summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/coherence/orphan.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/coherence/orphan.rs')
-rw-r--r--compiler/rustc_typeck/src/coherence/orphan.rs507
1 files changed, 507 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/coherence/orphan.rs b/compiler/rustc_typeck/src/coherence/orphan.rs
new file mode 100644
index 000000000..1608550aa
--- /dev/null
+++ b/compiler/rustc_typeck/src/coherence/orphan.rs
@@ -0,0 +1,507 @@
+//! Orphan checker: every impl either implements a trait defined in this
+//! crate or pertains to a type defined in this crate.
+
+use rustc_data_structures::fx::FxHashSet;
+use rustc_errors::struct_span_err;
+use rustc_errors::{Diagnostic, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_infer::infer::TyCtxtInferExt;
+use rustc_middle::ty::subst::GenericArgKind;
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::util::IgnoreRegions;
+use rustc_middle::ty::{
+ self, ImplPolarity, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor,
+};
+use rustc_session::lint;
+use rustc_span::def_id::{DefId, LocalDefId};
+use rustc_span::Span;
+use rustc_trait_selection::traits;
+use std::ops::ControlFlow;
+
+#[instrument(skip(tcx), level = "debug")]
+pub(crate) fn orphan_check_impl(
+ tcx: TyCtxt<'_>,
+ impl_def_id: LocalDefId,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
+ if let Some(err) = trait_ref.error_reported() {
+ return Err(err);
+ }
+
+ let ret = do_orphan_check_impl(tcx, trait_ref, impl_def_id);
+ if tcx.trait_is_auto(trait_ref.def_id) {
+ lint_auto_trait_impl(tcx, trait_ref, impl_def_id);
+ }
+
+ ret
+}
+
+fn do_orphan_check_impl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::TraitRef<'tcx>,
+ def_id: LocalDefId,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_def_id = trait_ref.def_id;
+
+ let item = tcx.hir().item(hir::ItemId { def_id });
+ let hir::ItemKind::Impl(ref impl_) = item.kind else {
+ bug!("{:?} is not an impl: {:?}", def_id, item);
+ };
+ let sp = tcx.def_span(def_id);
+ let tr = impl_.of_trait.as_ref().unwrap();
+
+ // Ensure no opaque types are present in this impl header. See issues #76202 and #86411 for examples,
+ // and #84660 where it would otherwise allow unsoundness.
+ if trait_ref.has_opaque_types() {
+ trace!("{:#?}", item);
+ // First we find the opaque type in question.
+ for ty in trait_ref.substs {
+ for ty in ty.walk() {
+ let ty::subst::GenericArgKind::Type(ty) = ty.unpack() else { continue };
+ let ty::Opaque(def_id, _) = *ty.kind() else { continue };
+ trace!(?def_id);
+
+ // Then we search for mentions of the opaque type's type alias in the HIR
+ struct SpanFinder<'tcx> {
+ sp: Span,
+ def_id: DefId,
+ tcx: TyCtxt<'tcx>,
+ }
+ impl<'v, 'tcx> hir::intravisit::Visitor<'v> for SpanFinder<'tcx> {
+ #[instrument(level = "trace", skip(self, _id))]
+ fn visit_path(&mut self, path: &'v hir::Path<'v>, _id: hir::HirId) {
+ // You can't mention an opaque type directly, so we look for type aliases
+ if let hir::def::Res::Def(hir::def::DefKind::TyAlias, def_id) = path.res {
+ // And check if that type alias's type contains the opaque type we're looking for
+ for arg in self.tcx.type_of(def_id).walk() {
+ if let GenericArgKind::Type(ty) = arg.unpack() {
+ if let ty::Opaque(def_id, _) = *ty.kind() {
+ if def_id == self.def_id {
+ // Finally we update the span to the mention of the type alias
+ self.sp = path.span;
+ return;
+ }
+ }
+ }
+ }
+ }
+ hir::intravisit::walk_path(self, path)
+ }
+ }
+
+ let mut visitor = SpanFinder { sp, def_id, tcx };
+ hir::intravisit::walk_item(&mut visitor, item);
+ let reported = tcx
+ .sess
+ .struct_span_err(visitor.sp, "cannot implement trait on type alias impl trait")
+ .span_note(tcx.def_span(def_id), "type alias impl trait defined here")
+ .emit();
+ return Err(reported);
+ }
+ }
+ span_bug!(sp, "opaque type not found, but `has_opaque_types` is set")
+ }
+
+ match traits::orphan_check(tcx, item.def_id.to_def_id()) {
+ Ok(()) => {}
+ Err(err) => emit_orphan_check_error(
+ tcx,
+ sp,
+ item.span,
+ tr.path.span,
+ trait_ref.self_ty(),
+ impl_.self_ty.span,
+ &impl_.generics,
+ err,
+ )?,
+ }
+
+ // In addition to the above rules, we restrict impls of auto traits
+ // so that they can only be implemented on nominal types, such as structs,
+ // enums or foreign types. To see why this restriction exists, consider the
+ // following example (#22978). Imagine that crate A defines an auto trait
+ // `Foo` and a fn that operates on pairs of types:
+ //
+ // ```
+ // // Crate A
+ // auto trait Foo { }
+ // fn two_foos<A:Foo,B:Foo>(..) {
+ // one_foo::<(A,B)>(..)
