summaryrefslogtreecommitdiffstats
path: root/library/alloc/src/rc.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/alloc/src/rc.rs')
-rw-r--r--library/alloc/src/rc.rs2700
1 files changed, 2700 insertions, 0 deletions
diff --git a/library/alloc/src/rc.rs b/library/alloc/src/rc.rs
new file mode 100644
index 000000000..b89b03683
--- /dev/null
+++ b/library/alloc/src/rc.rs
@@ -0,0 +1,2700 @@
+//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
+//! Counted'.
+//!
+//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
+//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
+//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
+//! given allocation is destroyed, the value stored in that allocation (often
+//! referred to as "inner value") is also dropped.
+//!
+//! Shared references in Rust disallow mutation by default, and [`Rc`]
+//! is no exception: you cannot generally obtain a mutable reference to
+//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
+//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
+//! inside an `Rc`][mutability].
+//!
+//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
+//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
+//! does not implement [`Send`][send]. As a result, the Rust compiler
+//! will check *at compile time* that you are not sending [`Rc`]s between
+//! threads. If you need multi-threaded, atomic reference counting, use
+//! [`sync::Arc`][arc].
+//!
+//! The [`downgrade`][downgrade] method can be used to create a non-owning
+//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
+//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
+//! already been dropped. In other words, `Weak` pointers do not keep the value
+//! inside the allocation alive; however, they *do* keep the allocation
+//! (the backing store for the inner value) alive.
+//!
+//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
+//! [`Weak`] is used to break cycles. For example, a tree could have strong
+//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
+//! children back to their parents.
+//!
+//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
+//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
+//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
+//! functions, called using [fully qualified syntax]:
+//!
+//! ```
+//! use std::rc::Rc;
+//!
+//! let my_rc = Rc::new(());
+//! let my_weak = Rc::downgrade(&my_rc);
+//! ```
+//!
+//! `Rc<T>`'s implementations of traits like `Clone` may also be called using
+//! fully qualified syntax. Some people prefer to use fully qualified syntax,
+//! while others prefer using method-call syntax.
+//!
+//! ```
+//! use std::rc::Rc;
+//!
+//! let rc = Rc::new(());
+//! // Method-call syntax
+//! let rc2 = rc.clone();
+//! // Fully qualified syntax
+//! let rc3 = Rc::clone(&rc);
+//! ```
+//!
+//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
+//! already been dropped.
+//!
+//! # Cloning references
+//!
+//! Creating a new reference to the same allocation as an existing reference counted pointer
+//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
+//!
+//! ```
+//! use std::rc::Rc;
+//!
+//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
+//! // The two syntaxes below are equivalent.
+//! let a = foo.clone();
+//! let b = Rc::clone(&foo);
+//! // a and b both point to the same memory location as foo.
+//! ```
+//!
+//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
+//! the meaning of the code. In the example above, this syntax makes it easier to see that
+//! this code is creating a new reference rather than copying the whole content of foo.
+//!
+//! # Examples
+//!
+//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
+//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
+//! unique ownership, because more than one gadget may belong to the same
+//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
+//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
+//!
+//! ```
+//! use std::rc::Rc;
+//!
+//! struct Owner {
+//! name: String,
+//! // ...other fields
+//! }
+//!
+//! struct Gadget {
+//! id: i32,
+//! owner: Rc<Owner>,
+//! // ...other fields
+//! }
+//!
+//! fn main() {
+//! // Create a reference-counted `Owner`.
+//! let gadget_owner: Rc<Owner> = Rc::new(
+//! Owner {
+//! name: "Gadget Man".to_string(),
+//! }
+//! );
+//!
+//! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
+//! // gives us a new pointer to the same `Owner` allocation, incrementing
+//! // the reference count in the process.
+//! let gadget1 = Gadget {
+//! id: 1,
+//! owner: Rc::clone(&gadget_owner),
+//! };
+//! let gadget2 = Gadget {
+//! id: 2,
+//! owner: Rc::clone(&gadget_owner),
+//! };
+//!
+//! // Dispose of our local variable `gadget_owner`.
+//! drop(gadget_owner);
+//!
+//! // Despite dropping `gadget_owner`, we're still able to print out the name
+//! // of the `Owner` of the `Gadget`s. This is because we've only dropped a
+//! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
+//! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
+//! // live. The field projection `gadget1.owner.name` works because
+//! // `Rc<Owner>` automatically dereferences to `Owner`.
+//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
+//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
+//!
+//! // At the end of the function, `gadget1` and `gadget2` are destroyed, and
+//! // with them the last counted references to our `Owner`. Gadget Man now
+//! // gets destroyed as well.
+//! }
+//! ```
+//!
+//! If our requirements change, and we also need to be able to traverse from
+//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
+//! to `Gadget` introduces a cycle. This means that their
+//! reference counts can never reach 0, and the allocation will never be destroyed:
+//! a memory leak. In order to get around this, we can use [`Weak`]
+//! pointers.
+//!
+//! Rust actually makes it somewhat difficult to produce this loop in the first
+//! place. In order to end up with two values that point at each other, one of
+//! them needs to be mutable. This is difficult because [`Rc`] enforces
+//! memory safety by only giving out shared references to the value it wraps,
+//! and these don't allow direct mutation. We need to wrap the part of the
+//! value we wish to mutate in a [`RefCell`], which provides *interior
+//! mutability*: a method to achieve mutability through a shared reference.
+//! [`RefCell`] enforces Rust's borrowing rules at runtime.
+//!
+//! ```
+//! use std::rc::Rc;
+//! use std::rc::Weak;
+//! use std::cell::RefCell;
+//!
+//! struct Owner {
+//! name: String,
+//! gadgets: RefCell<Vec<Weak<Gadget>>>,
+//! // ...other fields
+//! }
+//!
+//! struct Gadget {
+//! id: i32,
+//! owner: Rc<Owner>,
+//! // ...other fields
+//! }
+//!
+//! fn main() {
+//! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
+//! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
+//! // a shared reference.
+//! let gadget_owner: Rc<Owner> = Rc::new(
+//! Owner {
+//! name: "Gadget Man".to_string(),
+//! gadgets: RefCell::new(vec![]),
+//! }
+//! );
+//!
+//! // Create `Gadget`s belonging to `gadget_owner`, as before.
+//! let gadget1 = Rc::new(
+//! Gadget {
+//! id: 1,
+//! owner: Rc::clone(&gadget_owner),
+//! }
+//! );
+//! let gadget2 = Rc::new(
+//! Gadget {
+//! id: 2,
+//! owner: Rc::clone(&gadget_owner),
+//! }
+//! );
+//!
+//! // Add the `Gadget`s to their `Owner`.
+//! {
+//! let mut gadgets = gadget_owner.gadgets.borrow_mut();
+//! gadgets.push(Rc::downgrade(&gadget1));
+//! gadgets.push(Rc::downgrade(&gadget2));
+//!
+//! // `RefCell` dynamic borrow ends here.
+//! }
+//!
+//! // Iterate over our `Gadget`s, printing their details out.
+//! for gadget_weak in gadget_owner.gadgets.borrow().iter() {
+//!
+//! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
+//! // guarantee the allocation still exists, we need to call
+//! // `upgrade`, which returns an `Option<Rc<Gadget>>`.
+//! //
+//! // In this case we know the allocation still exists, so we simply
+//! // `unwrap` the `Option`. In a more complicated program, you might
+//! // need graceful error handling for a `None` result.
+//!
+//! let gadget = gadget_weak.upgrade().unwrap();
+//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
+//! }
+//!
+//! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
+//! // are destroyed. There are now no strong (`Rc`) pointers to the
+//! // gadgets, so they are destroyed. This zeroes the reference count on
+//! // Gadget Man, so he gets destroyed as well.
+//! }
+//! ```
+//!
+//! [clone]: Clone::clone
+//! [`Cell`]: core::cell::Cell
+//! [`RefCell`]: core::cell::RefCell
+//! [send]: core::marker::Send
+//! [arc]: crate::sync::Arc
+//! [`Deref`]: core::ops::Deref
+//! [downgrade]: Rc::downgrade
+//! [upgrade]: Weak::upgrade
+//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
+//! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+#[cfg(not(test))]
+use crate::boxed::Box;
+#[cfg(test)]
+use std::boxed::Box;
+
+use core::any::Any;
+use core::borrow;
+use core::cell::Cell;
+use core::cmp::Ordering;
+use core::convert::{From, TryFrom};
+use core::fmt;
+use core::hash::{Hash, Hasher};
+use core::intrinsics::abort;
+#[cfg(not(no_global_oom_handling))]
+use core::iter;
+use core::marker::{self, PhantomData, Unpin, Unsize};
+#[cfg(not(no_global_oom_handling))]
+use core::mem::size_of_val;
+use core::mem::{self, align_of_val_raw, forget};
+use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
+use core::panic::{RefUnwindSafe, UnwindSafe};
+#[cfg(not(no_global_oom_handling))]
+use core::pin::Pin;
+use core::ptr::{self, NonNull};
+#[cfg(not(no_global_oom_handling))]
+use core::slice::from_raw_parts_mut;
+
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::handle_alloc_error;
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::{box_free, WriteCloneIntoRaw};
+use crate::alloc::{AllocError, Allocator, Global, Layout};
+use crate::borrow::{Cow, ToOwned};
+#[cfg(not(no_global_oom_handling))]
+use crate::string::String;
+#[cfg(not(no_global_oom_handling))]
+use crate::vec::Vec;
+
+#[cfg(test)]
+mod tests;
+
+// This is repr(C) to future-proof against possible field-reordering, which
+// would interfere with otherwise safe [into|from]_raw() of transmutable
+// inner types.
