summaryrefslogtreecommitdiffstats
path: root/library/alloc/src/collections/binary_heap.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--library/alloc/src/collections/binary_heap.rs1721
1 files changed, 0 insertions, 1721 deletions
diff --git a/library/alloc/src/collections/binary_heap.rs b/library/alloc/src/collections/binary_heap.rs
deleted file mode 100644
index 4583bc9a1..000000000
--- a/library/alloc/src/collections/binary_heap.rs
+++ /dev/null
@@ -1,1721 +0,0 @@
-//! A priority queue implemented with a binary heap.
-//!
-//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
-//! Checking the largest element is *O*(1). Converting a vector to a binary heap
-//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be
-//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*))
-//! in-place heapsort.
-//!
-//! # Examples
-//!
-//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
-//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
-//! It shows how to use [`BinaryHeap`] with custom types.
-//!
-//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
-//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
-//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
-//!
-//! ```
-//! use std::cmp::Ordering;
-//! use std::collections::BinaryHeap;
-//!
-//! #[derive(Copy, Clone, Eq, PartialEq)]
-//! struct State {
-//! cost: usize,
-//! position: usize,
-//! }
-//!
-//! // The priority queue depends on `Ord`.
-//! // Explicitly implement the trait so the queue becomes a min-heap
-//! // instead of a max-heap.
-//! impl Ord for State {
-//! fn cmp(&self, other: &Self) -> Ordering {
-//! // Notice that the we flip the ordering on costs.
-//! // In case of a tie we compare positions - this step is necessary
-//! // to make implementations of `PartialEq` and `Ord` consistent.
-//! other.cost.cmp(&self.cost)
-//! .then_with(|| self.position.cmp(&other.position))
-//! }
-//! }
-//!
-//! // `PartialOrd` needs to be implemented as well.
-//! impl PartialOrd for State {
-//! fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
-//! Some(self.cmp(other))
-//! }
-//! }
-//!
-//! // Each node is represented as a `usize`, for a shorter implementation.
-//! struct Edge {
-//! node: usize,
-//! cost: usize,
-//! }
-//!
-//! // Dijkstra's shortest path algorithm.
-//!
-//! // Start at `start` and use `dist` to track the current shortest distance
-//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
-//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
-//! // for a simpler implementation.
-//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
-//! // dist[node] = current shortest distance from `start` to `node`
-//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
-//!
-//! let mut heap = BinaryHeap::new();
-//!
-//! // We're at `start`, with a zero cost
-//! dist[start] = 0;
-//! heap.push(State { cost: 0, position: start });
-//!
-//! // Examine the frontier with lower cost nodes first (min-heap)
-//! while let Some(State { cost, position }) = heap.pop() {
-//! // Alternatively we could have continued to find all shortest paths
-//! if position == goal { return Some(cost); }
-//!
-//! // Important as we may have already found a better way
-//! if cost > dist[position] { continue; }
-//!
-//! // For each node we can reach, see if we can find a way with
-//! // a lower cost going through this node
-//! for edge in &adj_list[position] {
-//! let next = State { cost: cost + edge.cost, position: edge.node };
-//!
-//! // If so, add it to the frontier and continue
-//! if next.cost < dist[next.position] {
-//! heap.push(next);
-//! // Relaxation, we have now found a better way
-//! dist[next.position] = next.cost;
-//! }
-//! }
-//! }
-//!
-//! // Goal not reachable
-//! None
-//! }
-//!
-//! fn main() {
-//! // This is the directed graph we're going to use.
-//! // The node numbers correspond to the different states,
-//! // and the edge weights symbolize the cost of moving
-//! // from one node to another.
-//! // Note that the edges are one-way.
-//! //
-//! // 7
-//! // +-----------------+
-//! // | |
-//! // v 1 2 | 2
-//! // 0 -----> 1 -----> 3 ---> 4
-//! // | ^ ^ ^
-//! // | | 1 | |
-//! // | | | 3 | 1
-//! // +------> 2 -------+ |
-//! // 10 | |
-//! // +---------------+
-//! //
-//! // The graph is represented as an adjacency list where each index,
-//! // corresponding to a node value, has a list of outgoing edges.
-//! // Chosen for its efficiency.
-//! let graph = vec![
-//! // Node 0
-//! vec![Edge { node: 2, cost: 10 },
-//! Edge { node: 1, cost: 1 }],
-//! // Node 1
-//! vec![Edge { node: 3, cost: 2 }],
-//! // Node 2
-//! vec![Edge { node: 1, cost: 1 },
-//! Edge { node: 3, cost: 3 },
-//! Edge { node: 4, cost: 1 }],
-//! // Node 3
-//! vec![Edge { node: 0, cost: 7 },
-//! Edge { node: 4, cost: 2 }],
-//! // Node 4
-//! vec![]];
-//!
-//! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
-//! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
-//! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
-//! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
-//! assert_eq!(shortest_path(&graph, 4, 0), None);
-//! }
-//! ```
-
-#![allow(missing_docs)]
-#![stable(feature = "rust1", since = "1.0.0")]
-
-use core::fmt;
-use core::iter::{FromIterator, FusedIterator, InPlaceIterable, SourceIter, TrustedLen};
-use core::mem::{self, swap, ManuallyDrop};
-use core::ops::{Deref, DerefMut};
-use core::ptr;
-
-use crate::collections::TryReserveError;
-use crate::slice;
-use crate::vec::{self, AsVecIntoIter, Vec};
-
-use super::SpecExtend;
-
-#[cfg(test)]
-mod tests;
-
-/// A priority queue implemented with a binary heap.
-///
-/// This will be a max-heap.
-///
-/// It is a logic error for an item to be modified in such a way that the
-/// item's ordering relative to any other item, as determined by the [`Ord`]
-/// trait, changes while it is in the heap. This is normally only possible
-/// through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. The
-/// behavior resulting from such a logic error is not specified, but will
-/// be encapsulated to the `BinaryHeap` that observed the logic error and not
-/// result in undefined behavior. This could include panics, incorrect results,
-/// aborts, memory leaks, and non-termination.
