summaryrefslogtreecommitdiffstats
path: root/library/alloc/src/collections/binary_heap/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/alloc/src/collections/binary_heap/mod.rs')
-rw-r--r--library/alloc/src/collections/binary_heap/mod.rs1766
1 files changed, 1766 insertions, 0 deletions
diff --git a/library/alloc/src/collections/binary_heap/mod.rs b/library/alloc/src/collections/binary_heap/mod.rs
new file mode 100644
index 000000000..0b73b1af4
--- /dev/null
+++ b/library/alloc/src/collections/binary_heap/mod.rs
@@ -0,0 +1,1766 @@
+//! A priority queue implemented with a binary heap.
+//!
+//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
+//! Checking the largest element is *O*(1). Converting a vector to a binary heap
+//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be
+//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*))
+//! in-place heapsort.
+//!
+//! # Examples
+//!
+//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
+//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
+//! It shows how to use [`BinaryHeap`] with custom types.
+//!
+//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
+//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
+//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
+//!
+//! ```
+//! use std::cmp::Ordering;
+//! use std::collections::BinaryHeap;
+//!
+//! #[derive(Copy, Clone, Eq, PartialEq)]
+//! struct State {
+//! cost: usize,
+//! position: usize,
+//! }
+//!
+//! // The priority queue depends on `Ord`.
+//! // Explicitly implement the trait so the queue becomes a min-heap
+//! // instead of a max-heap.
+//! impl Ord for State {
+//! fn cmp(&self, other: &Self) -> Ordering {
+//! // Notice that the we flip the ordering on costs.
+//! // In case of a tie we compare positions - this step is necessary
+//! // to make implementations of `PartialEq` and `Ord` consistent.
+//! other.cost.cmp(&self.cost)
+//! .then_with(|| self.position.cmp(&other.position))
+//! }
+//! }
+//!
+//! // `PartialOrd` needs to be implemented as well.
+//! impl PartialOrd for State {
+//! fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
+//! Some(self.cmp(other))
+//! }
+//! }
+//!
+//! // Each node is represented as a `usize`, for a shorter implementation.
+//! struct Edge {
+//! node: usize,
+//! cost: usize,
+//! }
+//!
+//! // Dijkstra's shortest path algorithm.
+//!
+//! // Start at `start` and use `dist` to track the current shortest distance
+//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
+//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
+//! // for a simpler implementation.
+//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
+//! // dist[node] = current shortest distance from `start` to `node`
+//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
+//!
+//! let mut heap = BinaryHeap::new();
+//!
+//! // We're at `start`, with a zero cost
+//! dist[start] = 0;
+//! heap.push(State { cost: 0, position: start });
+//!
+//! // Examine the frontier with lower cost nodes first (min-heap)
+//! while let Some(State { cost, position }) = heap.pop() {
+//! // Alternatively we could have continued to find all shortest paths
+//! if position == goal { return Some(cost); }
+//!
+//! // Important as we may have already found a better way
+//! if cost > dist[position] { continue; }
+//!
+//! // For each node we can reach, see if we can find a way with
+//! // a lower cost going through this node
+//! for edge in &adj_list[position] {
+//! let next = State { cost: cost + edge.cost, position: edge.node };
+//!
+//! // If so, add it to the frontier and continue
+//! if next.cost < dist[next.position] {
+//! heap.push(next);
+//! // Relaxation, we have now found a better way
+//! dist[next.position] = next.cost;
+//! }
+//! }
+//! }
+//!
+//! // Goal not reachable
+//! None
+//! }
+//!
+//! fn main() {
+//! // This is the directed graph we're going to use.
+//! // The node numbers correspond to the different states,
+//! // and the edge weights symbolize the cost of moving
+//! // from one node to another.
+//! // Note that the edges are one-way.
+//! //
+//! // 7
+//! // +-----------------+
+//! // | |
+//! // v 1 2 | 2
+//! // 0 -----> 1 -----> 3 ---> 4
+//! // | ^ ^ ^
+//! // | | 1 | |
+//! // | | | 3 | 1
+//! // +------> 2 -------+ |
+//! // 10 | |
+//! // +---------------+
+//! //
+//! // The graph is represented as an adjacency list where each index,
+//! // corresponding to a node value, has a list of outgoing edges.
+//! // Chosen for its efficiency.
+//! let graph = vec![
+//! // Node 0
+//! vec![Edge { node: 2, cost: 10 },
+//! Edge { node: 1, cost: 1 }],
+//! // Node 1
+//! vec![Edge { node: 3, cost: 2 }],
+//! // Node 2
+//! vec![Edge { node: 1, cost: 1 },
+//! Edge { node: 3, cost: 3 },
+//! Edge { node: 4, cost: 1 }],
+//! // Node 3
+//! vec![Edge { node: 0, cost: 7 },
+//! Edge { node: 4, cost: 2 }],
+//! // Node 4
+//! vec![]];
+//!
+//! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
+//! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
+//! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
+//! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
+//! assert_eq!(shortest_path(&graph, 4, 0), None);
+//! }
+//! ```
+
+#![allow(missing_docs)]
+#![stable(feature = "rust1", since = "1.0.0")]
+
+use core::fmt;
+use core::iter::{FromIterator, FusedIterator, InPlaceIterable, SourceIter, TrustedLen};
+use core::mem::{self, swap, ManuallyDrop};
+use core::num::NonZeroUsize;
+use core::ops::{Deref, DerefMut};
+use core::ptr;
+
+use crate::collections::TryReserveError;
+use crate::slice;
+use crate::vec::{self, AsVecIntoIter, Vec};
+
+use super::SpecExtend;
+
+#[cfg(test)]
+mod tests;
+
+/// A priority queue implemented with a binary heap.
+///
+/// This will be a max-heap.