+#[repr(C)]
+struct RcBox<T: ?Sized> {
+ strong: Cell<usize>,
+ weak: Cell<usize>,
+ value: T,
+}
+
+/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
+/// Counted'.
+///
+/// See the [module-level documentation](./index.html) for more details.
+///
+/// The inherent methods of `Rc` are all associated functions, which means
+/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
+/// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
+///
+/// [get_mut]: Rc::get_mut
+#[cfg_attr(not(test), rustc_diagnostic_item = "Rc")]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_insignificant_dtor]
+pub struct Rc<T: ?Sized> {
+ ptr: NonNull<RcBox<T>>,
+ phantom: PhantomData<RcBox<T>>,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> !marker::Send for Rc<T> {}
+
+// Note that this negative impl isn't strictly necessary for correctness,
+// as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
+// However, given how important `Rc`'s `!Sync`-ness is,
+// having an explicit negative impl is nice for documentation purposes
+// and results in nicer error messages.
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> !marker::Sync for Rc<T> {}
+
+#[stable(feature = "catch_unwind", since = "1.9.0")]
+impl<T: RefUnwindSafe + ?Sized> UnwindSafe for Rc<T> {}
+#[stable(feature = "rc_ref_unwind_safe", since = "1.58.0")]
+impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for Rc<T> {}
+
+#[unstable(feature = "coerce_unsized", issue = "27732")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
+
+#[unstable(feature = "dispatch_from_dyn", issue = "none")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
+
+impl<T: ?Sized> Rc<T> {
+ #[inline(always)]
+ fn inner(&self) -> &RcBox<T> {
+ // This unsafety is ok because while this Rc is alive we're guaranteed
+ // that the inner pointer is valid.
+ unsafe { self.ptr.as_ref() }
+ }
+
+ unsafe fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
+ Self { ptr, phantom: PhantomData }
+ }
+
+ unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
+ unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
+ }
+}
+
+impl<T> Rc<T> {
+ /// Constructs a new `Rc<T>`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn new(value: T) -> Rc<T> {
+ // There is an implicit weak pointer owned by all the strong
+ // pointers, which ensures that the weak destructor never frees
+ // the allocation while the strong destructor is running, even
+ // if the weak pointer is stored inside the strong one.
+ unsafe {
+ Self::from_inner(
+ Box::leak(Box::new(RcBox { strong: Cell::new(1), weak: Cell::new(1), value }))
+ .into(),
+ )
+ }
+ }
+
+ /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation,
+ /// to allow you to construct a `T` which holds a weak pointer to itself.
+ ///
+ /// Generally, a structure circularly referencing itself, either directly or
+ /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
+ /// Using this function, you get access to the weak pointer during the
+ /// initialization of `T`, before the `Rc<T>` is created, such that you can
+ /// clone and store it inside the `T`.
+ ///
+ /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`,
+ /// then calls your closure, giving it a `Weak<T>` to this allocation,
+ /// and only afterwards completes the construction of the `Rc<T>` by placing
+ /// the `T` returned from your closure into the allocation.
+ ///
+ /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic`
+ /// returns, calling [`upgrade`] on the weak reference inside your closure will
+ /// fail and result in a `None` value.
+ ///
+ /// # Panics
+ ///
+ /// If `data_fn` panics, the panic is propagated to the caller, and the
+ /// temporary [`Weak<T>`] is dropped normally.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #![allow(dead_code)]
+ /// use std::rc::{Rc, Weak};
+ ///
+ /// struct Gadget {
+ /// me: Weak<Gadget>,
+ /// }
+ ///
+ /// impl Gadget {
+ /// /// Construct a reference counted Gadget.
+ /// fn new() -> Rc<Self> {
+ /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
+ /// // `Rc` we're constructing.
+ /// Rc::new_cyclic(|me| {
+ /// // Create the actual struct here.
+ /// Gadget { me: me.clone() }
+ /// })
+ /// }
+ ///
+ /// /// Return a reference counted pointer to Self.
+ /// fn me(&self) -> Rc<Self> {
+ /// self.me.upgrade().unwrap()
+ /// }
+ /// }
+ /// ```
+ /// [`upgrade`]: Weak::upgrade
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
+ pub fn new_cyclic<F>(data_fn: F) -> Rc<T>
+ where
+ F: FnOnce(&Weak<T>) -> T,
+ {
+ // Construct the inner in the "uninitialized" state with a single
+ // weak reference.
+ let uninit_ptr: NonNull<_> = Box::leak(Box::new(RcBox {
+ strong: Cell::new(0),
+ weak: Cell::new(1),
+ value: mem::MaybeUninit::<T>::uninit(),
+ }))
+ .into();
+
+ let init_ptr: NonNull<RcBox<T>> = uninit_ptr.cast();
+
+ let weak = Weak { ptr: init_ptr };
+
+ // It's important we don't give up ownership of the weak pointer, or
+ // else the memory might be freed by the time `data_fn` returns. If
+ // we really wanted to pass ownership, we could create an additional
+ // weak pointer for ourselves, but this would result in additional
+ // updates to the weak reference count which might not be necessary
+ // otherwise.
+ let data = data_fn(&weak);
+
+ let strong = unsafe {
+ let inner = init_ptr.as_ptr();
+ ptr::write(ptr::addr_of_mut!((*inner).value), data);
+
+ let prev_value = (*inner).strong.get();
+ debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
+ (*inner).strong.set(1);
+
+ Rc::from_inner(init_ptr)
+ };
+
+ // Strong references should collectively own a shared weak reference,
+ // so don't run the destructor for our old weak reference.
+ mem::forget(weak);
+ strong
+ }
+
+ /// Constructs a new `Rc` with uninitialized contents.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let mut five = Rc::<u32>::new_uninit();
+ ///
+ /// // Deferred initialization:
+ /// Rc::get_mut(&mut five).unwrap().write(5);
+ ///
+ /// let five = unsafe { five.assume_init() };
+ ///
+ /// assert_eq!(*five, 5)
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
+ unsafe {
+ Rc::from_ptr(Rc::allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate(layout),
+ |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
+ ))
+ }
+ }
+
+ /// Constructs a new `Rc` with uninitialized contents, with the memory
+ /// being filled with `0` bytes.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
+ /// incorrect usage of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let zero = Rc::<u32>::new_zeroed();
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0)
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
+ unsafe {
+ Rc::from_ptr(Rc::allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate_zeroed(layout),
+ |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
+ ))
+ }
+ }
+
+ /// Constructs a new `Rc<T>`, returning an error if the allocation fails
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::try_new(5);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub fn try_new(value: T) -> Result<Rc<T>, AllocError> {
+ // There is an implicit weak pointer owned by all the strong
+ // pointers, which ensures that the weak destructor never frees
+ // the allocation while the strong destructor is running, even
+ // if the weak pointer is stored inside the strong one.
+ unsafe {
+ Ok(Self::from_inner(
+ Box::leak(Box::try_new(RcBox { strong: Cell::new(1), weak: Cell::new(1), value })?)
+ .into(),
+ ))
+ }
+ }
+
+ /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let mut five = Rc::<u32>::try_new_uninit()?;
+ ///
+ /// // Deferred initialization:
+ /// Rc::get_mut(&mut five).unwrap().write(5);
+ ///
+ /// let five = unsafe { five.assume_init() };
+ ///
+ /// assert_eq!(*five, 5);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
+ unsafe {
+ Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate(layout),
+ |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
+ )?))
+ }
+ }
+
+ /// Constructs a new `Rc` with uninitialized contents, with the memory
+ /// being filled with `0` bytes, returning an error if the allocation fails
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
+ /// incorrect usage of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let zero = Rc::<u32>::try_new_zeroed()?;
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ //#[unstable(feature = "new_uninit", issue = "63291")]
+ pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
+ unsafe {
+ Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate_zeroed(layout),
+ |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
+ )?))
+ }
+ }
+ /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
+ /// `value` will be pinned in memory and unable to be moved.
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "pin", since = "1.33.0")]
+ #[must_use]
+ pub fn pin(value: T) -> Pin<Rc<T>> {
+ unsafe { Pin::new_unchecked(Rc::new(value)) }
+ }
+
+ /// Returns the inner value, if the `Rc` has exactly one strong reference.
+ ///
+ /// Otherwise, an [`Err`] is returned with the same `Rc` that was
+ /// passed in.
+ ///
+ /// This will succeed even if there are outstanding weak references.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let x = Rc::new(3);
+ /// assert_eq!(Rc::try_unwrap(x), Ok(3));
+ ///
+ /// let x = Rc::new(4);
+ /// let _y = Rc::clone(&x);
+ /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_unique", since = "1.4.0")]
+ pub fn try_unwrap(this: Self) -> Result<T, Self> {
+ if Rc::strong_count(&this) == 1 {
+ unsafe {
+ let val = ptr::read(&*this); // copy the contained object
+
+ // Indicate to Weaks that they can't be promoted by decrementing
+ // the strong count, and then remove the implicit "strong weak"
+ // pointer while also handling drop logic by just crafting a
+ // fake Weak.
