summaryrefslogtreecommitdiffstats
path: root/library/core/src/iter/traits
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/iter/traits')
-rw-r--r--library/core/src/iter/traits/accum.rs231
-rw-r--r--library/core/src/iter/traits/collect.rs450
-rw-r--r--library/core/src/iter/traits/double_ended.rs374
-rw-r--r--library/core/src/iter/traits/exact_size.rs151
-rw-r--r--library/core/src/iter/traits/iterator.rs3836
-rw-r--r--library/core/src/iter/traits/marker.rs78
-rw-r--r--library/core/src/iter/traits/mod.rs21
7 files changed, 5141 insertions, 0 deletions
diff --git a/library/core/src/iter/traits/accum.rs b/library/core/src/iter/traits/accum.rs
new file mode 100644
index 000000000..84d83ee39
--- /dev/null
+++ b/library/core/src/iter/traits/accum.rs
@@ -0,0 +1,231 @@
+use crate::iter;
+use crate::num::Wrapping;
+
+/// Trait to represent types that can be created by summing up an iterator.
+///
+/// This trait is used to implement [`Iterator::sum()`]. Types which implement
+/// this trait can be generated by using the [`sum()`] method on an iterator.
+/// Like [`FromIterator`], this trait should rarely be called directly.
+///
+/// [`sum()`]: Iterator::sum
+/// [`FromIterator`]: iter::FromIterator
+#[stable(feature = "iter_arith_traits", since = "1.12.0")]
+pub trait Sum<A = Self>: Sized {
+ /// Method which takes an iterator and generates `Self` from the elements by
+ /// "summing up" the items.
+ #[stable(feature = "iter_arith_traits", since = "1.12.0")]
+ fn sum<I: Iterator<Item = A>>(iter: I) -> Self;
+}
+
+/// Trait to represent types that can be created by multiplying elements of an
+/// iterator.
+///
+/// This trait is used to implement [`Iterator::product()`]. Types which implement
+/// this trait can be generated by using the [`product()`] method on an iterator.
+/// Like [`FromIterator`], this trait should rarely be called directly.
+///
+/// [`product()`]: Iterator::product
+/// [`FromIterator`]: iter::FromIterator
+#[stable(feature = "iter_arith_traits", since = "1.12.0")]
+pub trait Product<A = Self>: Sized {
+ /// Method which takes an iterator and generates `Self` from the elements by
+ /// multiplying the items.
+ #[stable(feature = "iter_arith_traits", since = "1.12.0")]
+ fn product<I: Iterator<Item = A>>(iter: I) -> Self;
+}
+
+macro_rules! integer_sum_product {
+ (@impls $zero:expr, $one:expr, #[$attr:meta], $($a:ty)*) => ($(
+ #[$attr]
+ impl Sum for $a {
+ fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
+ iter.fold(
+ $zero,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a + b,
+ )
+ }
+ }
+
+ #[$attr]
+ impl Product for $a {
+ fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
+ iter.fold(
+ $one,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a * b,
+ )
+ }
+ }
+
+ #[$attr]
+ impl<'a> Sum<&'a $a> for $a {
+ fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
+ iter.fold(
+ $zero,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a + b,
+ )
+ }
+ }
+
+ #[$attr]
+ impl<'a> Product<&'a $a> for $a {
+ fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
+ iter.fold(
+ $one,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a * b,
+ )
+ }
+ }
+ )*);
+ ($($a:ty)*) => (
+ integer_sum_product!(@impls 0, 1,
+ #[stable(feature = "iter_arith_traits", since = "1.12.0")],
+ $($a)*);
+ integer_sum_product!(@impls Wrapping(0), Wrapping(1),
+ #[stable(feature = "wrapping_iter_arith", since = "1.14.0")],
+ $(Wrapping<$a>)*);
+ );
+}
+
+macro_rules! float_sum_product {
+ ($($a:ident)*) => ($(
+ #[stable(feature = "iter_arith_traits", since = "1.12.0")]
+ impl Sum for $a {
+ fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
+ iter.fold(
+ 0.0,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a + b,
+ )
+ }
+ }
+
+ #[stable(feature = "iter_arith_traits", since = "1.12.0")]
+ impl Product for $a {
+ fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
+ iter.fold(
+ 1.0,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a * b,
+ )
+ }
+ }
+
+ #[stable(feature = "iter_arith_traits", since = "1.12.0")]
+ impl<'a> Sum<&'a $a> for $a {
+ fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
+ iter.fold(
+ 0.0,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a + b,
+ )
+ }
+ }
+
+ #[stable(feature = "iter_arith_traits", since = "1.12.0")]
+ impl<'a> Product<&'a $a> for $a {
+ fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
+ iter.fold(
+ 1.0,
+ #[rustc_inherit_overflow_checks]
+ |a, b| a * b,
+ )
+ }
+ }
+ )*)
+}
+
+integer_sum_product! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }
+float_sum_product! { f32 f64 }
+
+#[stable(feature = "iter_arith_traits_result", since = "1.16.0")]
+impl<T, U, E> Sum<Result<U, E>> for Result<T, E>
+where
+ T: Sum<U>,
+{
+ /// Takes each element in the [`Iterator`]: if it is an [`Err`], no further
+ /// elements are taken, and the [`Err`] is returned. Should no [`Err`]
+ /// occur, the sum of all elements is returned.
+ ///
+ /// # Examples
+ ///
+ /// This sums up every integer in a vector, rejecting the sum if a negative
+ /// element is encountered:
+ ///
+ /// ```
+ /// let v = vec![1, 2];
+ /// let res: Result<i32, &'static str> = v.iter().map(|&x: &i32|
+ /// if x < 0 { Err("Negative element found") }
+ /// else { Ok(x) }
+ /// ).sum();
+ /// assert_eq!(res, Ok(3));
+ /// ```
+ fn sum<I>(iter: I) -> Result<T, E>
+ where
+ I: Iterator<Item = Result<U, E>>,
+ {
+ iter::try_process(iter, |i| i.sum())
+ }
+}
+
+#[stable(feature = "iter_arith_traits_result", since = "1.16.0")]
+impl<T, U, E> Product<Result<U, E>> for Result<T, E>
+where
+ T: Product<U>,
+{
+ /// Takes each element in the [`Iterator`]: if it is an [`Err`], no further
+ /// elements are taken, and the [`Err`] is returned. Should no [`Err`]
+ /// occur, the product of all elements is returned.
+ fn product<I>(iter: I) -> Result<T, E>
+ where
+ I: Iterator<Item = Result<U, E>>,
+ {
+ iter::try_process(iter, |i| i.product())
+ }
+}
+
+#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
+impl<T, U> Sum<Option<U>> for Option<T>
+where
+ T: Sum<U>,
+{
+ /// Takes each element in the [`Iterator`]: if it is a [`None`], no further
+ /// elements are taken, and the [`None`] is returned. Should no [`None`]
+ /// occur, the sum of all elements is returned.
+ ///
+ /// # Examples
+ ///
+ /// This sums up the position of the character 'a' in a vector of strings,
+ /// if a word did not have the character 'a' the operation returns `None`:
+ ///
+ /// ```
+ /// let words = vec!["have", "a", "great", "day"];
+ /// let total: Option<usize> = words.iter().map(|w| w.find('a')).sum();
+ /// assert_eq!(total, Some(5));
+ /// ```
+ fn sum<I>(iter: I) -> Option<T>
+ where
+ I: Iterator<Item = Option<U>>,
+ {
+ iter::try_process(iter, |i| i.sum())
+ }
+}
+
+#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
+impl<T, U> Product<Option<U>> for Option<T>
+where
+ T: Product<U>,
+{
+ /// Takes each element in the [`Iterator`]: if it is a [`None`], no further
+ /// elements are taken, and the [`None`] is returned. Should no [`None`]
+ /// occur, the product of all elements is returned.
+ fn product<I>(iter: I) -> Option<T>
+ where
+ I: Iterator<Item = Option<U>>,
+ {
+ iter::try_process(iter, |i| i.product())
+ }
+}
diff --git a/library/core/src/iter/traits/collect.rs b/library/core/src/iter/traits/collect.rs
new file mode 100644
index 000000000..12ca508be
--- /dev/null
+++ b/library/core/src/iter/traits/collect.rs
@@ -0,0 +1,450 @@
+/// Conversion from an [`Iterator`].
+///
+/// By implementing `FromIterator` for a type, you define how it will be
+/// created from an iterator. This is common for types which describe a
+/// collection of some kind.
+///
+/// If you want to create a collection from the contents of an iterator, the
+/// [`Iterator::collect()`] method is preferred. However, when you need to
+/// specify the container type, [`FromIterator::from_iter()`] can be more
+/// readable than using a turbofish (e.g. `::<Vec<_>>()`). See the
+/// [`Iterator::collect()`] documentation for more examples of its use.
+///
+/// See also: [`IntoIterator`].
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// let five_fives = std::iter::repeat(5).take(5);
+///
+/// let v = Vec::from_iter(five_fives);
+///
+/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
+/// ```
+///
+/// Using [`Iterator::collect()`] to implicitly use `FromIterator`:
+///
+/// ```
+/// let five_fives = std::iter::repeat(5).take(5);
+///
+/// let v: Vec<i32> = five_fives.collect();
+///
+/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
+/// ```
+///
+/// Using [`FromIterator::from_iter()`] as a more readable alternative to
+/// [`Iterator::collect()`]:
+///
+/// ```
+/// use std::collections::VecDeque;
+/// let first = (0..10).collect::<VecDeque<i32>>();
+/// let second = VecDeque::from_iter(0..10);
+///
+/// assert_eq!(first, second);
+/// ```
+///
+/// Implementing `FromIterator` for your type:
+///
+/// ```
+/// // A sample collection, that's just a wrapper over Vec<T>
+/// #[derive(Debug)]
+/// struct MyCollection(Vec<i32>);
+///
+/// // Let's give it some methods so we can create one and add things
+/// // to it.
+/// impl MyCollection {
+/// fn new() -> MyCollection {
+/// MyCollection(Vec::new())
+/// }
+///
+/// fn add(&mut self, elem: i32) {
+/// self.0.push(elem);
+/// }
+/// }
+///
+/// // and we'll implement FromIterator
+/// impl FromIterator<i32> for MyCollection {
+/// fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
+/// let mut c = MyCollection::new();
+///
+/// for i in iter {
+/// c.add(i);
+/// }
+///
+/// c
+/// }
+/// }
+///
+/// // Now we can make a new iterator...
+/// let iter = (0..5).into_iter();
+///
+/// // ... and make a MyCollection out of it
+/// let c = MyCollection::from_iter(iter);
+///
+/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
+///
+/// // collect works too!
+///
+/// let iter = (0..5).into_iter();
+/// let c: MyCollection = iter.collect();
+///
+/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_on_unimplemented(
+ on(
+ _Self = "[{A}]",
+ message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
+ label = "try explicitly collecting into a `Vec<{A}>`",
+ ),
+ on(
+ all(A = "{integer}", any(_Self = "[{integral}]",)),
+ message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
+ label = "try explicitly collecting into a `Vec<{A}>`",
+ ),
+ on(
+ _Self = "[{A}; _]",
+ message = "an array of type `{Self}` cannot be built directly from an iterator",
+ label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
+ ),
+ on(
+ all(A = "{integer}", any(_Self = "[{integral}; _]",)),
+ message = "an array of type `{Self}` cannot be built directly from an iterator",
+ label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
+ ),
+ message = "a value of type `{Self}` cannot be built from an iterator \
+ over elements of type `{A}`",
+ label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`"
+)]
+#[rustc_diagnostic_item = "FromIterator"]
+pub trait FromIterator<A>: Sized {
+ /// Creates a value from an iterator.
+ ///
+ /// See the [module-level documentation] for more.
+ ///
+ /// [module-level documentation]: crate::iter
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let five_fives = std::iter::repeat(5).take(5);
+ ///
+ /// let v = Vec::from_iter(five_fives);
+ ///
+ /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self;
+}
+
+/// Conversion into an [`Iterator`].
+///
+/// By implementing `IntoIterator` for a type, you define how it will be
+/// converted to an iterator. This is common for types which describe a
+/// collection of some kind.
+///
+/// One benefit of implementing `IntoIterator` is that your type will [work
+/// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator).
+///
+/// See also: [`FromIterator`].
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// let v = [1, 2, 3];
+/// let mut iter = v.into_iter();
+///
+/// assert_eq!(Some(1), iter.next());
+/// assert_eq!(Some(2), iter.next());
+/// assert_eq!(Some(3), iter.next());
+/// assert_eq!(None, iter.next());
+/// ```
+/// Implementing `IntoIterator` for your type:
+///
+/// ```
+/// // A sample collection, that's just a wrapper over Vec<T>
+/// #[derive(Debug)]
+/// struct MyCollection(Vec<i32>);
+///
+/// // Let's give it some methods so we can create one and add things
+/// // to it.
+/// impl MyCollection {
+/// fn new() -> MyCollection {
+/// MyCollection(Vec::new())
+/// }
+///
+/// fn add(&mut self, elem: i32) {
+/// self.0.push(elem);
+/// }
+/// }
+///
+/// // and we'll implement IntoIterator
+/// impl IntoIterator for MyCollection {
+/// type Item = i32;
+/// type IntoIter = std::vec::IntoIter<Self::Item>;
+///
+/// fn into_iter(self) -> Self::IntoIter {
+/// self.0.into_iter()
+/// }
+/// }
+///
+/// // Now we can make a new collection...
+/// let mut c = MyCollection::new();
+///
+/// // ... add some stuff to it ...
+/// c.add(0);
+/// c.add(1);
+/// c.add(2);
+///
+/// // ... and then turn it into an Iterator:
+/// for (i, n) in c.into_iter().enumerate() {
+/// assert_eq!(i as i32, n);
+/// }
+/// ```
+///
+/// It is common to use `IntoIterator` as a trait bound. This allows
+/// the input collection type to change, so long as it is still an
+/// iterator. Additional bounds can be specified by restricting on
+/// `Item`:
+///
+/// ```rust
+/// fn collect_as_strings<T>(collection: T) -> Vec<String>
+/// where
+/// T: IntoIterator,
+/// T::Item: std::fmt::Debug,
+/// {
+/// collection
+/// .into_iter()
+/// .map(|item| format!("{item:?}"))
+/// .collect()
+/// }
+/// ```
+#[rustc_diagnostic_item = "IntoIterator"]
+#[rustc_skip_array_during_method_dispatch]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait IntoIterator {
+ /// The type of the elements being iterated over.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ type Item;
+
+ /// Which kind of iterator are we turning this into?
+ #[stable(feature = "rust1", since = "1.0.0")]
+ type IntoIter: Iterator<Item = Self::Item>;
+
+ /// Creates an iterator from a value.
+ ///
+ /// See the [module-level documentation] for more.
+ ///
+ /// [module-level documentation]: crate::iter
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let v = [1, 2, 3];
+ /// let mut iter = v.into_iter();
+ ///
+ /// assert_eq!(Some(1), iter.next());
+ /// assert_eq!(Some(2), iter.next());
+ /// assert_eq!(Some(3), iter.next());
+ /// assert_eq!(None, iter.next());
+ /// ```
+ #[lang = "into_iter"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn into_iter(self) -> Self::IntoIter;
+}
+
+#[rustc_const_unstable(feature = "const_intoiterator_identity", issue = "90603")]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<I: ~const Iterator> const IntoIterator for I {
+ type Item = I::Item;
+ type IntoIter = I;
+
+ #[inline]
+ fn into_iter(self) -> I {
+ self
+ }
+}
+
+/// Extend a collection with the contents of an iterator.
+///
+/// Iterators produce a series of values, and collections can also be thought
+/// of as a series of values. The `Extend` trait bridges this gap, allowing you
+/// to extend a collection by including the contents of that iterator. When
+/// extending a collection with an already existing key, that entry is updated
+/// or, in the case of collections that permit multiple entries with equal
+/// keys, that entry is inserted.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // You can extend a String with some chars:
+/// let mut message = String::from("The first three letters are: ");
+///
+/// message.extend(&['a', 'b', 'c']);
+///
+/// assert_eq!("abc", &message[29..32]);
+/// ```
+///
+/// Implementing `Extend`:
+///
+/// ```
+/// // A sample collection, that's just a wrapper over Vec<T>
+/// #[derive(Debug)]
+/// struct MyCollection(Vec<i32>);
+///
+/// // Let's give it some methods so we can create one and add things
+/// // to it.
+/// impl MyCollection {
+/// fn new() -> MyCollection {
+/// MyCollection(Vec::new())
+/// }
+///
+/// fn add(&mut self, elem: i32) {
+/// self.0.push(elem);
+/// }
+/// }
+///
+/// // since MyCollection has a list of i32s, we implement Extend for i32
+/// impl Extend<i32> for MyCollection {
+///
+/// // This is a bit simpler with the concrete type signature: we can call
+/// // extend on anything which can be turned into an Iterator which gives
+/// // us i32s. Because we need i32s to put into MyCollection.
+/// fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
+///
+/// // The implementation is very straightforward: loop through the
+/// // iterator, and add() each element to ourselves.
+/// for elem in iter {
+/// self.add(elem);
+/// }
+/// }
+/// }
+///
+/// let mut c = MyCollection::new();
+///
+/// c.add(5);
+/// c.add(6);
+/// c.add(7);
+///
+/// // let's extend our collection with three more numbers
+/// c.extend(vec![1, 2, 3]);
+///
+/// // we've added these elements onto the end
+/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{c:?}"));
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait Extend<A> {
+ /// Extends a collection with the contents of an iterator.
+ ///
+ /// As this is the only required method for this trait, the [trait-level] docs
+ /// contain more details.
+ ///
+ /// [trait-level]: Extend
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // You can extend a String with some chars:
+ /// let mut message = String::from("abc");
+ ///
+ /// message.extend(['d', 'e', 'f'].iter());
+ ///
+ /// assert_eq!("abcdef", &message);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T);
+
+ /// Extends a collection with exactly one element.