+///
+/// It is a logic error for an item to be modified in such a way that the
+/// item's ordering relative to any other item, as determined by the [`Ord`]
+/// trait, changes while it is in the heap. This is normally only possible
+/// through interior mutability, global state, I/O, or unsafe code. The
+/// behavior resulting from such a logic error is not specified, but will
+/// be encapsulated to the `BinaryHeap` that observed the logic error and not
+/// result in undefined behavior. This could include panics, incorrect results,
+/// aborts, memory leaks, and non-termination.
+///
+/// As long as no elements change their relative order while being in the heap
+/// as described above, the API of `BinaryHeap` guarantees that the heap
+/// invariant remains intact i.e. its methods all behave as documented. For
+/// example if a method is documented as iterating in sorted order, that's
+/// guaranteed to work as long as elements in the heap have not changed order,
+/// even in the presence of closures getting unwinded out of, iterators getting
+/// leaked, and similar foolishness.
+///
+/// # Examples
+///
+/// ```
+/// use std::collections::BinaryHeap;
+///
+/// // Type inference lets us omit an explicit type signature (which
+/// // would be `BinaryHeap<i32>` in this example).
+/// let mut heap = BinaryHeap::new();
+///
+/// // We can use peek to look at the next item in the heap. In this case,
+/// // there's no items in there yet so we get None.
+/// assert_eq!(heap.peek(), None);
+///
+/// // Let's add some scores...
+/// heap.push(1);
+/// heap.push(5);
+/// heap.push(2);
+///
+/// // Now peek shows the most important item in the heap.
+/// assert_eq!(heap.peek(), Some(&5));
+///
+/// // We can check the length of a heap.
+/// assert_eq!(heap.len(), 3);
+///
+/// // We can iterate over the items in the heap, although they are returned in
+/// // a random order.
+/// for x in &heap {
+/// println!("{x}");
+/// }
+///
+/// // If we instead pop these scores, they should come back in order.
+/// assert_eq!(heap.pop(), Some(5));
+/// assert_eq!(heap.pop(), Some(2));
+/// assert_eq!(heap.pop(), Some(1));
+/// assert_eq!(heap.pop(), None);
+///
+/// // We can clear the heap of any remaining items.
+/// heap.clear();
+///
+/// // The heap should now be empty.
+/// assert!(heap.is_empty())
+/// ```
+///
+/// A `BinaryHeap` with a known list of items can be initialized from an array:
+///
+/// ```
+/// use std::collections::BinaryHeap;
+///
+/// let heap = BinaryHeap::from([1, 5, 2]);
+/// ```
+///
+/// ## Min-heap
+///
+/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to
+/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest
+/// value instead of the greatest one.
+///
+/// ```
+/// use std::collections::BinaryHeap;
+/// use std::cmp::Reverse;
+///
+/// let mut heap = BinaryHeap::new();
+///
+/// // Wrap values in `Reverse`
+/// heap.push(Reverse(1));
+/// heap.push(Reverse(5));
+/// heap.push(Reverse(2));
+///
+/// // If we pop these scores now, they should come back in the reverse order.
+/// assert_eq!(heap.pop(), Some(Reverse(1)));
+/// assert_eq!(heap.pop(), Some(Reverse(2)));
+/// assert_eq!(heap.pop(), Some(Reverse(5)));
+/// assert_eq!(heap.pop(), None);
+/// ```
+///
+/// # Time complexity
+///
+/// | [push] | [pop] | [peek]/[peek\_mut] |
+/// |---------|---------------|--------------------|
+/// | *O*(1)~ | *O*(log(*n*)) | *O*(1) |
+///
+/// The value for `push` is an expected cost; the method documentation gives a
+/// more detailed analysis.
+///
+/// [`core::cmp::Reverse`]: core::cmp::Reverse
+/// [`Ord`]: core::cmp::Ord
+/// [`Cell`]: core::cell::Cell
+/// [`RefCell`]: core::cell::RefCell
+/// [push]: BinaryHeap::push
+/// [pop]: BinaryHeap::pop
+/// [peek]: BinaryHeap::peek
+/// [peek\_mut]: BinaryHeap::peek_mut
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")]
+pub struct BinaryHeap<T> {
+ data: Vec<T>,
+}
+
+/// Structure wrapping a mutable reference to the greatest item on a
+/// `BinaryHeap`.
+///
+/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
+/// its documentation for more.
+///
+/// [`peek_mut`]: BinaryHeap::peek_mut
+#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
+pub struct PeekMut<'a, T: 'a + Ord> {
+ heap: &'a mut BinaryHeap<T>,
+ // If a set_len + sift_down are required, this is Some. If a &mut T has not
+ // yet been exposed to peek_mut()'s caller, it's None.
+ original_len: Option<NonZeroUsize>,
+}
+
+#[stable(feature = "collection_debug", since = "1.17.0")]
+impl<T: Ord + fmt::Debug> fmt::Debug for PeekMut<'_, T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
+ }
+}
+
+#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
+impl<T: Ord> Drop for PeekMut<'_, T> {
+ fn drop(&mut self) {
+ if let Some(original_len) = self.original_len {
+ // SAFETY: That's how many elements were in the Vec at the time of
+ // the PeekMut::deref_mut call, and therefore also at the time of
+ // the BinaryHeap::peek_mut call. Since the PeekMut did not end up
+ // getting leaked, we are now undoing the leak amplification that
+ // the DerefMut prepared for.
+ unsafe { self.heap.data.set_len(original_len.get()) };
+
+ // SAFETY: PeekMut is only instantiated for non-empty heaps.
+ unsafe { self.heap.sift_down(0) };
+ }
+ }
+}
+
+#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
+impl<T: Ord> Deref for PeekMut<'_, T> {
+ type Target = T;
+ fn deref(&self) -> &T {
+ debug_assert!(!self.heap.is_empty());
+ // SAFE: PeekMut is only instantiated for non-empty heaps
+ unsafe { self.heap.data.get_unchecked(0) }
+ }
+}
+
+#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
+impl<T: Ord> DerefMut for PeekMut<'_, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ debug_assert!(!self.heap.is_empty());
+
+ let len = self.heap.len();
+ if len > 1 {
+ // Here we preemptively leak all the rest of the underlying vector
+ // after the currently max element. If the caller mutates the &mut T
+ // we're about to give them, and then leaks the PeekMut, all these
+ // elements will remain leaked. If they don't leak the PeekMut, then
+ // either Drop or PeekMut::pop will un-leak the vector elements.