-///
-/// # Examples
-///
-/// ```
-/// use std::collections::BinaryHeap;
-///
-/// // Type inference lets us omit an explicit type signature (which
-/// // would be `BinaryHeap<i32>` in this example).
-/// let mut heap = BinaryHeap::new();
-///
-/// // We can use peek to look at the next item in the heap. In this case,
-/// // there's no items in there yet so we get None.
-/// assert_eq!(heap.peek(), None);
-///
-/// // Let's add some scores...
-/// heap.push(1);
-/// heap.push(5);
-/// heap.push(2);
-///
-/// // Now peek shows the most important item in the heap.
-/// assert_eq!(heap.peek(), Some(&5));
-///
-/// // We can check the length of a heap.
-/// assert_eq!(heap.len(), 3);
-///
-/// // We can iterate over the items in the heap, although they are returned in
-/// // a random order.
-/// for x in &heap {
-/// println!("{x}");
-/// }
-///
-/// // If we instead pop these scores, they should come back in order.
-/// assert_eq!(heap.pop(), Some(5));
-/// assert_eq!(heap.pop(), Some(2));
-/// assert_eq!(heap.pop(), Some(1));
-/// assert_eq!(heap.pop(), None);
-///
-/// // We can clear the heap of any remaining items.
-/// heap.clear();
-///
-/// // The heap should now be empty.
-/// assert!(heap.is_empty())
-/// ```
-///
-/// A `BinaryHeap` with a known list of items can be initialized from an array:
-///
-/// ```
-/// use std::collections::BinaryHeap;
-///
-/// let heap = BinaryHeap::from([1, 5, 2]);
-/// ```
-///
-/// ## Min-heap
-///
-/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to
-/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest
-/// value instead of the greatest one.
-///
-/// ```
-/// use std::collections::BinaryHeap;
-/// use std::cmp::Reverse;
-///
-/// let mut heap = BinaryHeap::new();
-///
-/// // Wrap values in `Reverse`
-/// heap.push(Reverse(1));
-/// heap.push(Reverse(5));
-/// heap.push(Reverse(2));
-///
-/// // If we pop these scores now, they should come back in the reverse order.
-/// assert_eq!(heap.pop(), Some(Reverse(1)));
-/// assert_eq!(heap.pop(), Some(Reverse(2)));
-/// assert_eq!(heap.pop(), Some(Reverse(5)));
-/// assert_eq!(heap.pop(), None);
-/// ```
-///
-/// # Time complexity
-///
-/// | [push] | [pop] | [peek]/[peek\_mut] |
-/// |---------|---------------|--------------------|
-/// | *O*(1)~ | *O*(log(*n*)) | *O*(1) |
-///
-/// The value for `push` is an expected cost; the method documentation gives a
-/// more detailed analysis.
-///
-/// [`core::cmp::Reverse`]: core::cmp::Reverse
-/// [`Ord`]: core::cmp::Ord
-/// [`Cell`]: core::cell::Cell
-/// [`RefCell`]: core::cell::RefCell
-/// [push]: BinaryHeap::push
-/// [pop]: BinaryHeap::pop
-/// [peek]: BinaryHeap::peek
-/// [peek\_mut]: BinaryHeap::peek_mut
-#[stable(feature = "rust1", since = "1.0.0")]
-#[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")]
-pub struct BinaryHeap<T> {
- data: Vec<T>,
-}
-
-/// Structure wrapping a mutable reference to the greatest item on a
-/// `BinaryHeap`.
-///
-/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
-/// its documentation for more.
-///
-/// [`peek_mut`]: BinaryHeap::peek_mut
-#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
-pub struct PeekMut<'a, T: 'a + Ord> {
- heap: &'a mut BinaryHeap<T>,
- sift: bool,
-}
-
-#[stable(feature = "collection_debug", since = "1.17.0")]
-impl<T: Ord + fmt::Debug> fmt::Debug for PeekMut<'_, T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
- }
-}
-
-#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
-impl<T: Ord> Drop for PeekMut<'_, T> {
- fn drop(&mut self) {
- if self.sift {
- // SAFETY: PeekMut is only instantiated for non-empty heaps.
- unsafe { self.heap.sift_down(0) };
- }
- }
-}
-
-#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
-impl<T: Ord> Deref for PeekMut<'_, T> {
- type Target = T;
- fn deref(&self) -> &T {
- debug_assert!(!self.heap.is_empty());
- // SAFE: PeekMut is only instantiated for non-empty heaps
- unsafe { self.heap.data.get_unchecked(0) }
- }
-}
-
-#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
-impl<T: Ord> DerefMut for PeekMut<'_, T> {
- fn deref_mut(&mut self) -> &mut T {
- debug_assert!(!self.heap.is_empty());
- self.sift = true;
- // SAFE: PeekMut is only instantiated for non-empty heaps
- unsafe { self.heap.data.get_unchecked_mut(0) }
- }
-}
-
-impl<'a, T: Ord> PeekMut<'a, T> {
- /// Removes the peeked value from the heap and returns it.
- #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
- pub fn pop(mut this: PeekMut<'a, T>) -> T {
- let value = this.heap.pop().unwrap();
- this.sift = false;
- value
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Clone> Clone for BinaryHeap<T> {
- fn clone(&self) -> Self {
- BinaryHeap { data: self.data.clone() }
- }
-
- fn clone_from(&mut self, source: &Self) {
- self.data.clone_from(&source.data);
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Ord> Default for BinaryHeap<T> {
- /// Creates an empty `BinaryHeap<T>`.