+ #[unstable(feature = "extend_one", issue = "72631")]
+ fn extend_one(&mut self, item: A) {
+ self.extend(Some(item));
+ }
+
+ /// Reserves capacity in a collection for the given number of additional elements.
+ ///
+ /// The default implementation does nothing.
+ #[unstable(feature = "extend_one", issue = "72631")]
+ fn extend_reserve(&mut self, additional: usize) {
+ let _ = additional;
+ }
+}
+
+#[stable(feature = "extend_for_unit", since = "1.28.0")]
+impl Extend<()> for () {
+ fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
+ iter.into_iter().for_each(drop)
+ }
+ fn extend_one(&mut self, _item: ()) {}
+}
+
+#[stable(feature = "extend_for_tuple", since = "1.56.0")]
+impl<A, B, ExtendA, ExtendB> Extend<(A, B)> for (ExtendA, ExtendB)
+where
+ ExtendA: Extend<A>,
+ ExtendB: Extend<B>,
+{
+ /// Allows to `extend` a tuple of collections that also implement `Extend`.
+ ///
+ /// See also: [`Iterator::unzip`]
+ ///
+ /// # Examples
+ /// ```
+ /// let mut tuple = (vec![0], vec![1]);
+ /// tuple.extend([(2, 3), (4, 5), (6, 7)]);
+ /// assert_eq!(tuple.0, [0, 2, 4, 6]);
+ /// assert_eq!(tuple.1, [1, 3, 5, 7]);
+ ///
+ /// // also allows for arbitrarily nested tuples as elements
+ /// let mut nested_tuple = (vec![1], (vec![2], vec![3]));
+ /// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]);
+ ///
+ /// let (a, (b, c)) = nested_tuple;
+ /// assert_eq!(a, [1, 4, 7]);
+ /// assert_eq!(b, [2, 5, 8]);
+ /// assert_eq!(c, [3, 6, 9]);
+ /// ```
+ fn extend<T: IntoIterator<Item = (A, B)>>(&mut self, into_iter: T) {
+ let (a, b) = self;
+ let iter = into_iter.into_iter();
+
+ fn extend<'a, A, B>(
+ a: &'a mut impl Extend<A>,
+ b: &'a mut impl Extend<B>,
+ ) -> impl FnMut((), (A, B)) + 'a {
+ move |(), (t, u)| {
+ a.extend_one(t);
+ b.extend_one(u);
+ }
+ }
+
+ let (lower_bound, _) = iter.size_hint();
+ if lower_bound > 0 {
+ a.extend_reserve(lower_bound);
+ b.extend_reserve(lower_bound);
+ }
+
+ iter.fold((), extend(a, b));
+ }
+
+ fn extend_one(&mut self, item: (A, B)) {
+ self.0.extend_one(item.0);
+ self.1.extend_one(item.1);
+ }
+
+ fn extend_reserve(&mut self, additional: usize) {
+ self.0.extend_reserve(additional);
+ self.1.extend_reserve(additional);
+ }
+}
diff --git a/library/core/src/iter/traits/double_ended.rs b/library/core/src/iter/traits/double_ended.rs
new file mode 100644
index 000000000..bdf94c792
--- /dev/null
+++ b/library/core/src/iter/traits/double_ended.rs
@@ -0,0 +1,374 @@
+use crate::ops::{ControlFlow, Try};
+
+/// An iterator able to yield elements from both ends.
+///
+/// Something that implements `DoubleEndedIterator` has one extra capability
+/// over something that implements [`Iterator`]: the ability to also take
+/// `Item`s from the back, as well as the front.
+///
+/// It is important to note that both back and forth work on the same range,
+/// and do not cross: iteration is over when they meet in the middle.
+///
+/// In a similar fashion to the [`Iterator`] protocol, once a
+/// `DoubleEndedIterator` returns [`None`] from a [`next_back()`], calling it
+/// again may or may not ever return [`Some`] again. [`next()`] and
+/// [`next_back()`] are interchangeable for this purpose.
+///
+/// [`next_back()`]: DoubleEndedIterator::next_back
+/// [`next()`]: Iterator::next
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// let numbers = vec![1, 2, 3, 4, 5, 6];
+///
+/// let mut iter = numbers.iter();
+///
+/// assert_eq!(Some(&1), iter.next());
+/// assert_eq!(Some(&6), iter.next_back());
+/// assert_eq!(Some(&5), iter.next_back());
+/// assert_eq!(Some(&2), iter.next());
+/// assert_eq!(Some(&3), iter.next());
+/// assert_eq!(Some(&4), iter.next());
+/// assert_eq!(None, iter.next());
+/// assert_eq!(None, iter.next_back());
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "DoubleEndedIterator")]
+pub trait DoubleEndedIterator: Iterator {
+ /// Removes and returns an element from the end of the iterator.
+ ///
+ /// Returns `None` when there are no more elements.
+ ///
+ /// The [trait-level] docs contain more details.
+ ///
+ /// [trait-level]: DoubleEndedIterator
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let numbers = vec![1, 2, 3, 4, 5, 6];
+ ///
+ /// let mut iter = numbers.iter();
+ ///
+ /// assert_eq!(Some(&1), iter.next());
+ /// assert_eq!(Some(&6), iter.next_back());
+ /// assert_eq!(Some(&5), iter.next_back());
+ /// assert_eq!(Some(&2), iter.next());
+ /// assert_eq!(Some(&3), iter.next());
+ /// assert_eq!(Some(&4), iter.next());
+ /// assert_eq!(None, iter.next());
+ /// assert_eq!(None, iter.next_back());
+ /// ```
+ ///
+ /// # Remarks
+ ///
+ /// The elements yielded by `DoubleEndedIterator`'s methods may differ from
+ /// the ones yielded by [`Iterator`]'s methods:
+ ///
+ /// ```
+ /// let vec = vec![(1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b')];
+ /// let uniq_by_fst_comp = || {
+ /// let mut seen = std::collections::HashSet::new();
+ /// vec.iter().copied().filter(move |x| seen.insert(x.0))
+ /// };
+ ///
+ /// assert_eq!(uniq_by_fst_comp().last(), Some((2, 'a')));
+ /// assert_eq!(uniq_by_fst_comp().next_back(), Some((2, 'b')));
+ ///
+ /// assert_eq!(
+ /// uniq_by_fst_comp().fold(vec![], |mut v, x| {v.push(x); v}),
+ /// vec![(1, 'a'), (2, 'a')]
+ /// );
+ /// assert_eq!(
+ /// uniq_by_fst_comp().rfold(vec![], |mut v, x| {v.push(x); v}),
+ /// vec![(2, 'b'), (1, 'c')]
+ /// );
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn next_back(&mut self) -> Option<Self::Item>;
+
+ /// Advances the iterator from the back by `n` elements.
+ ///
+ /// `advance_back_by` is the reverse version of [`advance_by`]. This method will
+ /// eagerly skip `n` elements starting from the back by calling [`next_back`] up
+ /// to `n` times until [`None`] is encountered.
+ ///
+ /// `advance_back_by(n)` will return [`Ok(())`] if the iterator successfully advances by
+ /// `n` elements, or [`Err(k)`] if [`None`] is encountered, where `k` is the number of
+ /// elements the iterator is advanced by before running out of elements (i.e. the length
+ /// of the iterator). Note that `k` is always less than `n`.
+ ///
+ /// Calling `advance_back_by(0)` can do meaningful work, for example [`Flatten`] can advance its
+ /// outer iterator until it finds an inner iterator that is not empty, which then often
+ /// allows it to return a more accurate `size_hint()` than in its initial state.
+ ///
+ /// [`advance_by`]: Iterator::advance_by
+ /// [`Flatten`]: crate::iter::Flatten
+ /// [`next_back`]: DoubleEndedIterator::next_back
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_advance_by)]
+ ///
+ /// let a = [3, 4, 5, 6];
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.advance_back_by(2), Ok(()));
+ /// assert_eq!(iter.next_back(), Some(&4));
+ /// assert_eq!(iter.advance_back_by(0), Ok(()));
+ /// assert_eq!(iter.advance_back_by(100), Err(1)); // only `&3` was skipped
+ /// ```
+ ///
+ /// [`Ok(())`]: Ok
+ /// [`Err(k)`]: Err
+ #[inline]
+ #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
+ fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
+ for i in 0..n {
+ self.next_back().ok_or(i)?;
+ }
+ Ok(())
+ }
+
+ /// Returns the `n`th element from the end of the iterator.
+ ///
+ /// This is essentially the reversed version of [`Iterator::nth()`].
+ /// Although like most indexing operations, the count starts from zero, so
+ /// `nth_back(0)` returns the first value from the end, `nth_back(1)` the
+ /// second, and so on.
+ ///
+ /// Note that all elements between the end and the returned element will be
+ /// consumed, including the returned element. This also means that calling
+ /// `nth_back(0)` multiple times on the same iterator will return different
+ /// elements.
+ ///
+ /// `nth_back()` will return [`None`] if `n` is greater than or equal to the
+ /// length of the iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert_eq!(a.iter().nth_back(2), Some(&1));
+ /// ```
+ ///
+ /// Calling `nth_back()` multiple times doesn't rewind the iterator:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.nth_back(1), Some(&2));
+ /// assert_eq!(iter.nth_back(1), None);
+ /// ```
+ ///
+ /// Returning `None` if there are less than `n + 1` elements:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert_eq!(a.iter().nth_back(10), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "iter_nth_back", since = "1.37.0")]
+ fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
+ self.advance_back_by(n).ok()?;
+ self.next_back()
+ }
+
+ /// This is the reverse version of [`Iterator::try_fold()`]: it takes
+ /// elements starting from the back of the iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = ["1", "2", "3"];
+ /// let sum = a.iter()
+ /// .map(|&s| s.parse::<i32>())
+ /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
+ /// assert_eq!(sum, Ok(6));
+ /// ```
+ ///
+ /// Short-circuiting:
+ ///
+ /// ```
+ /// let a = ["1", "rust", "3"];
+ /// let mut it = a.iter();
+ /// let sum = it
+ /// .by_ref()
+ /// .map(|&s| s.parse::<i32>())
+ /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
+ /// assert!(sum.is_err());
+ ///
+ /// // Because it short-circuited, the remaining elements are still
+ /// // available through the iterator.
+ /// assert_eq!(it.next_back(), Some(&"1"));
+ /// ```
+ #[inline]
+ #[stable(feature = "iterator_try_fold", since = "1.27.0")]
+ fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
+ where
+ Self: Sized,
+ F: FnMut(B, Self::Item) -> R,
+ R: Try<Output = B>,
+ {
+ let mut accum = init;
+ while let Some(x) = self.next_back() {
+ accum = f(accum, x)?;
+ }
+ try { accum }
+ }
+
+ /// An iterator method that reduces the iterator's elements to a single,
+ /// final value, starting from the back.
+ ///
+ /// This is the reverse version of [`Iterator::fold()`]: it takes elements
+ /// starting from the back of the iterator.
+ ///
+ /// `rfold()` takes two arguments: an initial value, and a closure with two
+ /// arguments: an 'accumulator', and an element. The closure returns the value that
+ /// the accumulator should have for the next iteration.
+ ///
+ /// The initial value is the value the accumulator will have on the first
+ /// call.
+ ///
+ /// After applying this closure to every element of the iterator, `rfold()`
+ /// returns the accumulator.
+ ///
+ /// This operation is sometimes called 'reduce' or 'inject'.
+ ///
+ /// Folding is useful whenever you have a collection of something, and want
+ /// to produce a single value from it.
+ ///
+ /// Note: `rfold()` combines elements in a *right-associative* fashion. For associative
+ /// operators like `+`, the order the elements are combined in is not important, but for non-associative
+ /// operators like `-` the order will affect the final result.
+ /// For a *left-associative* version of `rfold()`, see [`Iterator::fold()`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// // the sum of all of the elements of a
+ /// let sum = a.iter()
+ /// .rfold(0, |acc, &x| acc + x);
+ ///
+ /// assert_eq!(sum, 6);
+ /// ```
+ ///
+ /// This example demonstrates the right-associative nature of `rfold()`:
+ /// it builds a string, starting with an initial value
+ /// and continuing with each element from the back until the front:
+ ///
+ /// ```
+ /// let numbers = [1, 2, 3, 4, 5];
+ ///
+ /// let zero = "0".to_string();
+ ///
+ /// let result = numbers.iter().rfold(zero, |acc, &x| {
+ /// format!("({x} + {acc})")
+ /// });
+ ///
+ /// assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))");
+ /// ```
+ #[doc(alias = "foldr")]
+ #[inline]
+ #[stable(feature = "iter_rfold", since = "1.27.0")]
+ fn rfold<B, F>(mut self, init: B, mut f: F) -> B
+ where
+ Self: Sized,
+ F: FnMut(B, Self::Item) -> B,
+ {
+ let mut accum = init;
+ while let Some(x) = self.next_back() {
+ accum = f(accum, x);
+ }
+ accum
+ }
+
+ /// Searches for an element of an iterator from the back that satisfies a predicate.
+ ///
+ /// `rfind()` takes a closure that returns `true` or `false`. It applies
+ /// this closure to each element of the iterator, starting at the end, and if any
+ /// of them return `true`, then `rfind()` returns [`Some(element)`]. If they all return
+ /// `false`, it returns [`None`].
+ ///
+ /// `rfind()` is short-circuiting; in other words, it will stop processing
+ /// as soon as the closure returns `true`.
+ ///
+ /// Because `rfind()` takes a reference, and many iterators iterate over
+ /// references, this leads to a possibly confusing situation where the
+ /// argument is a double reference. You can see this effect in the
+ /// examples below, with `&&x`.
+ ///
+ /// [`Some(element)`]: Some
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2));
+ ///
+ /// assert_eq!(a.iter().rfind(|&&x| x == 5), None);
+ /// ```
+ ///
+ /// Stopping at the first `true`:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.rfind(|&&x| x == 2), Some(&2));
+ ///
+ /// // we can still use `iter`, as there are more elements.
+ /// assert_eq!(iter.next_back(), Some(&1));
+ /// ```
+ #[inline]
+ #[stable(feature = "iter_rfind", since = "1.27.0")]
+ fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item>
+ where
+ Self: Sized,
+ P: FnMut(&Self::Item) -> bool,
+ {
+ #[inline]
+ fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
+ move |(), x| {
+ if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::CONTINUE }
+ }
+ }
+
+ self.try_rfold((), check(predicate)).break_value()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I {
+ fn next_back(&mut self) -> Option<I::Item> {
+ (**self).next_back()
+ }
+ fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
+ (**self).advance_back_by(n)
+ }
+ fn nth_back(&mut self, n: usize) -> Option<I::Item> {
+ (**self).nth_back(n)
+ }
+}
diff --git a/library/core/src/iter/traits/exact_size.rs b/library/core/src/iter/traits/exact_size.rs
new file mode 100644
index 000000000..1757e37ec
--- /dev/null
+++ b/library/core/src/iter/traits/exact_size.rs
@@ -0,0 +1,151 @@
+/// An iterator that knows its exact length.
+///
+/// Many [`Iterator`]s don't know how many times they will iterate, but some do.
+/// If an iterator knows how many times it can iterate, providing access to
+/// that information can be useful. For example, if you want to iterate
+/// backwards, a good start is to know where the end is.
+///
+/// When implementing an `ExactSizeIterator`, you must also implement
+/// [`Iterator`]. When doing so, the implementation of [`Iterator::size_hint`]
+/// *must* return the exact size of the iterator.
+///
+/// The [`len`] method has a default implementation, so you usually shouldn't
+/// implement it. However, you may be able to provide a more performant
+/// implementation than the default, so overriding it in this case makes sense.
+///
+/// Note that this trait is a safe trait and as such does *not* and *cannot*
+/// guarantee that the returned length is correct. This means that `unsafe`
+/// code **must not** rely on the correctness of [`Iterator::size_hint`]. The
+/// unstable and unsafe [`TrustedLen`](super::marker::TrustedLen) trait gives
+/// this additional guarantee.
+///
+/// [`len`]: ExactSizeIterator::len
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // a finite range knows exactly how many times it will iterate
+/// let five = 0..5;
+///
+/// assert_eq!(5, five.len());
+/// ```
+///
+/// In the [module-level docs], we implemented an [`Iterator`], `Counter`.
+/// Let's implement `ExactSizeIterator` for it as well:
+///
+/// [module-level docs]: crate::iter
+///
+/// ```
+/// # struct Counter {
+/// # count: usize,
+/// # }
+/// # impl Counter {
+/// # fn new() -> Counter {
+/// # Counter { count: 0 }
+/// # }
+/// # }
+/// # impl Iterator for Counter {
+/// # type Item = usize;
+/// # fn next(&mut self) -> Option<Self::Item> {
+/// # self.count += 1;
+/// # if self.count < 6 {
+/// # Some(self.count)
+/// # } else {
+/// # None
+/// # }
+/// # }
+/// # }
+/// impl ExactSizeIterator for Counter {
+/// // We can easily calculate the remaining number of iterations.
+/// fn len(&self) -> usize {
+/// 5 - self.count
+/// }
+/// }
+///
+/// // And now we can use it!
+///
+/// let mut counter = Counter::new();
+///
+/// assert_eq!(5, counter.len());
+/// let _ = counter.next();
+/// assert_eq!(4, counter.len());
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait ExactSizeIterator: Iterator {
+ /// Returns the exact remaining length of the iterator.
+ ///
+ /// The implementation ensures that the iterator will return exactly `len()`
+ /// more times a [`Some(T)`] value, before returning [`None`].
+ /// This method has a default implementation, so you usually should not
+ /// implement it directly. However, if you can provide a more efficient
+ /// implementation, you can do so. See the [trait-level] docs for an
+ /// example.
+ ///
+ /// This function has the same safety guarantees as the
+ /// [`Iterator::size_hint`] function.