+ //
+ // This is technique is described throughout several other places in
+ // the standard library as "leak amplification".
+ unsafe {
+ // SAFETY: len > 1 so len != 0.
+ self.original_len = Some(NonZeroUsize::new_unchecked(len));
+ // SAFETY: len > 1 so all this does for now is leak elements,
+ // which is safe.
+ self.heap.data.set_len(1);
+ }
+ }
+
+ // SAFE: PeekMut is only instantiated for non-empty heaps
+ unsafe { self.heap.data.get_unchecked_mut(0) }
+ }
+}
+
+impl<'a, T: Ord> PeekMut<'a, T> {
+ /// Removes the peeked value from the heap and returns it.
+ #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
+ pub fn pop(mut this: PeekMut<'a, T>) -> T {
+ if let Some(original_len) = this.original_len.take() {
+ // SAFETY: This is how many elements were in the Vec at the time of
+ // the BinaryHeap::peek_mut call.
+ unsafe { this.heap.data.set_len(original_len.get()) };
+
+ // Unlike in Drop, here we don't also need to do a sift_down even if
+ // the caller could've mutated the element. It is removed from the
+ // heap on the next line and pop() is not sensitive to its value.
+ }
+ this.heap.pop().unwrap()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone> Clone for BinaryHeap<T> {
+ fn clone(&self) -> Self {
+ BinaryHeap { data: self.data.clone() }
+ }
+
+ fn clone_from(&mut self, source: &Self) {
+ self.data.clone_from(&source.data);
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Ord> Default for BinaryHeap<T> {
+ /// Creates an empty `BinaryHeap<T>`.
+ #[inline]
+ fn default() -> BinaryHeap<T> {
+ BinaryHeap::new()
+ }
+}
+
+#[stable(feature = "binaryheap_debug", since = "1.4.0")]
+impl<T: fmt::Debug> fmt::Debug for BinaryHeap<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_list().entries(self.iter()).finish()
+ }
+}
+
+impl<T: Ord> BinaryHeap<T> {
+ /// Creates an empty `BinaryHeap` as a max-heap.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::new();
+ /// heap.push(4);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn new() -> BinaryHeap<T> {
+ BinaryHeap { data: vec![] }
+ }
+
+ /// Creates an empty `BinaryHeap` with at least the specified capacity.
+ ///
+ /// The binary heap will be able to hold at least `capacity` elements without
+ /// reallocating. This method is allowed to allocate for more elements than
+ /// `capacity`. If `capacity` is 0, the binary heap will not allocate.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::with_capacity(10);
+ /// heap.push(4);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
+ BinaryHeap { data: Vec::with_capacity(capacity) }
+ }
+
+ /// Returns a mutable reference to the greatest item in the binary heap, or
+ /// `None` if it is empty.
+ ///
+ /// Note: If the `PeekMut` value is leaked, some heap elements might get
+ /// leaked along with it, but the remaining elements will remain a valid
+ /// heap.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::new();
+ /// assert!(heap.peek_mut().is_none());
+ ///
+ /// heap.push(1);
+ /// heap.push(5);
+ /// heap.push(2);
+ /// {
+ /// let mut val = heap.peek_mut().unwrap();
+ /// *val = 0;
+ /// }
+ /// assert_eq!(heap.peek(), Some(&2));
+ /// ```
+ ///
+ /// # Time complexity
+ ///
+ /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
+ /// otherwise it's *O*(1).
+ #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
+ pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>> {
+ if self.is_empty() { None } else { Some(PeekMut { heap: self, original_len: None }) }
+ }
+
+ /// Removes the greatest item from the binary heap and returns it, or `None` if it
+ /// is empty.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::from([1, 3]);
+ ///
+ /// assert_eq!(heap.pop(), Some(3));
+ /// assert_eq!(heap.pop(), Some(1));
+ /// assert_eq!(heap.pop(), None);
+ /// ```
+ ///
+ /// # Time complexity
+ ///
+ /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pop(&mut self) -> Option<T> {
+ self.data.pop().map(|mut item| {
+ if !self.is_empty() {
+ swap(&mut item, &mut self.data[0]);
+ // SAFETY: !self.is_empty() means that self.len() > 0
+ unsafe { self.sift_down_to_bottom(0) };
+ }
+ item
+ })
+ }
+
+ /// Pushes an item onto the binary heap.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::new();
+ /// heap.push(3);
+ /// heap.push(5);
+ /// heap.push(1);
+ ///
+ /// assert_eq!(heap.len(), 3);
+ /// assert_eq!(heap.peek(), Some(&5));
+ /// ```
+ ///
+ /// # Time complexity
+ ///
+ /// The expected cost of `push`, averaged over every possible ordering of
+ /// the elements being pushed, and over a sufficiently large number of
+ /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
+ /// elements that are *not* already in any sorted pattern.
+ ///
+ /// The time complexity degrades if elements are pushed in predominantly
+ /// ascending order. In the worst case, elements are pushed in ascending
+ /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
+ /// containing *n* elements.
+ ///
+ /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
+ /// occurs when capacity is exhausted and needs a resize. The resize cost
+ /// has been amortized in the previous figures.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push(&mut self, item: T) {
+ let old_len = self.len();
+ self.data.push(item);
+ // SAFETY: Since we pushed a new item it means that
+ // old_len = self.len() - 1 < self.len()
+ unsafe { self.sift_up(0, old_len) };
+ }
+
+ /// Consumes the `BinaryHeap` and returns a vector in sorted
+ /// (ascending) order.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ ///
+ /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]);
+ /// heap.push(6);
+ /// heap.push(3);
+ ///
+ /// let vec = heap.into_sorted_vec();
+ /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
+ pub fn into_sorted_vec(mut self) -> Vec<T> {
+ let mut end = self.len();
+ while end > 1 {
+ end -= 1;
+ // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
+ // so it's always a valid index to access.