- #[inline]
- fn default() -> BinaryHeap<T> {
- BinaryHeap::new()
- }
-}
-
-#[stable(feature = "binaryheap_debug", since = "1.4.0")]
-impl<T: fmt::Debug> fmt::Debug for BinaryHeap<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.debug_list().entries(self.iter()).finish()
- }
-}
-
-impl<T: Ord> BinaryHeap<T> {
- /// Creates an empty `BinaryHeap` as a max-heap.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::new();
- /// heap.push(4);
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- #[must_use]
- pub fn new() -> BinaryHeap<T> {
- BinaryHeap { data: vec![] }
- }
-
- /// Creates an empty `BinaryHeap` with at least the specified capacity.
- ///
- /// The binary heap will be able to hold at least `capacity` elements without
- /// reallocating. This method is allowed to allocate for more elements than
- /// `capacity`. If `capacity` is 0, the binary heap will not allocate.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::with_capacity(10);
- /// heap.push(4);
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- #[must_use]
- pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
- BinaryHeap { data: Vec::with_capacity(capacity) }
- }
-
- /// Returns a mutable reference to the greatest item in the binary heap, or
- /// `None` if it is empty.
- ///
- /// Note: If the `PeekMut` value is leaked, the heap may be in an
- /// inconsistent state.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::new();
- /// assert!(heap.peek_mut().is_none());
- ///
- /// heap.push(1);
- /// heap.push(5);
- /// heap.push(2);
- /// {
- /// let mut val = heap.peek_mut().unwrap();
- /// *val = 0;
- /// }
- /// assert_eq!(heap.peek(), Some(&2));
- /// ```
- ///
- /// # Time complexity
- ///
- /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
- /// otherwise it's *O*(1).
- #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
- pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>> {
- if self.is_empty() { None } else { Some(PeekMut { heap: self, sift: false }) }
- }
-
- /// Removes the greatest item from the binary heap and returns it, or `None` if it
- /// is empty.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::from([1, 3]);
- ///
- /// assert_eq!(heap.pop(), Some(3));
- /// assert_eq!(heap.pop(), Some(1));
- /// assert_eq!(heap.pop(), None);
- /// ```
- ///
- /// # Time complexity
- ///
- /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn pop(&mut self) -> Option<T> {
- self.data.pop().map(|mut item| {
- if !self.is_empty() {
- swap(&mut item, &mut self.data[0]);
- // SAFETY: !self.is_empty() means that self.len() > 0
- unsafe { self.sift_down_to_bottom(0) };
- }
- item
- })
- }
-
- /// Pushes an item onto the binary heap.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::new();
- /// heap.push(3);
- /// heap.push(5);
- /// heap.push(1);
- ///
- /// assert_eq!(heap.len(), 3);
- /// assert_eq!(heap.peek(), Some(&5));
- /// ```
- ///
- /// # Time complexity
- ///
- /// The expected cost of `push`, averaged over every possible ordering of
- /// the elements being pushed, and over a sufficiently large number of
- /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
- /// elements that are *not* already in any sorted pattern.
- ///
- /// The time complexity degrades if elements are pushed in predominantly
- /// ascending order. In the worst case, elements are pushed in ascending
- /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
- /// containing *n* elements.
- ///
- /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
- /// occurs when capacity is exhausted and needs a resize. The resize cost
- /// has been amortized in the previous figures.
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn push(&mut self, item: T) {
- let old_len = self.len();
- self.data.push(item);
- // SAFETY: Since we pushed a new item it means that
- // old_len = self.len() - 1 < self.len()
- unsafe { self.sift_up(0, old_len) };
- }
-
- /// Consumes the `BinaryHeap` and returns a vector in sorted
- /// (ascending) order.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- ///
- /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]);
- /// heap.push(6);
- /// heap.push(3);
- ///
- /// let vec = heap.into_sorted_vec();
- /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
- /// ```
- #[must_use = "`self` will be dropped if the result is not used"]
- #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
- pub fn into_sorted_vec(mut self) -> Vec<T> {
- let mut end = self.len();
- while end > 1 {
- end -= 1;
- // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
- // so it's always a valid index to access.
- // It is safe to access index 0 (i.e. `ptr`), because
- // 1 <= end < self.len(), which means self.len() >= 2.
- unsafe {
- let ptr = self.data.as_mut_ptr();
- ptr::swap(ptr, ptr.add(end));
- }
- // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so:
- // 0 < 1 <= end <= self.len() - 1 < self.len()
- // Which means 0 < end and end < self.len().
- unsafe { self.sift_down_range(0, end) };
- }
- self.into_vec()
- }
-
- // The implementations of sift_up and sift_down use unsafe blocks in
- // order to move an element out of the vector (leaving behind a
- // hole), shift along the others and move the removed element back into the
- // vector at the final location of the hole.
- // The `Hole` type is used to represent this, and make sure
- // the hole is filled back at the end of its scope, even on panic.
- // Using a hole reduces the constant factor compared to using swaps,
- // which involves twice as many moves.
-
- /// # Safety
- ///
- /// The caller must guarantee that `pos < self.len()`.
- unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize {
- // Take out the value at `pos` and create a hole.
- // SAFETY: The caller guarantees that pos < self.len()
- let mut hole = unsafe { Hole::new(&mut self.data, pos) };
-
- while hole.pos() > start {
- let parent = (hole.pos() - 1) / 2;
-
- // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0
- // and so hole.pos() - 1 can't underflow.
- // This guarantees that parent < hole.pos() so
- // it's a valid index and also != hole.pos().
- if hole.element() <= unsafe { hole.get(parent) } {
- break;
- }
-
- // SAFETY: Same as above
- unsafe { hole.move_to(parent) };
- }
-
- hole.pos()
- }
-
- /// Take an element at `pos` and move it down the heap,
- /// while its children are larger.
- ///
- /// # Safety
- ///
- /// The caller must guarantee that `pos < end <= self.len()`.