+ ///
+ /// [trait-level]: ExactSizeIterator
+ /// [`Some(T)`]: Some
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // a finite range knows exactly how many times it will iterate
+ /// let mut range = 0..5;
+ ///
+ /// assert_eq!(5, range.len());
+ /// let _ = range.next();
+ /// assert_eq!(4, range.len());
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn len(&self) -> usize {
+ let (lower, upper) = self.size_hint();
+ // Note: This assertion is overly defensive, but it checks the invariant
+ // guaranteed by the trait. If this trait were rust-internal,
+ // we could use debug_assert!; assert_eq! will check all Rust user
+ // implementations too.
+ assert_eq!(upper, Some(lower));
+ lower
+ }
+
+ /// Returns `true` if the iterator is empty.
+ ///
+ /// This method has a default implementation using
+ /// [`ExactSizeIterator::len()`], so you don't need to implement it yourself.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(exact_size_is_empty)]
+ ///
+ /// let mut one_element = std::iter::once(0);
+ /// assert!(!one_element.is_empty());
+ ///
+ /// assert_eq!(one_element.next(), Some(0));
+ /// assert!(one_element.is_empty());
+ ///
+ /// assert_eq!(one_element.next(), None);
+ /// ```
+ #[inline]
+ #[unstable(feature = "exact_size_is_empty", issue = "35428")]
+ fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for &mut I {
+ fn len(&self) -> usize {
+ (**self).len()
+ }
+ fn is_empty(&self) -> bool {
+ (**self).is_empty()
+ }
+}
diff --git a/library/core/src/iter/traits/iterator.rs b/library/core/src/iter/traits/iterator.rs
new file mode 100644
index 000000000..275412b57
--- /dev/null
+++ b/library/core/src/iter/traits/iterator.rs
@@ -0,0 +1,3836 @@
+use crate::array;
+use crate::cmp::{self, Ordering};
+use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
+
+use super::super::try_process;
+use super::super::ByRefSized;
+use super::super::TrustedRandomAccessNoCoerce;
+use super::super::{Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, Fuse};
+use super::super::{FlatMap, Flatten};
+use super::super::{FromIterator, Intersperse, IntersperseWith, Product, Sum, Zip};
+use super::super::{
+ Inspect, Map, MapWhile, Peekable, Rev, Scan, Skip, SkipWhile, StepBy, Take, TakeWhile,
+};
+
+fn _assert_is_object_safe(_: &dyn Iterator<Item = ()>) {}
+
+/// An interface for dealing with iterators.
+///
+/// This is the main iterator trait. For more about the concept of iterators
+/// generally, please see the [module-level documentation]. In particular, you
+/// may want to know how to [implement `Iterator`][impl].
+///
+/// [module-level documentation]: crate::iter
+/// [impl]: crate::iter#implementing-iterator
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_on_unimplemented(
+ on(
+ _Self = "std::ops::RangeTo<Idx>",
+ label = "if you meant to iterate until a value, add a starting value",
+ note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
+ bounded `Range`: `0..end`"
+ ),
+ on(
+ _Self = "std::ops::RangeToInclusive<Idx>",
+ label = "if you meant to iterate until a value (including it), add a starting value",
+ note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
+ to have a bounded `RangeInclusive`: `0..=end`"
+ ),
+ on(
+ _Self = "[]",
+ label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
+ ),
+ on(_Self = "&[]", label = "`{Self}` is not an iterator; try calling `.iter()`"),
+ on(
+ _Self = "std::vec::Vec<T, A>",
+ label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
+ ),
+ on(
+ _Self = "&str",
+ label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
+ ),
+ on(
+ _Self = "std::string::String",
+ label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
+ ),
+ on(
+ _Self = "{integral}",
+ note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
+ syntax `start..end` or the inclusive range syntax `start..=end`"
+ ),
+ label = "`{Self}` is not an iterator",
+ message = "`{Self}` is not an iterator"
+)]
+#[doc(notable_trait)]
+#[rustc_diagnostic_item = "Iterator"]
+#[must_use = "iterators are lazy and do nothing unless consumed"]
+pub trait Iterator {
+ /// The type of the elements being iterated over.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ type Item;
+
+ /// Advances the iterator and returns the next value.
+ ///
+ /// Returns [`None`] when iteration is finished. Individual iterator
+ /// implementations may choose to resume iteration, and so calling `next()`
+ /// again may or may not eventually start returning [`Some(Item)`] again at some
+ /// point.
+ ///
+ /// [`Some(Item)`]: Some
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// // A call to next() returns the next value...
+ /// assert_eq!(Some(&1), iter.next());
+ /// assert_eq!(Some(&2), iter.next());
+ /// assert_eq!(Some(&3), iter.next());
+ ///
+ /// // ... and then None once it's over.
+ /// assert_eq!(None, iter.next());
+ ///
+ /// // More calls may or may not return `None`. Here, they always will.
+ /// assert_eq!(None, iter.next());
+ /// assert_eq!(None, iter.next());
+ /// ```
+ #[lang = "next"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn next(&mut self) -> Option<Self::Item>;
+
+ /// Advances the iterator and returns an array containing the next `N` values.
+ ///
+ /// If there are not enough elements to fill the array then `Err` is returned
+ /// containing an iterator over the remaining elements.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_next_chunk)]
+ ///
+ /// let mut iter = "lorem".chars();
+ ///
+ /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']); // N is inferred as 2
+ /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']); // N is inferred as 3
+ /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
+ /// ```
+ ///
+ /// Split a string and get the first three items.
+ ///
+ /// ```
+ /// #![feature(iter_next_chunk)]
+ ///
+ /// let quote = "not all those who wander are lost";
+ /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
+ /// assert_eq!(first, "not");
+ /// assert_eq!(second, "all");
+ /// assert_eq!(third, "those");
+ /// ```
+ #[inline]
+ #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
+ fn next_chunk<const N: usize>(
+ &mut self,
+ ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
+ where
+ Self: Sized,
+ {
+ array::iter_next_chunk(self)
+ }
+
+ /// Returns the bounds on the remaining length of the iterator.
+ ///
+ /// Specifically, `size_hint()` returns a tuple where the first element
+ /// is the lower bound, and the second element is the upper bound.
+ ///
+ /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
+ /// A [`None`] here means that either there is no known upper bound, or the
+ /// upper bound is larger than [`usize`].
+ ///
+ /// # Implementation notes
+ ///
+ /// It is not enforced that an iterator implementation yields the declared
+ /// number of elements. A buggy iterator may yield less than the lower bound
+ /// or more than the upper bound of elements.
+ ///
+ /// `size_hint()` is primarily intended to be used for optimizations such as
+ /// reserving space for the elements of the iterator, but must not be
+ /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
+ /// implementation of `size_hint()` should not lead to memory safety
+ /// violations.
+ ///
+ /// That said, the implementation should provide a correct estimation,
+ /// because otherwise it would be a violation of the trait's protocol.
+ ///
+ /// The default implementation returns <code>(0, [None])</code> which is correct for any
+ /// iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!((3, Some(3)), iter.size_hint());
+ /// let _ = iter.next();
+ /// assert_eq!((2, Some(2)), iter.size_hint());
+ /// ```
+ ///
+ /// A more complex example:
+ ///
+ /// ```
+ /// // The even numbers in the range of zero to nine.
+ /// let iter = (0..10).filter(|x| x % 2 == 0);
+ ///
+ /// // We might iterate from zero to ten times. Knowing that it's five
+ /// // exactly wouldn't be possible without executing filter().
+ /// assert_eq!((0, Some(10)), iter.size_hint());
+ ///
+ /// // Let's add five more numbers with chain()
+ /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
+ ///
+ /// // now both bounds are increased by five
+ /// assert_eq!((5, Some(15)), iter.size_hint());
+ /// ```
+ ///
+ /// Returning `None` for an upper bound:
+ ///
+ /// ```
+ /// // an infinite iterator has no upper bound
+ /// // and the maximum possible lower bound
+ /// let iter = 0..;
+ ///
+ /// assert_eq!((usize::MAX, None), iter.size_hint());
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (0, None)
+ }
+
+ /// Consumes the iterator, counting the number of iterations and returning it.
+ ///
+ /// This method will call [`next`] repeatedly until [`None`] is encountered,
+ /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
+ /// called at least once even if the iterator does not have any elements.
+ ///
+ /// [`next`]: Iterator::next
+ ///
+ /// # Overflow Behavior
+ ///
+ /// The method does no guarding against overflows, so counting elements of
+ /// an iterator with more than [`usize::MAX`] elements either produces the
+ /// wrong result or panics. If debug assertions are enabled, a panic is
+ /// guaranteed.
+ ///
+ /// # Panics
+ ///
+ /// This function might panic if the iterator has more than [`usize::MAX`]
+ /// elements.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert_eq!(a.iter().count(), 3);
+ ///
+ /// let a = [1, 2, 3, 4, 5];
+ /// assert_eq!(a.iter().count(), 5);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn count(self) -> usize
+ where
+ Self: Sized,
+ {
+ self.fold(
+ 0,
+ #[rustc_inherit_overflow_checks]
+ |count, _| count + 1,
+ )
+ }
+
+ /// Consumes the iterator, returning the last element.
+ ///
+ /// This method will evaluate the iterator until it returns [`None`]. While
+ /// doing so, it keeps track of the current element. After [`None`] is
+ /// returned, `last()` will then return the last element it saw.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert_eq!(a.iter().last(), Some(&3));
+ ///
+ /// let a = [1, 2, 3, 4, 5];
+ /// assert_eq!(a.iter().last(), Some(&5));
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn last(self) -> Option<Self::Item>
+ where
+ Self: Sized,
+ {
+ #[inline]
+ fn some<T>(_: Option<T>, x: T) -> Option<T> {
+ Some(x)
+ }
+
+ self.fold(None, some)
+ }
+
+ /// Advances the iterator by `n` elements.
+ ///
+ /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
+ /// times until [`None`] is encountered.
+ ///
+ /// `advance_by(n)` will return [`Ok(())`][Ok] if the iterator successfully advances by
+ /// `n` elements, or [`Err(k)`][Err] if [`None`] is encountered, where `k` is the number
+ /// of elements the iterator is advanced by before running out of elements (i.e. the
+ /// length of the iterator). Note that `k` is always less than `n`.
+ ///
+ /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
+ /// can advance its outer iterator until it finds an inner iterator that is not empty, which
+ /// then often allows it to return a more accurate `size_hint()` than in its initial state.
+ ///
+ /// [`Flatten`]: crate::iter::Flatten
+ /// [`next`]: Iterator::next
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_advance_by)]
+ ///
+ /// let a = [1, 2, 3, 4];
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.advance_by(2), Ok(()));
+ /// assert_eq!(iter.next(), Some(&3));
+ /// assert_eq!(iter.advance_by(0), Ok(()));
+ /// assert_eq!(iter.advance_by(100), Err(1)); // only `&4` was skipped
+ /// ```
+ #[inline]
+ #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
+ fn advance_by(&mut self, n: usize) -> Result<(), usize> {
+ for i in 0..n {
+ self.next().ok_or(i)?;
+ }
+ Ok(())
+ }
+
+ /// Returns the `n`th element of the iterator.
+ ///
+ /// Like most indexing operations, the count starts from zero, so `nth(0)`
+ /// returns the first value, `nth(1)` the second, and so on.
+ ///
+ /// Note that all preceding elements, as well as the returned element, will be
+ /// consumed from the iterator. That means that the preceding elements will be
+ /// discarded, and also that calling `nth(0)` multiple times on the same iterator
+ /// will return different elements.
+ ///
+ /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
+ /// iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert_eq!(a.iter().nth(1), Some(&2));
+ /// ```
+ ///
+ /// Calling `nth()` multiple times doesn't rewind the iterator:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.nth(1), Some(&2));
+ /// assert_eq!(iter.nth(1), None);
+ /// ```
+ ///
+ /// Returning `None` if there are less than `n + 1` elements:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert_eq!(a.iter().nth(10), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn nth(&mut self, n: usize) -> Option<Self::Item> {
+ self.advance_by(n).ok()?;
+ self.next()
+ }
+
+ /// Creates an iterator starting at the same point, but stepping by
+ /// the given amount at each iteration.
+ ///
+ /// Note 1: The first element of the iterator will always be returned,
+ /// regardless of the step given.
+ ///
+ /// Note 2: The time at which ignored elements are pulled is not fixed.
+ /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
+ /// `self.nth(step-1)`, …, but is also free to behave like the sequence
+ /// `advance_n_and_return_first(&mut self, step)`,
+ /// `advance_n_and_return_first(&mut self, step)`, …
+ /// Which way is used may change for some iterators for performance reasons.
+ /// The second way will advance the iterator earlier and may consume more items.
+ ///
+ /// `advance_n_and_return_first` is the equivalent of:
+ /// ```
+ /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
+ /// where
+ /// I: Iterator,
+ /// {
+ /// let next = iter.next();
+ /// if n > 1 {
+ /// iter.nth(n - 2);
+ /// }
+ /// next
+ /// }
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// The method will panic if the given step is `0`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [0, 1, 2, 3, 4, 5];
+ /// let mut iter = a.iter().step_by(2);
+ ///
+ /// assert_eq!(iter.next(), Some(&0));
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), Some(&4));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "iterator_step_by", since = "1.28.0")]
+ fn step_by(self, step: usize) -> StepBy<Self>
+ where
+ Self: Sized,
+ {
+ StepBy::new(self, step)
+ }
+
+ /// Takes two iterators and creates a new iterator over both in sequence.
+ ///
+ /// `chain()` will return a new iterator which will first iterate over
+ /// values from the first iterator and then over values from the second
+ /// iterator.
+ ///
+ /// In other words, it links two iterators together, in a chain. 🔗
+ ///
+ /// [`once`] is commonly used to adapt a single value into a chain of
+ /// other kinds of iteration.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a1 = [1, 2, 3];
+ /// let a2 = [4, 5, 6];
+ ///
+ /// let mut iter = a1.iter().chain(a2.iter());
+ ///
+ /// assert_eq!(iter.next(), Some(&1));
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), Some(&3));
+ /// assert_eq!(iter.next(), Some(&4));
+ /// assert_eq!(iter.next(), Some(&5));
+ /// assert_eq!(iter.next(), Some(&6));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
+ /// anything that can be converted into an [`Iterator`], not just an
+ /// [`Iterator`] itself. For example, slices (`&[T]`) implement
+ /// [`IntoIterator`], and so can be passed to `chain()` directly:
+ ///
+ /// ```
+ /// let s1 = &[1, 2, 3];
+ /// let s2 = &[4, 5, 6];
+ ///
+ /// let mut iter = s1.iter().chain(s2);
+ ///
+ /// assert_eq!(iter.next(), Some(&1));
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), Some(&3));
+ /// assert_eq!(iter.next(), Some(&4));
+ /// assert_eq!(iter.next(), Some(&5));
+ /// assert_eq!(iter.next(), Some(&6));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
+ ///
+ /// ```
+ /// #[cfg(windows)]
+ /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
+ /// use std::os::windows::ffi::OsStrExt;
+ /// s.encode_wide().chain(std::iter::once(0)).collect()
+ /// }
+ /// ```
+ ///
+ /// [`once`]: crate::iter::once
+ /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
+ where
+ Self: Sized,
+ U: IntoIterator<Item = Self::Item>,
+ {
+ Chain::new(self, other.into_iter())
+ }
+
+ /// 'Zips up' two iterators into a single iterator of pairs.
+ ///
+ /// `zip()` returns a new iterator that will iterate over two other
+ /// iterators, returning a tuple where the first element comes from the
+ /// first iterator, and the second element comes from the second iterator.
+ ///
+ /// In other words, it zips two iterators together, into a single one.
+ ///
+ /// If either iterator returns [`None`], [`next`] from the zipped iterator
+ /// will return [`None`].
+ /// If the zipped iterator has no more elements to return then each further attempt to advance
+ /// it will first try to advance the first iterator at most one time and if it still yielded an item
+ /// try to advance the second iterator at most one time.
+ ///
+ /// To 'undo' the result of zipping up two iterators, see [`unzip`].
+ ///
+ /// [`unzip`]: Iterator::unzip
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a1 = [1, 2, 3];
+ /// let a2 = [4, 5, 6];
+ ///
+ /// let mut iter = a1.iter().zip(a2.iter());
+ ///
+ /// assert_eq!(iter.next(), Some((&1, &4)));
+ /// assert_eq!(iter.next(), Some((&2, &5)));
+ /// assert_eq!(iter.next(), Some((&3, &6)));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
+ /// anything that can be converted into an [`Iterator`], not just an
+ /// [`Iterator`] itself. For example, slices (`&[T]`) implement
+ /// [`IntoIterator`], and so can be passed to `zip()` directly:
+ ///
+ /// ```
+ /// let s1 = &[1, 2, 3];
+ /// let s2 = &[4, 5, 6];
+ ///
+ /// let mut iter = s1.iter().zip(s2);
+ ///
+ /// assert_eq!(iter.next(), Some((&1, &4)));
+ /// assert_eq!(iter.next(), Some((&2, &5)));
+ /// assert_eq!(iter.next(), Some((&3, &6)));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// `zip()` is often used to zip an infinite iterator to a finite one.
+ /// This works because the finite iterator will eventually return [`None`],
+ /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
+ ///
+ /// ```
+ /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
+ ///
+ /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
+ ///
+ /// assert_eq!((0, 'f'), enumerate[0]);
+ /// assert_eq!((0, 'f'), zipper[0]);
+ ///
+ /// assert_eq!((1, 'o'), enumerate[1]);
+ /// assert_eq!((1, 'o'), zipper[1]);
+ ///
+ /// assert_eq!((2, 'o'), enumerate[2]);
+ /// assert_eq!((2, 'o'), zipper[2]);
+ /// ```
+ ///
+ /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
+ ///
+ /// ```
+ /// use std::iter::zip;
+ ///
+ /// let a = [1, 2, 3];
+ /// let b = [2, 3, 4];
+ ///
+ /// let mut zipped = zip(
+ /// a.into_iter().map(|x| x * 2).skip(1),
+ /// b.into_iter().map(|x| x * 2).skip(1),
+ /// );
+ ///
+ /// assert_eq!(zipped.next(), Some((4, 6)));
+ /// assert_eq!(zipped.next(), Some((6, 8)));
+ /// assert_eq!(zipped.next(), None);
+ /// ```
+ ///
+ /// compared to:
+ ///
+ /// ```
+ /// # let a = [1, 2, 3];
+ /// # let b = [2, 3, 4];
+ /// #
+ /// let mut zipped = a
+ /// .into_iter()
+ /// .map(|x| x * 2)
+ /// .skip(1)
+ /// .zip(b.into_iter().map(|x| x * 2).skip(1));
+ /// #
+ /// # assert_eq!(zipped.next(), Some((4, 6)));
+ /// # assert_eq!(zipped.next(), Some((6, 8)));
+ /// # assert_eq!(zipped.next(), None);
+ /// ```
+ ///
+ /// [`enumerate`]: Iterator::enumerate
+ /// [`next`]: Iterator::next
+ /// [`zip`]: crate::iter::zip
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
+ where
+ Self: Sized,
+ U: IntoIterator,
+ {
+ Zip::new(self, other.into_iter())
+ }
+
+ /// Creates a new iterator which places a copy of `separator` between adjacent
+ /// items of the original iterator.
