suggestable(self.tcx, false),
- can_suggest,
- expected.is_unit(),
- ) {
- (&hir::FnRetTy::DefaultReturn(span), true, true, true) => {
- err.subdiagnostic(AddReturnTypeSuggestion::Add { span, found });
- true
- }
- (&hir::FnRetTy::DefaultReturn(span), false, true, true) => {
- // FIXME: if `found` could be `impl Iterator` or `impl Fn*`, we should suggest
- // that.
- err.subdiagnostic(AddReturnTypeSuggestion::MissingHere { span });
- true
- }
- (&hir::FnRetTy::DefaultReturn(span), _, false, true) => {
- // `fn main()` must return `()`, do not suggest changing return type
- err.subdiagnostic(ExpectedReturnTypeLabel::Unit { span });
- true
- }
- // expectation was caused by something else, not the default return
- (&hir::FnRetTy::DefaultReturn(_), _, _, false) => false,
- (&hir::FnRetTy::Return(ref ty), _, _, _) => {
- // Only point to return type if the expected type is the return type, as if they
- // are not, the expectation must have been caused by something else.
- debug!("suggest_missing_return_type: return type {:?} node {:?}", ty, ty.kind);
- let span = ty.span;
- let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, ty);
- debug!("suggest_missing_return_type: return type {:?}", ty);
- debug!("suggest_missing_return_type: expected type {:?}", ty);
- let bound_vars = self.tcx.late_bound_vars(fn_id);
- let ty = Binder::bind_with_vars(ty, bound_vars);
- let ty = self.normalize_associated_types_in(span, ty);
- let ty = self.tcx.erase_late_bound_regions(ty);
- if self.can_coerce(expected, ty) {
- err.subdiagnostic(ExpectedReturnTypeLabel::Other { span, expected });
- self.try_suggest_return_impl_trait(err, expected, ty, fn_id);
- return true;
- }
- false
- }
- }
- }
-
- /// check whether the return type is a generic type with a trait bound
- /// only suggest this if the generic param is not present in the arguments
- /// if this is true, hint them towards changing the return type to `impl Trait`
- /// ```compile_fail,E0308
- /// fn cant_name_it<T: Fn() -> u32>() -> T {
- /// || 3
- /// }
- /// ```
- fn try_suggest_return_impl_trait(
- &self,
- err: &mut Diagnostic,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- fn_id: hir::HirId,
- ) {
- // Only apply the suggestion if:
- // - the return type is a generic parameter
- // - the generic param is not used as a fn param
- // - the generic param has at least one bound
- // - the generic param doesn't appear in any other bounds where it's not the Self type
- // Suggest:
- // - Changing the return type to be `impl <all bounds>`
-
- debug!("try_suggest_return_impl_trait, expected = {:?}, found = {:?}", expected, found);
-
- let ty::Param(expected_ty_as_param) = expected.kind() else { return };
-
- let fn_node = self.tcx.hir().find(fn_id);
-
- let Some(hir::Node::Item(hir::Item {
- kind:
- hir::ItemKind::Fn(
- hir::FnSig { decl: hir::FnDecl { inputs: fn_parameters, output: fn_return, .. }, .. },
- hir::Generics { params, predicates, .. },
- _body_id,
- ),
- ..
- })) = fn_node else { return };
-
- if params.get(expected_ty_as_param.index as usize).is_none() {
- return;
- };
-
- // get all where BoundPredicates here, because they are used in to cases below
- let where_predicates = predicates
- .iter()
- .filter_map(|p| match p {
- WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
- bounds,
- bounded_ty,
- ..
