summaryrefslogtreecommitdiffstats
path: root/library/alloc/src/sync.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--library/alloc/src/sync.rs2765
1 files changed, 2765 insertions, 0 deletions
diff --git a/library/alloc/src/sync.rs b/library/alloc/src/sync.rs
new file mode 100644
index 000000000..4c03cc3ed
--- /dev/null
+++ b/library/alloc/src/sync.rs
@@ -0,0 +1,2765 @@
+#![stable(feature = "rust1", since = "1.0.0")]
+
+//! Thread-safe reference-counting pointers.
+//!
+//! See the [`Arc<T>`][Arc] documentation for more details.
+
+use core::any::Any;
+use core::borrow;
+use core::cmp::Ordering;
+use core::convert::{From, TryFrom};
+use core::fmt;
+use core::hash::{Hash, Hasher};
+use core::hint;
+use core::intrinsics::abort;
+#[cfg(not(no_global_oom_handling))]
+use core::iter;
+use core::marker::{PhantomData, Unpin, Unsize};
+#[cfg(not(no_global_oom_handling))]
+use core::mem::size_of_val;
+use core::mem::{self, align_of_val_raw};
+use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
+use core::panic::{RefUnwindSafe, UnwindSafe};
+use core::pin::Pin;
+use core::ptr::{self, NonNull};
+#[cfg(not(no_global_oom_handling))]
+use core::slice::from_raw_parts_mut;
+use core::sync::atomic;
+use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
+
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::handle_alloc_error;
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::{box_free, WriteCloneIntoRaw};
+use crate::alloc::{AllocError, Allocator, Global, Layout};
+use crate::borrow::{Cow, ToOwned};
+use crate::boxed::Box;
+use crate::rc::is_dangling;
+#[cfg(not(no_global_oom_handling))]
+use crate::string::String;
+#[cfg(not(no_global_oom_handling))]
+use crate::vec::Vec;
+
+#[cfg(test)]
+mod tests;
+
+/// A soft limit on the amount of references that may be made to an `Arc`.
+///
+/// Going above this limit will abort your program (although not
+/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
+const MAX_REFCOUNT: usize = (isize::MAX) as usize;
+
+#[cfg(not(sanitize = "thread"))]
+macro_rules! acquire {
+ ($x:expr) => {
+ atomic::fence(Acquire)
+ };
+}
+
+// ThreadSanitizer does not support memory fences. To avoid false positive
+// reports in Arc / Weak implementation use atomic loads for synchronization
+// instead.
+#[cfg(sanitize = "thread")]
+macro_rules! acquire {
+ ($x:expr) => {
+ $x.load(Acquire)
+ };
+}
+
+/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
+/// Reference Counted'.
+///
+/// The type `Arc<T>` provides shared ownership of a value of type `T`,
+/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
+/// a new `Arc` instance, which points to the same allocation on the heap as the
+/// source `Arc`, while increasing a reference count. When the last `Arc`
+/// pointer to a given allocation is destroyed, the value stored in that allocation (often
+/// referred to as "inner value") is also dropped.
+///
+/// Shared references in Rust disallow mutation by default, and `Arc` is no
+/// exception: you cannot generally obtain a mutable reference to something
+/// inside an `Arc`. If you need to mutate through an `Arc`, use
+/// [`Mutex`][mutex], [`RwLock`][rwlock], or one of the [`Atomic`][atomic]
+/// types.
+///
+/// ## Thread Safety
+///
+/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
+/// counting. This means that it is thread-safe. The disadvantage is that
+/// atomic operations are more expensive than ordinary memory accesses. If you
+/// are not sharing reference-counted allocations between threads, consider using
+/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
+/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
+/// However, a library might choose `Arc<T>` in order to give library consumers
+/// more flexibility.
+///
+/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
+/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
+/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
+/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
+/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
+/// data, but it doesn't add thread safety to its data. Consider
+/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
+/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
+/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
+/// non-atomic operations.
+///
+/// In the end, this means that you may need to pair `Arc<T>` with some sort of
+/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
+///
+/// ## Breaking cycles with `Weak`
+///
+/// The [`downgrade`][downgrade] method can be used to create a non-owning
+/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
+/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
+/// already been dropped. In other words, `Weak` pointers do not keep the value
+/// inside the allocation alive; however, they *do* keep the allocation
+/// (the backing store for the value) alive.
+///
+/// A cycle between `Arc` pointers will never be deallocated. For this reason,
+/// [`Weak`] is used to break cycles. For example, a tree could have
+/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
+/// pointers from children back to their parents.
+///
+/// # Cloning references
+///
+/// Creating a new reference from an existing reference-counted pointer is done using the
+/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
+///
+/// ```
+/// use std::sync::Arc;
+/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
+/// // The two syntaxes below are equivalent.
+/// let a = foo.clone();
+/// let b = Arc::clone(&foo);
+/// // a, b, and foo are all Arcs that point to the same memory location
+/// ```
+///
+/// ## `Deref` behavior
+///
+/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`][deref] trait),
+/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
+/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
+/// functions, called using [fully qualified syntax]:
+///
+/// ```
+/// use std::sync::Arc;
+///
+/// let my_arc = Arc::new(());
+/// let my_weak = Arc::downgrade(&my_arc);
+/// ```
+///
+/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
+/// fully qualified syntax. Some people prefer to use fully qualified syntax,
+/// while others prefer using method-call syntax.
+///
+/// ```
+/// use std::sync::Arc;
+///
+/// let arc = Arc::new(());
+/// // Method-call syntax
+/// let arc2 = arc.clone();
+/// // Fully qualified syntax
+/// let arc3 = Arc::clone(&arc);
+/// ```
+///
+/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
+/// already been dropped.
+///
+/// [`Rc<T>`]: crate::rc::Rc
+/// [clone]: Clone::clone
+/// [mutex]: ../../std/sync/struct.Mutex.html
+/// [rwlock]: ../../std/sync/struct.RwLock.html
+/// [atomic]: core::sync::atomic
+/// [`Send`]: core::marker::Send
+/// [`Sync`]: core::marker::Sync
+/// [deref]: core::ops::Deref
+/// [downgrade]: Arc::downgrade
+/// [upgrade]: Weak::upgrade
+/// [RefCell\<T>]: core::cell::RefCell
+/// [`RefCell<T>`]: core::cell::RefCell
+/// [`std::sync`]: ../../std/sync/index.html
+/// [`Arc::clone(&from)`]: Arc::clone
+/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
+///
+/// # Examples
+///
+/// Sharing some immutable data between threads:
+///
+// Note that we **do not** run these tests here. The windows builders get super
+// unhappy if a thread outlives the main thread and then exits at the same time
+// (something deadlocks) so we just avoid this entirely by not running these
+// tests.
+/// ```no_run
+/// use std::sync::Arc;
+/// use std::thread;
+///
+/// let five = Arc::new(5);
+///
+/// for _ in 0..10 {
+/// let five = Arc::clone(&five);
+///
+/// thread::spawn(move || {
+/// println!("{five:?}");
+/// });
+/// }
+/// ```
+///
+/// Sharing a mutable [`AtomicUsize`]:
+///
+/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
+///
+/// ```no_run
+/// use std::sync::Arc;
+/// use std::sync::atomic::{AtomicUsize, Ordering};
+/// use std::thread;
+///
+/// let val = Arc::new(AtomicUsize::new(5));
+///
+/// for _ in 0..10 {
+/// let val = Arc::clone(&val);
+///
+/// thread::spawn(move || {
+/// let v = val.fetch_add(1, Ordering::SeqCst);
+/// println!("{v:?}");
+/// });
+/// }
+/// ```
+///
+/// See the [`rc` documentation][rc_examples] for more examples of reference
+/// counting in general.
+///
+/// [rc_examples]: crate::rc#examples
+#[cfg_attr(not(test), rustc_diagnostic_item = "Arc")]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Arc<T: ?Sized> {
+ ptr: NonNull<ArcInner<T>>,
+ phantom: PhantomData<ArcInner<T>>,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
+
+#[stable(feature = "catch_unwind", since = "1.9.0")]
+impl<T: RefUnwindSafe + ?Sized> UnwindSafe for Arc<T> {}
+
+#[unstable(feature = "coerce_unsized", issue = "27732")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {}
+
+#[unstable(feature = "dispatch_from_dyn", issue = "none")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
+
+impl<T: ?Sized> Arc<T> {
+ unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
+ Self { ptr, phantom: PhantomData }
+ }
+
+ unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
+ unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
+ }
+}
+
+/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
+/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
+/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
+///
+/// Since a `Weak` reference does not count towards ownership, it will not
+/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
+/// guarantees about the value still being present. Thus it may return [`None`]
+/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
+/// itself (the backing store) from being deallocated.
+///
+/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
+/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
+/// prevent circular references between [`Arc`] pointers, since mutual owning references
+/// would never allow either [`Arc`] to be dropped. For example, a tree could
+/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
+/// pointers from children back to their parents.
+///
+/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
+///
+/// [`upgrade`]: Weak::upgrade
+#[stable(feature = "arc_weak", since = "1.4.0")]
+pub struct Weak<T: ?Sized> {
+ // This is a `NonNull` to allow optimizing the size of this type in enums,
+ // but it is not necessarily a valid pointer.
+ // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
+ // to allocate space on the heap. That's not a value a real pointer
+ // will ever have because RcBox has alignment at least 2.
+ // This is only possible when `T: Sized`; unsized `T` never dangle.