+ ///
+ /// In case `separator` does not implement [`Clone`] or needs to be
+ /// computed every time, use [`intersperse_with`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_intersperse)]
+ ///
+ /// let mut a = [0, 1, 2].iter().intersperse(&100);
+ /// assert_eq!(a.next(), Some(&0)); // The first element from `a`.
+ /// assert_eq!(a.next(), Some(&100)); // The separator.
+ /// assert_eq!(a.next(), Some(&1)); // The next element from `a`.
+ /// assert_eq!(a.next(), Some(&100)); // The separator.
+ /// assert_eq!(a.next(), Some(&2)); // The last element from `a`.
+ /// assert_eq!(a.next(), None); // The iterator is finished.
+ /// ```
+ ///
+ /// `intersperse` can be very useful to join an iterator's items using a common element:
+ /// ```
+ /// #![feature(iter_intersperse)]
+ ///
+ /// let hello = ["Hello", "World", "!"].iter().copied().intersperse(" ").collect::<String>();
+ /// assert_eq!(hello, "Hello World !");
+ /// ```
+ ///
+ /// [`Clone`]: crate::clone::Clone
+ /// [`intersperse_with`]: Iterator::intersperse_with
+ #[inline]
+ #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
+ fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
+ where
+ Self: Sized,
+ Self::Item: Clone,
+ {
+ Intersperse::new(self, separator)
+ }
+
+ /// Creates a new iterator which places an item generated by `separator`
+ /// between adjacent items of the original iterator.
+ ///
+ /// The closure will be called exactly once each time an item is placed
+ /// between two adjacent items from the underlying iterator; specifically,
+ /// the closure is not called if the underlying iterator yields less than
+ /// two items and after the last item is yielded.
+ ///
+ /// If the iterator's item implements [`Clone`], it may be easier to use
+ /// [`intersperse`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_intersperse)]
+ ///
+ /// #[derive(PartialEq, Debug)]
+ /// struct NotClone(usize);
+ ///
+ /// let v = [NotClone(0), NotClone(1), NotClone(2)];
+ /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
+ ///
+ /// assert_eq!(it.next(), Some(NotClone(0))); // The first element from `v`.
+ /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
+ /// assert_eq!(it.next(), Some(NotClone(1))); // The next element from `v`.
+ /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
+ /// assert_eq!(it.next(), Some(NotClone(2))); // The last element from from `v`.
+ /// assert_eq!(it.next(), None); // The iterator is finished.
+ /// ```
+ ///
+ /// `intersperse_with` can be used in situations where the separator needs
+ /// to be computed:
+ /// ```
+ /// #![feature(iter_intersperse)]
+ ///
+ /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
+ ///
+ /// // The closure mutably borrows its context to generate an item.
+ /// let mut happy_emojis = [" ❤️ ", " 😀 "].iter().copied();
+ /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
+ ///
+ /// let result = src.intersperse_with(separator).collect::<String>();
+ /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
+ /// ```
+ /// [`Clone`]: crate::clone::Clone
+ /// [`intersperse`]: Iterator::intersperse
+ #[inline]
+ #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
+ fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
+ where
+ Self: Sized,
+ G: FnMut() -> Self::Item,
+ {
+ IntersperseWith::new(self, separator)
+ }
+
+ /// Takes a closure and creates an iterator which calls that closure on each
+ /// element.
+ ///
+ /// `map()` transforms one iterator into another, by means of its argument:
+ /// something that implements [`FnMut`]. It produces a new iterator which
+ /// calls this closure on each element of the original iterator.
+ ///
+ /// If you are good at thinking in types, you can think of `map()` like this:
+ /// If you have an iterator that gives you elements of some type `A`, and
+ /// you want an iterator of some other type `B`, you can use `map()`,
+ /// passing a closure that takes an `A` and returns a `B`.
+ ///
+ /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
+ /// lazy, it is best used when you're already working with other iterators.
+ /// If you're doing some sort of looping for a side effect, it's considered
+ /// more idiomatic to use [`for`] than `map()`.
+ ///
+ /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
+ /// [`FnMut`]: crate::ops::FnMut
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter().map(|x| 2 * x);
+ ///
+ /// assert_eq!(iter.next(), Some(2));
+ /// assert_eq!(iter.next(), Some(4));
+ /// assert_eq!(iter.next(), Some(6));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
+ ///
+ /// ```
+ /// # #![allow(unused_must_use)]
+ /// // don't do this:
+ /// (0..5).map(|x| println!("{x}"));
+ ///
+ /// // it won't even execute, as it is lazy. Rust will warn you about this.
+ ///
+ /// // Instead, use for:
+ /// for x in 0..5 {
+ /// println!("{x}");
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn map<B, F>(self, f: F) -> Map<Self, F>
+ where
+ Self: Sized,
+ F: FnMut(Self::Item) -> B,
+ {
+ Map::new(self, f)
+ }
+
+ /// Calls a closure on each element of an iterator.
+ ///
+ /// This is equivalent to using a [`for`] loop on the iterator, although
+ /// `break` and `continue` are not possible from a closure. It's generally
+ /// more idiomatic to use a `for` loop, but `for_each` may be more legible
+ /// when processing items at the end of longer iterator chains. In some
+ /// cases `for_each` may also be faster than a loop, because it will use
+ /// internal iteration on adapters like `Chain`.
+ ///
+ /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::sync::mpsc::channel;
+ ///
+ /// let (tx, rx) = channel();
+ /// (0..5).map(|x| x * 2 + 1)
+ /// .for_each(move |x| tx.send(x).unwrap());
+ ///
+ /// let v: Vec<_> = rx.iter().collect();
+ /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
+ /// ```
+ ///
+ /// For such a small example, a `for` loop may be cleaner, but `for_each`
+ /// might be preferable to keep a functional style with longer iterators:
+ ///
+ /// ```
+ /// (0..5).flat_map(|x| x * 100 .. x * 110)
+ /// .enumerate()
+ /// .filter(|&(i, x)| (i + x) % 3 == 0)
+ /// .for_each(|(i, x)| println!("{i}:{x}"));
+ /// ```
+ #[inline]
+ #[stable(feature = "iterator_for_each", since = "1.21.0")]
+ fn for_each<F>(self, f: F)
+ where
+ Self: Sized,
+ F: FnMut(Self::Item),
+ {
+ #[inline]
+ fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
+ move |(), item| f(item)
+ }
+
+ self.fold((), call(f));
+ }
+
+ /// Creates an iterator which uses a closure to determine if an element
+ /// should be yielded.
+ ///
+ /// Given an element the closure must return `true` or `false`. The returned
+ /// iterator will yield only the elements for which the closure returns
+ /// true.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [0i32, 1, 2];
+ ///
+ /// let mut iter = a.iter().filter(|x| x.is_positive());
+ ///
+ /// assert_eq!(iter.next(), Some(&1));
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Because the closure passed to `filter()` takes a reference, and many
+ /// iterators iterate over references, this leads to a possibly confusing
+ /// situation, where the type of the closure is a double reference:
+ ///
+ /// ```
+ /// let a = [0, 1, 2];
+ ///
+ /// let mut iter = a.iter().filter(|x| **x > 1); // need two *s!
+ ///
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// It's common to instead use destructuring on the argument to strip away
+ /// one:
+ ///
+ /// ```
+ /// let a = [0, 1, 2];
+ ///
+ /// let mut iter = a.iter().filter(|&x| *x > 1); // both & and *
+ ///
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// or both:
+ ///
+ /// ```
+ /// let a = [0, 1, 2];
+ ///
+ /// let mut iter = a.iter().filter(|&&x| x > 1); // two &s
+ ///
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// of these layers.
+ ///
+ /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn filter<P>(self, predicate: P) -> Filter<Self, P>
+ where
+ Self: Sized,
+ P: FnMut(&Self::Item) -> bool,
+ {
+ Filter::new(self, predicate)
+ }
+
+ /// Creates an iterator that both filters and maps.
+ ///
+ /// The returned iterator yields only the `value`s for which the supplied
+ /// closure returns `Some(value)`.
+ ///
+ /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
+ /// concise. The example below shows how a `map().filter().map()` can be
+ /// shortened to a single call to `filter_map`.
+ ///
+ /// [`filter`]: Iterator::filter
+ /// [`map`]: Iterator::map
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = ["1", "two", "NaN", "four", "5"];
+ ///
+ /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
+ ///
+ /// assert_eq!(iter.next(), Some(1));
+ /// assert_eq!(iter.next(), Some(5));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Here's the same example, but with [`filter`] and [`map`]:
+ ///
+ /// ```
+ /// let a = ["1", "two", "NaN", "four", "5"];
+ /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
+ /// assert_eq!(iter.next(), Some(1));
+ /// assert_eq!(iter.next(), Some(5));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
+ where
+ Self: Sized,
+ F: FnMut(Self::Item) -> Option<B>,
+ {
+ FilterMap::new(self, f)
+ }
+
+ /// Creates an iterator which gives the current iteration count as well as
+ /// the next value.
+ ///
+ /// The iterator returned yields pairs `(i, val)`, where `i` is the
+ /// current index of iteration and `val` is the value returned by the
+ /// iterator.
+ ///
+ /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
+ /// different sized integer, the [`zip`] function provides similar
+ /// functionality.
+ ///
+ /// # Overflow Behavior
+ ///
+ /// The method does no guarding against overflows, so enumerating more than
+ /// [`usize::MAX`] elements either produces the wrong result or panics. If
+ /// debug assertions are enabled, a panic is guaranteed.
+ ///
+ /// # Panics
+ ///
+ /// The returned iterator might panic if the to-be-returned index would
+ /// overflow a [`usize`].
+ ///
+ /// [`zip`]: Iterator::zip
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = ['a', 'b', 'c'];
+ ///
+ /// let mut iter = a.iter().enumerate();
+ ///
+ /// assert_eq!(iter.next(), Some((0, &'a')));
+ /// assert_eq!(iter.next(), Some((1, &'b')));
+ /// assert_eq!(iter.next(), Some((2, &'c')));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn enumerate(self) -> Enumerate<Self>
+ where
+ Self: Sized,
+ {
+ Enumerate::new(self)
+ }
+
+ /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
+ /// to look at the next element of the iterator without consuming it. See
+ /// their documentation for more information.
+ ///
+ /// Note that the underlying iterator is still advanced when [`peek`] or
+ /// [`peek_mut`] are called for the first time: In order to retrieve the
+ /// next element, [`next`] is called on the underlying iterator, hence any
+ /// side effects (i.e. anything other than fetching the next value) of
+ /// the [`next`] method will occur.
+ ///
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let xs = [1, 2, 3];
+ ///
+ /// let mut iter = xs.iter().peekable();
+ ///
+ /// // peek() lets us see into the future
+ /// assert_eq!(iter.peek(), Some(&&1));
+ /// assert_eq!(iter.next(), Some(&1));
+ ///
+ /// assert_eq!(iter.next(), Some(&2));
+ ///
+ /// // we can peek() multiple times, the iterator won't advance
+ /// assert_eq!(iter.peek(), Some(&&3));
+ /// assert_eq!(iter.peek(), Some(&&3));
+ ///
+ /// assert_eq!(iter.next(), Some(&3));
+ ///
+ /// // after the iterator is finished, so is peek()
+ /// assert_eq!(iter.peek(), None);
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Using [`peek_mut`] to mutate the next item without advancing the
+ /// iterator:
+ ///
+ /// ```
+ /// let xs = [1, 2, 3];
+ ///
+ /// let mut iter = xs.iter().peekable();
+ ///
+ /// // `peek_mut()` lets us see into the future
+ /// assert_eq!(iter.peek_mut(), Some(&mut &1));
+ /// assert_eq!(iter.peek_mut(), Some(&mut &1));
+ /// assert_eq!(iter.next(), Some(&1));
+ ///
+ /// if let Some(mut p) = iter.peek_mut() {
+ /// assert_eq!(*p, &2);
+ /// // put a value into the iterator
+ /// *p = &1000;
+ /// }
+ ///
+ /// // The value reappears as the iterator continues
+ /// assert_eq!(iter.collect::<Vec<_>>(), vec![&1000, &3]);
+ /// ```
+ /// [`peek`]: Peekable::peek
+ /// [`peek_mut`]: Peekable::peek_mut
+ /// [`next`]: Iterator::next
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn peekable(self) -> Peekable<Self>
+ where
+ Self: Sized,
+ {
+ Peekable::new(self)
+ }
+
+ /// Creates an iterator that [`skip`]s elements based on a predicate.
+ ///
+ /// [`skip`]: Iterator::skip
+ ///
+ /// `skip_while()` takes a closure as an argument. It will call this
+ /// closure on each element of the iterator, and ignore elements
+ /// until it returns `false`.
+ ///
+ /// After `false` is returned, `skip_while()`'s job is over, and the
+ /// rest of the elements are yielded.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [-1i32, 0, 1];
+ ///
+ /// let mut iter = a.iter().skip_while(|x| x.is_negative());
+ ///
+ /// assert_eq!(iter.next(), Some(&0));
+ /// assert_eq!(iter.next(), Some(&1));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Because the closure passed to `skip_while()` takes a reference, and many
+ /// iterators iterate over references, this leads to a possibly confusing
+ /// situation, where the type of the closure argument is a double reference:
+ ///
+ /// ```
+ /// let a = [-1, 0, 1];
+ ///
+ /// let mut iter = a.iter().skip_while(|x| **x < 0); // need two *s!
+ ///
+ /// assert_eq!(iter.next(), Some(&0));
+ /// assert_eq!(iter.next(), Some(&1));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Stopping after an initial `false`:
+ ///
+ /// ```
+ /// let a = [-1, 0, 1, -2];
+ ///
+ /// let mut iter = a.iter().skip_while(|x| **x < 0);
+ ///
+ /// assert_eq!(iter.next(), Some(&0));
+ /// assert_eq!(iter.next(), Some(&1));
+ ///
+ /// // while this would have been false, since we already got a false,
+ /// // skip_while() isn't used any more
+ /// assert_eq!(iter.next(), Some(&-2));
+ ///
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[doc(alias = "drop_while")]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
+ where
+ Self: Sized,
+ P: FnMut(&Self::Item) -> bool,
+ {
+ SkipWhile::new(self, predicate)
+ }
+
+ /// Creates an iterator that yields elements based on a predicate.
+ ///
+ /// `take_while()` takes a closure as an argument. It will call this
+ /// closure on each element of the iterator, and yield elements
+ /// while it returns `true`.
+ ///
+ /// After `false` is returned, `take_while()`'s job is over, and the
+ /// rest of the elements are ignored.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [-1i32, 0, 1];
+ ///
+ /// let mut iter = a.iter().take_while(|x| x.is_negative());
+ ///
+ /// assert_eq!(iter.next(), Some(&-1));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Because the closure passed to `take_while()` takes a reference, and many
+ /// iterators iterate over references, this leads to a possibly confusing
+ /// situation, where the type of the closure is a double reference:
+ ///
+ /// ```
+ /// let a = [-1, 0, 1];
+ ///
+ /// let mut iter = a.iter().take_while(|x| **x < 0); // need two *s!
+ ///
+ /// assert_eq!(iter.next(), Some(&-1));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Stopping after an initial `false`:
+ ///
+ /// ```
+ /// let a = [-1, 0, 1, -2];
+ ///
+ /// let mut iter = a.iter().take_while(|x| **x < 0);
+ ///
+ /// assert_eq!(iter.next(), Some(&-1));
+ ///
+ /// // We have more elements that are less than zero, but since we already
+ /// // got a false, take_while() isn't used any more
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Because `take_while()` needs to look at the value in order to see if it
+ /// should be included or not, consuming iterators will see that it is
+ /// removed:
+ ///
+ /// ```
+ /// let a = [1, 2, 3, 4];
+ /// let mut iter = a.iter();
+ ///
+ /// let result: Vec<i32> = iter.by_ref()
+ /// .take_while(|n| **n != 3)
+ /// .cloned()
+ /// .collect();
+ ///
+ /// assert_eq!(result, &[1, 2]);
+ ///
+ /// let result: Vec<i32> = iter.cloned().collect();
+ ///
+ /// assert_eq!(result, &[4]);
+ /// ```
+ ///
+ /// The `3` is no longer there, because it was consumed in order to see if
+ /// the iteration should stop, but wasn't placed back into the iterator.
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
+ where
+ Self: Sized,
+ P: FnMut(&Self::Item) -> bool,
+ {
+ TakeWhile::new(self, predicate)
+ }
+
+ /// Creates an iterator that both yields elements based on a predicate and maps.