+ // }
+ // fn one_foo<T:Foo>(..) { .. }
+ // ```
+ //
+ // This type-checks fine; in particular the fn
+ // `two_foos` is able to conclude that `(A,B):Foo`
+ // because `A:Foo` and `B:Foo`.
+ //
+ // Now imagine that crate B comes along and does the following:
+ //
+ // ```
+ // struct A { }
+ // struct B { }
+ // impl Foo for A { }
+ // impl Foo for B { }
+ // impl !Send for (A, B) { }
+ // ```
+ //
+ // This final impl is legal according to the orphan
+ // rules, but it invalidates the reasoning from
+ // `two_foos` above.
+ debug!(
+ "trait_ref={:?} trait_def_id={:?} trait_is_auto={}",
+ trait_ref,
+ trait_def_id,
+ tcx.trait_is_auto(trait_def_id)
+ );
+
+ if tcx.trait_is_auto(trait_def_id) && !trait_def_id.is_local() {
+ let self_ty = trait_ref.self_ty();
+ let opt_self_def_id = match *self_ty.kind() {
+ ty::Adt(self_def, _) => Some(self_def.did()),
+ ty::Foreign(did) => Some(did),
+ _ => None,
+ };
+
+ let msg = match opt_self_def_id {
+ // We only want to permit nominal types, but not *all* nominal types.
+ // They must be local to the current crate, so that people
+ // can't do `unsafe impl Send for Rc<SomethingLocal>` or
+ // `impl !Send for Box<SomethingLocalAndSend>`.
+ Some(self_def_id) => {
+ if self_def_id.is_local() {
+ None
+ } else {
+ Some((
+ format!(
+ "cross-crate traits with a default impl, like `{}`, \
+ can only be implemented for a struct/enum type \
+ defined in the current crate",
+ tcx.def_path_str(trait_def_id)
+ ),
+ "can't implement cross-crate trait for type in another crate",
+ ))
+ }
+ }
+ _ => Some((
+ format!(
+ "cross-crate traits with a default impl, like `{}`, can \
+ only be implemented for a struct/enum type, not `{}`",
+ tcx.def_path_str(trait_def_id),
+ self_ty
+ ),
+ "can't implement cross-crate trait with a default impl for \
+ non-struct/enum type",
+ )),
+ };
+
+ if let Some((msg, label)) = msg {
+ let reported =
+ struct_span_err!(tcx.sess, sp, E0321, "{}", msg).span_label(sp, label).emit();
+ return Err(reported);
+ }
+ }
+
+ Ok(())
+}
+
+fn emit_orphan_check_error<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ sp: Span,
+ full_impl_span: Span,
+ trait_span: Span,
+ self_ty: Ty<'tcx>,
+ self_ty_span: Span,
+ generics: &hir::Generics<'tcx>,
+ err: traits::OrphanCheckErr<'tcx>,
+) -> Result<!, ErrorGuaranteed> {
+ Err(match err {
+ traits::OrphanCheckErr::NonLocalInputType(tys) => {
+ let msg = match self_ty.kind() {
+ ty::Adt(..) => "can be implemented for types defined outside of the crate",
+ _ if self_ty.is_primitive() => "can be implemented for primitive types",
+ _ => "can be implemented for arbitrary types",
+ };
+ let mut err = struct_span_err!(
+ tcx.sess,
+ sp,
+ E0117,
+ "only traits defined in the current crate {msg}"
+ );
+ err.span_label(sp, "impl doesn't use only types from inside the current crate");
+ for (ty, is_target_ty) in &tys {
+ let mut ty = *ty;
+ tcx.infer_ctxt().enter(|infcx| {
+ // Remove the lifetimes unnecessary for this error.
+ ty = infcx.freshen(ty);
+ });
+ ty = match ty.kind() {
+ // Remove the type arguments from the output, as they are not relevant.
+ // You can think of this as the reverse of `resolve_vars_if_possible`.
