summaryrefslogtreecommitdiffstats
path: root/library/alloc/src/fmt.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/alloc/src/fmt.rs')
-rw-r--r--library/alloc/src/fmt.rs617
1 files changed, 617 insertions, 0 deletions
diff --git a/library/alloc/src/fmt.rs b/library/alloc/src/fmt.rs
new file mode 100644
index 000000000..ed398b566
--- /dev/null
+++ b/library/alloc/src/fmt.rs
@@ -0,0 +1,617 @@
+//! Utilities for formatting and printing `String`s.
+//!
+//! This module contains the runtime support for the [`format!`] syntax extension.
+//! This macro is implemented in the compiler to emit calls to this module in
+//! order to format arguments at runtime into strings.
+//!
+//! # Usage
+//!
+//! The [`format!`] macro is intended to be familiar to those coming from C's
+//! `printf`/`fprintf` functions or Python's `str.format` function.
+//!
+//! Some examples of the [`format!`] extension are:
+//!
+//! ```
+//! format!("Hello"); // => "Hello"
+//! format!("Hello, {}!", "world"); // => "Hello, world!"
+//! format!("The number is {}", 1); // => "The number is 1"
+//! format!("{:?}", (3, 4)); // => "(3, 4)"
+//! format!("{value}", value=4); // => "4"
+//! let people = "Rustaceans";
+//! format!("Hello {people}!"); // => "Hello Rustaceans!"
+//! format!("{} {}", 1, 2); // => "1 2"
+//! format!("{:04}", 42); // => "0042" with leading zeros
+//! format!("{:#?}", (100, 200)); // => "(
+//! // 100,
+//! // 200,
+//! // )"
+//! ```
+//!
+//! From these, you can see that the first argument is a format string. It is
+//! required by the compiler for this to be a string literal; it cannot be a
+//! variable passed in (in order to perform validity checking). The compiler
+//! will then parse the format string and determine if the list of arguments
+//! provided is suitable to pass to this format string.
+//!
+//! To convert a single value to a string, use the [`to_string`] method. This
+//! will use the [`Display`] formatting trait.
+//!
+//! ## Positional parameters
+//!
+//! Each formatting argument is allowed to specify which value argument it's
+//! referencing, and if omitted it is assumed to be "the next argument". For
+//! example, the format string `{} {} {}` would take three parameters, and they
+//! would be formatted in the same order as they're given. The format string
+//! `{2} {1} {0}`, however, would format arguments in reverse order.
+//!
+//! Things can get a little tricky once you start intermingling the two types of
+//! positional specifiers. The "next argument" specifier can be thought of as an
+//! iterator over the argument. Each time a "next argument" specifier is seen,
+//! the iterator advances. This leads to behavior like this:
+//!
+//! ```
+//! format!("{1} {} {0} {}", 1, 2); // => "2 1 1 2"
+//! ```
+//!
+//! The internal iterator over the argument has not been advanced by the time
+//! the first `{}` is seen, so it prints the first argument. Then upon reaching
+//! the second `{}`, the iterator has advanced forward to the second argument.
+//! Essentially, parameters that explicitly name their argument do not affect
+//! parameters that do not name an argument in terms of positional specifiers.
+//!
+//! A format string is required to use all of its arguments, otherwise it is a
+//! compile-time error. You may refer to the same argument more than once in the
+//! format string.
+//!
+//! ## Named parameters
+//!
+//! Rust itself does not have a Python-like equivalent of named parameters to a
+//! function, but the [`format!`] macro is a syntax extension that allows it to
+//! leverage named parameters. Named parameters are listed at the end of the
+//! argument list and have the syntax:
+//!
+//! ```text
+//! identifier '=' expression
+//! ```
+//!
+//! For example, the following [`format!`] expressions all use named arguments:
+//!
+//! ```
+//! format!("{argument}", argument = "test"); // => "test"
+//! format!("{name} {}", 1, name = 2); // => "2 1"
+//! format!("{a} {c} {b}", a="a", b='b', c=3); // => "a 3 b"
+//! ```
+//!
+//! If a named parameter does not appear in the argument list, `format!` will
+//! reference a variable with that name in the current scope.
+//!
+//! ```
+//! let argument = 2 + 2;
+//! format!("{argument}"); // => "4"
+//!
+//! fn make_string(a: u32, b: &str) -> String {
+//! format!("{b} {a}")
+//! }
+//! make_string(927, "label"); // => "label 927"
+//! ```
+//!