+ ptr: NonNull<ArcInner<T>>,
+}
+
+#[stable(feature = "arc_weak", since = "1.4.0")]
+unsafe impl<T: ?Sized + Sync + Send> Send for Weak<T> {}
+#[stable(feature = "arc_weak", since = "1.4.0")]
+unsafe impl<T: ?Sized + Sync + Send> Sync for Weak<T> {}
+
+#[unstable(feature = "coerce_unsized", issue = "27732")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
+#[unstable(feature = "dispatch_from_dyn", issue = "none")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
+
+#[stable(feature = "arc_weak", since = "1.4.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "(Weak)")
+ }
+}
+
+// This is repr(C) to future-proof against possible field-reordering, which
+// would interfere with otherwise safe [into|from]_raw() of transmutable
+// inner types.
+#[repr(C)]
+struct ArcInner<T: ?Sized> {
+ strong: atomic::AtomicUsize,
+
+ // the value usize::MAX acts as a sentinel for temporarily "locking" the
+ // ability to upgrade weak pointers or downgrade strong ones; this is used
+ // to avoid races in `make_mut` and `get_mut`.
+ weak: atomic::AtomicUsize,
+
+ data: T,
+}
+
+unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
+unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
+
+impl<T> Arc<T> {
+ /// Constructs a new `Arc<T>`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn new(data: T) -> Arc<T> {
+ // Start the weak pointer count as 1 which is the weak pointer that's
+ // held by all the strong pointers (kinda), see std/rc.rs for more info
+ let x: Box<_> = Box::new(ArcInner {
+ strong: atomic::AtomicUsize::new(1),
+ weak: atomic::AtomicUsize::new(1),
+ data,
+ });
+ unsafe { Self::from_inner(Box::leak(x).into()) }
+ }
+
+ /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
+ /// to allow you to construct a `T` which holds a weak pointer to itself.
+ ///
+ /// Generally, a structure circularly referencing itself, either directly or
+ /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
+ /// Using this function, you get access to the weak pointer during the
+ /// initialization of `T`, before the `Arc<T>` is created, such that you can
+ /// clone and store it inside the `T`.
+ ///
+ /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
+ /// then calls your closure, giving it a `Weak<T>` to this allocation,
+ /// and only afterwards completes the construction of the `Arc<T>` by placing
+ /// the `T` returned from your closure into the allocation.
+ ///
+ /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
+ /// returns, calling [`upgrade`] on the weak reference inside your closure will
+ /// fail and result in a `None` value.
+ ///
+ /// # Panics
+ ///
+ /// If `data_fn` panics, the panic is propagated to the caller, and the
+ /// temporary [`Weak<T>`] is dropped normally.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # #![allow(dead_code)]
+ /// use std::sync::{Arc, Weak};
+ ///
+ /// struct Gadget {
+ /// me: Weak<Gadget>,
+ /// }
+ ///
+ /// impl Gadget {
+ /// /// Construct a reference counted Gadget.
+ /// fn new() -> Arc<Self> {
+ /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
+ /// // `Arc` we're constructing.
+ /// Arc::new_cyclic(|me| {
+ /// // Create the actual struct here.
+ /// Gadget { me: me.clone() }
+ /// })
+ /// }
+ ///
+ /// /// Return a reference counted pointer to Self.
+ /// fn me(&self) -> Arc<Self> {
+ /// self.me.upgrade().unwrap()
+ /// }
+ /// }
+ /// ```
+ /// [`upgrade`]: Weak::upgrade
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
+ pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
+ where
+ F: FnOnce(&Weak<T>) -> T,
+ {
+ // Construct the inner in the "uninitialized" state with a single
+ // weak reference.
+ let uninit_ptr: NonNull<_> = Box::leak(Box::new(ArcInner {
+ strong: atomic::AtomicUsize::new(0),
+ weak: atomic::AtomicUsize::new(1),
+ data: mem::MaybeUninit::<T>::uninit(),
+ }))
+ .into();
+ let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
+
+ let weak = Weak { ptr: init_ptr };
+
+ // It's important we don't give up ownership of the weak pointer, or
+ // else the memory might be freed by the time `data_fn` returns. If
+ // we really wanted to pass ownership, we could create an additional
+ // weak pointer for ourselves, but this would result in additional
+ // updates to the weak reference count which might not be necessary
+ // otherwise.
+ let data = data_fn(&weak);
+
+ // Now we can properly initialize the inner value and turn our weak
+ // reference into a strong reference.
+ let strong = unsafe {
+ let inner = init_ptr.as_ptr();
+ ptr::write(ptr::addr_of_mut!((*inner).data), data);
+
+ // The above write to the data field must be visible to any threads which
+ // observe a non-zero strong count. Therefore we need at least "Release" ordering
+ // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
+ //
+ // "Acquire" ordering is not required. When considering the possible behaviours
+ // of `data_fn` we only need to look at what it could do with a reference to a
+ // non-upgradeable `Weak`:
+ // - It can *clone* the `Weak`, increasing the weak reference count.
+ // - It can drop those clones, decreasing the weak reference count (but never to zero).
+ //
+ // These side effects do not impact us in any way, and no other side effects are
+ // possible with safe code alone.
+ let prev_value = (*inner).strong.fetch_add(1, Release);
+ debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
+
+ Arc::from_inner(init_ptr)
+ };
+
+ // Strong references should collectively own a shared weak reference,
+ // so don't run the destructor for our old weak reference.
+ mem::forget(weak);
+ strong
+ }
+
+ /// Constructs a new `Arc` with uninitialized contents.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let mut five = Arc::<u32>::new_uninit();
+ ///
+ /// // Deferred initialization:
+ /// Arc::get_mut(&mut five).unwrap().write(5);
+ ///
+ /// let five = unsafe { five.assume_init() };
+ ///
+ /// assert_eq!(*five, 5)
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
+ unsafe {
+ Arc::from_ptr(Arc::allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate(layout),
+ |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
+ ))
+ }
+ }
+
+ /// Constructs a new `Arc` with uninitialized contents, with the memory
+ /// being filled with `0` bytes.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let zero = Arc::<u32>::new_zeroed();
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0)
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
+ unsafe {
+ Arc::from_ptr(Arc::allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate_zeroed(layout),
+ |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
+ ))
+ }
+ }
+
+ /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
+ /// `data` will be pinned in memory and unable to be moved.
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "pin", since = "1.33.0")]
+ #[must_use]
+ pub fn pin(data: T) -> Pin<Arc<T>> {
+ unsafe { Pin::new_unchecked(Arc::new(data)) }
+ }
+
+ /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
+ unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
+ }
+
+ /// Constructs a new `Arc<T>`, returning an error if allocation fails.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::try_new(5)?;
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
+ // Start the weak pointer count as 1 which is the weak pointer that's
+ // held by all the strong pointers (kinda), see std/rc.rs for more info
+ let x: Box<_> = Box::try_new(ArcInner {
+ strong: atomic::AtomicUsize::new(1),
+ weak: atomic::AtomicUsize::new(1),
+ data,
+ })?;
+ unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
+ }
+
+ /// Constructs a new `Arc` with uninitialized contents, returning an error
+ /// if allocation fails.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit, allocator_api)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let mut five = Arc::<u32>::try_new_uninit()?;
+ ///
+ /// // Deferred initialization:
+ /// Arc::get_mut(&mut five).unwrap().write(5);
+ ///
+ /// let five = unsafe { five.assume_init() };
+ ///
+ /// assert_eq!(*five, 5);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
+ unsafe {
+ Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate(layout),
+ |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
+ )?))
+ }
+ }
+
+ /// Constructs a new `Arc` with uninitialized contents, with the memory
+ /// being filled with `0` bytes, returning an error if allocation fails.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit, allocator_api)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let zero = Arc::<u32>::try_new_zeroed()?;
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
+ unsafe {
+ Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
+ Layout::new::<T>(),
+ |layout| Global.allocate_zeroed(layout),
+ |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
+ )?))
+ }
+ }
+ /// Returns the inner value, if the `Arc` has exactly one strong reference.
+ ///
+ /// Otherwise, an [`Err`] is returned with the same `Arc` that was
+ /// passed in.
+ ///
+ /// This will succeed even if there are outstanding weak references.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let x = Arc::new(3);
+ /// assert_eq!(Arc::try_unwrap(x), Ok(3));
+ ///
+ /// let x = Arc::new(4);
+ /// let _y = Arc::clone(&x);
+ /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
+ /// ```
+ #[inline]
+ #[stable(feature = "arc_unique", since = "1.4.0")]
+ pub fn try_unwrap(this: Self) -> Result<T, Self> {
+ if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
+ return Err(this);
+ }
+
+ acquire!(this.inner().strong);
+
+ unsafe {
+ let elem = ptr::read(&this.ptr.as_ref().data);
+
+ // Make a weak pointer to clean up the implicit strong-weak reference
+ let _weak = Weak { ptr: this.ptr };
+ mem::forget(this);
+
+ Ok(elem)
+ }
+ }
+}
+
+impl<T> Arc<[T]> {
+ /// Constructs a new atomically reference-counted slice with uninitialized contents.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
+ ///
+ /// // Deferred initialization:
+ /// let data = Arc::get_mut(&mut values).unwrap();
+ /// data[0].write(1);
+ /// data[1].write(2);
+ /// data[2].write(3);
+ ///
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [1, 2, 3])
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
+ unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
+ }
+
+ /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
+ /// filled with `0` bytes.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
+ /// incorrect usage of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let values = Arc::<[u32]>::new_zeroed_slice(3);
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [0, 0, 0])
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
+ unsafe {
+ Arc::from_ptr(Arc::allocate_for_layout(
+ Layout::array::<T>(len).unwrap(),
+ |layout| Global.allocate_zeroed(layout),
+ |mem| {
+ ptr::slice_from_raw_parts_mut(mem as *mut T, len)
+ as *mut ArcInner<[mem::MaybeUninit<T>]>
+ },
+ ))
+ }
+ }
+}
+
+impl<T> Arc<mem::MaybeUninit<T>> {
+ /// Converts to `Arc<T>`.