+ this.inner().dec_strong();
+ let _weak = Weak { ptr: this.ptr };
+ forget(this);
+ Ok(val)
+ }
+ } else {
+ Err(this)
+ }
+ }
+}
+
+impl<T> Rc<[T]> {
+ /// Constructs a new reference-counted slice with uninitialized contents.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
+ ///
+ /// // Deferred initialization:
+ /// let data = Rc::get_mut(&mut values).unwrap();
+ /// data[0].write(1);
+ /// data[1].write(2);
+ /// data[2].write(3);
+ ///
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [1, 2, 3])
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
+ unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
+ }
+
+ /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
+ /// filled with `0` bytes.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
+ /// incorrect usage of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let values = Rc::<[u32]>::new_zeroed_slice(3);
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [0, 0, 0])
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
+ unsafe {
+ Rc::from_ptr(Rc::allocate_for_layout(
+ Layout::array::<T>(len).unwrap(),
+ |layout| Global.allocate_zeroed(layout),
+ |mem| {
+ ptr::slice_from_raw_parts_mut(mem as *mut T, len)
+ as *mut RcBox<[mem::MaybeUninit<T>]>
+ },
+ ))
+ }
+ }
+}
+
+impl<T> Rc<mem::MaybeUninit<T>> {
+ /// Converts to `Rc<T>`.
+ ///
+ /// # Safety
+ ///
+ /// As with [`MaybeUninit::assume_init`],
+ /// it is up to the caller to guarantee that the inner value
+ /// really is in an initialized state.
+ /// Calling this when the content is not yet fully initialized
+ /// causes immediate undefined behavior.
+ ///
+ /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let mut five = Rc::<u32>::new_uninit();
+ ///
+ /// // Deferred initialization:
+ /// Rc::get_mut(&mut five).unwrap().write(5);
+ ///
+ /// let five = unsafe { five.assume_init() };
+ ///
+ /// assert_eq!(*five, 5)
+ /// ```
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[inline]
+ pub unsafe fn assume_init(self) -> Rc<T> {
+ unsafe { Rc::from_inner(mem::ManuallyDrop::new(self).ptr.cast()) }
+ }
+}
+
+impl<T> Rc<[mem::MaybeUninit<T>]> {
+ /// Converts to `Rc<[T]>`.
+ ///
+ /// # Safety
+ ///
+ /// As with [`MaybeUninit::assume_init`],
+ /// it is up to the caller to guarantee that the inner value
+ /// really is in an initialized state.
+ /// Calling this when the content is not yet fully initialized
+ /// causes immediate undefined behavior.
+ ///
+ /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
+ ///
+ /// // Deferred initialization:
+ /// let data = Rc::get_mut(&mut values).unwrap();
+ /// data[0].write(1);
+ /// data[1].write(2);
+ /// data[2].write(3);
+ ///
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [1, 2, 3])
+ /// ```
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[inline]
+ pub unsafe fn assume_init(self) -> Rc<[T]> {
+ unsafe { Rc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
+ }
+}
+
+impl<T: ?Sized> Rc<T> {
+ /// Consumes the `Rc`, returning the wrapped pointer.
+ ///
+ /// To avoid a memory leak the pointer must be converted back to an `Rc` using
+ /// [`Rc::from_raw`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let x = Rc::new("hello".to_owned());
+ /// let x_ptr = Rc::into_raw(x);
+ /// assert_eq!(unsafe { &*x_ptr }, "hello");
+ /// ```
+ #[stable(feature = "rc_raw", since = "1.17.0")]
+ pub fn into_raw(this: Self) -> *const T {
+ let ptr = Self::as_ptr(&this);
+ mem::forget(this);
+ ptr
+ }
+
+ /// Provides a raw pointer to the data.
+ ///
+ /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
+ /// for as long there are strong counts in the `Rc`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let x = Rc::new("hello".to_owned());
+ /// let y = Rc::clone(&x);
+ /// let x_ptr = Rc::as_ptr(&x);
+ /// assert_eq!(x_ptr, Rc::as_ptr(&y));
+ /// assert_eq!(unsafe { &*x_ptr }, "hello");
+ /// ```
+ #[stable(feature = "weak_into_raw", since = "1.45.0")]
+ pub fn as_ptr(this: &Self) -> *const T {
+ let ptr: *mut RcBox<T> = NonNull::as_ptr(this.ptr);
+
+ // SAFETY: This cannot go through Deref::deref or Rc::inner because
+ // this is required to retain raw/mut provenance such that e.g. `get_mut` can
+ // write through the pointer after the Rc is recovered through `from_raw`.
+ unsafe { ptr::addr_of_mut!((*ptr).value) }
+ }
+
+ /// Constructs an `Rc<T>` from a raw pointer.
+ ///
+ /// The raw pointer must have been previously returned by a call to
+ /// [`Rc<U>::into_raw`][into_raw] where `U` must have the same size
+ /// and alignment as `T`. This is trivially true if `U` is `T`.
+ /// Note that if `U` is not `T` but has the same size and alignment, this is
+ /// basically like transmuting references of different types. See
+ /// [`mem::transmute`] for more information on what
+ /// restrictions apply in this case.
+ ///
+ /// The user of `from_raw` has to make sure a specific value of `T` is only
+ /// dropped once.
+ ///
+ /// This function is unsafe because improper use may lead to memory unsafety,
+ /// even if the returned `Rc<T>` is never accessed.
+ ///
+ /// [into_raw]: Rc::into_raw
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let x = Rc::new("hello".to_owned());
+ /// let x_ptr = Rc::into_raw(x);
+ ///
+ /// unsafe {
+ /// // Convert back to an `Rc` to prevent leak.
+ /// let x = Rc::from_raw(x_ptr);
+ /// assert_eq!(&*x, "hello");
+ ///
+ /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
+ /// }
+ ///
+ /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
+ /// ```
+ #[stable(feature = "rc_raw", since = "1.17.0")]
+ pub unsafe fn from_raw(ptr: *const T) -> Self {
+ let offset = unsafe { data_offset(ptr) };
+
+ // Reverse the offset to find the original RcBox.
+ let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcBox<T> };
+
+ unsafe { Self::from_ptr(rc_ptr) }
+ }
+
+ /// Creates a new [`Weak`] pointer to this allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// let weak_five = Rc::downgrade(&five);
+ /// ```
+ #[must_use = "this returns a new `Weak` pointer, \
+ without modifying the original `Rc`"]
+ #[stable(feature = "rc_weak", since = "1.4.0")]
+ pub fn downgrade(this: &Self) -> Weak<T> {
+ this.inner().inc_weak();
+ // Make sure we do not create a dangling Weak
+ debug_assert!(!is_dangling(this.ptr.as_ptr()));
+ Weak { ptr: this.ptr }
+ }
+
+ /// Gets the number of [`Weak`] pointers to this allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ /// let _weak_five = Rc::downgrade(&five);
+ ///
+ /// assert_eq!(1, Rc::weak_count(&five));
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_counts", since = "1.15.0")]
+ pub fn weak_count(this: &Self) -> usize {
+ this.inner().weak() - 1
+ }
+
+ /// Gets the number of strong (`Rc`) pointers to this allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ /// let _also_five = Rc::clone(&five);
+ ///
+ /// assert_eq!(2, Rc::strong_count(&five));
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_counts", since = "1.15.0")]
+ pub fn strong_count(this: &Self) -> usize {
+ this.inner().strong()
+ }
+
+ /// Increments the strong reference count on the `Rc<T>` associated with the
+ /// provided pointer by one.
+ ///
+ /// # Safety
+ ///
+ /// The pointer must have been obtained through `Rc::into_raw`, and the
+ /// associated `Rc` instance must be valid (i.e. the strong count must be at
+ /// least 1) for the duration of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// unsafe {
+ /// let ptr = Rc::into_raw(five);
+ /// Rc::increment_strong_count(ptr);
+ ///
+ /// let five = Rc::from_raw(ptr);
+ /// assert_eq!(2, Rc::strong_count(&five));
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
+ pub unsafe fn increment_strong_count(ptr: *const T) {
+ // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
+ let rc = unsafe { mem::ManuallyDrop::new(Rc::<T>::from_raw(ptr)) };
+ // Now increase refcount, but don't drop new refcount either
+ let _rc_clone: mem::ManuallyDrop<_> = rc.clone();
+ }
+
+ /// Decrements the strong reference count on the `Rc<T>` associated with the
+ /// provided pointer by one.
+ ///
+ /// # Safety
+ ///
+ /// The pointer must have been obtained through `Rc::into_raw`, and the
+ /// associated `Rc` instance must be valid (i.e. the strong count must be at
+ /// least 1) when invoking this method. This method can be used to release
+ /// the final `Rc` and backing storage, but **should not** be called after
+ /// the final `Rc` has been released.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// unsafe {
+ /// let ptr = Rc::into_raw(five);
+ /// Rc::increment_strong_count(ptr);
+ ///
+ /// let five = Rc::from_raw(ptr);
+ /// assert_eq!(2, Rc::strong_count(&five));
+ /// Rc::decrement_strong_count(ptr);
+ /// assert_eq!(1, Rc::strong_count(&five));
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
+ pub unsafe fn decrement_strong_count(ptr: *const T) {
+ unsafe { mem::drop(Rc::from_raw(ptr)) };
+ }
+
+ /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
+ /// this allocation.