- }) => {
- // FIXME: Maybe these calls to `ast_ty_to_ty` can be removed (and the ones below)
- let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, bounded_ty);
- Some((ty, bounds))
- }
- _ => None,
- })
- .map(|(ty, bounds)| match ty.kind() {
- ty::Param(param_ty) if param_ty == expected_ty_as_param => Ok(Some(bounds)),
- // check whether there is any predicate that contains our `T`, like `Option<T>: Send`
- _ => match ty.contains(expected) {
- true => Err(()),
- false => Ok(None),
- },
- })
- .collect::<Result<Vec<_>, _>>();
-
- let Ok(where_predicates) = where_predicates else { return };
-
- // now get all predicates in the same types as the where bounds, so we can chain them
- let predicates_from_where =
- where_predicates.iter().flatten().flat_map(|bounds| bounds.iter());
-
- // extract all bounds from the source code using their spans
- let all_matching_bounds_strs = predicates_from_where
- .filter_map(|bound| match bound {
- GenericBound::Trait(_, _) => {
- self.tcx.sess.source_map().span_to_snippet(bound.span()).ok()
- }
- _ => None,
- })
- .collect::<Vec<String>>();
-
- if all_matching_bounds_strs.len() == 0 {
- return;
- }
-
- let all_bounds_str = all_matching_bounds_strs.join(" + ");
-
- let ty_param_used_in_fn_params = fn_parameters.iter().any(|param| {
- let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, param);
- matches!(ty.kind(), ty::Param(fn_param_ty_param) if expected_ty_as_param == fn_param_ty_param)
- });
-
- if ty_param_used_in_fn_params {
- return;
- }
-
- err.span_suggestion(
- fn_return.span(),
- "consider using an impl return type",
- format!("impl {}", all_bounds_str),
- Applicability::MaybeIncorrect,
- );
- }
-
- pub(in super::super) fn suggest_missing_break_or_return_expr(
- &self,
- err: &mut Diagnostic,
- expr: &'tcx hir::Expr<'tcx>,
- fn_decl: &hir::FnDecl<'_>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- id: hir::HirId,
- fn_id: hir::HirId,
- ) {
- if !expected.is_unit() {
- return;
- }
- let found = self.resolve_vars_with_obligations(found);
-
- let in_loop = self.is_loop(id)
- || self.tcx.hir().parent_iter(id).any(|(parent_id, _)| self.is_loop(parent_id));
-
- let in_local_statement = self.is_local_statement(id)
- || self
- .tcx
- .hir()
- .parent_iter(id)
- .any(|(parent_id, _)| self.is_local_statement(parent_id));
-
- if in_loop && in_local_statement {
- err.multipart_suggestion(
- "you might have meant to break the loop with this value",
- vec![
- (expr.span.shrink_to_lo(), "break ".to_string()),
- (expr.span.shrink_to_hi(), ";".to_string()),
- ],
- Applicability::MaybeIncorrect,
- );
- return;
- }
-
- if let hir::FnRetTy::Return(ty) = fn_decl.output {
- let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, ty);
- let bound_vars = self.tcx.late_bound_vars(fn_id);
- let ty = self.tcx.erase_late_bound_regions(Binder::bind_with_vars(ty, bound_vars));
- let ty = self.normalize_associated_types_in(expr.span, ty);
- let ty = match self.tcx.asyncness(fn_id.owner) {
- hir::IsAsync::Async => self
- .tcx
- .infer_ctxt()
- .enter(|infcx| {
- infcx.get_impl_future_output_ty(ty).unwrap_or_else(|| {
- span_bug!(
- fn_decl.output.span(),
- "failed to get output type of async function"
- )
- })
- })
- .skip_binder(),
- hir::IsAsync::NotAsync => ty,
- };
- if self.can_coerce(found, ty) {
- err.multipart_suggestion(
- "you might have meant to return this value",
- vec![
- (expr.span.shrink_to_lo(), "return ".to_string()),
- (expr.span.shrink_to_hi(), ";".to_string()),
- ],
- Applicability::MaybeIncorrect,
- );
- }
- }
- }
-
- pub(in super::super) fn suggest_missing_parentheses(
- &self,
- err: &mut Diagnostic,
- expr: &hir::Expr<'_>,
- ) {
- let sp = self.tcx.sess.source_map().start_point(expr.span);
- if let Some(sp) = self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp) {
- // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
- self.tcx.sess.parse_sess.expr_parentheses_needed(err, *sp);
- }
- }
-
- /// Given an expression type mismatch, peel any `&` expressions until we get to
- /// a block expression, and then suggest replacing the braces with square braces
- /// if it was possibly mistaken array syntax.
- pub(crate) fn suggest_block_to_brackets_peeling_refs(
- &self,
- diag: &mut Diagnostic,
- mut expr: &hir::Expr<'_>,
- mut expr_ty: Ty<'tcx>,
- mut expected_ty: Ty<'tcx>,
- ) {
- loop {
- match (&expr.kind, expr_ty.kind(), expected_ty.kind()) {
- (
- hir::ExprKind::AddrOf(_, _, inner_expr),
- ty::Ref(_, inner_expr_ty, _),
- ty::Ref(_, inner_expected_ty, _),
- ) => {
- expr = *inner_expr;
- expr_ty = *inner_expr_ty;
- expected_ty = *inner_expected_ty;
- }
- (hir::ExprKind::Block(blk, _), _, _) => {
- self.suggest_block_to_brackets(diag, *blk, expr_ty, expected_ty);
- break;
- }
- _ => break,
- }
- }
- }
-
- /// Suggest wrapping the block in square brackets instead of curly braces
- /// in case the block was mistaken array syntax, e.g. `{ 1 }` -> `[ 1 ]`.