+ ///
+ /// # Safety
+ ///
+ /// As with [`MaybeUninit::assume_init`],
+ /// it is up to the caller to guarantee that the inner value
+ /// really is in an initialized state.
+ /// Calling this when the content is not yet fully initialized
+ /// causes immediate undefined behavior.
+ ///
+ /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let mut five = Arc::<u32>::new_uninit();
+ ///
+ /// // Deferred initialization:
+ /// Arc::get_mut(&mut five).unwrap().write(5);
+ ///
+ /// let five = unsafe { five.assume_init() };
+ ///
+ /// assert_eq!(*five, 5)
+ /// ```
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[inline]
+ pub unsafe fn assume_init(self) -> Arc<T> {
+ unsafe { Arc::from_inner(mem::ManuallyDrop::new(self).ptr.cast()) }
+ }
+}
+
+impl<T> Arc<[mem::MaybeUninit<T>]> {
+ /// Converts to `Arc<[T]>`.
+ ///
+ /// # Safety
+ ///
+ /// As with [`MaybeUninit::assume_init`],
+ /// it is up to the caller to guarantee that the inner value
+ /// really is in an initialized state.
+ /// Calling this when the content is not yet fully initialized
+ /// causes immediate undefined behavior.
+ ///
+ /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
+ ///
+ /// // Deferred initialization:
+ /// let data = Arc::get_mut(&mut values).unwrap();
+ /// data[0].write(1);
+ /// data[1].write(2);
+ /// data[2].write(3);
+ ///
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [1, 2, 3])
+ /// ```
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[inline]
+ pub unsafe fn assume_init(self) -> Arc<[T]> {
+ unsafe { Arc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
+ }
+}
+
+impl<T: ?Sized> Arc<T> {
+ /// Consumes the `Arc`, returning the wrapped pointer.
+ ///
+ /// To avoid a memory leak the pointer must be converted back to an `Arc` using
+ /// [`Arc::from_raw`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let x = Arc::new("hello".to_owned());
+ /// let x_ptr = Arc::into_raw(x);
+ /// assert_eq!(unsafe { &*x_ptr }, "hello");
+ /// ```
+ #[must_use = "losing the pointer will leak memory"]
+ #[stable(feature = "rc_raw", since = "1.17.0")]
+ pub fn into_raw(this: Self) -> *const T {
+ let ptr = Self::as_ptr(&this);
+ mem::forget(this);
+ ptr
+ }
+
+ /// Provides a raw pointer to the data.
+ ///
+ /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
+ /// as long as there are strong counts in the `Arc`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let x = Arc::new("hello".to_owned());
+ /// let y = Arc::clone(&x);
+ /// let x_ptr = Arc::as_ptr(&x);
+ /// assert_eq!(x_ptr, Arc::as_ptr(&y));
+ /// assert_eq!(unsafe { &*x_ptr }, "hello");
+ /// ```
+ #[must_use]
+ #[stable(feature = "rc_as_ptr", since = "1.45.0")]
+ pub fn as_ptr(this: &Self) -> *const T {
+ let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
+
+ // SAFETY: This cannot go through Deref::deref or RcBoxPtr::inner because
+ // this is required to retain raw/mut provenance such that e.g. `get_mut` can
+ // write through the pointer after the Rc is recovered through `from_raw`.
+ unsafe { ptr::addr_of_mut!((*ptr).data) }
+ }
+
+ /// Constructs an `Arc<T>` from a raw pointer.
+ ///
+ /// The raw pointer must have been previously returned by a call to
+ /// [`Arc<U>::into_raw`][into_raw] where `U` must have the same size and
+ /// alignment as `T`. This is trivially true if `U` is `T`.
+ /// Note that if `U` is not `T` but has the same size and alignment, this is
+ /// basically like transmuting references of different types. See
+ /// [`mem::transmute`][transmute] for more information on what
+ /// restrictions apply in this case.
+ ///
+ /// The user of `from_raw` has to make sure a specific value of `T` is only
+ /// dropped once.
+ ///
+ /// This function is unsafe because improper use may lead to memory unsafety,
+ /// even if the returned `Arc<T>` is never accessed.
+ ///
+ /// [into_raw]: Arc::into_raw
+ /// [transmute]: core::mem::transmute
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let x = Arc::new("hello".to_owned());
+ /// let x_ptr = Arc::into_raw(x);
+ ///
+ /// unsafe {
+ /// // Convert back to an `Arc` to prevent leak.
+ /// let x = Arc::from_raw(x_ptr);
+ /// assert_eq!(&*x, "hello");
+ ///
+ /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
+ /// }
+ ///
+ /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
+ /// ```
+ #[stable(feature = "rc_raw", since = "1.17.0")]
+ pub unsafe fn from_raw(ptr: *const T) -> Self {
+ unsafe {
+ let offset = data_offset(ptr);
+
+ // Reverse the offset to find the original ArcInner.
+ let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
+
+ Self::from_ptr(arc_ptr)
+ }
+ }
+
+ /// Creates a new [`Weak`] pointer to this allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// let weak_five = Arc::downgrade(&five);
+ /// ```
+ #[must_use = "this returns a new `Weak` pointer, \
+ without modifying the original `Arc`"]
+ #[stable(feature = "arc_weak", since = "1.4.0")]
+ pub fn downgrade(this: &Self) -> Weak<T> {
+ // This Relaxed is OK because we're checking the value in the CAS
+ // below.
+ let mut cur = this.inner().weak.load(Relaxed);
+
+ loop {
+ // check if the weak counter is currently "locked"; if so, spin.
+ if cur == usize::MAX {
+ hint::spin_loop();
+ cur = this.inner().weak.load(Relaxed);
+ continue;
+ }
+
+ // NOTE: this code currently ignores the possibility of overflow
+ // into usize::MAX; in general both Rc and Arc need to be adjusted
+ // to deal with overflow.
+
+ // Unlike with Clone(), we need this to be an Acquire read to
+ // synchronize with the write coming from `is_unique`, so that the
+ // events prior to that write happen before this read.
+ match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
+ Ok(_) => {
+ // Make sure we do not create a dangling Weak
+ debug_assert!(!is_dangling(this.ptr.as_ptr()));
+ return Weak { ptr: this.ptr };
+ }
+ Err(old) => cur = old,
+ }
+ }
+ }
+
+ /// Gets the number of [`Weak`] pointers to this allocation.
+ ///
+ /// # Safety
+ ///
+ /// This method by itself is safe, but using it correctly requires extra care.
+ /// Another thread can change the weak count at any time,
+ /// including potentially between calling this method and acting on the result.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ /// let _weak_five = Arc::downgrade(&five);
+ ///
+ /// // This assertion is deterministic because we haven't shared
+ /// // the `Arc` or `Weak` between threads.
+ /// assert_eq!(1, Arc::weak_count(&five));
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "arc_counts", since = "1.15.0")]
+ pub fn weak_count(this: &Self) -> usize {
+ let cnt = this.inner().weak.load(Acquire);
+ // If the weak count is currently locked, the value of the
+ // count was 0 just before taking the lock.
+ if cnt == usize::MAX { 0 } else { cnt - 1 }
+ }
+
+ /// Gets the number of strong (`Arc`) pointers to this allocation.
+ ///
+ /// # Safety
+ ///
+ /// This method by itself is safe, but using it correctly requires extra care.
+ /// Another thread can change the strong count at any time,
+ /// including potentially between calling this method and acting on the result.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ /// let _also_five = Arc::clone(&five);
+ ///
+ /// // This assertion is deterministic because we haven't shared
+ /// // the `Arc` between threads.
+ /// assert_eq!(2, Arc::strong_count(&five));
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "arc_counts", since = "1.15.0")]
+ pub fn strong_count(this: &Self) -> usize {
+ this.inner().strong.load(Acquire)
+ }
+
+ /// Increments the strong reference count on the `Arc<T>` associated with the
+ /// provided pointer by one.
+ ///
+ /// # Safety
+ ///
+ /// The pointer must have been obtained through `Arc::into_raw`, and the
+ /// associated `Arc` instance must be valid (i.e. the strong count must be at
+ /// least 1) for the duration of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// unsafe {
+ /// let ptr = Arc::into_raw(five);
+ /// Arc::increment_strong_count(ptr);
+ ///
+ /// // This assertion is deterministic because we haven't shared
+ /// // the `Arc` between threads.
+ /// let five = Arc::from_raw(ptr);
+ /// assert_eq!(2, Arc::strong_count(&five));
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
+ pub unsafe fn increment_strong_count(ptr: *const T) {
+ // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
+ let arc = unsafe { mem::ManuallyDrop::new(Arc::<T>::from_raw(ptr)) };
+ // Now increase refcount, but don't drop new refcount either
+ let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
+ }
+
+ /// Decrements the strong reference count on the `Arc<T>` associated with the
+ /// provided pointer by one.
+ ///
+ /// # Safety
+ ///
+ /// The pointer must have been obtained through `Arc::into_raw`, and the
+ /// associated `Arc` instance must be valid (i.e. the strong count must be at
+ /// least 1) when invoking this method. This method can be used to release the final
+ /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
+ /// released.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// unsafe {
+ /// let ptr = Arc::into_raw(five);
+ /// Arc::increment_strong_count(ptr);
+ ///
+ /// // Those assertions are deterministic because we haven't shared
+ /// // the `Arc` between threads.