+ // It is safe to access index 0 (i.e. `ptr`), because
+ // 1 <= end < self.len(), which means self.len() >= 2.
+ unsafe {
+ let ptr = self.data.as_mut_ptr();
+ ptr::swap(ptr, ptr.add(end));
+ }
+ // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so:
+ // 0 < 1 <= end <= self.len() - 1 < self.len()
+ // Which means 0 < end and end < self.len().
+ unsafe { self.sift_down_range(0, end) };
+ }
+ self.into_vec()
+ }
+
+ // The implementations of sift_up and sift_down use unsafe blocks in
+ // order to move an element out of the vector (leaving behind a
+ // hole), shift along the others and move the removed element back into the
+ // vector at the final location of the hole.
+ // The `Hole` type is used to represent this, and make sure
+ // the hole is filled back at the end of its scope, even on panic.
+ // Using a hole reduces the constant factor compared to using swaps,
+ // which involves twice as many moves.
+
+ /// # Safety
+ ///
+ /// The caller must guarantee that `pos < self.len()`.
+ unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize {
+ // Take out the value at `pos` and create a hole.
+ // SAFETY: The caller guarantees that pos < self.len()
+ let mut hole = unsafe { Hole::new(&mut self.data, pos) };
+
+ while hole.pos() > start {
+ let parent = (hole.pos() - 1) / 2;
+
+ // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0
+ // and so hole.pos() - 1 can't underflow.
+ // This guarantees that parent < hole.pos() so
+ // it's a valid index and also != hole.pos().
+ if hole.element() <= unsafe { hole.get(parent) } {
+ break;
+ }
+
+ // SAFETY: Same as above
+ unsafe { hole.move_to(parent) };
+ }
+
+ hole.pos()
+ }
+
+ /// Take an element at `pos` and move it down the heap,
+ /// while its children are larger.
+ ///
+ /// # Safety
+ ///
+ /// The caller must guarantee that `pos < end <= self.len()`.
+ unsafe fn sift_down_range(&mut self, pos: usize, end: usize) {
+ // SAFETY: The caller guarantees that pos < end <= self.len().
+ let mut hole = unsafe { Hole::new(&mut self.data, pos) };
+ let mut child = 2 * hole.pos() + 1;
+
+ // Loop invariant: child == 2 * hole.pos() + 1.
+ while child <= end.saturating_sub(2) {
+ // compare with the greater of the two children
+ // SAFETY: child < end - 1 < self.len() and
+ // child + 1 < end <= self.len(), so they're valid indexes.
+ // child == 2 * hole.pos() + 1 != hole.pos() and
+ // child + 1 == 2 * hole.pos() + 2 != hole.pos().
+ // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
+ // if T is a ZST
+ child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
+
+ // if we are already in order, stop.
+ // SAFETY: child is now either the old child or the old child+1
+ // We already proven that both are < self.len() and != hole.pos()
+ if hole.element() >= unsafe { hole.get(child) } {
+ return;
+ }
+
+ // SAFETY: same as above.
+ unsafe { hole.move_to(child) };
+ child = 2 * hole.pos() + 1;
+ }
+
+ // SAFETY: && short circuit, which means that in the
+ // second condition it's already true that child == end - 1 < self.len().
+ if child == end - 1 && hole.element() < unsafe { hole.get(child) } {
+ // SAFETY: child is already proven to be a valid index and
+ // child == 2 * hole.pos() + 1 != hole.pos().
+ unsafe { hole.move_to(child) };
+ }
+ }
+
+ /// # Safety
+ ///
+ /// The caller must guarantee that `pos < self.len()`.
+ unsafe fn sift_down(&mut self, pos: usize) {
+ let len = self.len();
+ // SAFETY: pos < len is guaranteed by the caller and
+ // obviously len = self.len() <= self.len().
+ unsafe { self.sift_down_range(pos, len) };
+ }
+
+ /// Take an element at `pos` and move it all the way down the heap,
+ /// then sift it up to its position.
+ ///
+ /// Note: This is faster when the element is known to be large / should
+ /// be closer to the bottom.
+ ///
+ /// # Safety
+ ///
+ /// The caller must guarantee that `pos < self.len()`.
+ unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) {
+ let end = self.len();
+ let start = pos;
+
+ // SAFETY: The caller guarantees that pos < self.len().
+ let mut hole = unsafe { Hole::new(&mut self.data, pos) };
+ let mut child = 2 * hole.pos() + 1;
+
+ // Loop invariant: child == 2 * hole.pos() + 1.
+ while child <= end.saturating_sub(2) {
+ // SAFETY: child < end - 1 < self.len() and
+ // child + 1 < end <= self.len(), so they're valid indexes.
+ // child == 2 * hole.pos() + 1 != hole.pos() and
+ // child + 1 == 2 * hole.pos() + 2 != hole.pos().
+ // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
+ // if T is a ZST
+ child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;
+
+ // SAFETY: Same as above
+ unsafe { hole.move_to(child) };
+ child = 2 * hole.pos() + 1;
+ }
+
+ if child == end - 1 {
+ // SAFETY: child == end - 1 < self.len(), so it's a valid index
+ // and child == 2 * hole.pos() + 1 != hole.pos().
+ unsafe { hole.move_to(child) };
+ }
+ pos = hole.pos();
+ drop(hole);
+
+ // SAFETY: pos is the position in the hole and was already proven
+ // to be a valid index.
+ unsafe { self.sift_up(start, pos) };
+ }
+
+ /// Rebuild assuming data[0..start] is still a proper heap.