+ #[inline]
+ fn is_unique(this: &Self) -> bool {
+ Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
+ }
+
+ /// Returns a mutable reference into the given `Rc`, if there are
+ /// no other `Rc` or [`Weak`] pointers to the same allocation.
+ ///
+ /// Returns [`None`] otherwise, because it is not safe to
+ /// mutate a shared value.
+ ///
+ /// See also [`make_mut`][make_mut], which will [`clone`][clone]
+ /// the inner value when there are other `Rc` pointers.
+ ///
+ /// [make_mut]: Rc::make_mut
+ /// [clone]: Clone::clone
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let mut x = Rc::new(3);
+ /// *Rc::get_mut(&mut x).unwrap() = 4;
+ /// assert_eq!(*x, 4);
+ ///
+ /// let _y = Rc::clone(&x);
+ /// assert!(Rc::get_mut(&mut x).is_none());
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_unique", since = "1.4.0")]
+ pub fn get_mut(this: &mut Self) -> Option<&mut T> {
+ if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
+ }
+
+ /// Returns a mutable reference into the given `Rc`,
+ /// without any check.
+ ///
+ /// See also [`get_mut`], which is safe and does appropriate checks.
+ ///
+ /// [`get_mut`]: Rc::get_mut
+ ///
+ /// # Safety
+ ///
+ /// Any other `Rc` or [`Weak`] pointers to the same allocation must not be dereferenced
+ /// for the duration of the returned borrow.
+ /// This is trivially the case if no such pointers exist,
+ /// for example immediately after `Rc::new`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::rc::Rc;
+ ///
+ /// let mut x = Rc::new(String::new());
+ /// unsafe {
+ /// Rc::get_mut_unchecked(&mut x).push_str("foo")
+ /// }
+ /// assert_eq!(*x, "foo");
+ /// ```
+ #[inline]
+ #[unstable(feature = "get_mut_unchecked", issue = "63292")]
+ pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
+ // We are careful to *not* create a reference covering the "count" fields, as
+ // this would conflict with accesses to the reference counts (e.g. by `Weak`).
+ unsafe { &mut (*this.ptr.as_ptr()).value }
+ }
+
+ #[inline]
+ #[stable(feature = "ptr_eq", since = "1.17.0")]
+ /// Returns `true` if the two `Rc`s point to the same allocation
+ /// (in a vein similar to [`ptr::eq`]).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ /// let same_five = Rc::clone(&five);
+ /// let other_five = Rc::new(5);
+ ///
+ /// assert!(Rc::ptr_eq(&five, &same_five));
+ /// assert!(!Rc::ptr_eq(&five, &other_five));
+ /// ```
+ pub fn ptr_eq(this: &Self, other: &Self) -> bool {
+ this.ptr.as_ptr() == other.ptr.as_ptr()
+ }
+}
+
+impl<T: Clone> Rc<T> {
+ /// Makes a mutable reference into the given `Rc`.
+ ///
+ /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
+ /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
+ /// referred to as clone-on-write.
+ ///
+ /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`]
+ /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not
+ /// be cloned.
+ ///
+ /// See also [`get_mut`], which will fail rather than cloning the inner value
+ /// or diassociating [`Weak`] pointers.
+ ///
+ /// [`clone`]: Clone::clone
+ /// [`get_mut`]: Rc::get_mut
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let mut data = Rc::new(5);
+ ///
+ /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
+ /// let mut other_data = Rc::clone(&data); // Won't clone inner data
+ /// *Rc::make_mut(&mut data) += 1; // Clones inner data
+ /// *Rc::make_mut(&mut data) += 1; // Won't clone anything
+ /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything
+ ///
+ /// // Now `data` and `other_data` point to different allocations.
+ /// assert_eq!(*data, 8);
+ /// assert_eq!(*other_data, 12);
+ /// ```
+ ///
+ /// [`Weak`] pointers will be disassociated:
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let mut data = Rc::new(75);
+ /// let weak = Rc::downgrade(&data);
+ ///
+ /// assert!(75 == *data);
+ /// assert!(75 == *weak.upgrade().unwrap());
+ ///
+ /// *Rc::make_mut(&mut data) += 1;
+ ///
+ /// assert!(76 == *data);
+ /// assert!(weak.upgrade().is_none());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rc_unique", since = "1.4.0")]
+ pub fn make_mut(this: &mut Self) -> &mut T {
+ if Rc::strong_count(this) != 1 {
+ // Gotta clone the data, there are other Rcs.
+ // Pre-allocate memory to allow writing the cloned value directly.
+ let mut rc = Self::new_uninit();
+ unsafe {
+ let data = Rc::get_mut_unchecked(&mut rc);
+ (**this).write_clone_into_raw(data.as_mut_ptr());
+ *this = rc.assume_init();
+ }
+ } else if Rc::weak_count(this) != 0 {
+ // Can just steal the data, all that's left is Weaks
+ let mut rc = Self::new_uninit();
+ unsafe {
+ let data = Rc::get_mut_unchecked(&mut rc);
+ data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1);
+
+ this.inner().dec_strong();
+ // Remove implicit strong-weak ref (no need to craft a fake
+ // Weak here -- we know other Weaks can clean up for us)
+ this.inner().dec_weak();
+ ptr::write(this, rc.assume_init());
+ }
+ }
+ // This unsafety is ok because we're guaranteed that the pointer
+ // returned is the *only* pointer that will ever be returned to T. Our
+ // reference count is guaranteed to be 1 at this point, and we required
+ // the `Rc<T>` itself to be `mut`, so we're returning the only possible
+ // reference to the allocation.
+ unsafe { &mut this.ptr.as_mut().value }
+ }
+
+ /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
+ /// clone.
+ ///
+ /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to
+ /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(arc_unwrap_or_clone)]
+ /// # use std::{ptr, rc::Rc};
+ /// let inner = String::from("test");
+ /// let ptr = inner.as_ptr();
+ ///
+ /// let rc = Rc::new(inner);
+ /// let inner = Rc::unwrap_or_clone(rc);
+ /// // The inner value was not cloned
+ /// assert!(ptr::eq(ptr, inner.as_ptr()));
+ ///
+ /// let rc = Rc::new(inner);
+ /// let rc2 = rc.clone();
+ /// let inner = Rc::unwrap_or_clone(rc);
+ /// // Because there were 2 references, we had to clone the inner value.
+ /// assert!(!ptr::eq(ptr, inner.as_ptr()));
+ /// // `rc2` is the last reference, so when we unwrap it we get back
+ /// // the original `String`.
+ /// let inner = Rc::unwrap_or_clone(rc2);
+ /// assert!(ptr::eq(ptr, inner.as_ptr()));
+ /// ```
+ #[inline]
+ #[unstable(feature = "arc_unwrap_or_clone", issue = "93610")]
+ pub fn unwrap_or_clone(this: Self) -> T {
+ Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone())
+ }
+}
+
+impl Rc<dyn Any> {
+ /// Attempt to downcast the `Rc<dyn Any>` to a concrete type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::any::Any;
+ /// use std::rc::Rc;
+ ///
+ /// fn print_if_string(value: Rc<dyn Any>) {
+ /// if let Ok(string) = value.downcast::<String>() {
+ /// println!("String ({}): {}", string.len(), string);
+ /// }
+ /// }
+ ///
+ /// let my_string = "Hello World".to_string();
+ /// print_if_string(Rc::new(my_string));
+ /// print_if_string(Rc::new(0i8));
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_downcast", since = "1.29.0")]
+ pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>> {
+ if (*self).is::<T>() {
+ unsafe {
+ let ptr = self.ptr.cast::<RcBox<T>>();
+ forget(self);
+ Ok(Rc::from_inner(ptr))
+ }
+ } else {
+ Err(self)
+ }
+ }
+
+ /// Downcasts the `Rc<dyn Any>` to a concrete type.
+ ///
+ /// For a safe alternative see [`downcast`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(downcast_unchecked)]
+ ///
+ /// use std::any::Any;
+ /// use std::rc::Rc;
+ ///
+ /// let x: Rc<dyn Any> = Rc::new(1_usize);
+ ///
+ /// unsafe {
+ /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
+ /// }
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// The contained value must be of type `T`. Calling this method
+ /// with the incorrect type is *undefined behavior*.
+ ///
+ ///
+ /// [`downcast`]: Self::downcast
+ #[inline]
+ #[unstable(feature = "downcast_unchecked", issue = "90850")]
+ pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T> {
+ unsafe {
+ let ptr = self.ptr.cast::<RcBox<T>>();
+ mem::forget(self);
+ Rc::from_inner(ptr)
+ }
+ }
+}
+
+impl<T: ?Sized> Rc<T> {
+ /// Allocates an `RcBox<T>` with sufficient space for
+ /// a possibly-unsized inner value where the value has the layout provided.