+ /// let five = Arc::from_raw(ptr);
+ /// assert_eq!(2, Arc::strong_count(&five));
+ /// Arc::decrement_strong_count(ptr);
+ /// assert_eq!(1, Arc::strong_count(&five));
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
+ pub unsafe fn decrement_strong_count(ptr: *const T) {
+ unsafe { mem::drop(Arc::from_raw(ptr)) };
+ }
+
+ #[inline]
+ fn inner(&self) -> &ArcInner<T> {
+ // This unsafety is ok because while this arc is alive we're guaranteed
+ // that the inner pointer is valid. Furthermore, we know that the
+ // `ArcInner` structure itself is `Sync` because the inner data is
+ // `Sync` as well, so we're ok loaning out an immutable pointer to these
+ // contents.
+ unsafe { self.ptr.as_ref() }
+ }
+
+ // Non-inlined part of `drop`.
+ #[inline(never)]
+ unsafe fn drop_slow(&mut self) {
+ // Destroy the data at this time, even though we must not free the box
+ // allocation itself (there might still be weak pointers lying around).
+ unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
+
+ // Drop the weak ref collectively held by all strong references
+ drop(Weak { ptr: self.ptr });
+ }
+
+ /// Returns `true` if the two `Arc`s point to the same allocation
+ /// (in a vein similar to [`ptr::eq`]).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ /// let same_five = Arc::clone(&five);
+ /// let other_five = Arc::new(5);
+ ///
+ /// assert!(Arc::ptr_eq(&five, &same_five));
+ /// assert!(!Arc::ptr_eq(&five, &other_five));
+ /// ```
+ ///
+ /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
+ #[inline]
+ #[must_use]
+ #[stable(feature = "ptr_eq", since = "1.17.0")]
+ pub fn ptr_eq(this: &Self, other: &Self) -> bool {
+ this.ptr.as_ptr() == other.ptr.as_ptr()
+ }
+}
+
+impl<T: ?Sized> Arc<T> {
+ /// Allocates an `ArcInner<T>` with sufficient space for
+ /// a possibly-unsized inner value where the value has the layout provided.
+ ///
+ /// The function `mem_to_arcinner` is called with the data pointer
+ /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn allocate_for_layout(
+ value_layout: Layout,
+ allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
+ mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
+ ) -> *mut ArcInner<T> {
+ // Calculate layout using the given value layout.
+ // Previously, layout was calculated on the expression
+ // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
+ // reference (see #54908).
+ let layout = Layout::new::<ArcInner<()>>().extend(value_layout).unwrap().0.pad_to_align();
+ unsafe {
+ Arc::try_allocate_for_layout(value_layout, allocate, mem_to_arcinner)
+ .unwrap_or_else(|_| handle_alloc_error(layout))
+ }
+ }
+
+ /// Allocates an `ArcInner<T>` with sufficient space for
+ /// a possibly-unsized inner value where the value has the layout provided,
+ /// returning an error if allocation fails.
+ ///
+ /// The function `mem_to_arcinner` is called with the data pointer
+ /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
+ unsafe fn try_allocate_for_layout(
+ value_layout: Layout,
+ allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
+ mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
+ ) -> Result<*mut ArcInner<T>, AllocError> {
+ // Calculate layout using the given value layout.
+ // Previously, layout was calculated on the expression
+ // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
+ // reference (see #54908).
+ let layout = Layout::new::<ArcInner<()>>().extend(value_layout).unwrap().0.pad_to_align();
+
+ let ptr = allocate(layout)?;
+
+ // Initialize the ArcInner
+ let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
+ debug_assert_eq!(unsafe { Layout::for_value(&*inner) }, layout);
+
+ unsafe {
+ ptr::write(&mut (*inner).strong, atomic::AtomicUsize::new(1));
+ ptr::write(&mut (*inner).weak, atomic::AtomicUsize::new(1));
+ }
+
+ Ok(inner)
+ }
+
+ /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> {
+ // Allocate for the `ArcInner<T>` using the given value.
+ unsafe {
+ Self::allocate_for_layout(
+ Layout::for_value(&*ptr),
+ |layout| Global.allocate(layout),
+ |mem| mem.with_metadata_of(ptr as *mut ArcInner<T>),
+ )
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ fn from_box(v: Box<T>) -> Arc<T> {
+ unsafe {
+ let (box_unique, alloc) = Box::into_unique(v);
+ let bptr = box_unique.as_ptr();
+
+ let value_size = size_of_val(&*bptr);
+ let ptr = Self::allocate_for_ptr(bptr);
+
+ // Copy value as bytes
+ ptr::copy_nonoverlapping(
+ bptr as *const T as *const u8,
+ &mut (*ptr).data as *mut _ as *mut u8,
+ value_size,
+ );
+
+ // Free the allocation without dropping its contents
+ box_free(box_unique, alloc);
+
+ Self::from_ptr(ptr)
+ }
+ }
+}
+
+impl<T> Arc<[T]> {
+ /// Allocates an `ArcInner<[T]>` with the given length.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
+ unsafe {
+ Self::allocate_for_layout(
+ Layout::array::<T>(len).unwrap(),
+ |layout| Global.allocate(layout),
+ |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut ArcInner<[T]>,
+ )
+ }
+ }
+
+ /// Copy elements from slice into newly allocated Arc<\[T\]>
+ ///
+ /// Unsafe because the caller must either take ownership or bind `T: Copy`.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
+ unsafe {
+ let ptr = Self::allocate_for_slice(v.len());
+
+ ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).data as *mut [T] as *mut T, v.len());
+
+ Self::from_ptr(ptr)
+ }
+ }
+
+ /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
+ ///
+ /// Behavior is undefined should the size be wrong.
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Arc<[T]> {
+ // Panic guard while cloning T elements.
+ // In the event of a panic, elements that have been written
+ // into the new ArcInner will be dropped, then the memory freed.
+ struct Guard<T> {
+ mem: NonNull<u8>,
+ elems: *mut T,
+ layout: Layout,
+ n_elems: usize,
+ }
+
+ impl<T> Drop for Guard<T> {
+ fn drop(&mut self) {
+ unsafe {
+ let slice = from_raw_parts_mut(self.elems, self.n_elems);
+ ptr::drop_in_place(slice);
+
+ Global.deallocate(self.mem, self.layout);
+ }
+ }
+ }
+
+ unsafe {
+ let ptr = Self::allocate_for_slice(len);
+
+ let mem = ptr as *mut _ as *mut u8;
+ let layout = Layout::for_value(&*ptr);
+
+ // Pointer to first element
+ let elems = &mut (*ptr).data as *mut [T] as *mut T;
+
+ let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
+
+ for (i, item) in iter.enumerate() {
+ ptr::write(elems.add(i), item);
+ guard.n_elems += 1;
+ }
+
+ // All clear. Forget the guard so it doesn't free the new ArcInner.
+ mem::forget(guard);
+
+ Self::from_ptr(ptr)
+ }
+ }
+}
+
+/// Specialization trait used for `From<&[T]>`.
+#[cfg(not(no_global_oom_handling))]
+trait ArcFromSlice<T> {
+ fn from_slice(slice: &[T]) -> Self;
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
+ #[inline]
+ default fn from_slice(v: &[T]) -> Self {
+ unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
+ #[inline]
+ fn from_slice(v: &[T]) -> Self {
+ unsafe { Arc::copy_from_slice(v) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Clone for Arc<T> {
+ /// Makes a clone of the `Arc` pointer.
+ ///
+ /// This creates another pointer to the same allocation, increasing the
+ /// strong reference count.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// let _ = Arc::clone(&five);
+ /// ```
+ #[inline]
+ fn clone(&self) -> Arc<T> {
+ // Using a relaxed ordering is alright here, as knowledge of the
+ // original reference prevents other threads from erroneously deleting
+ // the object.
+ //
+ // As explained in the [Boost documentation][1], Increasing the
+ // reference counter can always be done with memory_order_relaxed: New
+ // references to an object can only be formed from an existing
+ // reference, and passing an existing reference from one thread to
+ // another must already provide any required synchronization.
+ //
+ // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
+ let old_size = self.inner().strong.fetch_add(1, Relaxed);
+
+ // However we need to guard against massive refcounts in case someone is `mem::forget`ing
+ // Arcs. If we don't do this the count can overflow and users will use-after free. This
+ // branch will never be taken in any realistic program. We abort because such a program is
+ // incredibly degenerate, and we don't care to support it.
+ //
+ // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
+ // But we do that check *after* having done the increment, so there is a chance here that
+ // the worst already happened and we actually do overflow the `usize` counter. However, that
+ // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
+ // above and the `abort` below, which seems exceedingly unlikely.
+ if old_size > MAX_REFCOUNT {
+ abort();
+ }
+
+ unsafe { Self::from_inner(self.ptr) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Deref for Arc<T> {
+ type Target = T;
+
+ #[inline]
+ fn deref(&self) -> &T {
+ &self.inner().data
+ }
+}
+
+#[unstable(feature = "receiver_trait", issue = "none")]
+impl<T: ?Sized> Receiver for Arc<T> {}
+
+impl<T: Clone> Arc<T> {
+ /// Makes a mutable reference into the given `Arc`.
+ ///
+ /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
+ /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
+ /// referred to as clone-on-write.
+ ///
+ /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
+ /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
+ /// be cloned.
+ ///
+ /// See also [`get_mut`], which will fail rather than cloning the inner value
+ /// or dissociating [`Weak`] pointers.
+ ///
+ /// [`clone`]: Clone::clone
+ /// [`get_mut`]: Arc::get_mut
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let mut data = Arc::new(5);
+ ///
+ /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
+ /// let mut other_data = Arc::clone(&data); // Won't clone inner data
+ /// *Arc::make_mut(&mut data) += 1; // Clones inner data
+ /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
+ /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
+ ///
+ /// // Now `data` and `other_data` point to different allocations.