+//! It is not valid to put positional parameters (those without names) after
+//! arguments that have names. Like with positional parameters, it is not
+//! valid to provide named parameters that are unused by the format string.
+//!
+//! # Formatting Parameters
+//!
+//! Each argument being formatted can be transformed by a number of formatting
+//! parameters (corresponding to `format_spec` in [the syntax](#syntax)). These
+//! parameters affect the string representation of what's being formatted.
+//!
+//! ## Width
+//!
+//! ```
+//! // All of these print "Hello x !"
+//! println!("Hello {:5}!", "x");
+//! println!("Hello {:1$}!", "x", 5);
+//! println!("Hello {1:0$}!", 5, "x");
+//! println!("Hello {:width$}!", "x", width = 5);
+//! let width = 5;
+//! println!("Hello {:width$}!", "x");
+//! ```
+//!
+//! This is a parameter for the "minimum width" that the format should take up.
+//! If the value's string does not fill up this many characters, then the
+//! padding specified by fill/alignment will be used to take up the required
+//! space (see below).
+//!
+//! The value for the width can also be provided as a [`usize`] in the list of
+//! parameters by adding a postfix `$`, indicating that the second argument is
+//! a [`usize`] specifying the width.
+//!
+//! Referring to an argument with the dollar syntax does not affect the "next
+//! argument" counter, so it's usually a good idea to refer to arguments by
+//! position, or use named arguments.
+//!
+//! ## Fill/Alignment
+//!
+//! ```
+//! assert_eq!(format!("Hello {:<5}!", "x"), "Hello x !");
+//! assert_eq!(format!("Hello {:-<5}!", "x"), "Hello x----!");
+//! assert_eq!(format!("Hello {:^5}!", "x"), "Hello x !");
+//! assert_eq!(format!("Hello {:>5}!", "x"), "Hello x!");
+//! ```
+//!
+//! The optional fill character and alignment is provided normally in conjunction with the
+//! [`width`](#width) parameter. It must be defined before `width`, right after the `:`.
+//! This indicates that if the value being formatted is smaller than
+//! `width` some extra characters will be printed around it.
+//! Filling comes in the following variants for different alignments:
+//!
+//! * `[fill]<` - the argument is left-aligned in `width` columns
+//! * `[fill]^` - the argument is center-aligned in `width` columns
+//! * `[fill]>` - the argument is right-aligned in `width` columns
+//!
+//! The default [fill/alignment](#fillalignment) for non-numerics is a space and
+//! left-aligned. The
+//! default for numeric formatters is also a space character but with right-alignment. If
+//! the `0` flag (see below) is specified for numerics, then the implicit fill character is
+//! `0`.
+//!
+//! Note that alignment might not be implemented by some types. In particular, it
+//! is not generally implemented for the `Debug` trait. A good way to ensure
+//! padding is applied is to format your input, then pad this resulting string
+//! to obtain your output:
+//!
+//! ```
+//! println!("Hello {:^15}!", format!("{:?}", Some("hi"))); // => "Hello Some("hi") !"
+//! ```
+//!
+//! ## Sign/`#`/`0`
+//!
+//! ```
+//! assert_eq!(format!("Hello {:+}!", 5), "Hello +5!");
+//! assert_eq!(format!("{:#x}!", 27), "0x1b!");
+//! assert_eq!(format!("Hello {:05}!", 5), "Hello 00005!");
+//! assert_eq!(format!("Hello {:05}!", -5), "Hello -0005!");
+//! assert_eq!(format!("{:#010x}!", 27), "0x0000001b!");
+//! ```
+//!
+//! These are all flags altering the behavior of the formatter.
+//!
+//! * `+` - This is intended for numeric types and indicates that the sign
+//! should always be printed. Positive signs are never printed by
+//! default, and the negative sign is only printed by default for signed values.
+//! This flag indicates that the correct sign (`+` or `-`) should always be printed.
+//! * `-` - Currently not used
+//! * `#` - This flag indicates that the "alternate" form of printing should
+//! be used. The alternate forms are:
+//! * `#?` - pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
+//! * `#x` - precedes the argument with a `0x`
+//! * `#X` - precedes the argument with a `0x`
+//! * `#b` - precedes the argument with a `0b`
+//! * `#o` - precedes the argument with a `0o`
+//! * `0` - This is used to indicate for integer formats that the padding to `width` should
+//! both be done with a `0` character as well as be sign-aware. A format
+//! like `{:08}` would yield `00000001` for the integer `1`, while the
+//! same format would yield `-0000001` for the integer `-1`. Notice that
+//! the negative version has one fewer zero than the positive version.