- unsafe fn sift_down_range(&mut self, pos: usize, end: usize) {
- // SAFETY: The caller guarantees that pos < end <= self.len().
- let mut hole = unsafe { Hole::new(&mut self.data, pos) };
- let mut child = 2 * hole.pos() + 1;
-
- // Loop invariant: child == 2 * hole.pos() + 1.
- while child <= end.saturating_sub(2) {
- // compare with the greater of the two children
- // SAFETY: child < end - 1 < self.len() and
- // child + 1 < end <= self.len(), so they're valid indexes.
- // child == 2 * hole.pos() + 1 != hole.pos() and
- // child + 1 == 2 * hole.pos() + 2 != hole.pos().
- // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
- // if T is a ZST
- child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
-
- // if we are already in order, stop.
- // SAFETY: child is now either the old child or the old child+1
- // We already proven that both are < self.len() and != hole.pos()
- if hole.element() >= unsafe { hole.get(child) } {
- return;
- }
-
- // SAFETY: same as above.
- unsafe { hole.move_to(child) };
- child = 2 * hole.pos() + 1;
- }
-
- // SAFETY: && short circuit, which means that in the
- // second condition it's already true that child == end - 1 < self.len().
- if child == end - 1 && hole.element() < unsafe { hole.get(child) } {
- // SAFETY: child is already proven to be a valid index and
- // child == 2 * hole.pos() + 1 != hole.pos().
- unsafe { hole.move_to(child) };
- }
- }
-
- /// # Safety
- ///
- /// The caller must guarantee that `pos < self.len()`.
- unsafe fn sift_down(&mut self, pos: usize) {
- let len = self.len();
- // SAFETY: pos < len is guaranteed by the caller and
- // obviously len = self.len() <= self.len().
- unsafe { self.sift_down_range(pos, len) };
- }
-
- /// Take an element at `pos` and move it all the way down the heap,
- /// then sift it up to its position.
- ///
- /// Note: This is faster when the element is known to be large / should
- /// be closer to the bottom.
- ///
- /// # Safety
- ///
- /// The caller must guarantee that `pos < self.len()`.
- unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) {
- let end = self.len();
- let start = pos;
-
- // SAFETY: The caller guarantees that pos < self.len().
- let mut hole = unsafe { Hole::new(&mut self.data, pos) };
- let mut child = 2 * hole.pos() + 1;
-
- // Loop invariant: child == 2 * hole.pos() + 1.
- while child <= end.saturating_sub(2) {
- // SAFETY: child < end - 1 < self.len() and
- // child + 1 < end <= self.len(), so they're valid indexes.
- // child == 2 * hole.pos() + 1 != hole.pos() and
- // child + 1 == 2 * hole.pos() + 2 != hole.pos().
- // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
- // if T is a ZST
- child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
-
- // SAFETY: Same as above
- unsafe { hole.move_to(child) };
- child = 2 * hole.pos() + 1;
- }
-
- if child == end - 1 {
- // SAFETY: child == end - 1 < self.len(), so it's a valid index
- // and child == 2 * hole.pos() + 1 != hole.pos().
- unsafe { hole.move_to(child) };
- }
- pos = hole.pos();
- drop(hole);
-
- // SAFETY: pos is the position in the hole and was already proven
- // to be a valid index.
- unsafe { self.sift_up(start, pos) };
- }
-
- /// Rebuild assuming data[0..start] is still a proper heap.
- fn rebuild_tail(&mut self, start: usize) {
- if start == self.len() {
- return;
- }
-
- let tail_len = self.len() - start;
-
- #[inline(always)]
- fn log2_fast(x: usize) -> usize {
- (usize::BITS - x.leading_zeros() - 1) as usize
- }
-
- // `rebuild` takes O(self.len()) operations
- // and about 2 * self.len() comparisons in the worst case
- // while repeating `sift_up` takes O(tail_len * log(start)) operations
- // and about 1 * tail_len * log_2(start) comparisons in the worst case,
- // assuming start >= tail_len. For larger heaps, the crossover point
- // no longer follows this reasoning and was determined empirically.
- let better_to_rebuild = if start < tail_len {
- true
- } else if self.len() <= 2048 {
- 2 * self.len() < tail_len * log2_fast(start)
- } else {
- 2 * self.len() < tail_len * 11
- };
-
- if better_to_rebuild {
- self.rebuild();
- } else {
- for i in start..self.len() {
- // SAFETY: The index `i` is always less than self.len().
- unsafe { self.sift_up(0, i) };
- }
- }
- }
-
- fn rebuild(&mut self) {
- let mut n = self.len() / 2;
- while n > 0 {
- n -= 1;
- // SAFETY: n starts from self.len() / 2 and goes down to 0.
- // The only case when !(n < self.len()) is if
- // self.len() == 0, but it's ruled out by the loop condition.
- unsafe { self.sift_down(n) };
- }
- }
-
- /// Moves all the elements of `other` into `self`, leaving `other` empty.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- ///
- /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]);
- /// let mut b = BinaryHeap::from([-20, 5, 43]);
- ///
- /// a.append(&mut b);
- ///
- /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
- /// assert!(b.is_empty());
- /// ```
- #[stable(feature = "binary_heap_append", since = "1.11.0")]
- pub fn append(&mut self, other: &mut Self) {
- if self.len() < other.len() {
- swap(self, other);
- }
-
- let start = self.data.len();
-
- self.data.append(&mut other.data);
-
- self.rebuild_tail(start);
- }
-
- /// Clears the binary heap, returning an iterator over the removed elements
- /// in heap order. If the iterator is dropped before being fully consumed,
- /// it drops the remaining elements in heap order.
- ///
- /// The returned iterator keeps a mutable borrow on the heap to optimize
- /// its implementation.