+ /// assert_eq!(*data, 8);
+ /// assert_eq!(*other_data, 12);
+ /// ```
+ ///
+ /// [`Weak`] pointers will be dissociated:
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let mut data = Arc::new(75);
+ /// let weak = Arc::downgrade(&data);
+ ///
+ /// assert!(75 == *data);
+ /// assert!(75 == *weak.upgrade().unwrap());
+ ///
+ /// *Arc::make_mut(&mut data) += 1;
+ ///
+ /// assert!(76 == *data);
+ /// assert!(weak.upgrade().is_none());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "arc_unique", since = "1.4.0")]
+ pub fn make_mut(this: &mut Self) -> &mut T {
+ // Note that we hold both a strong reference and a weak reference.
+ // Thus, releasing our strong reference only will not, by itself, cause
+ // the memory to be deallocated.
+ //
+ // Use Acquire to ensure that we see any writes to `weak` that happen
+ // before release writes (i.e., decrements) to `strong`. Since we hold a
+ // weak count, there's no chance the ArcInner itself could be
+ // deallocated.
+ if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
+ // Another strong pointer exists, so we must clone.
+ // Pre-allocate memory to allow writing the cloned value directly.
+ let mut arc = Self::new_uninit();
+ unsafe {
+ let data = Arc::get_mut_unchecked(&mut arc);
+ (**this).write_clone_into_raw(data.as_mut_ptr());
+ *this = arc.assume_init();
+ }
+ } else if this.inner().weak.load(Relaxed) != 1 {
+ // Relaxed suffices in the above because this is fundamentally an
+ // optimization: we are always racing with weak pointers being
+ // dropped. Worst case, we end up allocated a new Arc unnecessarily.
+
+ // We removed the last strong ref, but there are additional weak
+ // refs remaining. We'll move the contents to a new Arc, and
+ // invalidate the other weak refs.
+
+ // Note that it is not possible for the read of `weak` to yield
+ // usize::MAX (i.e., locked), since the weak count can only be
+ // locked by a thread with a strong reference.
+
+ // Materialize our own implicit weak pointer, so that it can clean
+ // up the ArcInner as needed.
+ let _weak = Weak { ptr: this.ptr };
+
+ // Can just steal the data, all that's left is Weaks
+ let mut arc = Self::new_uninit();
+ unsafe {
+ let data = Arc::get_mut_unchecked(&mut arc);
+ data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1);
+ ptr::write(this, arc.assume_init());
+ }
+ } else {
+ // We were the sole reference of either kind; bump back up the
+ // strong ref count.
+ this.inner().strong.store(1, Release);
+ }
+
+ // As with `get_mut()`, the unsafety is ok because our reference was
+ // either unique to begin with, or became one upon cloning the contents.
+ unsafe { Self::get_mut_unchecked(this) }
+ }
+
+ /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
+ /// clone.
+ ///
+ /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
+ /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(arc_unwrap_or_clone)]
+ /// # use std::{ptr, sync::Arc};
+ /// let inner = String::from("test");
+ /// let ptr = inner.as_ptr();
+ ///
+ /// let arc = Arc::new(inner);
+ /// let inner = Arc::unwrap_or_clone(arc);
+ /// // The inner value was not cloned
+ /// assert!(ptr::eq(ptr, inner.as_ptr()));
+ ///
+ /// let arc = Arc::new(inner);
+ /// let arc2 = arc.clone();
+ /// let inner = Arc::unwrap_or_clone(arc);
+ /// // Because there were 2 references, we had to clone the inner value.
+ /// assert!(!ptr::eq(ptr, inner.as_ptr()));
+ /// // `arc2` is the last reference, so when we unwrap it we get back
+ /// // the original `String`.
+ /// let inner = Arc::unwrap_or_clone(arc2);
+ /// assert!(ptr::eq(ptr, inner.as_ptr()));
+ /// ```
+ #[inline]
+ #[unstable(feature = "arc_unwrap_or_clone", issue = "93610")]
+ pub fn unwrap_or_clone(this: Self) -> T {
+ Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
+ }
+}
+
+impl<T: ?Sized> Arc<T> {
+ /// Returns a mutable reference into the given `Arc`, if there are
+ /// no other `Arc` or [`Weak`] pointers to the same allocation.
+ ///
+ /// Returns [`None`] otherwise, because it is not safe to
+ /// mutate a shared value.
+ ///
+ /// See also [`make_mut`][make_mut], which will [`clone`][clone]
+ /// the inner value when there are other `Arc` pointers.
+ ///
+ /// [make_mut]: Arc::make_mut
+ /// [clone]: Clone::clone
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let mut x = Arc::new(3);
+ /// *Arc::get_mut(&mut x).unwrap() = 4;
+ /// assert_eq!(*x, 4);
+ ///
+ /// let _y = Arc::clone(&x);
+ /// assert!(Arc::get_mut(&mut x).is_none());
+ /// ```
+ #[inline]
+ #[stable(feature = "arc_unique", since = "1.4.0")]
+ pub fn get_mut(this: &mut Self) -> Option<&mut T> {
+ if this.is_unique() {
+ // This unsafety is ok because we're guaranteed that the pointer
+ // returned is the *only* pointer that will ever be returned to T. Our
+ // reference count is guaranteed to be 1 at this point, and we required
+ // the Arc itself to be `mut`, so we're returning the only possible
+ // reference to the inner data.
+ unsafe { Some(Arc::get_mut_unchecked(this)) }
+ } else {
+ None
+ }
+ }
+
+ /// Returns a mutable reference into the given `Arc`,
+ /// without any check.
+ ///
+ /// See also [`get_mut`], which is safe and does appropriate checks.
+ ///
+ /// [`get_mut`]: Arc::get_mut
+ ///
+ /// # Safety
+ ///
+ /// Any other `Arc` or [`Weak`] pointers to the same allocation must not be dereferenced
+ /// for the duration of the returned borrow.
+ /// This is trivially the case if no such pointers exist,
+ /// for example immediately after `Arc::new`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(get_mut_unchecked)]
+ ///
+ /// use std::sync::Arc;
+ ///
+ /// let mut x = Arc::new(String::new());
+ /// unsafe {
+ /// Arc::get_mut_unchecked(&mut x).push_str("foo")
+ /// }
+ /// assert_eq!(*x, "foo");
+ /// ```
+ #[inline]
+ #[unstable(feature = "get_mut_unchecked", issue = "63292")]
+ pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
+ // We are careful to *not* create a reference covering the "count" fields, as
+ // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
+ unsafe { &mut (*this.ptr.as_ptr()).data }
+ }
+
+ /// Determine whether this is the unique reference (including weak refs) to
+ /// the underlying data.
+ ///
+ /// Note that this requires locking the weak ref count.
+ fn is_unique(&mut self) -> bool {
+ // lock the weak pointer count if we appear to be the sole weak pointer
+ // holder.
+ //
+ // The acquire label here ensures a happens-before relationship with any
+ // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
+ // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
+ // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
+ if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
+ // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
+ // counter in `drop` -- the only access that happens when any but the last reference
+ // is being dropped.
+ let unique = self.inner().strong.load(Acquire) == 1;
+
+ // The release write here synchronizes with a read in `downgrade`,
+ // effectively preventing the above read of `strong` from happening
+ // after the write.
+ self.inner().weak.store(1, Release); // release the lock
+ unique
+ } else {
+ false
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<#[may_dangle] T: ?Sized> Drop for Arc<T> {
+ /// Drops the `Arc`.
+ ///
+ /// This will decrement the strong reference count. If the strong reference
+ /// count reaches zero then the only other references (if any) are
+ /// [`Weak`], so we `drop` the inner value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// struct Foo;
+ ///
+ /// impl Drop for Foo {
+ /// fn drop(&mut self) {
+ /// println!("dropped!");
+ /// }
+ /// }
+ ///
+ /// let foo = Arc::new(Foo);
+ /// let foo2 = Arc::clone(&foo);
+ ///
+ /// drop(foo); // Doesn't print anything
+ /// drop(foo2); // Prints "dropped!"
+ /// ```
+ #[inline]
+ fn drop(&mut self) {
+ // Because `fetch_sub` is already atomic, we do not need to synchronize
+ // with other threads unless we are going to delete the object. This
+ // same logic applies to the below `fetch_sub` to the `weak` count.
+ if self.inner().strong.fetch_sub(1, Release) != 1 {
+ return;
+ }
+
+ // This fence is needed to prevent reordering of use of the data and
+ // deletion of the data. Because it is marked `Release`, the decreasing
+ // of the reference count synchronizes with this `Acquire` fence. This
+ // means that use of the data happens before decreasing the reference
+ // count, which happens before this fence, which happens before the
+ // deletion of the data.
+ //
+ // As explained in the [Boost documentation][1],
+ //
+ // > It is important to enforce any possible access to the object in one
+ // > thread (through an existing reference) to *happen before* deleting
+ // > the object in a different thread. This is achieved by a "release"
+ // > operation after dropping a reference (any access to the object
+ // > through this reference must obviously happened before), and an
+ // > "acquire" operation before deleting the object.
+ //
+ // In particular, while the contents of an Arc are usually immutable, it's
+ // possible to have interior writes to something like a Mutex<T>. Since a
+ // Mutex is not acquired when it is deleted, we can't rely on its
+ // synchronization logic to make writes in thread A visible to a destructor
+ // running in thread B.
+ //
+ // Also note that the Acquire fence here could probably be replaced with an
+ // Acquire load, which could improve performance in highly-contended
+ // situations. See [2].