+ ///
+ /// The function `mem_to_rcbox` is called with the data pointer
+ /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn allocate_for_layout(
+ value_layout: Layout,
+ allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
+ mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
+ ) -> *mut RcBox<T> {
+ // Calculate layout using the given value layout.
+ // Previously, layout was calculated on the expression
+ // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
+ // reference (see #54908).
+ let layout = Layout::new::<RcBox<()>>().extend(value_layout).unwrap().0.pad_to_align();
+ unsafe {
+ Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rcbox)
+ .unwrap_or_else(|_| handle_alloc_error(layout))
+ }
+ }
+
+ /// Allocates an `RcBox<T>` with sufficient space for
+ /// a possibly-unsized inner value where the value has the layout provided,
+ /// returning an error if allocation fails.
+ ///
+ /// The function `mem_to_rcbox` is called with the data pointer
+ /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
+ #[inline]
+ unsafe fn try_allocate_for_layout(
+ value_layout: Layout,
+ allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
+ mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
+ ) -> Result<*mut RcBox<T>, AllocError> {
+ // Calculate layout using the given value layout.
+ // Previously, layout was calculated on the expression
+ // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
+ // reference (see #54908).
+ let layout = Layout::new::<RcBox<()>>().extend(value_layout).unwrap().0.pad_to_align();
+
+ // Allocate for the layout.
+ let ptr = allocate(layout)?;
+
+ // Initialize the RcBox
+ let inner = mem_to_rcbox(ptr.as_non_null_ptr().as_ptr());
+ unsafe {
+ debug_assert_eq!(Layout::for_value(&*inner), layout);
+
+ ptr::write(&mut (*inner).strong, Cell::new(1));
+ ptr::write(&mut (*inner).weak, Cell::new(1));
+ }
+
+ Ok(inner)
+ }
+
+ /// Allocates an `RcBox<T>` with sufficient space for an unsized inner value
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
+ // Allocate for the `RcBox<T>` using the given value.
+ unsafe {
+ Self::allocate_for_layout(
+ Layout::for_value(&*ptr),
+ |layout| Global.allocate(layout),
+ |mem| mem.with_metadata_of(ptr as *mut RcBox<T>),
+ )
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ fn from_box(v: Box<T>) -> Rc<T> {
+ unsafe {
+ let (box_unique, alloc) = Box::into_unique(v);
+ let bptr = box_unique.as_ptr();
+
+ let value_size = size_of_val(&*bptr);
+ let ptr = Self::allocate_for_ptr(bptr);
+
+ // Copy value as bytes
+ ptr::copy_nonoverlapping(
+ bptr as *const T as *const u8,
+ &mut (*ptr).value as *mut _ as *mut u8,
+ value_size,
+ );
+
+ // Free the allocation without dropping its contents
+ box_free(box_unique, alloc);
+
+ Self::from_ptr(ptr)
+ }
+ }
+}
+
+impl<T> Rc<[T]> {
+ /// Allocates an `RcBox<[T]>` with the given length.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> {
+ unsafe {
+ Self::allocate_for_layout(
+ Layout::array::<T>(len).unwrap(),
+ |layout| Global.allocate(layout),
+ |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>,
+ )
+ }
+ }
+
+ /// Copy elements from slice into newly allocated Rc<\[T\]>
+ ///
+ /// Unsafe because the caller must either take ownership or bind `T: Copy`
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
+ unsafe {
+ let ptr = Self::allocate_for_slice(v.len());
+ ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).value as *mut [T] as *mut T, v.len());
+ Self::from_ptr(ptr)
+ }
+ }
+
+ /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
+ ///
+ /// Behavior is undefined should the size be wrong.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Rc<[T]> {
+ // Panic guard while cloning T elements.
+ // In the event of a panic, elements that have been written
+ // into the new RcBox will be dropped, then the memory freed.
+ struct Guard<T> {
+ mem: NonNull<u8>,
+ elems: *mut T,
+ layout: Layout,
+ n_elems: usize,
+ }
+
+ impl<T> Drop for Guard<T> {
+ fn drop(&mut self) {
+ unsafe {
+ let slice = from_raw_parts_mut(self.elems, self.n_elems);
+ ptr::drop_in_place(slice);
+
+ Global.deallocate(self.mem, self.layout);
+ }
+ }
+ }
+
+ unsafe {
+ let ptr = Self::allocate_for_slice(len);
+
+ let mem = ptr as *mut _ as *mut u8;
+ let layout = Layout::for_value(&*ptr);
+
+ // Pointer to first element
+ let elems = &mut (*ptr).value as *mut [T] as *mut T;
+
+ let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
+
+ for (i, item) in iter.enumerate() {
+ ptr::write(elems.add(i), item);
+ guard.n_elems += 1;
+ }
+
+ // All clear. Forget the guard so it doesn't free the new RcBox.
+ forget(guard);
+
+ Self::from_ptr(ptr)
+ }
+ }
+}
+
+/// Specialization trait used for `From<&[T]>`.
+trait RcFromSlice<T> {
+ fn from_slice(slice: &[T]) -> Self;
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
+ #[inline]
+ default fn from_slice(v: &[T]) -> Self {
+ unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
+ #[inline]
+ fn from_slice(v: &[T]) -> Self {
+ unsafe { Rc::copy_from_slice(v) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Deref for Rc<T> {
+ type Target = T;
+
+ #[inline(always)]
+ fn deref(&self) -> &T {
+ &self.inner().value
+ }
+}
+
+#[unstable(feature = "receiver_trait", issue = "none")]
+impl<T: ?Sized> Receiver for Rc<T> {}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
+ /// Drops the `Rc`.
+ ///
+ /// This will decrement the strong reference count. If the strong reference
+ /// count reaches zero then the only other references (if any) are
+ /// [`Weak`], so we `drop` the inner value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// struct Foo;
+ ///
+ /// impl Drop for Foo {
+ /// fn drop(&mut self) {
+ /// println!("dropped!");
+ /// }
+ /// }
+ ///
+ /// let foo = Rc::new(Foo);
+ /// let foo2 = Rc::clone(&foo);
+ ///
+ /// drop(foo); // Doesn't print anything
+ /// drop(foo2); // Prints "dropped!"
+ /// ```
+ fn drop(&mut self) {
+ unsafe {
+ self.inner().dec_strong();
+ if self.inner().strong() == 0 {
+ // destroy the contained object
+ ptr::drop_in_place(Self::get_mut_unchecked(self));
+
+ // remove the implicit "strong weak" pointer now that we've
+ // destroyed the contents.
+ self.inner().dec_weak();
+
+ if self.inner().weak() == 0 {
+ Global.deallocate(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
+ }
+ }
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Clone for Rc<T> {
+ /// Makes a clone of the `Rc` pointer.
+ ///
+ /// This creates another pointer to the same allocation, increasing the
+ /// strong reference count.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// let _ = Rc::clone(&five);
+ /// ```
+ #[inline]
+ fn clone(&self) -> Rc<T> {
+ unsafe {
+ self.inner().inc_strong();
+ Self::from_inner(self.ptr)
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Default> Default for Rc<T> {
+ /// Creates a new `Rc<T>`, with the `Default` value for `T`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let x: Rc<i32> = Default::default();
+ /// assert_eq!(*x, 0);
+ /// ```
+ #[inline]
+ fn default() -> Rc<T> {
+ Rc::new(Default::default())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+trait RcEqIdent<T: ?Sized + PartialEq> {
+ fn eq(&self, other: &Rc<T>) -> bool;
+ fn ne(&self, other: &Rc<T>) -> bool;
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialEq> RcEqIdent<T> for Rc<T> {
+ #[inline]
+ default fn eq(&self, other: &Rc<T>) -> bool {
+ **self == **other
+ }
+
+ #[inline]
+ default fn ne(&self, other: &Rc<T>) -> bool {
+ **self != **other
+ }
+}
+
+// Hack to allow specializing on `Eq` even though `Eq` has a method.
+#[rustc_unsafe_specialization_marker]
+pub(crate) trait MarkerEq: PartialEq<Self> {}
+
+impl<T: Eq> MarkerEq for T {}
+
+/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
+/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
+/// store large values, that are slow to clone, but also heavy to check for equality, causing this
+/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
+/// the same value, than two `&T`s.
+///
+/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + MarkerEq> RcEqIdent<T> for Rc<T> {
+ #[inline]
+ fn eq(&self, other: &Rc<T>) -> bool {
+ Rc::ptr_eq(self, other) || **self == **other
+ }
+
+ #[inline]
+ fn ne(&self, other: &Rc<T>) -> bool {
+ !Rc::ptr_eq(self, other) && **self != **other
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
+ /// Equality for two `Rc`s.
+ ///
+ /// Two `Rc`s are equal if their inner values are equal, even if they are
+ /// stored in different allocation.
+ ///
+ /// If `T` also implements `Eq` (implying reflexivity of equality),
+ /// two `Rc`s that point to the same allocation are
+ /// always equal.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert!(five == Rc::new(5));
+ /// ```
+ #[inline]
+ fn eq(&self, other: &Rc<T>) -> bool {
+ RcEqIdent::eq(self, other)
+ }
+
+ /// Inequality for two `Rc`s.
+ ///
+ /// Two `Rc`s are unequal if their inner values are unequal.