+ ///
+ /// `map_while()` takes a closure as an argument. It will call this
+ /// closure on each element of the iterator, and yield elements
+ /// while it returns [`Some(_)`][`Some`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [-1i32, 4, 0, 1];
+ ///
+ /// let mut iter = a.iter().map_while(|x| 16i32.checked_div(*x));
+ ///
+ /// assert_eq!(iter.next(), Some(-16));
+ /// assert_eq!(iter.next(), Some(4));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Here's the same example, but with [`take_while`] and [`map`]:
+ ///
+ /// [`take_while`]: Iterator::take_while
+ /// [`map`]: Iterator::map
+ ///
+ /// ```
+ /// let a = [-1i32, 4, 0, 1];
+ ///
+ /// let mut iter = a.iter()
+ /// .map(|x| 16i32.checked_div(*x))
+ /// .take_while(|x| x.is_some())
+ /// .map(|x| x.unwrap());
+ ///
+ /// assert_eq!(iter.next(), Some(-16));
+ /// assert_eq!(iter.next(), Some(4));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// Stopping after an initial [`None`]:
+ ///
+ /// ```
+ /// let a = [0, 1, 2, -3, 4, 5, -6];
+ ///
+ /// let iter = a.iter().map_while(|x| u32::try_from(*x).ok());
+ /// let vec = iter.collect::<Vec<_>>();
+ ///
+ /// // We have more elements which could fit in u32 (4, 5), but `map_while` returned `None` for `-3`
+ /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
+ /// assert_eq!(vec, vec![0, 1, 2]);
+ /// ```
+ ///
+ /// Because `map_while()` needs to look at the value in order to see if it
+ /// should be included or not, consuming iterators will see that it is
+ /// removed:
+ ///
+ /// ```
+ /// let a = [1, 2, -3, 4];
+ /// let mut iter = a.iter();
+ ///
+ /// let result: Vec<u32> = iter.by_ref()
+ /// .map_while(|n| u32::try_from(*n).ok())
+ /// .collect();
+ ///
+ /// assert_eq!(result, &[1, 2]);
+ ///
+ /// let result: Vec<i32> = iter.cloned().collect();
+ ///
+ /// assert_eq!(result, &[4]);
+ /// ```
+ ///
+ /// The `-3` is no longer there, because it was consumed in order to see if
+ /// the iteration should stop, but wasn't placed back into the iterator.
+ ///
+ /// Note that unlike [`take_while`] this iterator is **not** fused.
+ /// It is also not specified what this iterator returns after the first [`None`] is returned.
+ /// If you need fused iterator, use [`fuse`].
+ ///
+ /// [`fuse`]: Iterator::fuse
+ #[inline]
+ #[stable(feature = "iter_map_while", since = "1.57.0")]
+ fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
+ where
+ Self: Sized,
+ P: FnMut(Self::Item) -> Option<B>,
+ {
+ MapWhile::new(self, predicate)
+ }
+
+ /// Creates an iterator that skips the first `n` elements.
+ ///
+ /// `skip(n)` skips elements until `n` elements are skipped or the end of the
+ /// iterator is reached (whichever happens first). After that, all the remaining
+ /// elements are yielded. In particular, if the original iterator is too short,
+ /// then the returned iterator is empty.
+ ///
+ /// Rather than overriding this method directly, instead override the `nth` method.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter().skip(2);
+ ///
+ /// assert_eq!(iter.next(), Some(&3));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn skip(self, n: usize) -> Skip<Self>
+ where
+ Self: Sized,
+ {
+ Skip::new(self, n)
+ }
+
+ /// Creates an iterator that yields the first `n` elements, or fewer
+ /// if the underlying iterator ends sooner.
+ ///
+ /// `take(n)` yields elements until `n` elements are yielded or the end of
+ /// the iterator is reached (whichever happens first).
+ /// The returned iterator is a prefix of length `n` if the original iterator
+ /// contains at least `n` elements, otherwise it contains all of the
+ /// (fewer than `n`) elements of the original iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter().take(2);
+ ///
+ /// assert_eq!(iter.next(), Some(&1));
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// `take()` is often used with an infinite iterator, to make it finite:
+ ///
+ /// ```
+ /// let mut iter = (0..).take(3);
+ ///
+ /// assert_eq!(iter.next(), Some(0));
+ /// assert_eq!(iter.next(), Some(1));
+ /// assert_eq!(iter.next(), Some(2));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// If less than `n` elements are available,
+ /// `take` will limit itself to the size of the underlying iterator:
+ ///
+ /// ```
+ /// let v = [1, 2];
+ /// let mut iter = v.into_iter().take(5);
+ /// assert_eq!(iter.next(), Some(1));
+ /// assert_eq!(iter.next(), Some(2));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn take(self, n: usize) -> Take<Self>
+ where
+ Self: Sized,
+ {
+ Take::new(self, n)
+ }
+
+ /// An iterator adapter similar to [`fold`] that holds internal state and
+ /// produces a new iterator.
+ ///
+ /// [`fold`]: Iterator::fold
+ ///
+ /// `scan()` takes two arguments: an initial value which seeds the internal
+ /// state, and a closure with two arguments, the first being a mutable
+ /// reference to the internal state and the second an iterator element.
+ /// The closure can assign to the internal state to share state between
+ /// iterations.
+ ///
+ /// On iteration, the closure will be applied to each element of the
+ /// iterator and the return value from the closure, an [`Option`], is
+ /// yielded by the iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter().scan(1, |state, &x| {
+ /// // each iteration, we'll multiply the state by the element
+ /// *state = *state * x;
+ ///
+ /// // then, we'll yield the negation of the state
+ /// Some(-*state)
+ /// });
+ ///
+ /// assert_eq!(iter.next(), Some(-1));
+ /// assert_eq!(iter.next(), Some(-2));
+ /// assert_eq!(iter.next(), Some(-6));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
+ where
+ Self: Sized,
+ F: FnMut(&mut St, Self::Item) -> Option<B>,
+ {
+ Scan::new(self, initial_state, f)
+ }
+
+ /// Creates an iterator that works like map, but flattens nested structure.
+ ///
+ /// The [`map`] adapter is very useful, but only when the closure
+ /// argument produces values. If it produces an iterator instead, there's
+ /// an extra layer of indirection. `flat_map()` will remove this extra layer
+ /// on its own.
+ ///
+ /// You can think of `flat_map(f)` as the semantic equivalent
+ /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
+ ///
+ /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
+ /// one item for each element, and `flat_map()`'s closure returns an
+ /// iterator for each element.
+ ///
+ /// [`map`]: Iterator::map
+ /// [`flatten`]: Iterator::flatten
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let words = ["alpha", "beta", "gamma"];
+ ///
+ /// // chars() returns an iterator
+ /// let merged: String = words.iter()
+ /// .flat_map(|s| s.chars())
+ /// .collect();
+ /// assert_eq!(merged, "alphabetagamma");
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
+ where
+ Self: Sized,
+ U: IntoIterator,
+ F: FnMut(Self::Item) -> U,
+ {
+ FlatMap::new(self, f)
+ }
+
+ /// Creates an iterator that flattens nested structure.
+ ///
+ /// This is useful when you have an iterator of iterators or an iterator of
+ /// things that can be turned into iterators and you want to remove one
+ /// level of indirection.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
+ /// let flattened = data.into_iter().flatten().collect::<Vec<u8>>();
+ /// assert_eq!(flattened, &[1, 2, 3, 4, 5, 6]);
+ /// ```
+ ///
+ /// Mapping and then flattening:
+ ///
+ /// ```
+ /// let words = ["alpha", "beta", "gamma"];
+ ///
+ /// // chars() returns an iterator
+ /// let merged: String = words.iter()
+ /// .map(|s| s.chars())
+ /// .flatten()
+ /// .collect();
+ /// assert_eq!(merged, "alphabetagamma");
+ /// ```
+ ///
+ /// You can also rewrite this in terms of [`flat_map()`], which is preferable
+ /// in this case since it conveys intent more clearly:
+ ///
+ /// ```
+ /// let words = ["alpha", "beta", "gamma"];
+ ///
+ /// // chars() returns an iterator
+ /// let merged: String = words.iter()
+ /// .flat_map(|s| s.chars())
+ /// .collect();
+ /// assert_eq!(merged, "alphabetagamma");
+ /// ```
+ ///
+ /// Flattening only removes one level of nesting at a time:
+ ///
+ /// ```
+ /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
+ ///
+ /// let d2 = d3.iter().flatten().collect::<Vec<_>>();
+ /// assert_eq!(d2, [&[1, 2], &[3, 4], &[5, 6], &[7, 8]]);
+ ///
+ /// let d1 = d3.iter().flatten().flatten().collect::<Vec<_>>();
+ /// assert_eq!(d1, [&1, &2, &3, &4, &5, &6, &7, &8]);
+ /// ```
+ ///
+ /// Here we see that `flatten()` does not perform a "deep" flatten.
+ /// Instead, only one level of nesting is removed. That is, if you
+ /// `flatten()` a three-dimensional array, the result will be
+ /// two-dimensional and not one-dimensional. To get a one-dimensional
+ /// structure, you have to `flatten()` again.
+ ///
+ /// [`flat_map()`]: Iterator::flat_map
+ #[inline]
+ #[stable(feature = "iterator_flatten", since = "1.29.0")]
+ fn flatten(self) -> Flatten<Self>
+ where
+ Self: Sized,
+ Self::Item: IntoIterator,
+ {
+ Flatten::new(self)
+ }
+
+ /// Creates an iterator which ends after the first [`None`].
+ ///
+ /// After an iterator returns [`None`], future calls may or may not yield
+ /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
+ /// [`None`] is given, it will always return [`None`] forever.
+ ///
+ /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
+ /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
+ /// if the [`FusedIterator`] trait is improperly implemented.
+ ///
+ /// [`Some(T)`]: Some
+ /// [`FusedIterator`]: crate::iter::FusedIterator
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // an iterator which alternates between Some and None
+ /// struct Alternate {
+ /// state: i32,
+ /// }
+ ///
+ /// impl Iterator for Alternate {
+ /// type Item = i32;
+ ///
+ /// fn next(&mut self) -> Option<i32> {
+ /// let val = self.state;
+ /// self.state = self.state + 1;
+ ///
+ /// // if it's even, Some(i32), else None
+ /// if val % 2 == 0 {
+ /// Some(val)
+ /// } else {
+ /// None
+ /// }
+ /// }
+ /// }
+ ///
+ /// let mut iter = Alternate { state: 0 };
+ ///
+ /// // we can see our iterator going back and forth
+ /// assert_eq!(iter.next(), Some(0));
+ /// assert_eq!(iter.next(), None);
+ /// assert_eq!(iter.next(), Some(2));
+ /// assert_eq!(iter.next(), None);
+ ///
+ /// // however, once we fuse it...
+ /// let mut iter = iter.fuse();
+ ///
+ /// assert_eq!(iter.next(), Some(4));
+ /// assert_eq!(iter.next(), None);
+ ///
+ /// // it will always return `None` after the first time.
+ /// assert_eq!(iter.next(), None);
+ /// assert_eq!(iter.next(), None);
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fuse(self) -> Fuse<Self>
+ where
+ Self: Sized,
+ {
+ Fuse::new(self)
+ }
+
+ /// Does something with each element of an iterator, passing the value on.
+ ///
+ /// When using iterators, you'll often chain several of them together.
+ /// While working on such code, you might want to check out what's
+ /// happening at various parts in the pipeline. To do that, insert
+ /// a call to `inspect()`.
+ ///
+ /// It's more common for `inspect()` to be used as a debugging tool than to
+ /// exist in your final code, but applications may find it useful in certain
+ /// situations when errors need to be logged before being discarded.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 4, 2, 3];
+ ///
+ /// // this iterator sequence is complex.
+ /// let sum = a.iter()
+ /// .cloned()
+ /// .filter(|x| x % 2 == 0)
+ /// .fold(0, |sum, i| sum + i);
+ ///
+ /// println!("{sum}");
+ ///
+ /// // let's add some inspect() calls to investigate what's happening
+ /// let sum = a.iter()
+ /// .cloned()
+ /// .inspect(|x| println!("about to filter: {x}"))
+ /// .filter(|x| x % 2 == 0)
+ /// .inspect(|x| println!("made it through filter: {x}"))
+ /// .fold(0, |sum, i| sum + i);
+ ///
+ /// println!("{sum}");
+ /// ```
+ ///
+ /// This will print:
+ ///
+ /// ```text
+ /// 6
+ /// about to filter: 1
+ /// about to filter: 4
+ /// made it through filter: 4
+ /// about to filter: 2
+ /// made it through filter: 2
+ /// about to filter: 3
+ /// 6
+ /// ```
+ ///
+ /// Logging errors before discarding them:
+ ///
+ /// ```
+ /// let lines = ["1", "2", "a"];
+ ///
+ /// let sum: i32 = lines
+ /// .iter()
+ /// .map(|line| line.parse::<i32>())
+ /// .inspect(|num| {
+ /// if let Err(ref e) = *num {
+ /// println!("Parsing error: {e}");
+ /// }
+ /// })
+ /// .filter_map(Result::ok)
+ /// .sum();
+ ///
+ /// println!("Sum: {sum}");
+ /// ```
+ ///
+ /// This will print:
+ ///
+ /// ```text
+ /// Parsing error: invalid digit found in string
+ /// Sum: 3
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn inspect<F>(self, f: F) -> Inspect<Self, F>
+ where
+ Self: Sized,
+ F: FnMut(&Self::Item),
+ {
+ Inspect::new(self, f)
+ }
+
+ /// Borrows an iterator, rather than consuming it.
+ ///
+ /// This is useful to allow applying iterator adapters while still
+ /// retaining ownership of the original iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
+ ///
+ /// // Take the first two words.
+ /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
+ /// assert_eq!(hello_world, vec!["hello", "world"]);
+ ///
+ /// // Collect the rest of the words.
+ /// // We can only do this because we used `by_ref` earlier.
+ /// let of_rust: Vec<_> = words.collect();
+ /// assert_eq!(of_rust, vec!["of", "Rust"]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn by_ref(&mut self) -> &mut Self
+ where
+ Self: Sized,
+ {
+ self
+ }
+
+ /// Transforms an iterator into a collection.
+ ///
+ /// `collect()` can take anything iterable, and turn it into a relevant
+ /// collection. This is one of the more powerful methods in the standard
+ /// library, used in a variety of contexts.
+ ///
+ /// The most basic pattern in which `collect()` is used is to turn one
+ /// collection into another. You take a collection, call [`iter`] on it,
+ /// do a bunch of transformations, and then `collect()` at the end.
+ ///
+ /// `collect()` can also create instances of types that are not typical
+ /// collections. For example, a [`String`] can be built from [`char`]s,
+ /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
+ /// into `Result<Collection<T>, E>`. See the examples below for more.
+ ///
+ /// Because `collect()` is so general, it can cause problems with type
+ /// inference. As such, `collect()` is one of the few times you'll see
+ /// the syntax affectionately known as the 'turbofish': `::<>`. This
+ /// helps the inference algorithm understand specifically which collection
+ /// you're trying to collect into.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let doubled: Vec<i32> = a.iter()
+ /// .map(|&x| x * 2)
+ /// .collect();
+ ///
+ /// assert_eq!(vec![2, 4, 6], doubled);
+ /// ```
+ ///
+ /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
+ /// we could collect into, for example, a [`VecDeque<T>`] instead:
+ ///
+ /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let a = [1, 2, 3];
+ ///
+ /// let doubled: VecDeque<i32> = a.iter().map(|&x| x * 2).collect();
+ ///
+ /// assert_eq!(2, doubled[0]);
+ /// assert_eq!(4, doubled[1]);
+ /// assert_eq!(6, doubled[2]);
+ /// ```
+ ///
+ /// Using the 'turbofish' instead of annotating `doubled`:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
+ ///
+ /// assert_eq!(vec![2, 4, 6], doubled);
+ /// ```
+ ///
+ /// Because `collect()` only cares about what you're collecting into, you can
+ /// still use a partial type hint, `_`, with the turbofish:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
+ ///
+ /// assert_eq!(vec![2, 4, 6], doubled);
+ /// ```
+ ///
+ /// Using `collect()` to make a [`String`]:
+ ///
+ /// ```
+ /// let chars = ['g', 'd', 'k', 'k', 'n'];
+ ///
+ /// let hello: String = chars.iter()
+ /// .map(|&x| x as u8)
+ /// .map(|x| (x + 1) as char)
+ /// .collect();
+ ///
+ /// assert_eq!("hello", hello);
+ /// ```
+ ///
+ /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
+ /// see if any of them failed:
+ ///
+ /// ```
+ /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
+ ///
+ /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
+ ///
+ /// // gives us the first error
+ /// assert_eq!(Err("nope"), result);
+ ///
+ /// let results = [Ok(1), Ok(3)];
+ ///
+ /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
+ ///
+ /// // gives us the list of answers
+ /// assert_eq!(Ok(vec![1, 3]), result);
+ /// ```
+ ///
+ /// [`iter`]: Iterator::next
+ /// [`String`]: ../../std/string/struct.String.html
+ /// [`char`]: type@char
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
+ fn collect<B: FromIterator<Self::Item>>(self) -> B
+ where
+ Self: Sized,
+ {
+ FromIterator::from_iter(self)
+ }
+
+ /// Fallibly transforms an iterator into a collection, short circuiting if
+ /// a failure is encountered.
+ ///
+ /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
+ /// conversions during collection. Its main use case is simplifying conversions from
+ /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
+ /// types (e.g. [`Result`]).
+ ///
+ /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
+ /// only the inner type produced on `Try::Output` must implement it. Concretely,
+ /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
+ /// [`FromIterator`], even though [`ControlFlow`] doesn't.
+ ///
+ /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
+ /// may continue to be used, in which case it will continue iterating starting after the element that
+ /// triggered the failure. See the last example below for an example of how this works.