+ //
+ // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
+ // [2]: (https://github.com/rust-lang/rust/pull/41714)
+ acquire!(self.inner().strong);
+
+ unsafe {
+ self.drop_slow();
+ }
+ }
+}
+
+impl Arc<dyn Any + Send + Sync> {
+ /// Attempt to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::any::Any;
+ /// use std::sync::Arc;
+ ///
+ /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
+ /// if let Ok(string) = value.downcast::<String>() {
+ /// println!("String ({}): {}", string.len(), string);
+ /// }
+ /// }
+ ///
+ /// let my_string = "Hello World".to_string();
+ /// print_if_string(Arc::new(my_string));
+ /// print_if_string(Arc::new(0i8));
+ /// ```
+ #[inline]
+ #[stable(feature = "rc_downcast", since = "1.29.0")]
+ pub fn downcast<T>(self) -> Result<Arc<T>, Self>
+ where
+ T: Any + Send + Sync,
+ {
+ if (*self).is::<T>() {
+ unsafe {
+ let ptr = self.ptr.cast::<ArcInner<T>>();
+ mem::forget(self);
+ Ok(Arc::from_inner(ptr))
+ }
+ } else {
+ Err(self)
+ }
+ }
+
+ /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
+ ///
+ /// For a safe alternative see [`downcast`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(downcast_unchecked)]
+ ///
+ /// use std::any::Any;
+ /// use std::sync::Arc;
+ ///
+ /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
+ ///
+ /// unsafe {
+ /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
+ /// }
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// The contained value must be of type `T`. Calling this method
+ /// with the incorrect type is *undefined behavior*.
+ ///
+ ///
+ /// [`downcast`]: Self::downcast
+ #[inline]
+ #[unstable(feature = "downcast_unchecked", issue = "90850")]
+ pub unsafe fn downcast_unchecked<T>(self) -> Arc<T>
+ where
+ T: Any + Send + Sync,
+ {
+ unsafe {
+ let ptr = self.ptr.cast::<ArcInner<T>>();
+ mem::forget(self);
+ Arc::from_inner(ptr)
+ }
+ }
+}
+
+impl<T> Weak<T> {
+ /// Constructs a new `Weak<T>`, without allocating any memory.
+ /// Calling [`upgrade`] on the return value always gives [`None`].
+ ///
+ /// [`upgrade`]: Weak::upgrade
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Weak;
+ ///
+ /// let empty: Weak<i64> = Weak::new();
+ /// assert!(empty.upgrade().is_none());
+ /// ```
+ #[stable(feature = "downgraded_weak", since = "1.10.0")]
+ #[rustc_const_unstable(feature = "const_weak_new", issue = "95091", reason = "recently added")]
+ #[must_use]
+ pub const fn new() -> Weak<T> {
+ Weak { ptr: unsafe { NonNull::new_unchecked(ptr::invalid_mut::<ArcInner<T>>(usize::MAX)) } }
+ }
+}
+
+/// Helper type to allow accessing the reference counts without
+/// making any assertions about the data field.
+struct WeakInner<'a> {
+ weak: &'a atomic::AtomicUsize,
+ strong: &'a atomic::AtomicUsize,
+}
+
+impl<T: ?Sized> Weak<T> {
+ /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
+ ///
+ /// The pointer is valid only if there are some strong references. The pointer may be dangling,
+ /// unaligned or even [`null`] otherwise.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ /// use std::ptr;
+ ///
+ /// let strong = Arc::new("hello".to_owned());
+ /// let weak = Arc::downgrade(&strong);
+ /// // Both point to the same object
+ /// assert!(ptr::eq(&*strong, weak.as_ptr()));
+ /// // The strong here keeps it alive, so we can still access the object.
+ /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
+ ///
+ /// drop(strong);
+ /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
+ /// // undefined behaviour.
+ /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
+ /// ```
+ ///
+ /// [`null`]: core::ptr::null "ptr::null"
+ #[must_use]
+ #[stable(feature = "weak_into_raw", since = "1.45.0")]
+ pub fn as_ptr(&self) -> *const T {
+ let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
+
+ if is_dangling(ptr) {
+ // If the pointer is dangling, we return the sentinel directly. This cannot be
+ // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
+ ptr as *const T
+ } else {
+ // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
+ // The payload may be dropped at this point, and we have to maintain provenance,
+ // so use raw pointer manipulation.
+ unsafe { ptr::addr_of_mut!((*ptr).data) }
+ }
+ }
+
+ /// Consumes the `Weak<T>` and turns it into a raw pointer.
+ ///
+ /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
+ /// one weak reference (the weak count is not modified by this operation). It can be turned
+ /// back into the `Weak<T>` with [`from_raw`].
+ ///
+ /// The same restrictions of accessing the target of the pointer as with
+ /// [`as_ptr`] apply.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::{Arc, Weak};
+ ///
+ /// let strong = Arc::new("hello".to_owned());
+ /// let weak = Arc::downgrade(&strong);
+ /// let raw = weak.into_raw();
+ ///
+ /// assert_eq!(1, Arc::weak_count(&strong));
+ /// assert_eq!("hello", unsafe { &*raw });
+ ///
+ /// drop(unsafe { Weak::from_raw(raw) });
+ /// assert_eq!(0, Arc::weak_count(&strong));
+ /// ```
+ ///
+ /// [`from_raw`]: Weak::from_raw
+ /// [`as_ptr`]: Weak::as_ptr
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "weak_into_raw", since = "1.45.0")]
+ pub fn into_raw(self) -> *const T {
+ let result = self.as_ptr();
+ mem::forget(self);
+ result
+ }
+
+ /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
+ ///
+ /// This can be used to safely get a strong reference (by calling [`upgrade`]
+ /// later) or to deallocate the weak count by dropping the `Weak<T>`.
+ ///
+ /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
+ /// as these don't own anything; the method still works on them).
+ ///
+ /// # Safety
+ ///
+ /// The pointer must have originated from the [`into_raw`] and must still own its potential
+ /// weak reference.
+ ///
+ /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
+ /// takes ownership of one weak reference currently represented as a raw pointer (the weak
+ /// count is not modified by this operation) and therefore it must be paired with a previous
+ /// call to [`into_raw`].
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::{Arc, Weak};
+ ///
+ /// let strong = Arc::new("hello".to_owned());
+ ///
+ /// let raw_1 = Arc::downgrade(&strong).into_raw();
+ /// let raw_2 = Arc::downgrade(&strong).into_raw();
+ ///
+ /// assert_eq!(2, Arc::weak_count(&strong));
+ ///
+ /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
+ /// assert_eq!(1, Arc::weak_count(&strong));
+ ///
+ /// drop(strong);
+ ///
+ /// // Decrement the last weak count.
+ /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
+ /// ```
+ ///
+ /// [`new`]: Weak::new
+ /// [`into_raw`]: Weak::into_raw
+ /// [`upgrade`]: Weak::upgrade
+ #[stable(feature = "weak_into_raw", since = "1.45.0")]
+ pub unsafe fn from_raw(ptr: *const T) -> Self {
+ // See Weak::as_ptr for context on how the input pointer is derived.
+
+ let ptr = if is_dangling(ptr as *mut T) {
+ // This is a dangling Weak.
+ ptr as *mut ArcInner<T>
+ } else {
+ // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
+ // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
+ let offset = unsafe { data_offset(ptr) };
+ // Thus, we reverse the offset to get the whole RcBox.
+ // SAFETY: the pointer originated from a Weak, so this offset is safe.
+ unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
+ };
+
+ // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
+ Weak { ptr: unsafe { NonNull::new_unchecked(ptr) } }
+ }
+}
+
+impl<T: ?Sized> Weak<T> {
+ /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
+ /// dropping of the inner value if successful.
+ ///
+ /// Returns [`None`] if the inner value has since been dropped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// let weak_five = Arc::downgrade(&five);
+ ///
+ /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
+ /// assert!(strong_five.is_some());
+ ///
+ /// // Destroy all strong pointers.
+ /// drop(strong_five);
+ /// drop(five);
+ ///
+ /// assert!(weak_five.upgrade().is_none());
+ /// ```
+ #[must_use = "this returns a new `Arc`, \
+ without modifying the original weak pointer"]
+ #[stable(feature = "arc_weak", since = "1.4.0")]
+ pub fn upgrade(&self) -> Option<Arc<T>> {
+ // We use a CAS loop to increment the strong count instead of a
+ // fetch_add as this function should never take the reference count
+ // from zero to one.
+ let inner = self.inner()?;
+
+ // Relaxed load because any write of 0 that we can observe
+ // leaves the field in a permanently zero state (so a
+ // "stale" read of 0 is fine), and any other value is
+ // confirmed via the CAS below.
+ let mut n = inner.strong.load(Relaxed);
+
+ loop {
+ if n == 0 {
+ return None;
+ }
+
+ // See comments in `Arc::clone` for why we do this (for `mem::forget`).
+ if n > MAX_REFCOUNT {
+ abort();
+ }
+
+ // Relaxed is fine for the failure case because we don't have any expectations about the new state.
+ // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
+ // value can be initialized after `Weak` references have already been created. In that case, we
+ // expect to observe the fully initialized value.
+ match inner.strong.compare_exchange_weak(n, n + 1, Acquire, Relaxed) {
+ Ok(_) => return Some(unsafe { Arc::from_inner(self.ptr) }), // null checked above
+ Err(old) => n = old,
+ }
+ }
+ }
+
+ /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
+ ///
+ /// If `self` was created using [`Weak::new`], this will return 0.
+ #[must_use]
+ #[stable(feature = "weak_counts", since = "1.41.0")]
+ pub fn strong_count(&self) -> usize {
+ if let Some(inner) = self.inner() { inner.strong.load(Acquire) } else { 0 }
+ }
+
+ /// Gets an approximation of the number of `Weak` pointers pointing to this
+ /// allocation.