+ ///
+ /// If `T` also implements `Eq` (implying reflexivity of equality),
+ /// two `Rc`s that point to the same allocation are
+ /// never unequal.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert!(five != Rc::new(6));
+ /// ```
+ #[inline]
+ fn ne(&self, other: &Rc<T>) -> bool {
+ RcEqIdent::ne(self, other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Eq> Eq for Rc<T> {}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
+ /// Partial comparison for two `Rc`s.
+ ///
+ /// The two are compared by calling `partial_cmp()` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ /// use std::cmp::Ordering;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
+ /// ```
+ #[inline(always)]
+ fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
+ (**self).partial_cmp(&**other)
+ }
+
+ /// Less-than comparison for two `Rc`s.
+ ///
+ /// The two are compared by calling `<` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert!(five < Rc::new(6));
+ /// ```
+ #[inline(always)]
+ fn lt(&self, other: &Rc<T>) -> bool {
+ **self < **other
+ }
+
+ /// 'Less than or equal to' comparison for two `Rc`s.
+ ///
+ /// The two are compared by calling `<=` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert!(five <= Rc::new(5));
+ /// ```
+ #[inline(always)]
+ fn le(&self, other: &Rc<T>) -> bool {
+ **self <= **other
+ }
+
+ /// Greater-than comparison for two `Rc`s.
+ ///
+ /// The two are compared by calling `>` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert!(five > Rc::new(4));
+ /// ```
+ #[inline(always)]
+ fn gt(&self, other: &Rc<T>) -> bool {
+ **self > **other
+ }
+
+ /// 'Greater than or equal to' comparison for two `Rc`s.
+ ///
+ /// The two are compared by calling `>=` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert!(five >= Rc::new(5));
+ /// ```
+ #[inline(always)]
+ fn ge(&self, other: &Rc<T>) -> bool {
+ **self >= **other
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Ord> Ord for Rc<T> {
+ /// Comparison for two `Rc`s.
+ ///
+ /// The two are compared by calling `cmp()` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ /// use std::cmp::Ordering;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
+ /// ```
+ #[inline]
+ fn cmp(&self, other: &Rc<T>) -> Ordering {
+ (**self).cmp(&**other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Hash> Hash for Rc<T> {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ (**self).hash(state);
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> fmt::Pointer for Rc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Pointer::fmt(&(&**self as *const T), f)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_for_ptrs", since = "1.6.0")]
+impl<T> From<T> for Rc<T> {
+ /// Converts a generic type `T` into an `Rc<T>`
+ ///
+ /// The conversion allocates on the heap and moves `t`
+ /// from the stack into it.
+ ///
+ /// # Example
+ /// ```rust
+ /// # use std::rc::Rc;
+ /// let x = 5;
+ /// let rc = Rc::new(5);
+ ///
+ /// assert_eq!(Rc::from(x), rc);
+ /// ```
+ fn from(t: T) -> Self {
+ Rc::new(t)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl<T: Clone> From<&[T]> for Rc<[T]> {
+ /// Allocate a reference-counted slice and fill it by cloning `v`'s items.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::rc::Rc;
+ /// let original: &[i32] = &[1, 2, 3];
+ /// let shared: Rc<[i32]> = Rc::from(original);
+ /// assert_eq!(&[1, 2, 3], &shared[..]);
+ /// ```
+ #[inline]
+ fn from(v: &[T]) -> Rc<[T]> {
+ <Self as RcFromSlice<T>>::from_slice(v)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl From<&str> for Rc<str> {
+ /// Allocate a reference-counted string slice and copy `v` into it.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::rc::Rc;
+ /// let shared: Rc<str> = Rc::from("statue");
+ /// assert_eq!("statue", &shared[..]);
+ /// ```
+ #[inline]
+ fn from(v: &str) -> Rc<str> {
+ let rc = Rc::<[u8]>::from(v.as_bytes());
+ unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl From<String> for Rc<str> {
+ /// Allocate a reference-counted string slice and copy `v` into it.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::rc::Rc;
+ /// let original: String = "statue".to_owned();
+ /// let shared: Rc<str> = Rc::from(original);
+ /// assert_eq!("statue", &shared[..]);
+ /// ```
+ #[inline]
+ fn from(v: String) -> Rc<str> {
+ Rc::from(&v[..])
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl<T: ?Sized> From<Box<T>> for Rc<T> {
+ /// Move a boxed object to a new, reference counted, allocation.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::rc::Rc;
+ /// let original: Box<i32> = Box::new(1);
+ /// let shared: Rc<i32> = Rc::from(original);
+ /// assert_eq!(1, *shared);
+ /// ```
+ #[inline]
+ fn from(v: Box<T>) -> Rc<T> {
+ Rc::from_box(v)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl<T> From<Vec<T>> for Rc<[T]> {
+ /// Allocate a reference-counted slice and move `v`'s items into it.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::rc::Rc;
+ /// let original: Box<Vec<i32>> = Box::new(vec![1, 2, 3]);
+ /// let shared: Rc<Vec<i32>> = Rc::from(original);
+ /// assert_eq!(vec![1, 2, 3], *shared);
+ /// ```
+ #[inline]
+ fn from(mut v: Vec<T>) -> Rc<[T]> {
+ unsafe {
+ let rc = Rc::copy_from_slice(&v);
+
+ // Allow the Vec to free its memory, but not destroy its contents
+ v.set_len(0);
+
+ rc
+ }
+ }
+}
+
+#[stable(feature = "shared_from_cow", since = "1.45.0")]
+impl<'a, B> From<Cow<'a, B>> for Rc<B>
+where
+ B: ToOwned + ?Sized,
+ Rc<B>: From<&'a B> + From<B::Owned>,
+{
+ /// Create a reference-counted pointer from
+ /// a clone-on-write pointer by copying its content.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// # use std::rc::Rc;
+ /// # use std::borrow::Cow;
+ /// let cow: Cow<str> = Cow::Borrowed("eggplant");
+ /// let shared: Rc<str> = Rc::from(cow);
+ /// assert_eq!("eggplant", &shared[..]);
+ /// ```
+ #[inline]
+ fn from(cow: Cow<'a, B>) -> Rc<B> {
+ match cow {
+ Cow::Borrowed(s) => Rc::from(s),
+ Cow::Owned(s) => Rc::from(s),
+ }
+ }
+}
+
+#[stable(feature = "shared_from_str", since = "1.62.0")]
+impl From<Rc<str>> for Rc<[u8]> {
+ /// Converts a reference-counted string slice into a byte slice.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::rc::Rc;
+ /// let string: Rc<str> = Rc::from("eggplant");
+ /// let bytes: Rc<[u8]> = Rc::from(string);
+ /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
+ /// ```
+ #[inline]
+ fn from(rc: Rc<str>) -> Self {
+ // SAFETY: `str` has the same layout as `[u8]`.
+ unsafe { Rc::from_raw(Rc::into_raw(rc) as *const [u8]) }
+ }
+}
+
+#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
+impl<T, const N: usize> TryFrom<Rc<[T]>> for Rc<[T; N]> {
+ type Error = Rc<[T]>;
+
+ fn try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error> {
+ if boxed_slice.len() == N {
+ Ok(unsafe { Rc::from_raw(Rc::into_raw(boxed_slice) as *mut [T; N]) })
+ } else {
+ Err(boxed_slice)
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_iter", since = "1.37.0")]
+impl<T> iter::FromIterator<T> for Rc<[T]> {
+ /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
+ ///
+ /// # Performance characteristics
+ ///
+ /// ## The general case
+ ///
+ /// In the general case, collecting into `Rc<[T]>` is done by first
+ /// collecting into a `Vec<T>`. That is, when writing the following:
+ ///
+ /// ```rust
+ /// # use std::rc::Rc;
+ /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
+ /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
+ /// ```
+ ///
+ /// this behaves as if we wrote:
+ ///
+ /// ```rust
+ /// # use std::rc::Rc;
+ /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
+ /// .collect::<Vec<_>>() // The first set of allocations happens here.
+ /// .into(); // A second allocation for `Rc<[T]>` happens here.
+ /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
+ /// ```
+ ///
+ /// This will allocate as many times as needed for constructing the `Vec<T>`
+ /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
+ ///
+ /// ## Iterators of known length
+ ///
+ /// When your `Iterator` implements `TrustedLen` and is of an exact size,
+ /// a single allocation will be made for the `Rc<[T]>`. For example:
+ ///
+ /// ```rust
+ /// # use std::rc::Rc;
+ /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
+ /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
+ /// ```
+ fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
+ ToRcSlice::to_rc_slice(iter.into_iter())
+ }
+}
+
+/// Specialization trait used for collecting into `Rc<[T]>`.
+#[cfg(not(no_global_oom_handling))]
+trait ToRcSlice<T>: Iterator<Item = T> + Sized {
+ fn to_rc_slice(self) -> Rc<[T]>;
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
+ default fn to_rc_slice(self) -> Rc<[T]> {
+ self.collect::<Vec<T>>().into()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
+ fn to_rc_slice(self) -> Rc<[T]> {
+ // This is the case for a `TrustedLen` iterator.