+//! Note that padding zeros are always placed after the sign (if any)
+//! and before the digits. When used together with the `#` flag, a similar
+//! rule applies: padding zeros are inserted after the prefix but before
+//! the digits. The prefix is included in the total width.
+//!
+//! ## Precision
+//!
+//! For non-numeric types, this can be considered a "maximum width". If the resulting string is
+//! longer than this width, then it is truncated down to this many characters and that truncated
+//! value is emitted with proper `fill`, `alignment` and `width` if those parameters are set.
+//!
+//! For integral types, this is ignored.
+//!
+//! For floating-point types, this indicates how many digits after the decimal point should be
+//! printed.
+//!
+//! There are three possible ways to specify the desired `precision`:
+//!
+//! 1. An integer `.N`:
+//!
+//! the integer `N` itself is the precision.
+//!
+//! 2. An integer or name followed by dollar sign `.N$`:
+//!
+//! use format *argument* `N` (which must be a `usize`) as the precision.
+//!
+//! 3. An asterisk `.*`:
+//!
+//! `.*` means that this `{...}` is associated with *two* format inputs rather than one:
+//! - If a format string in the fashion of `{:<spec>.*}` is used, then the first input holds
+//! the `usize` precision, and the second holds the value to print.
+//! - If a format string in the fashion of `{<arg>:<spec>.*}` is used, then the `<arg>` part
+//! refers to the value to print, and the `precision` is taken like it was specified with an
+//! omitted positional parameter (`{}` instead of `{<arg>:}`).
+//!
+//! For example, the following calls all print the same thing `Hello x is 0.01000`:
+//!
+//! ```
+//! // Hello {arg 0 ("x")} is {arg 1 (0.01) with precision specified inline (5)}
+//! println!("Hello {0} is {1:.5}", "x", 0.01);
+//!
+//! // Hello {arg 1 ("x")} is {arg 2 (0.01) with precision specified in arg 0 (5)}
+//! println!("Hello {1} is {2:.0$}", 5, "x", 0.01);
+//!
+//! // Hello {arg 0 ("x")} is {arg 2 (0.01) with precision specified in arg 1 (5)}
+//! println!("Hello {0} is {2:.1$}", "x", 5, 0.01);
+//!
+//! // Hello {next arg -> arg 0 ("x")} is {second of next two args -> arg 2 (0.01) with precision
+//! // specified in first of next two args -> arg 1 (5)}
+//! println!("Hello {} is {:.*}", "x", 5, 0.01);
+//!
+//! // Hello {arg 1 ("x")} is {arg 2 (0.01) with precision
+//! // specified in next arg -> arg 0 (5)}
+//! println!("Hello {1} is {2:.*}", 5, "x", 0.01);
+//!
+//! // Hello {next arg -> arg 0 ("x")} is {arg 2 (0.01) with precision
+//! // specified in next arg -> arg 1 (5)}
+//! println!("Hello {} is {2:.*}", "x", 5, 0.01);
+//!
+//! // Hello {next arg -> arg 0 ("x")} is {arg "number" (0.01) with precision specified
+//! // in arg "prec" (5)}
+//! println!("Hello {} is {number:.prec$}", "x", prec = 5, number = 0.01);
+//! ```
+//!
+//! While these:
+//!
+//! ```
+//! println!("{}, `{name:.*}` has 3 fractional digits", "Hello", 3, name=1234.56);
+//! println!("{}, `{name:.*}` has 3 characters", "Hello", 3, name="1234.56");
+//! println!("{}, `{name:>8.*}` has 3 right-aligned characters", "Hello", 3, name="1234.56");
+//! ```
+//!
+//! print three significantly different things:
+//!
+//! ```text
+//! Hello, `1234.560` has 3 fractional digits
+//! Hello, `123` has 3 characters
+//! Hello, ` 123` has 3 right-aligned characters
+//! ```
+//!
+//! ## Localization
+//!
+//! In some programming languages, the behavior of string formatting functions
+//! depends on the operating system's locale setting. The format functions
+//! provided by Rust's standard library do not have any concept of locale and
+//! will produce the same results on all systems regardless of user
+//! configuration.
+//!
+//! For example, the following code will always print `1.5` even if the system
+//! locale uses a decimal separator other than a dot.