+ fn rebuild_tail(&mut self, start: usize) {
+ if start == self.len() {
+ return;
+ }
+
+ let tail_len = self.len() - start;
+
+ #[inline(always)]
+ fn log2_fast(x: usize) -> usize {
+ (usize::BITS - x.leading_zeros() - 1) as usize
+ }
+
+ // `rebuild` takes O(self.len()) operations
+ // and about 2 * self.len() comparisons in the worst case
+ // while repeating `sift_up` takes O(tail_len * log(start)) operations
+ // and about 1 * tail_len * log_2(start) comparisons in the worst case,
+ // assuming start >= tail_len. For larger heaps, the crossover point
+ // no longer follows this reasoning and was determined empirically.
+ let better_to_rebuild = if start < tail_len {
+ true
+ } else if self.len() <= 2048 {
+ 2 * self.len() < tail_len * log2_fast(start)
+ } else {
+ 2 * self.len() < tail_len * 11
+ };
+
+ if better_to_rebuild {
+ self.rebuild();
+ } else {
+ for i in start..self.len() {
+ // SAFETY: The index `i` is always less than self.len().
+ unsafe { self.sift_up(0, i) };
+ }
+ }
+ }
+
+ fn rebuild(&mut self) {
+ let mut n = self.len() / 2;
+ while n > 0 {
+ n -= 1;
+ // SAFETY: n starts from self.len() / 2 and goes down to 0.
+ // The only case when !(n < self.len()) is if
+ // self.len() == 0, but it's ruled out by the loop condition.
+ unsafe { self.sift_down(n) };
+ }
+ }
+
+ /// Moves all the elements of `other` into `self`, leaving `other` empty.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ ///
+ /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]);
+ /// let mut b = BinaryHeap::from([-20, 5, 43]);
+ ///
+ /// a.append(&mut b);
+ ///
+ /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
+ /// assert!(b.is_empty());
+ /// ```
+ #[stable(feature = "binary_heap_append", since = "1.11.0")]
+ pub fn append(&mut self, other: &mut Self) {
+ if self.len() < other.len() {
+ swap(self, other);
+ }
+
+ let start = self.data.len();
+
+ self.data.append(&mut other.data);
+
+ self.rebuild_tail(start);
+ }
+
+ /// Clears the binary heap, returning an iterator over the removed elements
+ /// in heap order. If the iterator is dropped before being fully consumed,
+ /// it drops the remaining elements in heap order.
+ ///
+ /// The returned iterator keeps a mutable borrow on the heap to optimize
+ /// its implementation.
+ ///
+ /// Note:
+ /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
+ /// You should use the latter for most cases.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(binary_heap_drain_sorted)]
+ /// use std::collections::BinaryHeap;
+ ///
+ /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]);
+ /// assert_eq!(heap.len(), 5);
+ ///
+ /// drop(heap.drain_sorted()); // removes all elements in heap order
+ /// assert_eq!(heap.len(), 0);
+ /// ```
+ #[inline]
+ #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
+ pub fn drain_sorted(&mut self) -> DrainSorted<'_, T> {
+ DrainSorted { inner: self }
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` for which `f(&e)` returns
+ /// `false`. The elements are visited in unsorted (and unspecified) order.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(binary_heap_retain)]
+ /// use std::collections::BinaryHeap;
+ ///
+ /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]);
+ ///
+ /// heap.retain(|x| x % 2 == 0); // only keep even numbers
+ ///
+ /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
+ /// ```
+ #[unstable(feature = "binary_heap_retain", issue = "71503")]
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> bool,
+ {
+ let mut first_removed = self.len();
+ let mut i = 0;
+ self.data.retain(|e| {
+ let keep = f(e);
+ if !keep && i < first_removed {
+ first_removed = i;
+ }
+ i += 1;
+ keep
+ });
+ // data[0..first_removed] is untouched, so we only need to rebuild the tail:
+ self.rebuild_tail(first_removed);
+ }
+}
+
+impl<T> BinaryHeap<T> {
+ /// Returns an iterator visiting all values in the underlying vector, in
+ /// arbitrary order.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let heap = BinaryHeap::from([1, 2, 3, 4]);
+ ///
+ /// // Print 1, 2, 3, 4 in arbitrary order
+ /// for x in heap.iter() {
+ /// println!("{x}");
+ /// }
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn iter(&self) -> Iter<'_, T> {
+ Iter { iter: self.data.iter() }
+ }
+
+ /// Returns an iterator which retrieves elements in heap order.
+ /// This method consumes the original heap.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(binary_heap_into_iter_sorted)]
+ /// use std::collections::BinaryHeap;
+ /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]);
+ ///
+ /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);
+ /// ```
+ #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
+ pub fn into_iter_sorted(self) -> IntoIterSorted<T> {
+ IntoIterSorted { inner: self }
+ }
+
+ /// Returns the greatest item in the binary heap, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::new();
+ /// assert_eq!(heap.peek(), None);
+ ///
+ /// heap.push(1);
+ /// heap.push(5);
+ /// heap.push(2);
+ /// assert_eq!(heap.peek(), Some(&5));
+ ///
+ /// ```
+ ///
+ /// # Time complexity
+ ///
+ /// Cost is *O*(1) in the worst case.
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn peek(&self) -> Option<&T> {
+ self.data.get(0)
+ }
+
+ /// Returns the number of elements the binary heap can hold without reallocating.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::with_capacity(100);
+ /// assert!(heap.capacity() >= 100);
+ /// heap.push(4);
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn capacity(&self) -> usize {
+ self.data.capacity()
+ }
+
+ /// Reserves the minimum capacity for at least `additional` elements more than
+ /// the current length. Unlike [`reserve`], this will not
+ /// deliberately over-allocate to speculatively avoid frequent allocations.
+ /// After calling `reserve_exact`, capacity will be greater than or equal to
+ /// `self.len() + additional`. Does nothing if the capacity is already
+ /// sufficient.