- ///
- /// Note:
- /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
- /// You should use the latter for most cases.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// #![feature(binary_heap_drain_sorted)]
- /// use std::collections::BinaryHeap;
- ///
- /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]);
- /// assert_eq!(heap.len(), 5);
- ///
- /// drop(heap.drain_sorted()); // removes all elements in heap order
- /// assert_eq!(heap.len(), 0);
- /// ```
- #[inline]
- #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
- pub fn drain_sorted(&mut self) -> DrainSorted<'_, T> {
- DrainSorted { inner: self }
- }
-
- /// Retains only the elements specified by the predicate.
- ///
- /// In other words, remove all elements `e` for which `f(&e)` returns
- /// `false`. The elements are visited in unsorted (and unspecified) order.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// #![feature(binary_heap_retain)]
- /// use std::collections::BinaryHeap;
- ///
- /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]);
- ///
- /// heap.retain(|x| x % 2 == 0); // only keep even numbers
- ///
- /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
- /// ```
- #[unstable(feature = "binary_heap_retain", issue = "71503")]
- pub fn retain<F>(&mut self, mut f: F)
- where
- F: FnMut(&T) -> bool,
- {
- let mut first_removed = self.len();
- let mut i = 0;
- self.data.retain(|e| {
- let keep = f(e);
- if !keep && i < first_removed {
- first_removed = i;
- }
- i += 1;
- keep
- });
- // data[0..first_removed] is untouched, so we only need to rebuild the tail:
- self.rebuild_tail(first_removed);
- }
-}
-
-impl<T> BinaryHeap<T> {
- /// Returns an iterator visiting all values in the underlying vector, in
- /// arbitrary order.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let heap = BinaryHeap::from([1, 2, 3, 4]);
- ///
- /// // Print 1, 2, 3, 4 in arbitrary order
- /// for x in heap.iter() {
- /// println!("{x}");
- /// }
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn iter(&self) -> Iter<'_, T> {
- Iter { iter: self.data.iter() }
- }
-
- /// Returns an iterator which retrieves elements in heap order.
- /// This method consumes the original heap.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// #![feature(binary_heap_into_iter_sorted)]
- /// use std::collections::BinaryHeap;
- /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]);
- ///
- /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);
- /// ```
- #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
- pub fn into_iter_sorted(self) -> IntoIterSorted<T> {
- IntoIterSorted { inner: self }
- }
-
- /// Returns the greatest item in the binary heap, or `None` if it is empty.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::new();
- /// assert_eq!(heap.peek(), None);
- ///
- /// heap.push(1);
- /// heap.push(5);
- /// heap.push(2);
- /// assert_eq!(heap.peek(), Some(&5));
- ///
- /// ```
- ///
- /// # Time complexity
- ///
- /// Cost is *O*(1) in the worst case.
- #[must_use]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn peek(&self) -> Option<&T> {
- self.data.get(0)
- }
-
- /// Returns the number of elements the binary heap can hold without reallocating.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::with_capacity(100);
- /// assert!(heap.capacity() >= 100);
- /// heap.push(4);
- /// ```
- #[must_use]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn capacity(&self) -> usize {
- self.data.capacity()
- }
-
- /// Reserves the minimum capacity for at least `additional` elements more than
- /// the current length. Unlike [`reserve`], this will not
- /// deliberately over-allocate to speculatively avoid frequent allocations.
- /// After calling `reserve_exact`, capacity will be greater than or equal to
- /// `self.len() + additional`. Does nothing if the capacity is already
- /// sufficient.
- ///
- /// [`reserve`]: BinaryHeap::reserve
- ///
- /// # Panics
- ///
- /// Panics if the new capacity overflows [`usize`].
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::new();
- /// heap.reserve_exact(100);
- /// assert!(heap.capacity() >= 100);
- /// heap.push(4);
- /// ```
- ///
- /// [`reserve`]: BinaryHeap::reserve
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn reserve_exact(&mut self, additional: usize) {
- self.data.reserve_exact(additional);
- }
-
- /// Reserves capacity for at least `additional` elements more than the
- /// current length. The allocator may reserve more space to speculatively
- /// avoid frequent allocations. After calling `reserve`,
- /// capacity will be greater than or equal to `self.len() + additional`.
- /// Does nothing if capacity is already sufficient.
- ///
- /// # Panics
- ///
- /// Panics if the new capacity overflows [`usize`].
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::new();
- /// heap.reserve(100);
- /// assert!(heap.capacity() >= 100);
- /// heap.push(4);
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn reserve(&mut self, additional: usize) {
- self.data.reserve(additional);
- }
-
- /// Tries to reserve the minimum capacity for at least `additional` elements
- /// more than the current length. Unlike [`try_reserve`], this will not
- /// deliberately over-allocate to speculatively avoid frequent allocations.
- /// After calling `try_reserve_exact`, capacity will be greater than or
- /// equal to `self.len() + additional` if it returns `Ok(())`.
- /// Does nothing if the capacity is already sufficient.
- ///
- /// Note that the allocator may give the collection more space than it
- /// requests. Therefore, capacity can not be relied upon to be precisely
- /// minimal. Prefer [`try_reserve`] if future insertions are expected.
- ///
- /// [`try_reserve`]: BinaryHeap::try_reserve
- ///
- /// # Errors
- ///
- /// If the capacity overflows, or the allocator reports a failure, then an error
- /// is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// use std::collections::TryReserveError;
- ///
- /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
- /// let mut heap = BinaryHeap::new();
- ///
- /// // Pre-reserve the memory, exiting if we can't
- /// heap.try_reserve_exact(data.len())?;
- ///
- /// // Now we know this can't OOM in the middle of our complex work
- /// heap.extend(data.iter());
- ///
- /// Ok(heap.pop())
- /// }
- /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
- /// ```
- #[stable(feature = "try_reserve_2", since = "1.63.0")]
- pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
- self.data.try_reserve_exact(additional)
- }
-
- /// Tries to reserve capacity for at least `additional` elements more than the
- /// current length. The allocator may reserve more space to speculatively
- /// avoid frequent allocations. After calling `try_reserve`, capacity will be
- /// greater than or equal to `self.len() + additional` if it returns
- /// `Ok(())`. Does nothing if capacity is already sufficient. This method
- /// preserves the contents even if an error occurs.