+ ///
+ /// # Examples
+ /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
+ /// ```
+ /// #![feature(iterator_try_collect)]
+ ///
+ /// let u = vec![Some(1), Some(2), Some(3)];
+ /// let v = u.into_iter().try_collect::<Vec<i32>>();
+ /// assert_eq!(v, Some(vec![1, 2, 3]));
+ /// ```
+ ///
+ /// Failing to collect in the same way:
+ /// ```
+ /// #![feature(iterator_try_collect)]
+ ///
+ /// let u = vec![Some(1), Some(2), None, Some(3)];
+ /// let v = u.into_iter().try_collect::<Vec<i32>>();
+ /// assert_eq!(v, None);
+ /// ```
+ ///
+ /// A similar example, but with `Result`:
+ /// ```
+ /// #![feature(iterator_try_collect)]
+ ///
+ /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
+ /// let v = u.into_iter().try_collect::<Vec<i32>>();
+ /// assert_eq!(v, Ok(vec![1, 2, 3]));
+ ///
+ /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
+ /// let v = u.into_iter().try_collect::<Vec<i32>>();
+ /// assert_eq!(v, Err(()));
+ /// ```
+ ///
+ /// Finally, even [`ControlFlow`] works, despite the fact that it
+ /// doesn't implement [`FromIterator`]. Note also that the iterator can
+ /// continue to be used, even if a failure is encountered:
+ ///
+ /// ```
+ /// #![feature(iterator_try_collect)]
+ ///
+ /// use core::ops::ControlFlow::{Break, Continue};
+ ///
+ /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
+ /// let mut it = u.into_iter();
+ ///
+ /// let v = it.try_collect::<Vec<_>>();
+ /// assert_eq!(v, Break(3));
+ ///
+ /// let v = it.try_collect::<Vec<_>>();
+ /// assert_eq!(v, Continue(vec![4, 5]));
+ /// ```
+ ///
+ /// [`collect`]: Iterator::collect
+ #[inline]
+ #[unstable(feature = "iterator_try_collect", issue = "94047")]
+ fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
+ where
+ Self: Sized,
+ <Self as Iterator>::Item: Try,
+ <<Self as Iterator>::Item as Try>::Residual: Residual<B>,
+ B: FromIterator<<Self::Item as Try>::Output>,
+ {
+ try_process(ByRefSized(self), |i| i.collect())
+ }
+
+ /// Collects all the items from an iterator into a collection.
+ ///
+ /// This method consumes the iterator and adds all its items to the
+ /// passed collection. The collection is then returned, so the call chain
+ /// can be continued.
+ ///
+ /// This is useful when you already have a collection and wants to add
+ /// the iterator items to it.
+ ///
+ /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
+ /// but instead of being called on a collection, it's called on an iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_collect_into)]
+ ///
+ /// let a = [1, 2, 3];
+ /// let mut vec: Vec::<i32> = vec![0, 1];
+ ///
+ /// a.iter().map(|&x| x * 2).collect_into(&mut vec);
+ /// a.iter().map(|&x| x * 10).collect_into(&mut vec);
+ ///
+ /// assert_eq!(vec![0, 1, 2, 4, 6, 10, 20, 30], vec);
+ /// ```
+ ///
+ /// `Vec` can have a manual set capacity to avoid reallocating it:
+ ///
+ /// ```
+ /// #![feature(iter_collect_into)]
+ ///
+ /// let a = [1, 2, 3];
+ /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
+ ///
+ /// a.iter().map(|&x| x * 2).collect_into(&mut vec);
+ /// a.iter().map(|&x| x * 10).collect_into(&mut vec);
+ ///
+ /// assert_eq!(6, vec.capacity());
+ /// println!("{:?}", vec);
+ /// ```
+ ///
+ /// The returned mutable reference can be used to continue the call chain:
+ ///
+ /// ```
+ /// #![feature(iter_collect_into)]
+ ///
+ /// let a = [1, 2, 3];
+ /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
+ ///
+ /// let count = a.iter().collect_into(&mut vec).iter().count();
+ ///
+ /// assert_eq!(count, vec.len());
+ /// println!("Vec len is {}", count);
+ ///
+ /// let count = a.iter().collect_into(&mut vec).iter().count();
+ ///
+ /// assert_eq!(count, vec.len());
+ /// println!("Vec len now is {}", count);
+ /// ```
+ #[inline]
+ #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
+ fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
+ where
+ Self: Sized,
+ {
+ collection.extend(self);
+ collection
+ }
+
+ /// Consumes an iterator, creating two collections from it.
+ ///
+ /// The predicate passed to `partition()` can return `true`, or `false`.
+ /// `partition()` returns a pair, all of the elements for which it returned
+ /// `true`, and all of the elements for which it returned `false`.
+ ///
+ /// See also [`is_partitioned()`] and [`partition_in_place()`].
+ ///
+ /// [`is_partitioned()`]: Iterator::is_partitioned
+ /// [`partition_in_place()`]: Iterator::partition_in_place
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let (even, odd): (Vec<_>, Vec<_>) = a
+ /// .into_iter()
+ /// .partition(|n| n % 2 == 0);
+ ///
+ /// assert_eq!(even, vec![2]);
+ /// assert_eq!(odd, vec![1, 3]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn partition<B, F>(self, f: F) -> (B, B)
+ where
+ Self: Sized,
+ B: Default + Extend<Self::Item>,
+ F: FnMut(&Self::Item) -> bool,
+ {
+ #[inline]
+ fn extend<'a, T, B: Extend<T>>(
+ mut f: impl FnMut(&T) -> bool + 'a,
+ left: &'a mut B,
+ right: &'a mut B,
+ ) -> impl FnMut((), T) + 'a {
+ move |(), x| {
+ if f(&x) {
+ left.extend_one(x);
+ } else {
+ right.extend_one(x);
+ }
+ }
+ }
+
+ let mut left: B = Default::default();
+ let mut right: B = Default::default();
+
+ self.fold((), extend(f, &mut left, &mut right));
+
+ (left, right)
+ }
+
+ /// Reorders the elements of this iterator *in-place* according to the given predicate,
+ /// such that all those that return `true` precede all those that return `false`.
+ /// Returns the number of `true` elements found.
+ ///
+ /// The relative order of partitioned items is not maintained.
+ ///
+ /// # Current implementation
+ ///
+ /// Current algorithms tries finding the first element for which the predicate evaluates
+ /// to false, and the last element for which it evaluates to true and repeatedly swaps them.
+ ///
+ /// Time complexity: *O*(*n*)
+ ///
+ /// See also [`is_partitioned()`] and [`partition()`].
+ ///
+ /// [`is_partitioned()`]: Iterator::is_partitioned
+ /// [`partition()`]: Iterator::partition
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(iter_partition_in_place)]
+ ///
+ /// let mut a = [1, 2, 3, 4, 5, 6, 7];
+ ///
+ /// // Partition in-place between evens and odds
+ /// let i = a.iter_mut().partition_in_place(|&n| n % 2 == 0);
+ ///
+ /// assert_eq!(i, 3);
+ /// assert!(a[..i].iter().all(|&n| n % 2 == 0)); // evens
+ /// assert!(a[i..].iter().all(|&n| n % 2 == 1)); // odds
+ /// ```
+ #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
+ fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
+ where
+ Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
+ P: FnMut(&T) -> bool,
+ {
+ // FIXME: should we worry about the count overflowing? The only way to have more than
+ // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
+
+ // These closure "factory" functions exist to avoid genericity in `Self`.
+
+ #[inline]
+ fn is_false<'a, T>(
+ predicate: &'a mut impl FnMut(&T) -> bool,
+ true_count: &'a mut usize,
+ ) -> impl FnMut(&&mut T) -> bool + 'a {
+ move |x| {
+ let p = predicate(&**x);
+ *true_count += p as usize;
+ !p
+ }
+ }
+
+ #[inline]
+ fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
+ move |x| predicate(&**x)
+ }
+
+ // Repeatedly find the first `false` and swap it with the last `true`.
+ let mut true_count = 0;
+ while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
+ if let Some(tail) = self.rfind(is_true(predicate)) {
+ crate::mem::swap(head, tail);
+ true_count += 1;
+ } else {
+ break;
+ }
+ }
+ true_count
+ }
+
+ /// Checks if the elements of this iterator are partitioned according to the given predicate,
+ /// such that all those that return `true` precede all those that return `false`.
+ ///
+ /// See also [`partition()`] and [`partition_in_place()`].
+ ///
+ /// [`partition()`]: Iterator::partition
+ /// [`partition_in_place()`]: Iterator::partition_in_place
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(iter_is_partitioned)]
+ ///
+ /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
+ /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
+ /// ```
+ #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
+ fn is_partitioned<P>(mut self, mut predicate: P) -> bool
+ where
+ Self: Sized,
+ P: FnMut(Self::Item) -> bool,
+ {
+ // Either all items test `true`, or the first clause stops at `false`
+ // and we check that there are no more `true` items after that.
+ self.all(&mut predicate) || !self.any(predicate)
+ }
+
+ /// An iterator method that applies a function as long as it returns
+ /// successfully, producing a single, final value.
+ ///
+ /// `try_fold()` takes two arguments: an initial value, and a closure with
+ /// two arguments: an 'accumulator', and an element. The closure either
+ /// returns successfully, with the value that the accumulator should have
+ /// for the next iteration, or it returns failure, with an error value that
+ /// is propagated back to the caller immediately (short-circuiting).
+ ///
+ /// The initial value is the value the accumulator will have on the first
+ /// call. If applying the closure succeeded against every element of the
+ /// iterator, `try_fold()` returns the final accumulator as success.
+ ///
+ /// Folding is useful whenever you have a collection of something, and want
+ /// to produce a single value from it.
+ ///
+ /// # Note to Implementors
+ ///
+ /// Several of the other (forward) methods have default implementations in
+ /// terms of this one, so try to implement this explicitly if it can
+ /// do something better than the default `for` loop implementation.
+ ///
+ /// In particular, try to have this call `try_fold()` on the internal parts
+ /// from which this iterator is composed. If multiple calls are needed,
+ /// the `?` operator may be convenient for chaining the accumulator value
+ /// along, but beware any invariants that need to be upheld before those
+ /// early returns. This is a `&mut self` method, so iteration needs to be
+ /// resumable after hitting an error here.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// // the checked sum of all of the elements of the array
+ /// let sum = a.iter().try_fold(0i8, |acc, &x| acc.checked_add(x));
+ ///
+ /// assert_eq!(sum, Some(6));
+ /// ```
+ ///
+ /// Short-circuiting:
+ ///
+ /// ```
+ /// let a = [10, 20, 30, 100, 40, 50];
+ /// let mut it = a.iter();
+ ///
+ /// // This sum overflows when adding the 100 element
+ /// let sum = it.try_fold(0i8, |acc, &x| acc.checked_add(x));
+ /// assert_eq!(sum, None);
+ ///
+ /// // Because it short-circuited, the remaining elements are still
+ /// // available through the iterator.
+ /// assert_eq!(it.len(), 2);
+ /// assert_eq!(it.next(), Some(&40));
+ /// ```
+ ///
+ /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
+ /// a similar idea:
+ ///
+ /// ```
+ /// use std::ops::ControlFlow;
+ ///
+ /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
+ /// if let Some(next) = prev.checked_add(x) {
+ /// ControlFlow::Continue(next)
+ /// } else {
+ /// ControlFlow::Break(prev)
+ /// }
+ /// });
+ /// assert_eq!(triangular, ControlFlow::Break(120));
+ ///
+ /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
+ /// if let Some(next) = prev.checked_add(x) {
+ /// ControlFlow::Continue(next)
+ /// } else {
+ /// ControlFlow::Break(prev)
+ /// }
+ /// });
+ /// assert_eq!(triangular, ControlFlow::Continue(435));
+ /// ```
+ #[inline]
+ #[stable(feature = "iterator_try_fold", since = "1.27.0")]
+ fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
+ where
+ Self: Sized,
+ F: FnMut(B, Self::Item) -> R,
+ R: Try<Output = B>,
+ {
+ let mut accum = init;
+ while let Some(x) = self.next() {
+ accum = f(accum, x)?;
+ }
+ try { accum }
+ }
+
+ /// An iterator method that applies a fallible function to each item in the
+ /// iterator, stopping at the first error and returning that error.
+ ///
+ /// This can also be thought of as the fallible form of [`for_each()`]
+ /// or as the stateless version of [`try_fold()`].
+ ///
+ /// [`for_each()`]: Iterator::for_each
+ /// [`try_fold()`]: Iterator::try_fold
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fs::rename;
+ /// use std::io::{stdout, Write};
+ /// use std::path::Path;
+ ///
+ /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
+ ///
+ /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
+ /// assert!(res.is_ok());
+ ///
+ /// let mut it = data.iter().cloned();
+ /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
+ /// assert!(res.is_err());
+ /// // It short-circuited, so the remaining items are still in the iterator:
+ /// assert_eq!(it.next(), Some("stale_bread.json"));
+ /// ```
+ ///
+ /// The [`ControlFlow`] type can be used with this method for the situations
+ /// in which you'd use `break` and `continue` in a normal loop:
+ ///
+ /// ```
+ /// use std::ops::ControlFlow;
+ ///
+ /// let r = (2..100).try_for_each(|x| {
+ /// if 323 % x == 0 {
+ /// return ControlFlow::Break(x)
+ /// }
+ ///
+ /// ControlFlow::Continue(())
+ /// });
+ /// assert_eq!(r, ControlFlow::Break(17));
+ /// ```
+ #[inline]
+ #[stable(feature = "iterator_try_fold", since = "1.27.0")]
+ fn try_for_each<F, R>(&mut self, f: F) -> R
+ where
+ Self: Sized,
+ F: FnMut(Self::Item) -> R,
+ R: Try<Output = ()>,
+ {
+ #[inline]
+ fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
+ move |(), x| f(x)
+ }
+
+ self.try_fold((), call(f))
+ }
+
+ /// Folds every element into an accumulator by applying an operation,
+ /// returning the final result.
+ ///
+ /// `fold()` takes two arguments: an initial value, and a closure with two
+ /// arguments: an 'accumulator', and an element. The closure returns the value that
+ /// the accumulator should have for the next iteration.
+ ///
+ /// The initial value is the value the accumulator will have on the first
+ /// call.
+ ///
+ /// After applying this closure to every element of the iterator, `fold()`
+ /// returns the accumulator.
+ ///
+ /// This operation is sometimes called 'reduce' or 'inject'.
+ ///
+ /// Folding is useful whenever you have a collection of something, and want
+ /// to produce a single value from it.
+ ///
+ /// Note: `fold()`, and similar methods that traverse the entire iterator,
+ /// might not terminate for infinite iterators, even on traits for which a
+ /// result is determinable in finite time.
+ ///
+ /// Note: [`reduce()`] can be used to use the first element as the initial
+ /// value, if the accumulator type and item type is the same.
+ ///
+ /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
+ /// operators like `+`, the order the elements are combined in is not important, but for non-associative
+ /// operators like `-` the order will affect the final result.
+ /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
+ ///
+ /// # Note to Implementors
+ ///
+ /// Several of the other (forward) methods have default implementations in
+ /// terms of this one, so try to implement this explicitly if it can
+ /// do something better than the default `for` loop implementation.
+ ///
+ /// In particular, try to have this call `fold()` on the internal parts
+ /// from which this iterator is composed.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// // the sum of all of the elements of the array
+ /// let sum = a.iter().fold(0, |acc, x| acc + x);
+ ///
+ /// assert_eq!(sum, 6);
+ /// ```
+ ///
+ /// Let's walk through each step of the iteration here:
+ ///
+ /// | element | acc | x | result |
+ /// |---------|-----|---|--------|
+ /// | | 0 | | |
+ /// | 1 | 0 | 1 | 1 |
+ /// | 2 | 1 | 2 | 3 |
+ /// | 3 | 3 | 3 | 6 |
+ ///
+ /// And so, our final result, `6`.
+ ///
+ /// This example demonstrates the left-associative nature of `fold()`:
+ /// it builds a string, starting with an initial value
+ /// and continuing with each element from the front until the back:
+ ///
+ /// ```
+ /// let numbers = [1, 2, 3, 4, 5];
+ ///
+ /// let zero = "0".to_string();
+ ///
+ /// let result = numbers.iter().fold(zero, |acc, &x| {
+ /// format!("({acc} + {x})")
+ /// });
+ ///
+ /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
+ /// ```
+ /// It's common for people who haven't used iterators a lot to
+ /// use a `for` loop with a list of things to build up a result. Those
+ /// can be turned into `fold()`s:
+ ///
+ /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
+ ///
+ /// ```
+ /// let numbers = [1, 2, 3, 4, 5];
+ ///
+ /// let mut result = 0;
+ ///
+ /// // for loop:
+ /// for i in &numbers {
+ /// result = result + i;
+ /// }
+ ///
+ /// // fold:
+ /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
+ ///
+ /// // they're the same
+ /// assert_eq!(result, result2);
+ /// ```
+ ///
+ /// [`reduce()`]: Iterator::reduce
+ #[doc(alias = "inject", alias = "foldl")]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fold<B, F>(mut self, init: B, mut f: F) -> B
+ where
+ Self: Sized,
+ F: FnMut(B, Self::Item) -> B,
+ {
+ let mut accum = init;
+ while let Some(x) = self.next() {
+ accum = f(accum, x);
+ }
+ accum
+ }
+
+ /// Reduces the elements to a single one, by repeatedly applying a reducing
+ /// operation.
+ ///
+ /// If the iterator is empty, returns [`None`]; otherwise, returns the
+ /// result of the reduction.
+ ///
+ /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
+ /// For iterators with at least one element, this is the same as [`fold()`]
+ /// with the first element of the iterator as the initial accumulator value, folding
+ /// every subsequent element into it.
+ ///
+ /// [`fold()`]: Iterator::fold
+ ///
+ /// # Example
+ ///
+ /// Find the maximum value:
+ ///
+ /// ```
+ /// fn find_max<I>(iter: I) -> Option<I::Item>
+ /// where I: Iterator,
+ /// I::Item: Ord,
+ /// {
+ /// iter.reduce(|accum, item| {
+ /// if accum >= item { accum } else { item }
+ /// })
+ /// }
+ /// let a = [10, 20, 5, -23, 0];
+ /// let b: [u32; 0] = [];
+ ///
+ /// assert_eq!(find_max(a.iter()), Some(&20));
+ /// assert_eq!(find_max(b.iter()), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "iterator_fold_self", since = "1.51.0")]
+ fn reduce<F>(mut self, f: F) -> Option<Self::Item>
+ where
+ Self: Sized,
+ F: FnMut(Self::Item, Self::Item) -> Self::Item,
+ {
+ let first = self.next()?;
+ Some(self.fold(first, f))
+ }
+
+ /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
+ /// closure returns a failure, the failure is propagated back to the caller immediately.