+//!
+//! ```
+//! println!("The value is {}", 1.5);
+//! ```
+//!
+//! # Escaping
+//!
+//! The literal characters `{` and `}` may be included in a string by preceding
+//! them with the same character. For example, the `{` character is escaped with
+//! `{{` and the `}` character is escaped with `}}`.
+//!
+//! ```
+//! assert_eq!(format!("Hello {{}}"), "Hello {}");
+//! assert_eq!(format!("{{ Hello"), "{ Hello");
+//! ```
+//!
+//! # Syntax
+//!
+//! To summarize, here you can find the full grammar of format strings.
+//! The syntax for the formatting language used is drawn from other languages,
+//! so it should not be too alien. Arguments are formatted with Python-like
+//! syntax, meaning that arguments are surrounded by `{}` instead of the C-like
+//! `%`. The actual grammar for the formatting syntax is:
+//!
+//! ```text
+//! format_string := text [ maybe_format text ] *
+//! maybe_format := '{' '{' | '}' '}' | format
+//! format := '{' [ argument ] [ ':' format_spec ] [ ws ] * '}'
+//! argument := integer | identifier
+//!
+//! format_spec := [[fill]align][sign]['#']['0'][width]['.' precision]type
+//! fill := character
+//! align := '<' | '^' | '>'
+//! sign := '+' | '-'
+//! width := count
+//! precision := count | '*'
+//! type := '' | '?' | 'x?' | 'X?' | identifier
+//! count := parameter | integer
+//! parameter := argument '$'
+//! ```
+//! In the above grammar,
+//! - `text` must not contain any `'{'` or `'}'` characters,
+//! - `ws` is any character for which [`char::is_whitespace`] returns `true`, has no semantic
+//! meaning and is completely optional,
+//! - `integer` is a decimal integer that may contain leading zeroes and
+//! - `identifier` is an `IDENTIFIER_OR_KEYWORD` (not an `IDENTIFIER`) as defined by the [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html).
+//!
+//! # Formatting traits
+//!
+//! When requesting that an argument be formatted with a particular type, you
+//! are actually requesting that an argument ascribes to a particular trait.
+//! This allows multiple actual types to be formatted via `{:x}` (like [`i8`] as
+//! well as [`isize`]). The current mapping of types to traits is:
+//!
+//! * *nothing* ⇒ [`Display`]
+//! * `?` ⇒ [`Debug`]
+//! * `x?` ⇒ [`Debug`] with lower-case hexadecimal integers
+//! * `X?` ⇒ [`Debug`] with upper-case hexadecimal integers
+//! * `o` ⇒ [`Octal`]
+//! * `x` ⇒ [`LowerHex`]
+//! * `X` ⇒ [`UpperHex`]
+//! * `p` ⇒ [`Pointer`]
+//! * `b` ⇒ [`Binary`]
+//! * `e` ⇒ [`LowerExp`]
+//! * `E` ⇒ [`UpperExp`]
+//!
+//! What this means is that any type of argument which implements the
+//! [`fmt::Binary`][`Binary`] trait can then be formatted with `{:b}`. Implementations
+//! are provided for these traits for a number of primitive types by the
+//! standard library as well. If no format is specified (as in `{}` or `{:6}`),
+//! then the format trait used is the [`Display`] trait.
+//!
+//! When implementing a format trait for your own type, you will have to
+//! implement a method of the signature:
+//!
+//! ```
+//! # #![allow(dead_code)]
+//! # use std::fmt;
+//! # struct Foo; // our custom type
+//! # impl fmt::Display for Foo {
+//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+//! # write!(f, "testing, testing")
+//! # } }
+//! ```
+//!
+//! Your type will be passed as `self` by-reference, and then the function
+//! should emit output into the Formatter `f` which implements `fmt::Write`. It is up to each
+//! format trait implementation to correctly adhere to the requested formatting parameters.
+//! The values of these parameters can be accessed with methods of the
+//! [`Formatter`] struct. In order to help with this, the [`Formatter`] struct also
+//! provides some helper methods.
+//!
+//! Additionally, the return value of this function is [`fmt::Result`] which is a
+//! type alias of <code>[Result]<(), [std::fmt::Error]></code>. Formatting implementations
+//! should ensure that they propagate errors from the [`Formatter`] (e.g., when
+//! calling [`write!`]). However, they should never return errors spuriously. That
+//! is, a formatting implementation must and may only return an error if the
+//! passed-in [`Formatter`] returns an error. This is because, contrary to what
+//! the function signature might suggest, string formatting is an infallible
+//! operation. This function only returns a result because writing to the
+//! underlying stream might fail and it must provide a way to propagate the fact
+//! that an error has occurred back up the stack.