- ///
- /// # Errors
- ///
- /// If the capacity overflows, or the allocator reports a failure, then an error
- /// is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// use std::collections::TryReserveError;
- ///
- /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
- /// let mut heap = BinaryHeap::new();
- ///
- /// // Pre-reserve the memory, exiting if we can't
- /// heap.try_reserve(data.len())?;
- ///
- /// // Now we know this can't OOM in the middle of our complex work
- /// heap.extend(data.iter());
- ///
- /// Ok(heap.pop())
- /// }
- /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
- /// ```
- #[stable(feature = "try_reserve_2", since = "1.63.0")]
- pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
- self.data.try_reserve(additional)
- }
-
- /// Discards as much additional capacity as possible.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
- ///
- /// assert!(heap.capacity() >= 100);
- /// heap.shrink_to_fit();
- /// assert!(heap.capacity() == 0);
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn shrink_to_fit(&mut self) {
- self.data.shrink_to_fit();
- }
-
- /// Discards capacity with a lower bound.
- ///
- /// The capacity will remain at least as large as both the length
- /// and the supplied value.
- ///
- /// If the current capacity is less than the lower limit, this is a no-op.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
- ///
- /// assert!(heap.capacity() >= 100);
- /// heap.shrink_to(10);
- /// assert!(heap.capacity() >= 10);
- /// ```
- #[inline]
- #[stable(feature = "shrink_to", since = "1.56.0")]
- pub fn shrink_to(&mut self, min_capacity: usize) {
- self.data.shrink_to(min_capacity)
- }
-
- /// Returns a slice of all values in the underlying vector, in arbitrary
- /// order.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// #![feature(binary_heap_as_slice)]
- /// use std::collections::BinaryHeap;
- /// use std::io::{self, Write};
- ///
- /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
- ///
- /// io::sink().write(heap.as_slice()).unwrap();
- /// ```
- #[must_use]
- #[unstable(feature = "binary_heap_as_slice", issue = "83659")]
- pub fn as_slice(&self) -> &[T] {
- self.data.as_slice()
- }
-
- /// Consumes the `BinaryHeap` and returns the underlying vector
- /// in arbitrary order.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
- /// let vec = heap.into_vec();
- ///
- /// // Will print in some order
- /// for x in vec {
- /// println!("{x}");
- /// }
- /// ```
- #[must_use = "`self` will be dropped if the result is not used"]
- #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
- pub fn into_vec(self) -> Vec<T> {
- self.into()
- }
-
- /// Returns the length of the binary heap.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let heap = BinaryHeap::from([1, 3]);
- ///
- /// assert_eq!(heap.len(), 2);
- /// ```
- #[must_use]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn len(&self) -> usize {
- self.data.len()
- }
-
- /// Checks if the binary heap is empty.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::new();
- ///
- /// assert!(heap.is_empty());
- ///
- /// heap.push(3);
- /// heap.push(5);
- /// heap.push(1);
- ///
- /// assert!(!heap.is_empty());
- /// ```
- #[must_use]
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn is_empty(&self) -> bool {
- self.len() == 0
- }
-
- /// Clears the binary heap, returning an iterator over the removed elements
- /// in arbitrary order. If the iterator is dropped before being fully
- /// consumed, it drops the remaining elements in arbitrary order.
- ///
- /// The returned iterator keeps a mutable borrow on the heap to optimize
- /// its implementation.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::from([1, 3]);
- ///
- /// assert!(!heap.is_empty());
- ///
- /// for x in heap.drain() {
- /// println!("{x}");
- /// }
- ///
- /// assert!(heap.is_empty());
- /// ```
- #[inline]
- #[stable(feature = "drain", since = "1.6.0")]
- pub fn drain(&mut self) -> Drain<'_, T> {
- Drain { iter: self.data.drain(..) }
- }
-
- /// Drops all items from the binary heap.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let mut heap = BinaryHeap::from([1, 3]);
- ///
- /// assert!(!heap.is_empty());
- ///
- /// heap.clear();
- ///
- /// assert!(heap.is_empty());
- /// ```
- #[stable(feature = "rust1", since = "1.0.0")]
- pub fn clear(&mut self) {
- self.drain();
- }
-}
-
-/// Hole represents a hole in a slice i.e., an index without valid value
-/// (because it was moved from or duplicated).
-/// In drop, `Hole` will restore the slice by filling the hole
-/// position with the value that was originally removed.
-struct Hole<'a, T: 'a> {
- data: &'a mut [T],
- elt: ManuallyDrop<T>,
- pos: usize,
-}
-
-impl<'a, T> Hole<'a, T> {
- /// Create a new `Hole` at index `pos`.
- ///
- /// Unsafe because pos must be within the data slice.
- #[inline]
- unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
- debug_assert!(pos < data.len());
- // SAFE: pos should be inside the slice
- let elt = unsafe { ptr::read(data.get_unchecked(pos)) };
- Hole { data, elt: ManuallyDrop::new(elt), pos }
- }
-
- #[inline]
- fn pos(&self) -> usize {
- self.pos
- }
-
- /// Returns a reference to the element removed.
- #[inline]
- fn element(&self) -> &T {
- &self.elt
- }
-
- /// Returns a reference to the element at `index`.
- ///
- /// Unsafe because index must be within the data slice and not equal to pos.
- #[inline]
- unsafe fn get(&self, index: usize) -> &T {
- debug_assert!(index != self.pos);
- debug_assert!(index < self.data.len());
- unsafe { self.data.get_unchecked(index) }
- }
-
- /// Move hole to new location
- ///
- /// Unsafe because index must be within the data slice and not equal to pos.