+ let (low, high) = self.size_hint();
+ if let Some(high) = high {
+ debug_assert_eq!(
+ low,
+ high,
+ "TrustedLen iterator's size hint is not exact: {:?}",
+ (low, high)
+ );
+
+ unsafe {
+ // SAFETY: We need to ensure that the iterator has an exact length and we have.
+ Rc::from_iter_exact(self, low)
+ }
+ } else {
+ // TrustedLen contract guarantees that `upper_bound == `None` implies an iterator
+ // length exceeding `usize::MAX`.
+ // The default implementation would collect into a vec which would panic.
+ // Thus we panic here immediately without invoking `Vec` code.
+ panic!("capacity overflow");
+ }
+ }
+}
+
+/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
+/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
+/// pointer, which returns an <code>[Option]<[Rc]\<T>></code>.
+///
+/// Since a `Weak` reference does not count towards ownership, it will not
+/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
+/// guarantees about the value still being present. Thus it may return [`None`]
+/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
+/// itself (the backing store) from being deallocated.
+///
+/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
+/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
+/// prevent circular references between [`Rc`] pointers, since mutual owning references
+/// would never allow either [`Rc`] to be dropped. For example, a tree could
+/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
+/// pointers from children back to their parents.
+///
+/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
+///
+/// [`upgrade`]: Weak::upgrade
+#[stable(feature = "rc_weak", since = "1.4.0")]
+pub struct Weak<T: ?Sized> {
+ // This is a `NonNull` to allow optimizing the size of this type in enums,
+ // but it is not necessarily a valid pointer.
+ // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
+ // to allocate space on the heap. That's not a value a real pointer
+ // will ever have because RcBox has alignment at least 2.
+ // This is only possible when `T: Sized`; unsized `T` never dangle.
+ ptr: NonNull<RcBox<T>>,
+}
+
+#[stable(feature = "rc_weak", since = "1.4.0")]
+impl<T: ?Sized> !marker::Send for Weak<T> {}
+#[stable(feature = "rc_weak", since = "1.4.0")]
+impl<T: ?Sized> !marker::Sync for Weak<T> {}
+
+#[unstable(feature = "coerce_unsized", issue = "27732")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
+
+#[unstable(feature = "dispatch_from_dyn", issue = "none")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
+
+impl<T> Weak<T> {
+ /// Constructs a new `Weak<T>`, without allocating any memory.
+ /// Calling [`upgrade`] on the return value always gives [`None`].
+ ///
+ /// [`upgrade`]: Weak::upgrade
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Weak;
+ ///
+ /// let empty: Weak<i64> = Weak::new();
+ /// assert!(empty.upgrade().is_none());
+ /// ```
+ #[stable(feature = "downgraded_weak", since = "1.10.0")]
+ #[rustc_const_unstable(feature = "const_weak_new", issue = "95091", reason = "recently added")]
+ #[must_use]
+ pub const fn new() -> Weak<T> {
+ Weak { ptr: unsafe { NonNull::new_unchecked(ptr::invalid_mut::<RcBox<T>>(usize::MAX)) } }
+ }
+}
+
+pub(crate) fn is_dangling<T: ?Sized>(ptr: *mut T) -> bool {
+ (ptr as *mut ()).addr() == usize::MAX
+}
+
+/// Helper type to allow accessing the reference counts without
+/// making any assertions about the data field.
+struct WeakInner<'a> {
+ weak: &'a Cell<usize>,
+ strong: &'a Cell<usize>,
+}
+
+impl<T: ?Sized> Weak<T> {
+ /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
+ ///
+ /// The pointer is valid only if there are some strong references. The pointer may be dangling,
+ /// unaligned or even [`null`] otherwise.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ /// use std::ptr;
+ ///
+ /// let strong = Rc::new("hello".to_owned());
+ /// let weak = Rc::downgrade(&strong);
+ /// // Both point to the same object
+ /// assert!(ptr::eq(&*strong, weak.as_ptr()));
+ /// // The strong here keeps it alive, so we can still access the object.
+ /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
+ ///
+ /// drop(strong);
+ /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
+ /// // undefined behaviour.
+ /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
+ /// ```
+ ///
+ /// [`null`]: ptr::null
+ #[must_use]
+ #[stable(feature = "rc_as_ptr", since = "1.45.0")]
+ pub fn as_ptr(&self) -> *const T {
+ let ptr: *mut RcBox<T> = NonNull::as_ptr(self.ptr);
+
+ if is_dangling(ptr) {
+ // If the pointer is dangling, we return the sentinel directly. This cannot be
+ // a valid payload address, as the payload is at least as aligned as RcBox (usize).
+ ptr as *const T
+ } else {
+ // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
+ // The payload may be dropped at this point, and we have to maintain provenance,
+ // so use raw pointer manipulation.
+ unsafe { ptr::addr_of_mut!((*ptr).value) }
+ }
+ }
+
+ /// Consumes the `Weak<T>` and turns it into a raw pointer.
+ ///
+ /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
+ /// one weak reference (the weak count is not modified by this operation). It can be turned
+ /// back into the `Weak<T>` with [`from_raw`].
+ ///
+ /// The same restrictions of accessing the target of the pointer as with
+ /// [`as_ptr`] apply.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::{Rc, Weak};
+ ///
+ /// let strong = Rc::new("hello".to_owned());
+ /// let weak = Rc::downgrade(&strong);
+ /// let raw = weak.into_raw();
+ ///
+ /// assert_eq!(1, Rc::weak_count(&strong));
+ /// assert_eq!("hello", unsafe { &*raw });
+ ///
+ /// drop(unsafe { Weak::from_raw(raw) });
+ /// assert_eq!(0, Rc::weak_count(&strong));
+ /// ```
+ ///
+ /// [`from_raw`]: Weak::from_raw
+ /// [`as_ptr`]: Weak::as_ptr
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "weak_into_raw", since = "1.45.0")]
+ pub fn into_raw(self) -> *const T {
+ let result = self.as_ptr();
+ mem::forget(self);
+ result
+ }
+
+ /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
+ ///
+ /// This can be used to safely get a strong reference (by calling [`upgrade`]
+ /// later) or to deallocate the weak count by dropping the `Weak<T>`.
+ ///
+ /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
+ /// as these don't own anything; the method still works on them).
+ ///
+ /// # Safety
+ ///
+ /// The pointer must have originated from the [`into_raw`] and must still own its potential
+ /// weak reference.
+ ///
+ /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
+ /// takes ownership of one weak reference currently represented as a raw pointer (the weak
+ /// count is not modified by this operation) and therefore it must be paired with a previous
+ /// call to [`into_raw`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::{Rc, Weak};
+ ///
+ /// let strong = Rc::new("hello".to_owned());
+ ///
+ /// let raw_1 = Rc::downgrade(&strong).into_raw();
+ /// let raw_2 = Rc::downgrade(&strong).into_raw();
+ ///
+ /// assert_eq!(2, Rc::weak_count(&strong));
+ ///
+ /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
+ /// assert_eq!(1, Rc::weak_count(&strong));
+ ///
+ /// drop(strong);
+ ///
+ /// // Decrement the last weak count.
+ /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
+ /// ```
+ ///
+ /// [`into_raw`]: Weak::into_raw
+ /// [`upgrade`]: Weak::upgrade
+ /// [`new`]: Weak::new
+ #[stable(feature = "weak_into_raw", since = "1.45.0")]
+ pub unsafe fn from_raw(ptr: *const T) -> Self {
+ // See Weak::as_ptr for context on how the input pointer is derived.
+
+ let ptr = if is_dangling(ptr as *mut T) {
+ // This is a dangling Weak.
+ ptr as *mut RcBox<T>
+ } else {
+ // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
+ // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
+ let offset = unsafe { data_offset(ptr) };
+ // Thus, we reverse the offset to get the whole RcBox.
+ // SAFETY: the pointer originated from a Weak, so this offset is safe.
+ unsafe { ptr.byte_sub(offset) as *mut RcBox<T> }
+ };
+
+ // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
+ Weak { ptr: unsafe { NonNull::new_unchecked(ptr) } }
+ }
+
+ /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
+ /// dropping of the inner value if successful.
+ ///
+ /// Returns [`None`] if the inner value has since been dropped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let five = Rc::new(5);
+ ///
+ /// let weak_five = Rc::downgrade(&five);
+ ///
+ /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
+ /// assert!(strong_five.is_some());
+ ///
+ /// // Destroy all strong pointers.
+ /// drop(strong_five);
+ /// drop(five);
+ ///
+ /// assert!(weak_five.upgrade().is_none());
+ /// ```
+ #[must_use = "this returns a new `Rc`, \
+ without modifying the original weak pointer"]
+ #[stable(feature = "rc_weak", since = "1.4.0")]
+ pub fn upgrade(&self) -> Option<Rc<T>> {
+ let inner = self.inner()?;
+
+ if inner.strong() == 0 {
+ None
+ } else {
+ unsafe {
+ inner.inc_strong();
+ Some(Rc::from_inner(self.ptr))
+ }
+ }
+ }
+
+ /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
+ ///
+ /// If `self` was created using [`Weak::new`], this will return 0.
+ #[must_use]
+ #[stable(feature = "weak_counts", since = "1.41.0")]
+ pub fn strong_count(&self) -> usize {
+ if let Some(inner) = self.inner() { inner.strong() } else { 0 }
+ }
+
+ /// Gets the number of `Weak` pointers pointing to this allocation.