+ ///
+ /// [`reserve`]: BinaryHeap::reserve
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows [`usize`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::new();
+ /// heap.reserve_exact(100);
+ /// assert!(heap.capacity() >= 100);
+ /// heap.push(4);
+ /// ```
+ ///
+ /// [`reserve`]: BinaryHeap::reserve
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve_exact(&mut self, additional: usize) {
+ self.data.reserve_exact(additional);
+ }
+
+ /// Reserves capacity for at least `additional` elements more than the
+ /// current length. The allocator may reserve more space to speculatively
+ /// avoid frequent allocations. After calling `reserve`,
+ /// capacity will be greater than or equal to `self.len() + additional`.
+ /// Does nothing if capacity is already sufficient.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows [`usize`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::new();
+ /// heap.reserve(100);
+ /// assert!(heap.capacity() >= 100);
+ /// heap.push(4);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve(&mut self, additional: usize) {
+ self.data.reserve(additional);
+ }
+
+ /// Tries to reserve the minimum capacity for at least `additional` elements
+ /// more than the current length. Unlike [`try_reserve`], this will not
+ /// deliberately over-allocate to speculatively avoid frequent allocations.
+ /// After calling `try_reserve_exact`, capacity will be greater than or
+ /// equal to `self.len() + additional` if it returns `Ok(())`.
+ /// Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore, capacity can not be relied upon to be precisely
+ /// minimal. Prefer [`try_reserve`] if future insertions are expected.
+ ///
+ /// [`try_reserve`]: BinaryHeap::try_reserve
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
+ /// let mut heap = BinaryHeap::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// heap.try_reserve_exact(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// heap.extend(data.iter());
+ ///
+ /// Ok(heap.pop())
+ /// }
+ /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve_2", since = "1.63.0")]
+ pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.data.try_reserve_exact(additional)
+ }
+
+ /// Tries to reserve capacity for at least `additional` elements more than the
+ /// current length. The allocator may reserve more space to speculatively
+ /// avoid frequent allocations. After calling `try_reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional` if it returns
+ /// `Ok(())`. Does nothing if capacity is already sufficient. This method
+ /// preserves the contents even if an error occurs.
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
+ /// let mut heap = BinaryHeap::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// heap.try_reserve(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// heap.extend(data.iter());
+ ///
+ /// Ok(heap.pop())
+ /// }
+ /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve_2", since = "1.63.0")]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.data.try_reserve(additional)
+ }
+
+ /// Discards as much additional capacity as possible.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
+ ///
+ /// assert!(heap.capacity() >= 100);
+ /// heap.shrink_to_fit();
+ /// assert!(heap.capacity() == 0);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn shrink_to_fit(&mut self) {
+ self.data.shrink_to_fit();
+ }
+
+ /// Discards capacity with a lower bound.
+ ///
+ /// The capacity will remain at least as large as both the length
+ /// and the supplied value.
+ ///
+ /// If the current capacity is less than the lower limit, this is a no-op.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
+ ///
+ /// assert!(heap.capacity() >= 100);
+ /// heap.shrink_to(10);
+ /// assert!(heap.capacity() >= 10);
+ /// ```
+ #[inline]
+ #[stable(feature = "shrink_to", since = "1.56.0")]
+ pub fn shrink_to(&mut self, min_capacity: usize) {
+ self.data.shrink_to(min_capacity)
+ }
+
+ /// Returns a slice of all values in the underlying vector, in arbitrary
+ /// order.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(binary_heap_as_slice)]
+ /// use std::collections::BinaryHeap;
+ /// use std::io::{self, Write};
+ ///
+ /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
+ ///
+ /// io::sink().write(heap.as_slice()).unwrap();
+ /// ```
+ #[must_use]
+ #[unstable(feature = "binary_heap_as_slice", issue = "83659")]
+ pub fn as_slice(&self) -> &[T] {
+ self.data.as_slice()
+ }
+
+ /// Consumes the `BinaryHeap` and returns the underlying vector
+ /// in arbitrary order.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
+ /// let vec = heap.into_vec();
+ ///
+ /// // Will print in some order
+ /// for x in vec {
+ /// println!("{x}");
+ /// }
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
+ pub fn into_vec(self) -> Vec<T> {
+ self.into()
+ }
+
+ /// Returns the length of the binary heap.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let heap = BinaryHeap::from([1, 3]);
+ ///
+ /// assert_eq!(heap.len(), 2);
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn len(&self) -> usize {
+ self.data.len()
+ }
+
+ /// Checks if the binary heap is empty.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::new();
+ ///
+ /// assert!(heap.is_empty());
+ ///
+ /// heap.push(3);
+ /// heap.push(5);
+ /// heap.push(1);
+ ///
+ /// assert!(!heap.is_empty());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Clears the binary heap, returning an iterator over the removed elements
+ /// in arbitrary order. If the iterator is dropped before being fully
+ /// consumed, it drops the remaining elements in arbitrary order.
+ ///
+ /// The returned iterator keeps a mutable borrow on the heap to optimize
+ /// its implementation.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::from([1, 3]);
+ ///
+ /// assert!(!heap.is_empty());
+ ///
+ /// for x in heap.drain() {
+ /// println!("{x}");
+ /// }
+ ///
+ /// assert!(heap.is_empty());
+ /// ```
+ #[inline]
+ #[stable(feature = "drain", since = "1.6.0")]
+ pub fn drain(&mut self) -> Drain<'_, T> {
+ Drain { iter: self.data.drain(..) }
+ }
+
+ /// Drops all items from the binary heap.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let mut heap = BinaryHeap::from([1, 3]);
+ ///
+ /// assert!(!heap.is_empty());
+ ///
+ /// heap.clear();
+ ///
+ /// assert!(heap.is_empty());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn clear(&mut self) {
+ self.drain();
+ }
+}
+
+/// Hole represents a hole in a slice i.e., an index without valid value
+/// (because it was moved from or duplicated).