- #[inline]
- unsafe fn move_to(&mut self, index: usize) {
- debug_assert!(index != self.pos);
- debug_assert!(index < self.data.len());
- unsafe {
- let ptr = self.data.as_mut_ptr();
- let index_ptr: *const _ = ptr.add(index);
- let hole_ptr = ptr.add(self.pos);
- ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
- }
- self.pos = index;
- }
-}
-
-impl<T> Drop for Hole<'_, T> {
- #[inline]
- fn drop(&mut self) {
- // fill the hole again
- unsafe {
- let pos = self.pos;
- ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
- }
- }
-}
-
-/// An iterator over the elements of a `BinaryHeap`.
-///
-/// This `struct` is created by [`BinaryHeap::iter()`]. See its
-/// documentation for more.
-///
-/// [`iter`]: BinaryHeap::iter
-#[must_use = "iterators are lazy and do nothing unless consumed"]
-#[stable(feature = "rust1", since = "1.0.0")]
-pub struct Iter<'a, T: 'a> {
- iter: slice::Iter<'a, T>,
-}
-
-#[stable(feature = "collection_debug", since = "1.17.0")]
-impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
- }
-}
-
-// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> Clone for Iter<'_, T> {
- fn clone(&self) -> Self {
- Iter { iter: self.iter.clone() }
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, T> Iterator for Iter<'a, T> {
- type Item = &'a T;
-
- #[inline]
- fn next(&mut self) -> Option<&'a T> {
- self.iter.next()
- }
-
- #[inline]
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.iter.size_hint()
- }
-
- #[inline]
- fn last(self) -> Option<&'a T> {
- self.iter.last()
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
- #[inline]
- fn next_back(&mut self) -> Option<&'a T> {
- self.iter.next_back()
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> ExactSizeIterator for Iter<'_, T> {
- fn is_empty(&self) -> bool {
- self.iter.is_empty()
- }
-}
-
-#[stable(feature = "fused", since = "1.26.0")]
-impl<T> FusedIterator for Iter<'_, T> {}
-
-/// An owning iterator over the elements of a `BinaryHeap`.
-///
-/// This `struct` is created by [`BinaryHeap::into_iter()`]
-/// (provided by the [`IntoIterator`] trait). See its documentation for more.
-///
-/// [`into_iter`]: BinaryHeap::into_iter
-/// [`IntoIterator`]: core::iter::IntoIterator
-#[stable(feature = "rust1", since = "1.0.0")]
-#[derive(Clone)]
-pub struct IntoIter<T> {
- iter: vec::IntoIter<T>,
-}
-
-#[stable(feature = "collection_debug", since = "1.17.0")]
-impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish()
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> Iterator for IntoIter<T> {
- type Item = T;
-
- #[inline]
- fn next(&mut self) -> Option<T> {
- self.iter.next()
- }
-
- #[inline]
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.iter.size_hint()
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> DoubleEndedIterator for IntoIter<T> {
- #[inline]
- fn next_back(&mut self) -> Option<T> {
- self.iter.next_back()
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> ExactSizeIterator for IntoIter<T> {
- fn is_empty(&self) -> bool {
- self.iter.is_empty()
- }
-}
-
-#[stable(feature = "fused", since = "1.26.0")]
-impl<T> FusedIterator for IntoIter<T> {}
-
-// In addition to the SAFETY invariants of the following three unsafe traits
-// also refer to the vec::in_place_collect module documentation to get an overview
-#[unstable(issue = "none", feature = "inplace_iteration")]
-#[doc(hidden)]
-unsafe impl<T> SourceIter for IntoIter<T> {
- type Source = IntoIter<T>;
-
- #[inline]
- unsafe fn as_inner(&mut self) -> &mut Self::Source {
- self
- }
-}
-
-#[unstable(issue = "none", feature = "inplace_iteration")]
-#[doc(hidden)]
-unsafe impl<I> InPlaceIterable for IntoIter<I> {}
-
-unsafe impl<I> AsVecIntoIter for IntoIter<I> {
- type Item = I;
-
- fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> {
- &mut self.iter
- }
-}
-
-#[must_use = "iterators are lazy and do nothing unless consumed"]
-#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
-#[derive(Clone, Debug)]
-pub struct IntoIterSorted<T> {
- inner: BinaryHeap<T>,
-}
-
-#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
-impl<T: Ord> Iterator for IntoIterSorted<T> {
- type Item = T;
-
- #[inline]
- fn next(&mut self) -> Option<T> {
- self.inner.pop()
- }
-
- #[inline]
- fn size_hint(&self) -> (usize, Option<usize>) {
- let exact = self.inner.len();
- (exact, Some(exact))
- }
-}
-
-#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
-impl<T: Ord> ExactSizeIterator for IntoIterSorted<T> {}
-
-#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
-impl<T: Ord> FusedIterator for IntoIterSorted<T> {}
-
-#[unstable(feature = "trusted_len", issue = "37572")]
-unsafe impl<T: Ord> TrustedLen for IntoIterSorted<T> {}
-
-/// A draining iterator over the elements of a `BinaryHeap`.
-///
-/// This `struct` is created by [`BinaryHeap::drain()`]. See its
-/// documentation for more.
-///
-/// [`drain`]: BinaryHeap::drain
-#[stable(feature = "drain", since = "1.6.0")]
-#[derive(Debug)]
-pub struct Drain<'a, T: 'a> {
- iter: vec::Drain<'a, T>,
-}
-
-#[stable(feature = "drain", since = "1.6.0")]
-impl<T> Iterator for Drain<'_, T> {
- type Item = T;
-
- #[inline]
- fn next(&mut self) -> Option<T> {
- self.iter.next()
- }
-
- #[inline]
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.iter.size_hint()
- }
-}
-
-#[stable(feature = "drain", since = "1.6.0")]
-impl<T> DoubleEndedIterator for Drain<'_, T> {
- #[inline]
- fn next_back(&mut self) -> Option<T> {
- self.iter.next_back()
- }
-}
-
-#[stable(feature = "drain", since = "1.6.0")]
-impl<T> ExactSizeIterator for Drain<'_, T> {
- fn is_empty(&self) -> bool {
- self.iter.is_empty()
- }
-}
-
-#[stable(feature = "fused", since = "1.26.0")]
-impl<T> FusedIterator for Drain<'_, T> {}
-
-/// A draining iterator over the elements of a `BinaryHeap`.