+ ///
+ /// The return type of this method depends on the return type of the closure. If the closure
+ /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
+ /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
+ /// `Option<Option<Self::Item>>`.
+ ///
+ /// When called on an empty iterator, this function will return either `Some(None)` or
+ /// `Ok(None)` depending on the type of the provided closure.
+ ///
+ /// For iterators with at least one element, this is essentially the same as calling
+ /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
+ ///
+ /// [`try_fold()`]: Iterator::try_fold
+ ///
+ /// # Examples
+ ///
+ /// Safely calculate the sum of a series of numbers:
+ ///
+ /// ```
+ /// #![feature(iterator_try_reduce)]
+ ///
+ /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
+ /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
+ /// assert_eq!(sum, Some(Some(58)));
+ /// ```
+ ///
+ /// Determine when a reduction short circuited:
+ ///
+ /// ```
+ /// #![feature(iterator_try_reduce)]
+ ///
+ /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
+ /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
+ /// assert_eq!(sum, None);
+ /// ```
+ ///
+ /// Determine when a reduction was not performed because there are no elements:
+ ///
+ /// ```
+ /// #![feature(iterator_try_reduce)]
+ ///
+ /// let numbers: Vec<usize> = Vec::new();
+ /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
+ /// assert_eq!(sum, Some(None));
+ /// ```
+ ///
+ /// Use a [`Result`] instead of an [`Option`]:
+ ///
+ /// ```
+ /// #![feature(iterator_try_reduce)]
+ ///
+ /// let numbers = vec!["1", "2", "3", "4", "5"];
+ /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
+ /// numbers.into_iter().try_reduce(|x, y| {
+ /// if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
+ /// });
+ /// assert_eq!(max, Ok(Some("5")));
+ /// ```
+ #[inline]
+ #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
+ fn try_reduce<F, R>(&mut self, f: F) -> ChangeOutputType<R, Option<R::Output>>
+ where
+ Self: Sized,
+ F: FnMut(Self::Item, Self::Item) -> R,
+ R: Try<Output = Self::Item>,
+ R::Residual: Residual<Option<Self::Item>>,
+ {
+ let first = match self.next() {
+ Some(i) => i,
+ None => return Try::from_output(None),
+ };
+
+ match self.try_fold(first, f).branch() {
+ ControlFlow::Break(r) => FromResidual::from_residual(r),
+ ControlFlow::Continue(i) => Try::from_output(Some(i)),
+ }
+ }
+
+ /// Tests if every element of the iterator matches a predicate.
+ ///
+ /// `all()` takes a closure that returns `true` or `false`. It applies
+ /// this closure to each element of the iterator, and if they all return
+ /// `true`, then so does `all()`. If any of them return `false`, it
+ /// returns `false`.
+ ///
+ /// `all()` is short-circuiting; in other words, it will stop processing
+ /// as soon as it finds a `false`, given that no matter what else happens,
+ /// the result will also be `false`.
+ ///
+ /// An empty iterator returns `true`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// assert!(a.iter().all(|&x| x > 0));
+ ///
+ /// assert!(!a.iter().all(|&x| x > 2));
+ /// ```
+ ///
+ /// Stopping at the first `false`:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert!(!iter.all(|&x| x != 2));
+ ///
+ /// // we can still use `iter`, as there are more elements.
+ /// assert_eq!(iter.next(), Some(&3));
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn all<F>(&mut self, f: F) -> bool
+ where
+ Self: Sized,
+ F: FnMut(Self::Item) -> bool,
+ {
+ #[inline]
+ fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
+ move |(), x| {
+ if f(x) { ControlFlow::CONTINUE } else { ControlFlow::BREAK }
+ }
+ }
+ self.try_fold((), check(f)) == ControlFlow::CONTINUE
+ }
+
+ /// Tests if any element of the iterator matches a predicate.
+ ///
+ /// `any()` takes a closure that returns `true` or `false`. It applies
+ /// this closure to each element of the iterator, and if any of them return
+ /// `true`, then so does `any()`. If they all return `false`, it
+ /// returns `false`.
+ ///
+ /// `any()` is short-circuiting; in other words, it will stop processing
+ /// as soon as it finds a `true`, given that no matter what else happens,
+ /// the result will also be `true`.
+ ///
+ /// An empty iterator returns `false`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// assert!(a.iter().any(|&x| x > 0));
+ ///
+ /// assert!(!a.iter().any(|&x| x > 5));
+ /// ```
+ ///
+ /// Stopping at the first `true`:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert!(iter.any(|&x| x != 2));
+ ///
+ /// // we can still use `iter`, as there are more elements.
+ /// assert_eq!(iter.next(), Some(&2));
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn any<F>(&mut self, f: F) -> bool
+ where
+ Self: Sized,
+ F: FnMut(Self::Item) -> bool,
+ {
+ #[inline]
+ fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
+ move |(), x| {
+ if f(x) { ControlFlow::BREAK } else { ControlFlow::CONTINUE }
+ }
+ }
+
+ self.try_fold((), check(f)) == ControlFlow::BREAK
+ }
+
+ /// Searches for an element of an iterator that satisfies a predicate.
+ ///
+ /// `find()` takes a closure that returns `true` or `false`. It applies
+ /// this closure to each element of the iterator, and if any of them return
+ /// `true`, then `find()` returns [`Some(element)`]. If they all return
+ /// `false`, it returns [`None`].
+ ///
+ /// `find()` is short-circuiting; in other words, it will stop processing
+ /// as soon as the closure returns `true`.
+ ///
+ /// Because `find()` takes a reference, and many iterators iterate over
+ /// references, this leads to a possibly confusing situation where the
+ /// argument is a double reference. You can see this effect in the
+ /// examples below, with `&&x`.
+ ///
+ /// [`Some(element)`]: Some
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// assert_eq!(a.iter().find(|&&x| x == 2), Some(&2));
+ ///
+ /// assert_eq!(a.iter().find(|&&x| x == 5), None);
+ /// ```
+ ///
+ /// Stopping at the first `true`:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.find(|&&x| x == 2), Some(&2));
+ ///
+ /// // we can still use `iter`, as there are more elements.
+ /// assert_eq!(iter.next(), Some(&3));
+ /// ```
+ ///
+ /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
+ where
+ Self: Sized,
+ P: FnMut(&Self::Item) -> bool,
+ {
+ #[inline]
+ fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
+ move |(), x| {
+ if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::CONTINUE }
+ }
+ }
+
+ self.try_fold((), check(predicate)).break_value()
+ }
+
+ /// Applies function to the elements of iterator and returns
+ /// the first non-none result.
+ ///
+ /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = ["lol", "NaN", "2", "5"];
+ ///
+ /// let first_number = a.iter().find_map(|s| s.parse().ok());
+ ///
+ /// assert_eq!(first_number, Some(2));
+ /// ```
+ #[inline]
+ #[stable(feature = "iterator_find_map", since = "1.30.0")]
+ fn find_map<B, F>(&mut self, f: F) -> Option<B>
+ where
+ Self: Sized,
+ F: FnMut(Self::Item) -> Option<B>,
+ {
+ #[inline]
+ fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
+ move |(), x| match f(x) {
+ Some(x) => ControlFlow::Break(x),
+ None => ControlFlow::CONTINUE,
+ }
+ }
+
+ self.try_fold((), check(f)).break_value()
+ }
+
+ /// Applies function to the elements of iterator and returns
+ /// the first true result or the first error.
+ ///
+ /// The return type of this method depends on the return type of the closure.
+ /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>; E>`.
+ /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(try_find)]
+ ///
+ /// let a = ["1", "2", "lol", "NaN", "5"];
+ ///
+ /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
+ /// Ok(s.parse::<i32>()? == search)
+ /// };
+ ///
+ /// let result = a.iter().try_find(|&&s| is_my_num(s, 2));
+ /// assert_eq!(result, Ok(Some(&"2")));
+ ///
+ /// let result = a.iter().try_find(|&&s| is_my_num(s, 5));
+ /// assert!(result.is_err());
+ /// ```
+ ///
+ /// This also supports other types which implement `Try`, not just `Result`.
+ /// ```
+ /// #![feature(try_find)]
+ ///
+ /// use std::num::NonZeroU32;
+ /// let a = [3, 5, 7, 4, 9, 0, 11];
+ /// let result = a.iter().try_find(|&&x| NonZeroU32::new(x).map(|y| y.is_power_of_two()));
+ /// assert_eq!(result, Some(Some(&4)));
+ /// let result = a.iter().take(3).try_find(|&&x| NonZeroU32::new(x).map(|y| y.is_power_of_two()));
+ /// assert_eq!(result, Some(None));
+ /// let result = a.iter().rev().try_find(|&&x| NonZeroU32::new(x).map(|y| y.is_power_of_two()));
+ /// assert_eq!(result, None);
+ /// ```
+ #[inline]
+ #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
+ fn try_find<F, R>(&mut self, f: F) -> ChangeOutputType<R, Option<Self::Item>>
+ where
+ Self: Sized,
+ F: FnMut(&Self::Item) -> R,
+ R: Try<Output = bool>,
+ R::Residual: Residual<Option<Self::Item>>,
+ {
+ #[inline]
+ fn check<I, V, R>(
+ mut f: impl FnMut(&I) -> V,
+ ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
+ where
+ V: Try<Output = bool, Residual = R>,
+ R: Residual<Option<I>>,
+ {
+ move |(), x| match f(&x).branch() {
+ ControlFlow::Continue(false) => ControlFlow::CONTINUE,
+ ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
+ ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
+ }
+ }
+
+ match self.try_fold((), check(f)) {
+ ControlFlow::Break(x) => x,
+ ControlFlow::Continue(()) => Try::from_output(None),
+ }
+ }
+
+ /// Searches for an element in an iterator, returning its index.
+ ///
+ /// `position()` takes a closure that returns `true` or `false`. It applies
+ /// this closure to each element of the iterator, and if one of them
+ /// returns `true`, then `position()` returns [`Some(index)`]. If all of
+ /// them return `false`, it returns [`None`].
+ ///
+ /// `position()` is short-circuiting; in other words, it will stop
+ /// processing as soon as it finds a `true`.
+ ///
+ /// # Overflow Behavior
+ ///
+ /// The method does no guarding against overflows, so if there are more
+ /// than [`usize::MAX`] non-matching elements, it either produces the wrong
+ /// result or panics. If debug assertions are enabled, a panic is
+ /// guaranteed.
+ ///
+ /// # Panics
+ ///
+ /// This function might panic if the iterator has more than `usize::MAX`
+ /// non-matching elements.
+ ///
+ /// [`Some(index)`]: Some
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// assert_eq!(a.iter().position(|&x| x == 2), Some(1));
+ ///
+ /// assert_eq!(a.iter().position(|&x| x == 5), None);
+ /// ```
+ ///
+ /// Stopping at the first `true`:
+ ///
+ /// ```
+ /// let a = [1, 2, 3, 4];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.position(|&x| x >= 2), Some(1));
+ ///
+ /// // we can still use `iter`, as there are more elements.
+ /// assert_eq!(iter.next(), Some(&3));
+ ///
+ /// // The returned index depends on iterator state
+ /// assert_eq!(iter.position(|&x| x == 4), Some(0));
+ ///
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn position<P>(&mut self, predicate: P) -> Option<usize>
+ where
+ Self: Sized,
+ P: FnMut(Self::Item) -> bool,
+ {
+ #[inline]
+ fn check<T>(
+ mut predicate: impl FnMut(T) -> bool,
+ ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
+ #[rustc_inherit_overflow_checks]
+ move |i, x| {
+ if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i + 1) }
+ }
+ }
+
+ self.try_fold(0, check(predicate)).break_value()
+ }
+
+ /// Searches for an element in an iterator from the right, returning its
+ /// index.
+ ///
+ /// `rposition()` takes a closure that returns `true` or `false`. It applies
+ /// this closure to each element of the iterator, starting from the end,
+ /// and if one of them returns `true`, then `rposition()` returns
+ /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
+ ///
+ /// `rposition()` is short-circuiting; in other words, it will stop
+ /// processing as soon as it finds a `true`.
+ ///
+ /// [`Some(index)`]: Some
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// assert_eq!(a.iter().rposition(|&x| x == 3), Some(2));
+ ///
+ /// assert_eq!(a.iter().rposition(|&x| x == 5), None);
+ /// ```
+ ///
+ /// Stopping at the first `true`:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter();
+ ///
+ /// assert_eq!(iter.rposition(|&x| x == 2), Some(1));
+ ///
+ /// // we can still use `iter`, as there are more elements.
+ /// assert_eq!(iter.next(), Some(&1));
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn rposition<P>(&mut self, predicate: P) -> Option<usize>
+ where
+ P: FnMut(Self::Item) -> bool,
+ Self: Sized + ExactSizeIterator + DoubleEndedIterator,
+ {
+ // No need for an overflow check here, because `ExactSizeIterator`
+ // implies that the number of elements fits into a `usize`.
+ #[inline]
+ fn check<T>(
+ mut predicate: impl FnMut(T) -> bool,
+ ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
+ move |i, x| {
+ let i = i - 1;
+ if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
+ }
+ }
+
+ let n = self.len();
+ self.try_rfold(n, check(predicate)).break_value()
+ }
+
+ /// Returns the maximum element of an iterator.
+ ///
+ /// If several elements are equally maximum, the last element is
+ /// returned. If the iterator is empty, [`None`] is returned.
+ ///
+ /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
+ /// incomparable. You can work around this by using [`Iterator::reduce`]:
+ /// ```
+ /// assert_eq!(
+ /// [2.4, f32::NAN, 1.3]
+ /// .into_iter()
+ /// .reduce(f32::max)
+ /// .unwrap(),
+ /// 2.4
+ /// );
+ /// ```
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// let b: Vec<u32> = Vec::new();
+ ///
+ /// assert_eq!(a.iter().max(), Some(&3));
+ /// assert_eq!(b.iter().max(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn max(self) -> Option<Self::Item>
+ where
+ Self: Sized,
+ Self::Item: Ord,
+ {
+ self.max_by(Ord::cmp)
+ }
+
+ /// Returns the minimum element of an iterator.
+ ///
+ /// If several elements are equally minimum, the first element is returned.
+ /// If the iterator is empty, [`None`] is returned.
+ ///
+ /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
+ /// incomparable. You can work around this by using [`Iterator::reduce`]:
+ /// ```
+ /// assert_eq!(
+ /// [2.4, f32::NAN, 1.3]
+ /// .into_iter()
+ /// .reduce(f32::min)
+ /// .unwrap(),
+ /// 1.3
+ /// );
+ /// ```
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// let b: Vec<u32> = Vec::new();
+ ///
+ /// assert_eq!(a.iter().min(), Some(&1));
+ /// assert_eq!(b.iter().min(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn min(self) -> Option<Self::Item>
+ where
+ Self: Sized,
+ Self::Item: Ord,
+ {
+ self.min_by(Ord::cmp)
+ }
+
+ /// Returns the element that gives the maximum value from the
+ /// specified function.
+ ///
+ /// If several elements are equally maximum, the last element is
+ /// returned. If the iterator is empty, [`None`] is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = [-3_i32, 0, 1, 5, -10];
+ /// assert_eq!(*a.iter().max_by_key(|x| x.abs()).unwrap(), -10);
+ /// ```
+ #[inline]
+ #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
+ fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
+ where
+ Self: Sized,
+ F: FnMut(&Self::Item) -> B,
+ {
+ #[inline]
+ fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
+ move |x| (f(&x), x)
+ }
+
+ #[inline]
+ fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
+ x_p.cmp(y_p)
+ }
+
+ let (_, x) = self.map(key(f)).max_by(compare)?;
+ Some(x)
+ }
+
+ /// Returns the element that gives the maximum value with respect to the
+ /// specified comparison function.
+ ///
+ /// If several elements are equally maximum, the last element is
+ /// returned. If the iterator is empty, [`None`] is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = [-3_i32, 0, 1, 5, -10];
+ /// assert_eq!(*a.iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
+ /// ```
+ #[inline]
+ #[stable(feature = "iter_max_by", since = "1.15.0")]
+ fn max_by<F>(self, compare: F) -> Option<Self::Item>
+ where
+ Self: Sized,
+ F: FnMut(&Self::Item, &Self::Item) -> Ordering,
+ {
+ #[inline]
+ fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
+ move |x, y| cmp::max_by(x, y, &mut compare)
+ }
+
+ self.reduce(fold(compare))
+ }
+
+ /// Returns the element that gives the minimum value from the
+ /// specified function.
+ ///
+ /// If several elements are equally minimum, the first element is
+ /// returned. If the iterator is empty, [`None`] is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = [-3_i32, 0, 1, 5, -10];
+ /// assert_eq!(*a.iter().min_by_key(|x| x.abs()).unwrap(), 0);
+ /// ```
+ #[inline]
+ #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
+ fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
+ where
+ Self: Sized,
+ F: FnMut(&Self::Item) -> B,
+ {
+ #[inline]
+ fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
+ move |x| (f(&x), x)
+ }
+
+ #[inline]
+ fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
+ x_p.cmp(y_p)
+ }
+
+ let (_, x) = self.map(key(f)).min_by(compare)?;
+ Some(x)
+ }
+
+ /// Returns the element that gives the minimum value with respect to the
+ /// specified comparison function.
+ ///
+ /// If several elements are equally minimum, the first element is
+ /// returned. If the iterator is empty, [`None`] is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = [-3_i32, 0, 1, 5, -10];
+ /// assert_eq!(*a.iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
+ /// ```
+ #[inline]
+ #[stable(feature = "iter_min_by", since = "1.15.0")]
+ fn min_by<F>(self, compare: F) -> Option<Self::Item>
+ where
+ Self: Sized,
+ F: FnMut(&Self::Item, &Self::Item) -> Ordering,
+ {
+ #[inline]
+ fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
+ move |x, y| cmp::min_by(x, y, &mut compare)
+ }
+
+ self.reduce(fold(compare))
+ }
+
+ /// Reverses an iterator's direction.