+/// In drop, `Hole` will restore the slice by filling the hole
+/// position with the value that was originally removed.
+struct Hole<'a, T: 'a> {
+ data: &'a mut [T],
+ elt: ManuallyDrop<T>,
+ pos: usize,
+}
+
+impl<'a, T> Hole<'a, T> {
+ /// Create a new `Hole` at index `pos`.
+ ///
+ /// Unsafe because pos must be within the data slice.
+ #[inline]
+ unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
+ debug_assert!(pos < data.len());
+ // SAFE: pos should be inside the slice
+ let elt = unsafe { ptr::read(data.get_unchecked(pos)) };
+ Hole { data, elt: ManuallyDrop::new(elt), pos }
+ }
+
+ #[inline]
+ fn pos(&self) -> usize {
+ self.pos
+ }
+
+ /// Returns a reference to the element removed.
+ #[inline]
+ fn element(&self) -> &T {
+ &self.elt
+ }
+
+ /// Returns a reference to the element at `index`.
+ ///
+ /// Unsafe because index must be within the data slice and not equal to pos.
+ #[inline]
+ unsafe fn get(&self, index: usize) -> &T {
+ debug_assert!(index != self.pos);
+ debug_assert!(index < self.data.len());
+ unsafe { self.data.get_unchecked(index) }
+ }
+
+ /// Move hole to new location
+ ///
+ /// Unsafe because index must be within the data slice and not equal to pos.
+ #[inline]
+ unsafe fn move_to(&mut self, index: usize) {
+ debug_assert!(index != self.pos);
+ debug_assert!(index < self.data.len());
+ unsafe {
+ let ptr = self.data.as_mut_ptr();
+ let index_ptr: *const _ = ptr.add(index);
+ let hole_ptr = ptr.add(self.pos);
+ ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
+ }
+ self.pos = index;
+ }
+}
+
+impl<T> Drop for Hole<'_, T> {
+ #[inline]
+ fn drop(&mut self) {
+ // fill the hole again
+ unsafe {
+ let pos = self.pos;
+ ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
+ }
+ }
+}
+
+/// An iterator over the elements of a `BinaryHeap`.
+///
+/// This `struct` is created by [`BinaryHeap::iter()`]. See its
+/// documentation for more.
+///
+/// [`iter`]: BinaryHeap::iter
+#[must_use = "iterators are lazy and do nothing unless consumed"]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Iter<'a, T: 'a> {
+ iter: slice::Iter<'a, T>,
+}
+
+#[stable(feature = "collection_debug", since = "1.17.0")]
+impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
+ }
+}
+
+// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Clone for Iter<'_, T> {
+ fn clone(&self) -> Self {
+ Iter { iter: self.iter.clone() }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> Iterator for Iter<'a, T> {
+ type Item = &'a T;
+
+ #[inline]
+ fn next(&mut self) -> Option<&'a T> {
+ self.iter.next()
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+
+ #[inline]
+ fn last(self) -> Option<&'a T> {
+ self.iter.last()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
+ #[inline]
+ fn next_back(&mut self) -> Option<&'a T> {
+ self.iter.next_back()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> ExactSizeIterator for Iter<'_, T> {
+ fn is_empty(&self) -> bool {
+ self.iter.is_empty()
+ }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T> FusedIterator for Iter<'_, T> {}
+
+/// An owning iterator over the elements of a `BinaryHeap`.
+///
+/// This `struct` is created by [`BinaryHeap::into_iter()`]
+/// (provided by the [`IntoIterator`] trait). See its documentation for more.
+///
+/// [`into_iter`]: BinaryHeap::into_iter
+/// [`IntoIterator`]: core::iter::IntoIterator
+#[stable(feature = "rust1", since = "1.0.0")]
+#[derive(Clone)]
+pub struct IntoIter<T> {
+ iter: vec::IntoIter<T>,
+}
+
+#[stable(feature = "collection_debug", since = "1.17.0")]
+impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Iterator for IntoIter<T> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ self.iter.next()
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> DoubleEndedIterator for IntoIter<T> {
+ #[inline]
+ fn next_back(&mut self) -> Option<T> {
+ self.iter.next_back()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> ExactSizeIterator for IntoIter<T> {
+ fn is_empty(&self) -> bool {
+ self.iter.is_empty()
+ }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T> FusedIterator for IntoIter<T> {}
+
+// In addition to the SAFETY invariants of the following three unsafe traits
+// also refer to the vec::in_place_collect module documentation to get an overview
+#[unstable(issue = "none", feature = "inplace_iteration")]
+#[doc(hidden)]
+unsafe impl<T> SourceIter for IntoIter<T> {
+ type Source = IntoIter<T>;
+
+ #[inline]
+ unsafe fn as_inner(&mut self) -> &mut Self::Source {
+ self
+ }
+}
+
+#[unstable(issue = "none", feature = "inplace_iteration")]
+#[doc(hidden)]
+unsafe impl<I> InPlaceIterable for IntoIter<I> {}
+
+unsafe impl<I> AsVecIntoIter for IntoIter<I> {
+ type Item = I;
+
+ fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> {
+ &mut self.iter
+ }
+}
+
+#[must_use = "iterators are lazy and do nothing unless consumed"]
+#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
+#[derive(Clone, Debug)]
+pub struct IntoIterSorted<T> {
+ inner: BinaryHeap<T>,
+}
+
+#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
+impl<T: Ord> Iterator for IntoIterSorted<T> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ self.inner.pop()
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let exact = self.inner.len();
+ (exact, Some(exact))
+ }
+}
+
+#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
+impl<T: Ord> ExactSizeIterator for IntoIterSorted<T> {}
+
+#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
+impl<T: Ord> FusedIterator for IntoIterSorted<T> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T: Ord> TrustedLen for IntoIterSorted<T> {}
+
+/// A draining iterator over the elements of a `BinaryHeap`.