-///
-/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its
-/// documentation for more.
-///
-/// [`drain_sorted`]: BinaryHeap::drain_sorted
-#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
-#[derive(Debug)]
-pub struct DrainSorted<'a, T: Ord> {
- inner: &'a mut BinaryHeap<T>,
-}
-
-#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
-impl<'a, T: Ord> Drop for DrainSorted<'a, T> {
- /// Removes heap elements in heap order.
- fn drop(&mut self) {
- struct DropGuard<'r, 'a, T: Ord>(&'r mut DrainSorted<'a, T>);
-
- impl<'r, 'a, T: Ord> Drop for DropGuard<'r, 'a, T> {
- fn drop(&mut self) {
- while self.0.inner.pop().is_some() {}
- }
- }
-
- while let Some(item) = self.inner.pop() {
- let guard = DropGuard(self);
- drop(item);
- mem::forget(guard);
- }
- }
-}
-
-#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
-impl<T: Ord> Iterator for DrainSorted<'_, T> {
- type Item = T;
-
- #[inline]
- fn next(&mut self) -> Option<T> {
- self.inner.pop()
- }
-
- #[inline]
- fn size_hint(&self) -> (usize, Option<usize>) {
- let exact = self.inner.len();
- (exact, Some(exact))
- }
-}
-
-#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
-impl<T: Ord> ExactSizeIterator for DrainSorted<'_, T> {}
-
-#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
-impl<T: Ord> FusedIterator for DrainSorted<'_, T> {}
-
-#[unstable(feature = "trusted_len", issue = "37572")]
-unsafe impl<T: Ord> TrustedLen for DrainSorted<'_, T> {}
-
-#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
-impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
- /// Converts a `Vec<T>` into a `BinaryHeap<T>`.
- ///
- /// This conversion happens in-place, and has *O*(*n*) time complexity.
- fn from(vec: Vec<T>) -> BinaryHeap<T> {
- let mut heap = BinaryHeap { data: vec };
- heap.rebuild();
- heap
- }
-}
-
-#[stable(feature = "std_collections_from_array", since = "1.56.0")]
-impl<T: Ord, const N: usize> From<[T; N]> for BinaryHeap<T> {
- /// ```
- /// use std::collections::BinaryHeap;
- ///
- /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
- /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
- /// while let Some((a, b)) = h1.pop().zip(h2.pop()) {
- /// assert_eq!(a, b);
- /// }
- /// ```
- fn from(arr: [T; N]) -> Self {
- Self::from_iter(arr)
- }
-}
-
-#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
-impl<T> From<BinaryHeap<T>> for Vec<T> {
- /// Converts a `BinaryHeap<T>` into a `Vec<T>`.
- ///
- /// This conversion requires no data movement or allocation, and has
- /// constant time complexity.
- fn from(heap: BinaryHeap<T>) -> Vec<T> {
- heap.data
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
- fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
- BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T> IntoIterator for BinaryHeap<T> {
- type Item = T;
- type IntoIter = IntoIter<T>;
-
- /// Creates a consuming iterator, that is, one that moves each value out of
- /// the binary heap in arbitrary order. The binary heap cannot be used
- /// after calling this.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::collections::BinaryHeap;
- /// let heap = BinaryHeap::from([1, 2, 3, 4]);
- ///
- /// // Print 1, 2, 3, 4 in arbitrary order
- /// for x in heap.into_iter() {
- /// // x has type i32, not &i32
- /// println!("{x}");
- /// }
- /// ```
- fn into_iter(self) -> IntoIter<T> {
- IntoIter { iter: self.data.into_iter() }
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<'a, T> IntoIterator for &'a BinaryHeap<T> {
- type Item = &'a T;
- type IntoIter = Iter<'a, T>;
-
- fn into_iter(self) -> Iter<'a, T> {
- self.iter()
- }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Ord> Extend<T> for BinaryHeap<T> {
- #[inline]
- fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
- <Self as SpecExtend<I>>::spec_extend(self, iter);
- }
-
- #[inline]
- fn extend_one(&mut self, item: T) {
- self.push(item);
- }
-
- #[inline]
- fn extend_reserve(&mut self, additional: usize) {
- self.reserve(additional);
- }
-}
-
-impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
- default fn spec_extend(&mut self, iter: I) {
- self.extend_desugared(iter.into_iter());
- }
-}
-
-impl<T: Ord> SpecExtend<Vec<T>> for BinaryHeap<T> {
- fn spec_extend(&mut self, ref mut other: Vec<T>) {
- let start = self.data.len();
- self.data.append(other);
- self.rebuild_tail(start);
- }
-}
-
-impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
- fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
- self.append(other);
- }
-}
-
-impl<T: Ord> BinaryHeap<T> {
- fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
- let iterator = iter.into_iter();
- let (lower, _) = iterator.size_hint();
-
- self.reserve(lower);
-
- iterator.for_each(move |elem| self.push(elem));
- }
-}
-
-#[stable(feature = "extend_ref", since = "1.2.0")]
-impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
- fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
- self.extend(iter.into_iter().cloned());
- }
-
- #[inline]
- fn extend_one(&mut self, &item: &'a T) {
- self.push(item);
- }
-
- #[inline]
- fn extend_reserve(&mut self, additional: usize) {
- self.reserve(additional);
- }
-}