+ ///
+ /// If no strong pointers remain, this will return zero.
+ #[must_use]
+ #[stable(feature = "weak_counts", since = "1.41.0")]
+ pub fn weak_count(&self) -> usize {
+ self.inner()
+ .map(|inner| {
+ if inner.strong() > 0 {
+ inner.weak() - 1 // subtract the implicit weak ptr
+ } else {
+ 0
+ }
+ })
+ .unwrap_or(0)
+ }
+
+ /// Returns `None` when the pointer is dangling and there is no allocated `RcBox`,
+ /// (i.e., when this `Weak` was created by `Weak::new`).
+ #[inline]
+ fn inner(&self) -> Option<WeakInner<'_>> {
+ if is_dangling(self.ptr.as_ptr()) {
+ None
+ } else {
+ // We are careful to *not* create a reference covering the "data" field, as
+ // the field may be mutated concurrently (for example, if the last `Rc`
+ // is dropped, the data field will be dropped in-place).
+ Some(unsafe {
+ let ptr = self.ptr.as_ptr();
+ WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
+ })
+ }
+ }
+
+ /// Returns `true` if the two `Weak`s point to the same allocation (similar to
+ /// [`ptr::eq`]), or if both don't point to any allocation
+ /// (because they were created with `Weak::new()`).
+ ///
+ /// # Notes
+ ///
+ /// Since this compares pointers it means that `Weak::new()` will equal each
+ /// other, even though they don't point to any allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Rc;
+ ///
+ /// let first_rc = Rc::new(5);
+ /// let first = Rc::downgrade(&first_rc);
+ /// let second = Rc::downgrade(&first_rc);
+ ///
+ /// assert!(first.ptr_eq(&second));
+ ///
+ /// let third_rc = Rc::new(5);
+ /// let third = Rc::downgrade(&third_rc);
+ ///
+ /// assert!(!first.ptr_eq(&third));
+ /// ```
+ ///
+ /// Comparing `Weak::new`.
+ ///
+ /// ```
+ /// use std::rc::{Rc, Weak};
+ ///
+ /// let first = Weak::new();
+ /// let second = Weak::new();
+ /// assert!(first.ptr_eq(&second));
+ ///
+ /// let third_rc = Rc::new(());
+ /// let third = Rc::downgrade(&third_rc);
+ /// assert!(!first.ptr_eq(&third));
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
+ pub fn ptr_eq(&self, other: &Self) -> bool {
+ self.ptr.as_ptr() == other.ptr.as_ptr()
+ }
+}
+
+#[stable(feature = "rc_weak", since = "1.4.0")]
+unsafe impl<#[may_dangle] T: ?Sized> Drop for Weak<T> {
+ /// Drops the `Weak` pointer.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::{Rc, Weak};
+ ///
+ /// struct Foo;
+ ///
+ /// impl Drop for Foo {
+ /// fn drop(&mut self) {
+ /// println!("dropped!");
+ /// }
+ /// }
+ ///
+ /// let foo = Rc::new(Foo);
+ /// let weak_foo = Rc::downgrade(&foo);
+ /// let other_weak_foo = Weak::clone(&weak_foo);
+ ///
+ /// drop(weak_foo); // Doesn't print anything
+ /// drop(foo); // Prints "dropped!"
+ ///
+ /// assert!(other_weak_foo.upgrade().is_none());
+ /// ```
+ fn drop(&mut self) {
+ let inner = if let Some(inner) = self.inner() { inner } else { return };
+
+ inner.dec_weak();
+ // the weak count starts at 1, and will only go to zero if all
+ // the strong pointers have disappeared.
+ if inner.weak() == 0 {
+ unsafe {
+ Global.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
+ }
+ }
+ }
+}
+
+#[stable(feature = "rc_weak", since = "1.4.0")]
+impl<T: ?Sized> Clone for Weak<T> {
+ /// Makes a clone of the `Weak` pointer that points to the same allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::{Rc, Weak};
+ ///
+ /// let weak_five = Rc::downgrade(&Rc::new(5));
+ ///
+ /// let _ = Weak::clone(&weak_five);
+ /// ```
+ #[inline]
+ fn clone(&self) -> Weak<T> {
+ if let Some(inner) = self.inner() {
+ inner.inc_weak()
+ }
+ Weak { ptr: self.ptr }
+ }
+}
+
+#[stable(feature = "rc_weak", since = "1.4.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "(Weak)")
+ }
+}
+
+#[stable(feature = "downgraded_weak", since = "1.10.0")]
+impl<T> Default for Weak<T> {
+ /// Constructs a new `Weak<T>`, without allocating any memory.
+ /// Calling [`upgrade`] on the return value always gives [`None`].
+ ///
+ /// [`upgrade`]: Weak::upgrade
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::rc::Weak;
+ ///
+ /// let empty: Weak<i64> = Default::default();
+ /// assert!(empty.upgrade().is_none());
+ /// ```
+ fn default() -> Weak<T> {
+ Weak::new()
+ }
+}
+
+// NOTE: We checked_add here to deal with mem::forget safely. In particular
+// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
+// you can free the allocation while outstanding Rcs (or Weaks) exist.
+// We abort because this is such a degenerate scenario that we don't care about
+// what happens -- no real program should ever experience this.
+//
+// This should have negligible overhead since you don't actually need to
+// clone these much in Rust thanks to ownership and move-semantics.
+
+#[doc(hidden)]
+trait RcInnerPtr {
+ fn weak_ref(&self) -> &Cell<usize>;
+ fn strong_ref(&self) -> &Cell<usize>;
+
+ #[inline]
+ fn strong(&self) -> usize {
+ self.strong_ref().get()
+ }
+
+ #[inline]
+ fn inc_strong(&self) {
+ let strong = self.strong();
+
+ // We insert an `assume` here to hint LLVM at an otherwise
+ // missed optimization.
+ // SAFETY: The reference count will never be zero when this is
+ // called.
+ unsafe {
+ core::intrinsics::assume(strong != 0);
+ }
+
+ let strong = strong.wrapping_add(1);
+ self.strong_ref().set(strong);
+
+ // We want to abort on overflow instead of dropping the value.
+ // Checking for overflow after the store instead of before
+ // allows for slightly better code generation.
+ if core::intrinsics::unlikely(strong == 0) {
+ abort();
+ }
+ }
+
+ #[inline]
+ fn dec_strong(&self) {
+ self.strong_ref().set(self.strong() - 1);
+ }
+
+ #[inline]
+ fn weak(&self) -> usize {
+ self.weak_ref().get()
+ }
+
+ #[inline]
+ fn inc_weak(&self) {
+ let weak = self.weak();
+
+ // We insert an `assume` here to hint LLVM at an otherwise
+ // missed optimization.
+ // SAFETY: The reference count will never be zero when this is
+ // called.
+ unsafe {
+ core::intrinsics::assume(weak != 0);
+ }
+
+ let weak = weak.wrapping_add(1);
+ self.weak_ref().set(weak);
+
+ // We want to abort on overflow instead of dropping the value.
+ // Checking for overflow after the store instead of before
+ // allows for slightly better code generation.
+ if core::intrinsics::unlikely(weak == 0) {
+ abort();
+ }
+ }
+
+ #[inline]
+ fn dec_weak(&self) {
+ self.weak_ref().set(self.weak() - 1);
+ }
+}
+
+impl<T: ?Sized> RcInnerPtr for RcBox<T> {
+ #[inline(always)]
+ fn weak_ref(&self) -> &Cell<usize> {
+ &self.weak
+ }
+
+ #[inline(always)]
+ fn strong_ref(&self) -> &Cell<usize> {
+ &self.strong
+ }
+}
+
+impl<'a> RcInnerPtr for WeakInner<'a> {
+ #[inline(always)]
+ fn weak_ref(&self) -> &Cell<usize> {
+ self.weak
+ }
+
+ #[inline(always)]
+ fn strong_ref(&self) -> &Cell<usize> {
+ self.strong
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
+ fn borrow(&self) -> &T {
+ &**self
+ }
+}
+
+#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
+impl<T: ?Sized> AsRef<T> for Rc<T> {
+ fn as_ref(&self) -> &T {
+ &**self
+ }
+}
+
+#[stable(feature = "pin", since = "1.33.0")]
+impl<T: ?Sized> Unpin for Rc<T> {}
+
+/// Get the offset within an `RcBox` for the payload behind a pointer.
+///
+/// # Safety
+///
+/// The pointer must point to (and have valid metadata for) a previously
+/// valid instance of T, but the T is allowed to be dropped.
+unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
+ // Align the unsized value to the end of the RcBox.
+ // Because RcBox is repr(C), it will always be the last field in memory.
+ // SAFETY: since the only unsized types possible are slices, trait objects,
+ // and extern types, the input safety requirement is currently enough to
+ // satisfy the requirements of align_of_val_raw; this is an implementation
+ // detail of the language that must not be relied upon outside of std.
+ unsafe { data_offset_align(align_of_val_raw(ptr)) }
+}
+
+#[inline]
+fn data_offset_align(align: usize) -> usize {
+ let layout = Layout::new::<RcBox<()>>();
+ layout.size() + layout.padding_needed_for(align)
+}