- pub(crate) fn suggest_block_to_brackets(
- &self,
- diag: &mut Diagnostic,
- blk: &hir::Block<'_>,
- blk_ty: Ty<'tcx>,
- expected_ty: Ty<'tcx>,
- ) {
- if let ty::Slice(elem_ty) | ty::Array(elem_ty, _) = expected_ty.kind() {
- if self.can_coerce(blk_ty, *elem_ty)
- && blk.stmts.is_empty()
- && blk.rules == hir::BlockCheckMode::DefaultBlock
- {
- let source_map = self.tcx.sess.source_map();
- if let Ok(snippet) = source_map.span_to_snippet(blk.span) {
- if snippet.starts_with('{') && snippet.ends_with('}') {
- diag.multipart_suggestion_verbose(
- "to create an array, use square brackets instead of curly braces",
- vec![
- (
- blk.span
- .shrink_to_lo()
- .with_hi(rustc_span::BytePos(blk.span.lo().0 + 1)),
- "[".to_string(),
- ),
- (
- blk.span
- .shrink_to_hi()
- .with_lo(rustc_span::BytePos(blk.span.hi().0 - 1)),
- "]".to_string(),
- ),
- ],
- Applicability::MachineApplicable,
- );
- }
- }
- }
- }
- }
-
- fn is_loop(&self, id: hir::HirId) -> bool {
- let node = self.tcx.hir().get(id);
- matches!(node, Node::Expr(Expr { kind: ExprKind::Loop(..), .. }))
- }
-
- fn is_local_statement(&self, id: hir::HirId) -> bool {
- let node = self.tcx.hir().get(id);
- matches!(node, Node::Stmt(Stmt { kind: StmtKind::Local(..), .. }))
- }
-
- /// Suggest that `&T` was cloned instead of `T` because `T` does not implement `Clone`,
- /// which is a side-effect of autoref.
- pub(crate) fn note_type_is_not_clone(
- &self,
- diag: &mut Diagnostic,
- expected_ty: Ty<'tcx>,
- found_ty: Ty<'tcx>,
- expr: &hir::Expr<'_>,
- ) {
- let hir::ExprKind::MethodCall(segment, &[ref callee_expr], _) = expr.kind else { return; };
- let Some(clone_trait_did) = self.tcx.lang_items().clone_trait() else { return; };
- let ty::Ref(_, pointee_ty, _) = found_ty.kind() else { return };
- let results = self.typeck_results.borrow();
- // First, look for a `Clone::clone` call
- if segment.ident.name == sym::clone
- && results.type_dependent_def_id(expr.hir_id).map_or(
- false,
- |did| {
- let assoc_item = self.tcx.associated_item(did);
- assoc_item.container == ty::AssocItemContainer::TraitContainer
- && assoc_item.container_id(self.tcx) == clone_trait_did
- },
- )
- // If that clone call hasn't already dereferenced the self type (i.e. don't give this
- // diagnostic in cases where we have `(&&T).clone()` and we expect `T`).
- && !results.expr_adjustments(callee_expr).iter().any(|adj| matches!(adj.kind, ty::adjustment::Adjust::Deref(..)))
- // Check that we're in fact trying to clone into the expected type
- && self.can_coerce(*pointee_ty, expected_ty)
- // And the expected type doesn't implement `Clone`
- && !self.predicate_must_hold_considering_regions(&traits::Obligation {
- cause: traits::ObligationCause::dummy(),
- param_env: self.param_env,
- recursion_depth: 0,
- predicate: ty::Binder::dummy(ty::TraitRef {
- def_id: clone_trait_did,
- substs: self.tcx.mk_substs([expected_ty.into()].iter()),
- })
- .without_const()
- .to_predicate(self.tcx),
- })
- {
- diag.span_note(
- callee_expr.span,
- &format!(
- "`{expected_ty}` does not implement `Clone`, so `{found_ty}` was cloned instead"
- ),
- );
- }
- }
-
- /// A common error is to add an extra semicolon:
- ///
- /// ```compile_fail,E0308
- /// fn foo() -> usize {
- /// 22;
- /// }
- /// ```
- ///
- /// This routine checks if the final statement in a block is an
- /// expression with an explicit semicolon whose type is compatible
- /// with `expected_ty`. If so, it suggests removing the semicolon.
- pub(crate) fn consider_removing_semicolon(
- &self,
- blk: &'tcx hir::Block<'tcx>,
- expected_ty: Ty<'tcx>,
- err: &mut Diagnostic,
- ) -> bool {
- if let Some((span_semi, boxed)) = self.could_remove_semicolon(blk, expected_ty) {
- if let StatementAsExpression::NeedsBoxing = boxed {
- err.span_suggestion_verbose(
- span_semi,
- "consider removing this semicolon and boxing the expression",
- "",
- Applicability::HasPlaceholders,
- );
- } else {
- err.span_suggestion_short(
- span_semi,
- "remove this semicolon",
- "",
- Applicability::MachineApplicable,
- );
- }
- true
- } else {
- false
- }
- }
-}