+ ///
+ /// If `self` was created using [`Weak::new`], or if there are no remaining
+ /// strong pointers, this will return 0.
+ ///
+ /// # Accuracy
+ ///
+ /// Due to implementation details, the returned value can be off by 1 in
+ /// either direction when other threads are manipulating any `Arc`s or
+ /// `Weak`s pointing to the same allocation.
+ #[must_use]
+ #[stable(feature = "weak_counts", since = "1.41.0")]
+ pub fn weak_count(&self) -> usize {
+ self.inner()
+ .map(|inner| {
+ let weak = inner.weak.load(Acquire);
+ let strong = inner.strong.load(Acquire);
+ if strong == 0 {
+ 0
+ } else {
+ // Since we observed that there was at least one strong pointer
+ // after reading the weak count, we know that the implicit weak
+ // reference (present whenever any strong references are alive)
+ // was still around when we observed the weak count, and can
+ // therefore safely subtract it.
+ weak - 1
+ }
+ })
+ .unwrap_or(0)
+ }
+
+ /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
+ /// (i.e., when this `Weak` was created by `Weak::new`).
+ #[inline]
+ fn inner(&self) -> Option<WeakInner<'_>> {
+ if is_dangling(self.ptr.as_ptr()) {
+ None
+ } else {
+ // We are careful to *not* create a reference covering the "data" field, as
+ // the field may be mutated concurrently (for example, if the last `Arc`
+ // is dropped, the data field will be dropped in-place).
+ Some(unsafe {
+ let ptr = self.ptr.as_ptr();
+ WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
+ })
+ }
+ }
+
+ /// Returns `true` if the two `Weak`s point to the same allocation (similar to
+ /// [`ptr::eq`]), or if both don't point to any allocation
+ /// (because they were created with `Weak::new()`).
+ ///
+ /// # Notes
+ ///
+ /// Since this compares pointers it means that `Weak::new()` will equal each
+ /// other, even though they don't point to any allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let first_rc = Arc::new(5);
+ /// let first = Arc::downgrade(&first_rc);
+ /// let second = Arc::downgrade(&first_rc);
+ ///
+ /// assert!(first.ptr_eq(&second));
+ ///
+ /// let third_rc = Arc::new(5);
+ /// let third = Arc::downgrade(&third_rc);
+ ///
+ /// assert!(!first.ptr_eq(&third));
+ /// ```
+ ///
+ /// Comparing `Weak::new`.
+ ///
+ /// ```
+ /// use std::sync::{Arc, Weak};
+ ///
+ /// let first = Weak::new();
+ /// let second = Weak::new();
+ /// assert!(first.ptr_eq(&second));
+ ///
+ /// let third_rc = Arc::new(());
+ /// let third = Arc::downgrade(&third_rc);
+ /// assert!(!first.ptr_eq(&third));
+ /// ```
+ ///
+ /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
+ #[inline]
+ #[must_use]
+ #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
+ pub fn ptr_eq(&self, other: &Self) -> bool {
+ self.ptr.as_ptr() == other.ptr.as_ptr()
+ }
+}
+
+#[stable(feature = "arc_weak", since = "1.4.0")]
+impl<T: ?Sized> Clone for Weak<T> {
+ /// Makes a clone of the `Weak` pointer that points to the same allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::{Arc, Weak};
+ ///
+ /// let weak_five = Arc::downgrade(&Arc::new(5));
+ ///
+ /// let _ = Weak::clone(&weak_five);
+ /// ```
+ #[inline]
+ fn clone(&self) -> Weak<T> {
+ let inner = if let Some(inner) = self.inner() {
+ inner
+ } else {
+ return Weak { ptr: self.ptr };
+ };
+ // See comments in Arc::clone() for why this is relaxed. This can use a
+ // fetch_add (ignoring the lock) because the weak count is only locked
+ // where are *no other* weak pointers in existence. (So we can't be
+ // running this code in that case).
+ let old_size = inner.weak.fetch_add(1, Relaxed);
+
+ // See comments in Arc::clone() for why we do this (for mem::forget).
+ if old_size > MAX_REFCOUNT {
+ abort();
+ }
+
+ Weak { ptr: self.ptr }
+ }
+}
+
+#[stable(feature = "downgraded_weak", since = "1.10.0")]
+impl<T> Default for Weak<T> {
+ /// Constructs a new `Weak<T>`, without allocating memory.
+ /// Calling [`upgrade`] on the return value always
+ /// gives [`None`].
+ ///
+ /// [`upgrade`]: Weak::upgrade
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Weak;
+ ///
+ /// let empty: Weak<i64> = Default::default();
+ /// assert!(empty.upgrade().is_none());
+ /// ```
+ fn default() -> Weak<T> {
+ Weak::new()
+ }
+}
+
+#[stable(feature = "arc_weak", since = "1.4.0")]
+unsafe impl<#[may_dangle] T: ?Sized> Drop for Weak<T> {
+ /// Drops the `Weak` pointer.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::{Arc, Weak};
+ ///
+ /// struct Foo;
+ ///
+ /// impl Drop for Foo {
+ /// fn drop(&mut self) {
+ /// println!("dropped!");
+ /// }
+ /// }
+ ///
+ /// let foo = Arc::new(Foo);
+ /// let weak_foo = Arc::downgrade(&foo);
+ /// let other_weak_foo = Weak::clone(&weak_foo);
+ ///
+ /// drop(weak_foo); // Doesn't print anything
+ /// drop(foo); // Prints "dropped!"
+ ///
+ /// assert!(other_weak_foo.upgrade().is_none());
+ /// ```
+ fn drop(&mut self) {
+ // If we find out that we were the last weak pointer, then its time to
+ // deallocate the data entirely. See the discussion in Arc::drop() about
+ // the memory orderings
+ //
+ // It's not necessary to check for the locked state here, because the
+ // weak count can only be locked if there was precisely one weak ref,
+ // meaning that drop could only subsequently run ON that remaining weak
+ // ref, which can only happen after the lock is released.
+ let inner = if let Some(inner) = self.inner() { inner } else { return };
+
+ if inner.weak.fetch_sub(1, Release) == 1 {
+ acquire!(inner.weak);
+ unsafe { Global.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())) }
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+trait ArcEqIdent<T: ?Sized + PartialEq> {
+ fn eq(&self, other: &Arc<T>) -> bool;
+ fn ne(&self, other: &Arc<T>) -> bool;
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialEq> ArcEqIdent<T> for Arc<T> {
+ #[inline]
+ default fn eq(&self, other: &Arc<T>) -> bool {
+ **self == **other
+ }
+ #[inline]
+ default fn ne(&self, other: &Arc<T>) -> bool {
+ **self != **other
+ }
+}
+
+/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
+/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
+/// store large values, that are slow to clone, but also heavy to check for equality, causing this
+/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
+/// the same value, than two `&T`s.
+///
+/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + crate::rc::MarkerEq> ArcEqIdent<T> for Arc<T> {
+ #[inline]
+ fn eq(&self, other: &Arc<T>) -> bool {
+ Arc::ptr_eq(self, other) || **self == **other
+ }
+
+ #[inline]
+ fn ne(&self, other: &Arc<T>) -> bool {
+ !Arc::ptr_eq(self, other) && **self != **other
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
+ /// Equality for two `Arc`s.
+ ///
+ /// Two `Arc`s are equal if their inner values are equal, even if they are
+ /// stored in different allocation.
+ ///
+ /// If `T` also implements `Eq` (implying reflexivity of equality),
+ /// two `Arc`s that point to the same allocation are always equal.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert!(five == Arc::new(5));
+ /// ```
+ #[inline]
+ fn eq(&self, other: &Arc<T>) -> bool {
+ ArcEqIdent::eq(self, other)
+ }
+
+ /// Inequality for two `Arc`s.
+ ///
+ /// Two `Arc`s are unequal if their inner values are unequal.
+ ///
+ /// If `T` also implements `Eq` (implying reflexivity of equality),
+ /// two `Arc`s that point to the same value are never unequal.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert!(five != Arc::new(6));
+ /// ```
+ #[inline]
+ fn ne(&self, other: &Arc<T>) -> bool {
+ ArcEqIdent::ne(self, other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
+ /// Partial comparison for two `Arc`s.
+ ///
+ /// The two are compared by calling `partial_cmp()` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ /// use std::cmp::Ordering;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
+ /// ```
+ fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
+ (**self).partial_cmp(&**other)
+ }
+
+ /// Less-than comparison for two `Arc`s.
+ ///
+ /// The two are compared by calling `<` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert!(five < Arc::new(6));
+ /// ```
+ fn lt(&self, other: &Arc<T>) -> bool {
+ *(*self) < *(*other)
+ }
+
+ /// 'Less than or equal to' comparison for two `Arc`s.
+ ///
+ /// The two are compared by calling `<=` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert!(five <= Arc::new(5));
+ /// ```
+ fn le(&self, other: &Arc<T>) -> bool {
+ *(*self) <= *(*other)
+ }
+
+ /// Greater-than comparison for two `Arc`s.
+ ///
+ /// The two are compared by calling `>` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert!(five > Arc::new(4));
+ /// ```
+ fn gt(&self, other: &Arc<T>) -> bool {
+ *(*self) > *(*other)
+ }
+
+ /// 'Greater than or equal to' comparison for two `Arc`s.
+ ///
+ /// The two are compared by calling `>=` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert!(five >= Arc::new(5));
+ /// ```
+ fn ge(&self, other: &Arc<T>) -> bool {
+ *(*self) >= *(*other)
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Ord> Ord for Arc<T> {
+ /// Comparison for two `Arc`s.