+///
+/// This `struct` is created by [`BinaryHeap::drain()`]. See its
+/// documentation for more.
+///
+/// [`drain`]: BinaryHeap::drain
+#[stable(feature = "drain", since = "1.6.0")]
+#[derive(Debug)]
+pub struct Drain<'a, T: 'a> {
+ iter: vec::Drain<'a, T>,
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl<T> Iterator for Drain<'_, T> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ self.iter.next()
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl<T> DoubleEndedIterator for Drain<'_, T> {
+ #[inline]
+ fn next_back(&mut self) -> Option<T> {
+ self.iter.next_back()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl<T> ExactSizeIterator for Drain<'_, T> {
+ fn is_empty(&self) -> bool {
+ self.iter.is_empty()
+ }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T> FusedIterator for Drain<'_, T> {}
+
+/// A draining iterator over the elements of a `BinaryHeap`.
+///
+/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its
+/// documentation for more.
+///
+/// [`drain_sorted`]: BinaryHeap::drain_sorted
+#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
+#[derive(Debug)]
+pub struct DrainSorted<'a, T: Ord> {
+ inner: &'a mut BinaryHeap<T>,
+}
+
+#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
+impl<'a, T: Ord> Drop for DrainSorted<'a, T> {
+ /// Removes heap elements in heap order.
+ fn drop(&mut self) {
+ struct DropGuard<'r, 'a, T: Ord>(&'r mut DrainSorted<'a, T>);
+
+ impl<'r, 'a, T: Ord> Drop for DropGuard<'r, 'a, T> {
+ fn drop(&mut self) {
+ while self.0.inner.pop().is_some() {}
+ }
+ }
+
+ while let Some(item) = self.inner.pop() {
+ let guard = DropGuard(self);
+ drop(item);
+ mem::forget(guard);
+ }
+ }
+}
+
+#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
+impl<T: Ord> Iterator for DrainSorted<'_, T> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ self.inner.pop()
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let exact = self.inner.len();
+ (exact, Some(exact))
+ }
+}
+
+#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
+impl<T: Ord> ExactSizeIterator for DrainSorted<'_, T> {}
+
+#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
+impl<T: Ord> FusedIterator for DrainSorted<'_, T> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T: Ord> TrustedLen for DrainSorted<'_, T> {}
+
+#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
+impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
+ /// Converts a `Vec<T>` into a `BinaryHeap<T>`.
+ ///
+ /// This conversion happens in-place, and has *O*(*n*) time complexity.
+ fn from(vec: Vec<T>) -> BinaryHeap<T> {
+ let mut heap = BinaryHeap { data: vec };
+ heap.rebuild();
+ heap
+ }
+}
+
+#[stable(feature = "std_collections_from_array", since = "1.56.0")]
+impl<T: Ord, const N: usize> From<[T; N]> for BinaryHeap<T> {
+ /// ```
+ /// use std::collections::BinaryHeap;
+ ///
+ /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
+ /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
+ /// while let Some((a, b)) = h1.pop().zip(h2.pop()) {
+ /// assert_eq!(a, b);
+ /// }
+ /// ```
+ fn from(arr: [T; N]) -> Self {
+ Self::from_iter(arr)
+ }
+}
+
+#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
+impl<T> From<BinaryHeap<T>> for Vec<T> {
+ /// Converts a `BinaryHeap<T>` into a `Vec<T>`.
+ ///
+ /// This conversion requires no data movement or allocation, and has
+ /// constant time complexity.
+ fn from(heap: BinaryHeap<T>) -> Vec<T> {
+ heap.data
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
+ fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
+ BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> IntoIterator for BinaryHeap<T> {
+ type Item = T;
+ type IntoIter = IntoIter<T>;
+
+ /// Creates a consuming iterator, that is, one that moves each value out of
+ /// the binary heap in arbitrary order. The binary heap cannot be used
+ /// after calling this.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::collections::BinaryHeap;
+ /// let heap = BinaryHeap::from([1, 2, 3, 4]);
+ ///
+ /// // Print 1, 2, 3, 4 in arbitrary order
+ /// for x in heap.into_iter() {
+ /// // x has type i32, not &i32
+ /// println!("{x}");
+ /// }
+ /// ```
+ fn into_iter(self) -> IntoIter<T> {
+ IntoIter { iter: self.data.into_iter() }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T> IntoIterator for &'a BinaryHeap<T> {
+ type Item = &'a T;
+ type IntoIter = Iter<'a, T>;
+
+ fn into_iter(self) -> Iter<'a, T> {
+ self.iter()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Ord> Extend<T> for BinaryHeap<T> {
+ #[inline]
+ fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
+ <Self as SpecExtend<I>>::spec_extend(self, iter);
+ }
+
+ #[inline]
+ fn extend_one(&mut self, item: T) {
+ self.push(item);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
+ default fn spec_extend(&mut self, iter: I) {
+ self.extend_desugared(iter.into_iter());
+ }
+}
+
+impl<T: Ord> SpecExtend<Vec<T>> for BinaryHeap<T> {
+ fn spec_extend(&mut self, ref mut other: Vec<T>) {
+ let start = self.data.len();
+ self.data.append(other);
+ self.rebuild_tail(start);
+ }
+}
+
+impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
+ fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
+ self.append(other);
+ }
+}
+
+impl<T: Ord> BinaryHeap<T> {
+ fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
+ let iterator = iter.into_iter();
+ let (lower, _) = iterator.size_hint();
+
+ self.reserve(lower);
+
+ iterator.for_each(move |elem| self.push(elem));
+ }
+}
+
+#[stable(feature = "extend_ref", since = "1.2.0")]
+impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
+ fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
+ self.extend(iter.into_iter().cloned());
+ }
+
+ #[inline]
+ fn extend_one(&mut self, &item: &'a T) {
+ self.push(item);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}