+ // That way if we had `Vec<MyType>`, we will properly attribute the
+ // problem to `Vec<T>` and avoid confusing the user if they were to see
+ // `MyType` in the error.
+ ty::Adt(def, _) => tcx.mk_adt(*def, ty::List::empty()),
+ _ => ty,
+ };
+ let this = "this".to_string();
+ let (ty, postfix) = match &ty.kind() {
+ ty::Slice(_) => (this, " because slices are always foreign"),
+ ty::Array(..) => (this, " because arrays are always foreign"),
+ ty::Tuple(..) => (this, " because tuples are always foreign"),
+ ty::RawPtr(ptr_ty) => {
+ emit_newtype_suggestion_for_raw_ptr(
+ full_impl_span,
+ self_ty,
+ self_ty_span,
+ ptr_ty,
+ &mut err,
+ );
+
+ (format!("`{}`", ty), " because raw pointers are always foreign")
+ }
+ _ => (format!("`{}`", ty), ""),
+ };
+
+ let msg = format!("{} is not defined in the current crate{}", ty, postfix);
+ if *is_target_ty {
+ // Point at `D<A>` in `impl<A, B> for C<B> in D<A>`
+ err.span_label(self_ty_span, &msg);
+ } else {
+ // Point at `C<B>` in `impl<A, B> for C<B> in D<A>`
+ err.span_label(trait_span, &msg);
+ }
+ }
+ err.note("define and implement a trait or new type instead");
+ err.emit()
+ }
+ traits::OrphanCheckErr::UncoveredTy(param_ty, local_type) => {
+ let mut sp = sp;
+ for param in generics.params {
+ if param.name.ident().to_string() == param_ty.to_string() {
+ sp = param.span;
+ }
+ }
+
+ match local_type {
+ Some(local_type) => struct_span_err!(
+ tcx.sess,
+ sp,
+ E0210,
+ "type parameter `{}` must be covered by another type \
+ when it appears before the first local type (`{}`)",
+ param_ty,
+ local_type
+ )
+ .span_label(
+ sp,
+ format!(
+ "type parameter `{}` must be covered by another type \
+ when it appears before the first local type (`{}`)",
+ param_ty, local_type
+ ),
+ )
+ .note(
+ "implementing a foreign trait is only possible if at \
+ least one of the types for which it is implemented is local, \
+ and no uncovered type parameters appear before that first \
+ local type",
+ )
+ .note(
+ "in this case, 'before' refers to the following order: \
+ `impl<..> ForeignTrait<T1, ..., Tn> for T0`, \
+ where `T0` is the first and `Tn` is the last",
+ )
+ .emit(),
+ None => struct_span_err!(
+ tcx.sess,
+ sp,
+ E0210,
+ "type parameter `{}` must be used as the type parameter for some \
+ local type (e.g., `MyStruct<{}>`)",
+ param_ty,
+ param_ty
+ )
+ .span_label(
+ sp,
+ format!(
+ "type parameter `{}` must be used as the type parameter for some \
+ local type",
+ param_ty,
+ ),
+ )
+ .note(
+ "implementing a foreign trait is only possible if at \
+ least one of the types for which it is implemented is local",
+ )
+ .note(
+ "only traits defined in the current crate can be \
+ implemented for a type parameter",
+ )
+ .emit(),
+ }
+ }
+ })
+}
+
+fn emit_newtype_suggestion_for_raw_ptr(
+ full_impl_span: Span,
+ self_ty: Ty<'_>,
+ self_ty_span: Span,
+ ptr_ty: &ty::TypeAndMut<'_>,
+ diag: &mut Diagnostic,
+) {
+ if !self_ty.needs_subst() {
+ let mut_key = if ptr_ty.mutbl == rustc_middle::mir::Mutability::Mut { "mut " } else { "" };
+ let msg_sugg = "consider introducing a new wrapper type".to_owned();
+ let sugg = vec![
+ (
+ full_impl_span.shrink_to_lo(),
+ format!("struct WrapperType(*{}{});\n\n", mut_key, ptr_ty.ty),
+ ),
+ (self_ty_span, "WrapperType".to_owned()),
+ ];
+ diag.multipart_suggestion(msg_sugg, sugg, rustc_errors::Applicability::MaybeIncorrect);
+ }
+}
+
+/// Lint impls of auto traits if they are likely to have
+/// unsound or surprising effects on auto impls.