+//!
+//! An example of implementing the formatting traits would look
+//! like:
+//!
+//! ```
+//! use std::fmt;
+//!
+//! #[derive(Debug)]
+//! struct Vector2D {
+//! x: isize,
+//! y: isize,
+//! }
+//!
+//! impl fmt::Display for Vector2D {
+//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+//! // The `f` value implements the `Write` trait, which is what the
+//! // write! macro is expecting. Note that this formatting ignores the
+//! // various flags provided to format strings.
+//! write!(f, "({}, {})", self.x, self.y)
+//! }
+//! }
+//!
+//! // Different traits allow different forms of output of a type. The meaning
+//! // of this format is to print the magnitude of a vector.
+//! impl fmt::Binary for Vector2D {
+//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+//! let magnitude = (self.x * self.x + self.y * self.y) as f64;
+//! let magnitude = magnitude.sqrt();
+//!
+//! // Respect the formatting flags by using the helper method
+//! // `pad_integral` on the Formatter object. See the method
+//! // documentation for details, and the function `pad` can be used
+//! // to pad strings.
+//! let decimals = f.precision().unwrap_or(3);
+//! let string = format!("{:.*}", decimals, magnitude);
+//! f.pad_integral(true, "", &string)
+//! }
+//! }
+//!
+//! fn main() {
+//! let myvector = Vector2D { x: 3, y: 4 };
+//!
+//! println!("{myvector}"); // => "(3, 4)"
+//! println!("{myvector:?}"); // => "Vector2D {x: 3, y:4}"
+//! println!("{myvector:10.3b}"); // => " 5.000"
+//! }
+//! ```
+//!
+//! ### `fmt::Display` vs `fmt::Debug`
+//!
+//! These two formatting traits have distinct purposes:
+//!
+//! - [`fmt::Display`][`Display`] implementations assert that the type can be faithfully
+//! represented as a UTF-8 string at all times. It is **not** expected that
+//! all types implement the [`Display`] trait.
+//! - [`fmt::Debug`][`Debug`] implementations should be implemented for **all** public types.
+//! Output will typically represent the internal state as faithfully as possible.
+//! The purpose of the [`Debug`] trait is to facilitate debugging Rust code. In
+//! most cases, using `#[derive(Debug)]` is sufficient and recommended.
+//!
+//! Some examples of the output from both traits:
+//!
+//! ```
+//! assert_eq!(format!("{} {:?}", 3, 4), "3 4");
+//! assert_eq!(format!("{} {:?}", 'a', 'b'), "a 'b'");
+//! assert_eq!(format!("{} {:?}", "foo\n", "bar\n"), "foo\n \"bar\\n\"");
+//! ```
+//!
+//! # Related macros
+//!
+//! There are a number of related macros in the [`format!`] family. The ones that
+//! are currently implemented are:
+//!
+//! ```ignore (only-for-syntax-highlight)
+//! format! // described above
+//! write! // first argument is either a &mut io::Write or a &mut fmt::Write, the destination
+//! writeln! // same as write but appends a newline
+//! print! // the format string is printed to the standard output
+//! println! // same as print but appends a newline
+//! eprint! // the format string is printed to the standard error
+//! eprintln! // same as eprint but appends a newline
+//! format_args! // described below.
+//! ```
+//!
+//! ### `write!`
+//!
+//! [`write!`] and [`writeln!`] are two macros which are used to emit the format string
+//! to a specified stream. This is used to prevent intermediate allocations of
+//! format strings and instead directly write the output. Under the hood, this
+//! function is actually invoking the [`write_fmt`] function defined on the
+//! [`std::io::Write`] and the [`std::fmt::Write`] trait. Example usage is:
+//!
+//! ```
+//! # #![allow(unused_must_use)]
+//! use std::io::Write;
+//! let mut w = Vec::new();
+//! write!(&mut w, "Hello {}!", "world");
+//! ```
+//!
+//! ### `print!`
+//!
+//! This and [`println!`] emit their output to stdout. Similarly to the [`write!`]
+//! macro, the goal of these macros is to avoid intermediate allocations when
+//! printing output. Example usage is:
+//!