+ ///
+ /// The two are compared by calling `cmp()` on their inner values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ /// use std::cmp::Ordering;
+ ///
+ /// let five = Arc::new(5);
+ ///
+ /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
+ /// ```
+ fn cmp(&self, other: &Arc<T>) -> Ordering {
+ (**self).cmp(&**other)
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Eq> Eq for Arc<T> {}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> fmt::Pointer for Arc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Pointer::fmt(&(&**self as *const T), f)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Default> Default for Arc<T> {
+ /// Creates a new `Arc<T>`, with the `Default` value for `T`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ ///
+ /// let x: Arc<i32> = Default::default();
+ /// assert_eq!(*x, 0);
+ /// ```
+ fn default() -> Arc<T> {
+ Arc::new(Default::default())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Hash> Hash for Arc<T> {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ (**self).hash(state)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_for_ptrs", since = "1.6.0")]
+impl<T> From<T> for Arc<T> {
+ /// Converts a `T` into an `Arc<T>`
+ ///
+ /// The conversion moves the value into a
+ /// newly allocated `Arc`. It is equivalent to
+ /// calling `Arc::new(t)`.
+ ///
+ /// # Example
+ /// ```rust
+ /// # use std::sync::Arc;
+ /// let x = 5;
+ /// let arc = Arc::new(5);
+ ///
+ /// assert_eq!(Arc::from(x), arc);
+ /// ```
+ fn from(t: T) -> Self {
+ Arc::new(t)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl<T: Clone> From<&[T]> for Arc<[T]> {
+ /// Allocate a reference-counted slice and fill it by cloning `v`'s items.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::sync::Arc;
+ /// let original: &[i32] = &[1, 2, 3];
+ /// let shared: Arc<[i32]> = Arc::from(original);
+ /// assert_eq!(&[1, 2, 3], &shared[..]);
+ /// ```
+ #[inline]
+ fn from(v: &[T]) -> Arc<[T]> {
+ <Self as ArcFromSlice<T>>::from_slice(v)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl From<&str> for Arc<str> {
+ /// Allocate a reference-counted `str` and copy `v` into it.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::sync::Arc;
+ /// let shared: Arc<str> = Arc::from("eggplant");
+ /// assert_eq!("eggplant", &shared[..]);
+ /// ```
+ #[inline]
+ fn from(v: &str) -> Arc<str> {
+ let arc = Arc::<[u8]>::from(v.as_bytes());
+ unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl From<String> for Arc<str> {
+ /// Allocate a reference-counted `str` and copy `v` into it.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::sync::Arc;
+ /// let unique: String = "eggplant".to_owned();
+ /// let shared: Arc<str> = Arc::from(unique);
+ /// assert_eq!("eggplant", &shared[..]);
+ /// ```
+ #[inline]
+ fn from(v: String) -> Arc<str> {
+ Arc::from(&v[..])
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl<T: ?Sized> From<Box<T>> for Arc<T> {
+ /// Move a boxed object to a new, reference-counted allocation.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::sync::Arc;
+ /// let unique: Box<str> = Box::from("eggplant");
+ /// let shared: Arc<str> = Arc::from(unique);
+ /// assert_eq!("eggplant", &shared[..]);
+ /// ```
+ #[inline]
+ fn from(v: Box<T>) -> Arc<T> {
+ Arc::from_box(v)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_slice", since = "1.21.0")]
+impl<T> From<Vec<T>> for Arc<[T]> {
+ /// Allocate a reference-counted slice and move `v`'s items into it.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::sync::Arc;
+ /// let unique: Vec<i32> = vec![1, 2, 3];
+ /// let shared: Arc<[i32]> = Arc::from(unique);
+ /// assert_eq!(&[1, 2, 3], &shared[..]);
+ /// ```
+ #[inline]
+ fn from(mut v: Vec<T>) -> Arc<[T]> {
+ unsafe {
+ let arc = Arc::copy_from_slice(&v);
+
+ // Allow the Vec to free its memory, but not destroy its contents
+ v.set_len(0);
+
+ arc
+ }
+ }
+}
+
+#[stable(feature = "shared_from_cow", since = "1.45.0")]
+impl<'a, B> From<Cow<'a, B>> for Arc<B>
+where
+ B: ToOwned + ?Sized,
+ Arc<B>: From<&'a B> + From<B::Owned>,
+{
+ /// Create an atomically reference-counted pointer from
+ /// a clone-on-write pointer by copying its content.
+ ///
+ /// # Example
+ ///
+ /// ```rust
+ /// # use std::sync::Arc;
+ /// # use std::borrow::Cow;
+ /// let cow: Cow<str> = Cow::Borrowed("eggplant");
+ /// let shared: Arc<str> = Arc::from(cow);
+ /// assert_eq!("eggplant", &shared[..]);
+ /// ```
+ #[inline]
+ fn from(cow: Cow<'a, B>) -> Arc<B> {
+ match cow {
+ Cow::Borrowed(s) => Arc::from(s),
+ Cow::Owned(s) => Arc::from(s),
+ }
+ }
+}
+
+#[stable(feature = "shared_from_str", since = "1.62.0")]
+impl From<Arc<str>> for Arc<[u8]> {
+ /// Converts an atomically reference-counted string slice into a byte slice.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::sync::Arc;
+ /// let string: Arc<str> = Arc::from("eggplant");
+ /// let bytes: Arc<[u8]> = Arc::from(string);
+ /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
+ /// ```
+ #[inline]
+ fn from(rc: Arc<str>) -> Self {
+ // SAFETY: `str` has the same layout as `[u8]`.
+ unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
+ }
+}
+
+#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
+impl<T, const N: usize> TryFrom<Arc<[T]>> for Arc<[T; N]> {
+ type Error = Arc<[T]>;
+
+ fn try_from(boxed_slice: Arc<[T]>) -> Result<Self, Self::Error> {
+ if boxed_slice.len() == N {
+ Ok(unsafe { Arc::from_raw(Arc::into_raw(boxed_slice) as *mut [T; N]) })
+ } else {
+ Err(boxed_slice)
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "shared_from_iter", since = "1.37.0")]
+impl<T> iter::FromIterator<T> for Arc<[T]> {
+ /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
+ ///
+ /// # Performance characteristics
+ ///
+ /// ## The general case
+ ///
+ /// In the general case, collecting into `Arc<[T]>` is done by first
+ /// collecting into a `Vec<T>`. That is, when writing the following:
+ ///
+ /// ```rust
+ /// # use std::sync::Arc;
+ /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
+ /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
+ /// ```
+ ///
+ /// this behaves as if we wrote:
+ ///
+ /// ```rust
+ /// # use std::sync::Arc;
+ /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
+ /// .collect::<Vec<_>>() // The first set of allocations happens here.
+ /// .into(); // A second allocation for `Arc<[T]>` happens here.
+ /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
+ /// ```
+ ///
+ /// This will allocate as many times as needed for constructing the `Vec<T>`
+ /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
+ ///
+ /// ## Iterators of known length
+ ///
+ /// When your `Iterator` implements `TrustedLen` and is of an exact size,
+ /// a single allocation will be made for the `Arc<[T]>`. For example:
+ ///
+ /// ```rust
+ /// # use std::sync::Arc;
+ /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
+ /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
+ /// ```
+ fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
+ ToArcSlice::to_arc_slice(iter.into_iter())
+ }
+}
+
+/// Specialization trait used for collecting into `Arc<[T]>`.
+trait ToArcSlice<T>: Iterator<Item = T> + Sized {
+ fn to_arc_slice(self) -> Arc<[T]>;
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
+ default fn to_arc_slice(self) -> Arc<[T]> {
+ self.collect::<Vec<T>>().into()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
+ fn to_arc_slice(self) -> Arc<[T]> {
+ // This is the case for a `TrustedLen` iterator.
+ let (low, high) = self.size_hint();
+ if let Some(high) = high {
+ debug_assert_eq!(
+ low,
+ high,
+ "TrustedLen iterator's size hint is not exact: {:?}",
+ (low, high)
+ );
+
+ unsafe {
+ // SAFETY: We need to ensure that the iterator has an exact length and we have.
+ Arc::from_iter_exact(self, low)
+ }
+ } else {
+ // TrustedLen contract guarantees that `upper_bound == `None` implies an iterator
+ // length exceeding `usize::MAX`.
+ // The default implementation would collect into a vec which would panic.
+ // Thus we panic here immediately without invoking `Vec` code.
+ panic!("capacity overflow");
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
+ fn borrow(&self) -> &T {
+ &**self
+ }
+}
+
+#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
+impl<T: ?Sized> AsRef<T> for Arc<T> {
+ fn as_ref(&self) -> &T {
+ &**self
+ }
+}
+
+#[stable(feature = "pin", since = "1.33.0")]
+impl<T: ?Sized> Unpin for Arc<T> {}
+
+/// Get the offset within an `ArcInner` for the payload behind a pointer.
+///
+/// # Safety
+///
+/// The pointer must point to (and have valid metadata for) a previously
+/// valid instance of T, but the T is allowed to be dropped.
+unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
+ // Align the unsized value to the end of the ArcInner.
+ // Because RcBox is repr(C), it will always be the last field in memory.
+ // SAFETY: since the only unsized types possible are slices, trait objects,
+ // and extern types, the input safety requirement is currently enough to
+ // satisfy the requirements of align_of_val_raw; this is an implementation
+ // detail of the language that must not be relied upon outside of std.
+ unsafe { data_offset_align(align_of_val_raw(ptr)) }
+}
+
+#[inline]
+fn data_offset_align(align: usize) -> usize {
+ let layout = Layout::new::<ArcInner<()>>();
+ layout.size() + layout.padding_needed_for(align)
+}