+fn lint_auto_trait_impl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::TraitRef<'tcx>,
+ impl_def_id: LocalDefId,
+) {
+ if tcx.impl_polarity(impl_def_id) != ImplPolarity::Positive {
+ return;
+ }
+
+ assert_eq!(trait_ref.substs.len(), 1);
+ let self_ty = trait_ref.self_ty();
+ let (self_type_did, substs) = match self_ty.kind() {
+ ty::Adt(def, substs) => (def.did(), substs),
+ _ => {
+ // FIXME: should also lint for stuff like `&i32` but
+ // considering that auto traits are unstable, that
+ // isn't too important for now as this only affects
+ // crates using `nightly`, and std.
+ return;
+ }
+ };
+
+ // Impls which completely cover a given root type are fine as they
+ // disable auto impls entirely. So only lint if the substs
+ // are not a permutation of the identity substs.
+ let Err(arg) = tcx.uses_unique_generic_params(substs, IgnoreRegions::Yes) else {
+ // ok
+ return;
+ };
+
+ // Ideally:
+ //
+ // - compute the requirements for the auto impl candidate
+ // - check whether these are implied by the non covering impls
+ // - if not, emit the lint
+ //
+ // What we do here is a bit simpler:
+ //
+ // - badly check if an auto impl candidate definitely does not apply
+ // for the given simplified type
+ // - if so, do not lint
+ if fast_reject_auto_impl(tcx, trait_ref.def_id, self_ty) {
+ // ok
+ return;
+ }
+
+ tcx.struct_span_lint_hir(
+ lint::builtin::SUSPICIOUS_AUTO_TRAIT_IMPLS,
+ tcx.hir().local_def_id_to_hir_id(impl_def_id),
+ tcx.def_span(impl_def_id),
+ |err| {
+ let item_span = tcx.def_span(self_type_did);
+ let self_descr = tcx.def_kind(self_type_did).descr(self_type_did);
+ let mut err = err.build(&format!(
+ "cross-crate traits with a default impl, like `{}`, \
+ should not be specialized",
+ tcx.def_path_str(trait_ref.def_id),
+ ));
+ match arg {
+ ty::util::NotUniqueParam::DuplicateParam(arg) => {
+ err.note(&format!("`{}` is mentioned multiple times", arg));
+ }
+ ty::util::NotUniqueParam::NotParam(arg) => {
+ err.note(&format!("`{}` is not a generic parameter", arg));
+ }
+ }
+ err.span_note(
+ item_span,
+ &format!(
+ "try using the same sequence of generic parameters as the {} definition",
+ self_descr,
+ ),
+ );
+ err.emit();
+ },
+ );
+}
+
+fn fast_reject_auto_impl<'tcx>(tcx: TyCtxt<'tcx>, trait_def_id: DefId, self_ty: Ty<'tcx>) -> bool {
+ struct DisableAutoTraitVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ trait_def_id: DefId,
+ self_ty_root: Ty<'tcx>,
+ seen: FxHashSet<DefId>,
+ }
+
+ impl<'tcx> TypeVisitor<'tcx> for DisableAutoTraitVisitor<'tcx> {
+ type BreakTy = ();
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ let tcx = self.tcx;
+ if t != self.self_ty_root {
+ for impl_def_id in tcx.non_blanket_impls_for_ty(self.trait_def_id, t) {
+ match tcx.impl_polarity(impl_def_id) {
+ ImplPolarity::Negative => return ControlFlow::BREAK,
+ ImplPolarity::Reservation => {}
+ // FIXME(@lcnr): That's probably not good enough, idk
+ //
+ // We might just want to take the rustdoc code and somehow avoid
+ // explicit impls for `Self`.
+ ImplPolarity::Positive => return ControlFlow::CONTINUE,
+ }
+ }
+ }
+
+ match t.kind() {
+ ty::Adt(def, substs) if def.is_phantom_data() => substs.visit_with(self),
+ ty::Adt(def, substs) => {
+ // @lcnr: This is the only place where cycles can happen. We avoid this
+ // by only visiting each `DefId` once.
+ //
+ // This will be is incorrect in subtle cases, but I don't care :)
+ if self.seen.insert(def.did()) {
+ for ty in def.all_fields().map(|field| field.ty(tcx, substs)) {
+ ty.visit_with(self)?;
+ }
+ }
+
+ ControlFlow::CONTINUE
+ }
+ _ => t.super_visit_with(self),
+ }
+ }
+ }
+
+ let self_ty_root = match self_ty.kind() {
+ ty::Adt(def, _) => tcx.mk_adt(*def, InternalSubsts::identity_for_item(tcx, def.did())),
+ _ => unimplemented!("unexpected self ty {:?}", self_ty),
+ };
+
+ self_ty_root
+ .visit_with(&mut DisableAutoTraitVisitor {
+ tcx,
+ self_ty_root,
+ trait_def_id,
+ seen: FxHashSet::default(),
+ })
+ .is_break()
+}