+//! ```
+//! print!("Hello {}!", "world");
+//! println!("I have a newline {}", "character at the end");
+//! ```
+//! ### `eprint!`
+//!
+//! The [`eprint!`] and [`eprintln!`] macros are identical to
+//! [`print!`] and [`println!`], respectively, except they emit their
+//! output to stderr.
+//!
+//! ### `format_args!`
+//!
+//! [`format_args!`] is a curious macro used to safely pass around
+//! an opaque object describing the format string. This object
+//! does not require any heap allocations to create, and it only
+//! references information on the stack. Under the hood, all of
+//! the related macros are implemented in terms of this. First
+//! off, some example usage is:
+//!
+//! ```
+//! # #![allow(unused_must_use)]
+//! use std::fmt;
+//! use std::io::{self, Write};
+//!
+//! let mut some_writer = io::stdout();
+//! write!(&mut some_writer, "{}", format_args!("print with a {}", "macro"));
+//!
+//! fn my_fmt_fn(args: fmt::Arguments) {
+//! write!(&mut io::stdout(), "{}", args);
+//! }
+//! my_fmt_fn(format_args!(", or a {} too", "function"));
+//! ```
+//!
+//! The result of the [`format_args!`] macro is a value of type [`fmt::Arguments`].
+//! This structure can then be passed to the [`write`] and [`format`] functions
+//! inside this module in order to process the format string.
+//! The goal of this macro is to even further prevent intermediate allocations
+//! when dealing with formatting strings.
+//!
+//! For example, a logging library could use the standard formatting syntax, but
+//! it would internally pass around this structure until it has been determined
+//! where output should go to.
+//!
+//! [`fmt::Result`]: Result "fmt::Result"
+//! [Result]: core::result::Result "std::result::Result"
+//! [std::fmt::Error]: Error "fmt::Error"
+//! [`write`]: write() "fmt::write"
+//! [`to_string`]: crate::string::ToString::to_string "ToString::to_string"
+//! [`write_fmt`]: ../../std/io/trait.Write.html#method.write_fmt
+//! [`std::io::Write`]: ../../std/io/trait.Write.html
+//! [`std::fmt::Write`]: ../../std/fmt/trait.Write.html
+//! [`print!`]: ../../std/macro.print.html "print!"
+//! [`println!`]: ../../std/macro.println.html "println!"
+//! [`eprint!`]: ../../std/macro.eprint.html "eprint!"
+//! [`eprintln!`]: ../../std/macro.eprintln.html "eprintln!"
+//! [`format_args!`]: ../../std/macro.format_args.html "format_args!"
+//! [`fmt::Arguments`]: Arguments "fmt::Arguments"
+//! [`format`]: format() "fmt::format"
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+#[unstable(feature = "fmt_internals", issue = "none")]
+pub use core::fmt::rt;
+#[stable(feature = "fmt_flags_align", since = "1.28.0")]
+pub use core::fmt::Alignment;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::Error;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{write, ArgumentV1, Arguments};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{Binary, Octal};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{Debug, Display};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{Formatter, Result, Write};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{LowerExp, UpperExp};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{LowerHex, Pointer, UpperHex};
+
+#[cfg(not(no_global_oom_handling))]
+use crate::string;
+
+/// The `format` function takes an [`Arguments`] struct and returns the resulting
+/// formatted string.
+///
+/// The [`Arguments`] instance can be created with the [`format_args!`] macro.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use std::fmt;
+///
+/// let s = fmt::format(format_args!("Hello, {}!", "world"));
+/// assert_eq!(s, "Hello, world!");
+/// ```
+///
+/// Please note that using [`format!`] might be preferable.
+/// Example:
+///
+/// ```
+/// let s = format!("Hello, {}!", "world");
+/// assert_eq!(s, "Hello, world!");
+/// ```
+///
+/// [`format_args!`]: core::format_args
+/// [`format!`]: crate::format
+#[cfg(not(no_global_oom_handling))]
+#[must_use]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[inline]
+pub fn format(args: Arguments<'_>) -> string::String {
+ fn format_inner(args: Arguments<'_>) -> string::String {
+ let capacity = args.estimated_capacity();
+ let mut output = string::String::with_capacity(capacity);
+ output.write_fmt(args).expect("a formatting trait implementation returned an error");
+ output
+ }
+
+ args.as_str().map_or_else(|| format_inner(args), crate::borrow::ToOwned::to_owned)
+}