+ ///
+ /// Usually, iterators iterate from left to right. After using `rev()`,
+ /// an iterator will instead iterate from right to left.
+ ///
+ /// This is only possible if the iterator has an end, so `rev()` only
+ /// works on [`DoubleEndedIterator`]s.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut iter = a.iter().rev();
+ ///
+ /// assert_eq!(iter.next(), Some(&3));
+ /// assert_eq!(iter.next(), Some(&2));
+ /// assert_eq!(iter.next(), Some(&1));
+ ///
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[inline]
+ #[doc(alias = "reverse")]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn rev(self) -> Rev<Self>
+ where
+ Self: Sized + DoubleEndedIterator,
+ {
+ Rev::new(self)
+ }
+
+ /// Converts an iterator of pairs into a pair of containers.
+ ///
+ /// `unzip()` consumes an entire iterator of pairs, producing two
+ /// collections: one from the left elements of the pairs, and one
+ /// from the right elements.
+ ///
+ /// This function is, in some sense, the opposite of [`zip`].
+ ///
+ /// [`zip`]: Iterator::zip
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [(1, 2), (3, 4), (5, 6)];
+ ///
+ /// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip();
+ ///
+ /// assert_eq!(left, [1, 3, 5]);
+ /// assert_eq!(right, [2, 4, 6]);
+ ///
+ /// // you can also unzip multiple nested tuples at once
+ /// let a = [(1, (2, 3)), (4, (5, 6))];
+ ///
+ /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.iter().cloned().unzip();
+ /// assert_eq!(x, [1, 4]);
+ /// assert_eq!(y, [2, 5]);
+ /// assert_eq!(z, [3, 6]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
+ where
+ FromA: Default + Extend<A>,
+ FromB: Default + Extend<B>,
+ Self: Sized + Iterator<Item = (A, B)>,
+ {
+ let mut unzipped: (FromA, FromB) = Default::default();
+ unzipped.extend(self);
+ unzipped
+ }
+
+ /// Creates an iterator which copies all of its elements.
+ ///
+ /// This is useful when you have an iterator over `&T`, but you need an
+ /// iterator over `T`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let v_copied: Vec<_> = a.iter().copied().collect();
+ ///
+ /// // copied is the same as .map(|&x| x)
+ /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
+ ///
+ /// assert_eq!(v_copied, vec![1, 2, 3]);
+ /// assert_eq!(v_map, vec![1, 2, 3]);
+ /// ```
+ #[stable(feature = "iter_copied", since = "1.36.0")]
+ fn copied<'a, T: 'a>(self) -> Copied<Self>
+ where
+ Self: Sized + Iterator<Item = &'a T>,
+ T: Copy,
+ {
+ Copied::new(self)
+ }
+
+ /// Creates an iterator which [`clone`]s all of its elements.
+ ///
+ /// This is useful when you have an iterator over `&T`, but you need an
+ /// iterator over `T`.
+ ///
+ /// There is no guarantee whatsoever about the `clone` method actually
+ /// being called *or* optimized away. So code should not depend on
+ /// either.
+ ///
+ /// [`clone`]: Clone::clone
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let v_cloned: Vec<_> = a.iter().cloned().collect();
+ ///
+ /// // cloned is the same as .map(|&x| x), for integers
+ /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
+ ///
+ /// assert_eq!(v_cloned, vec![1, 2, 3]);
+ /// assert_eq!(v_map, vec![1, 2, 3]);
+ /// ```
+ ///
+ /// To get the best performance, try to clone late:
+ ///
+ /// ```
+ /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
+ /// // don't do this:
+ /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
+ /// assert_eq!(&[vec![23]], &slower[..]);
+ /// // instead call `cloned` late
+ /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
+ /// assert_eq!(&[vec![23]], &faster[..]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn cloned<'a, T: 'a>(self) -> Cloned<Self>
+ where
+ Self: Sized + Iterator<Item = &'a T>,
+ T: Clone,
+ {
+ Cloned::new(self)
+ }
+
+ /// Repeats an iterator endlessly.
+ ///
+ /// Instead of stopping at [`None`], the iterator will instead start again,
+ /// from the beginning. After iterating again, it will start at the
+ /// beginning again. And again. And again. Forever. Note that in case the
+ /// original iterator is empty, the resulting iterator will also be empty.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ ///
+ /// let mut it = a.iter().cycle();
+ ///
+ /// assert_eq!(it.next(), Some(&1));
+ /// assert_eq!(it.next(), Some(&2));
+ /// assert_eq!(it.next(), Some(&3));
+ /// assert_eq!(it.next(), Some(&1));
+ /// assert_eq!(it.next(), Some(&2));
+ /// assert_eq!(it.next(), Some(&3));
+ /// assert_eq!(it.next(), Some(&1));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ fn cycle(self) -> Cycle<Self>
+ where
+ Self: Sized + Clone,
+ {
+ Cycle::new(self)
+ }
+
+ /// Sums the elements of an iterator.
+ ///
+ /// Takes each element, adds them together, and returns the result.
+ ///
+ /// An empty iterator returns the zero value of the type.
+ ///
+ /// # Panics
+ ///
+ /// When calling `sum()` and a primitive integer type is being returned, this
+ /// method will panic if the computation overflows and debug assertions are
+ /// enabled.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// let sum: i32 = a.iter().sum();
+ ///
+ /// assert_eq!(sum, 6);
+ /// ```
+ #[stable(feature = "iter_arith", since = "1.11.0")]
+ fn sum<S>(self) -> S
+ where
+ Self: Sized,
+ S: Sum<Self::Item>,
+ {
+ Sum::sum(self)
+ }
+
+ /// Iterates over the entire iterator, multiplying all the elements
+ ///
+ /// An empty iterator returns the one value of the type.
+ ///
+ /// # Panics
+ ///
+ /// When calling `product()` and a primitive integer type is being returned,
+ /// method will panic if the computation overflows and debug assertions are
+ /// enabled.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// fn factorial(n: u32) -> u32 {
+ /// (1..=n).product()
+ /// }
+ /// assert_eq!(factorial(0), 1);
+ /// assert_eq!(factorial(1), 1);
+ /// assert_eq!(factorial(5), 120);
+ /// ```
+ #[stable(feature = "iter_arith", since = "1.11.0")]
+ fn product<P>(self) -> P
+ where
+ Self: Sized,
+ P: Product<Self::Item>,
+ {
+ Product::product(self)
+ }
+
+ /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
+ /// of another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::cmp::Ordering;
+ ///
+ /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
+ /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
+ /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn cmp<I>(self, other: I) -> Ordering
+ where
+ I: IntoIterator<Item = Self::Item>,
+ Self::Item: Ord,
+ Self: Sized,
+ {
+ self.cmp_by(other, |x, y| x.cmp(&y))
+ }
+
+ /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
+ /// of another with respect to the specified comparison function.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_order_by)]
+ ///
+ /// use std::cmp::Ordering;
+ ///
+ /// let xs = [1, 2, 3, 4];
+ /// let ys = [1, 4, 9, 16];
+ ///
+ /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| x.cmp(&y)), Ordering::Less);
+ /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (x * x).cmp(&y)), Ordering::Equal);
+ /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (2 * x).cmp(&y)), Ordering::Greater);
+ /// ```
+ #[unstable(feature = "iter_order_by", issue = "64295")]
+ fn cmp_by<I, F>(mut self, other: I, mut cmp: F) -> Ordering
+ where
+ Self: Sized,
+ I: IntoIterator,
+ F: FnMut(Self::Item, I::Item) -> Ordering,
+ {
+ let mut other = other.into_iter();
+
+ loop {
+ let x = match self.next() {
+ None => {
+ if other.next().is_none() {
+ return Ordering::Equal;
+ } else {
+ return Ordering::Less;
+ }
+ }
+ Some(val) => val,
+ };
+
+ let y = match other.next() {
+ None => return Ordering::Greater,
+ Some(val) => val,
+ };
+
+ match cmp(x, y) {
+ Ordering::Equal => (),
+ non_eq => return non_eq,
+ }
+ }
+ }
+
+ /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
+ /// of another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::cmp::Ordering;
+ ///
+ /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
+ /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
+ /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
+ ///
+ /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn partial_cmp<I>(self, other: I) -> Option<Ordering>
+ where
+ I: IntoIterator,
+ Self::Item: PartialOrd<I::Item>,
+ Self: Sized,
+ {
+ self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
+ }
+
+ /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
+ /// of another with respect to the specified comparison function.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_order_by)]
+ ///
+ /// use std::cmp::Ordering;
+ ///
+ /// let xs = [1.0, 2.0, 3.0, 4.0];
+ /// let ys = [1.0, 4.0, 9.0, 16.0];
+ ///
+ /// assert_eq!(
+ /// xs.iter().partial_cmp_by(&ys, |&x, &y| x.partial_cmp(&y)),
+ /// Some(Ordering::Less)
+ /// );
+ /// assert_eq!(
+ /// xs.iter().partial_cmp_by(&ys, |&x, &y| (x * x).partial_cmp(&y)),
+ /// Some(Ordering::Equal)
+ /// );
+ /// assert_eq!(
+ /// xs.iter().partial_cmp_by(&ys, |&x, &y| (2.0 * x).partial_cmp(&y)),
+ /// Some(Ordering::Greater)
+ /// );
+ /// ```
+ #[unstable(feature = "iter_order_by", issue = "64295")]
+ fn partial_cmp_by<I, F>(mut self, other: I, mut partial_cmp: F) -> Option<Ordering>
+ where
+ Self: Sized,
+ I: IntoIterator,
+ F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
+ {
+ let mut other = other.into_iter();
+
+ loop {
+ let x = match self.next() {
+ None => {
+ if other.next().is_none() {
+ return Some(Ordering::Equal);
+ } else {
+ return Some(Ordering::Less);
+ }
+ }
+ Some(val) => val,
+ };
+
+ let y = match other.next() {
+ None => return Some(Ordering::Greater),
+ Some(val) => val,
+ };
+
+ match partial_cmp(x, y) {
+ Some(Ordering::Equal) => (),
+ non_eq => return non_eq,
+ }
+ }
+ }
+
+ /// Determines if the elements of this [`Iterator`] are equal to those of
+ /// another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!([1].iter().eq([1].iter()), true);
+ /// assert_eq!([1].iter().eq([1, 2].iter()), false);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn eq<I>(self, other: I) -> bool
+ where
+ I: IntoIterator,
+ Self::Item: PartialEq<I::Item>,
+ Self: Sized,
+ {
+ self.eq_by(other, |x, y| x == y)
+ }
+
+ /// Determines if the elements of this [`Iterator`] are equal to those of
+ /// another with respect to the specified equality function.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(iter_order_by)]
+ ///
+ /// let xs = [1, 2, 3, 4];
+ /// let ys = [1, 4, 9, 16];
+ ///
+ /// assert!(xs.iter().eq_by(&ys, |&x, &y| x * x == y));
+ /// ```
+ #[unstable(feature = "iter_order_by", issue = "64295")]
+ fn eq_by<I, F>(mut self, other: I, mut eq: F) -> bool
+ where
+ Self: Sized,
+ I: IntoIterator,
+ F: FnMut(Self::Item, I::Item) -> bool,
+ {
+ let mut other = other.into_iter();
+
+ loop {
+ let x = match self.next() {
+ None => return other.next().is_none(),
+ Some(val) => val,
+ };
+
+ let y = match other.next() {
+ None => return false,
+ Some(val) => val,
+ };
+
+ if !eq(x, y) {
+ return false;
+ }
+ }
+ }
+
+ /// Determines if the elements of this [`Iterator`] are unequal to those of
+ /// another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!([1].iter().ne([1].iter()), false);
+ /// assert_eq!([1].iter().ne([1, 2].iter()), true);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn ne<I>(self, other: I) -> bool
+ where
+ I: IntoIterator,
+ Self::Item: PartialEq<I::Item>,
+ Self: Sized,
+ {
+ !self.eq(other)
+ }
+
+ /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
+ /// less than those of another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!([1].iter().lt([1].iter()), false);
+ /// assert_eq!([1].iter().lt([1, 2].iter()), true);
+ /// assert_eq!([1, 2].iter().lt([1].iter()), false);
+ /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn lt<I>(self, other: I) -> bool
+ where
+ I: IntoIterator,
+ Self::Item: PartialOrd<I::Item>,
+ Self: Sized,
+ {
+ self.partial_cmp(other) == Some(Ordering::Less)
+ }
+
+ /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
+ /// less or equal to those of another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!([1].iter().le([1].iter()), true);
+ /// assert_eq!([1].iter().le([1, 2].iter()), true);
+ /// assert_eq!([1, 2].iter().le([1].iter()), false);
+ /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn le<I>(self, other: I) -> bool
+ where
+ I: IntoIterator,
+ Self::Item: PartialOrd<I::Item>,
+ Self: Sized,
+ {
+ matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
+ }
+
+ /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
+ /// greater than those of another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!([1].iter().gt([1].iter()), false);
+ /// assert_eq!([1].iter().gt([1, 2].iter()), false);
+ /// assert_eq!([1, 2].iter().gt([1].iter()), true);
+ /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn gt<I>(self, other: I) -> bool
+ where
+ I: IntoIterator,
+ Self::Item: PartialOrd<I::Item>,
+ Self: Sized,
+ {
+ self.partial_cmp(other) == Some(Ordering::Greater)
+ }
+
+ /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
+ /// greater than or equal to those of another.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!([1].iter().ge([1].iter()), true);
+ /// assert_eq!([1].iter().ge([1, 2].iter()), false);
+ /// assert_eq!([1, 2].iter().ge([1].iter()), true);
+ /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
+ /// ```
+ #[stable(feature = "iter_order", since = "1.5.0")]
+ fn ge<I>(self, other: I) -> bool
+ where
+ I: IntoIterator,
+ Self::Item: PartialOrd<I::Item>,
+ Self: Sized,
+ {
+ matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
+ }
+
+ /// Checks if the elements of this iterator are sorted.
+ ///
+ /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
+ /// iterator yields exactly zero or one element, `true` is returned.
+ ///
+ /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
+ /// implies that this function returns `false` if any two consecutive items are not
+ /// comparable.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(is_sorted)]
+ ///
+ /// assert!([1, 2, 2, 9].iter().is_sorted());
+ /// assert!(![1, 3, 2, 4].iter().is_sorted());
+ /// assert!([0].iter().is_sorted());
+ /// assert!(std::iter::empty::<i32>().is_sorted());
+ /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
+ /// ```
+ #[inline]
+ #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+ fn is_sorted(self) -> bool
+ where
+ Self: Sized,
+ Self::Item: PartialOrd,
+ {
+ self.is_sorted_by(PartialOrd::partial_cmp)
+ }
+
+ /// Checks if the elements of this iterator are sorted using the given comparator function.
+ ///
+ /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
+ /// function to determine the ordering of two elements. Apart from that, it's equivalent to
+ /// [`is_sorted`]; see its documentation for more information.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(is_sorted)]
+ ///
+ /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
+ /// assert!(![1, 3, 2, 4].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
+ /// assert!([0].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
+ /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| a.partial_cmp(b)));
+ /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
+ /// ```
+ ///
+ /// [`is_sorted`]: Iterator::is_sorted
+ #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+ fn is_sorted_by<F>(mut self, compare: F) -> bool
+ where
+ Self: Sized,
+ F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
+ {
+ #[inline]
+ fn check<'a, T>(
+ last: &'a mut T,
+ mut compare: impl FnMut(&T, &T) -> Option<Ordering> + 'a,
+ ) -> impl FnMut(T) -> bool + 'a {
+ move |curr| {
+ if let Some(Ordering::Greater) | None = compare(&last, &curr) {
+ return false;
+ }
+ *last = curr;
+ true
+ }
+ }
+
+ let mut last = match self.next() {
+ Some(e) => e,
+ None => return true,
+ };
+
+ self.all(check(&mut last, compare))
+ }
+
+ /// Checks if the elements of this iterator are sorted using the given key extraction
+ /// function.
+ ///
+ /// Instead of comparing the iterator's elements directly, this function compares the keys of
+ /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
+ /// its documentation for more information.
+ ///
+ /// [`is_sorted`]: Iterator::is_sorted
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(is_sorted)]
+ ///
+ /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
+ /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
+ /// ```
+ #[inline]
+ #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+ fn is_sorted_by_key<F, K>(self, f: F) -> bool
+ where
+ Self: Sized,
+ F: FnMut(Self::Item) -> K,
+ K: PartialOrd,
+ {
+ self.map(f).is_sorted()
+ }
+
+ /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
+ // The unusual name is to avoid name collisions in method resolution
+ // see #76479.
+ #[inline]
+ #[doc(hidden)]
+ #[unstable(feature = "trusted_random_access", issue = "none")]
+ unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
+ where
+ Self: TrustedRandomAccessNoCoerce,
+ {
+ unreachable!("Always specialized");
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<I: Iterator + ?Sized> Iterator for &mut I {
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ (**self).next()
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (**self).size_hint()
+ }
+ fn advance_by(&mut self, n: usize) -> Result<(), usize> {
+ (**self).advance_by(n)
+ }
+ fn nth(&mut self, n: usize) -> Option<Self::Item> {
+ (**self).nth(n)
+ }
+}
diff --git a/library/core/src/iter/traits/marker.rs b/library/core/src/iter/traits/marker.rs
new file mode 100644
index 000000000..da7537457
--- /dev/null
+++ b/library/core/src/iter/traits/marker.rs
@@ -0,0 +1,78 @@
+use crate::iter::Step;
+
+/// An iterator that always continues to yield `None` when exhausted.
+///
+/// Calling next on a fused iterator that has returned `None` once is guaranteed
+/// to return [`None`] again. This trait should be implemented by all iterators
+/// that behave this way because it allows optimizing [`Iterator::fuse()`].
+///
+/// Note: In general, you should not use `FusedIterator` in generic bounds if
+/// you need a fused iterator. Instead, you should just call [`Iterator::fuse()`]
+/// on the iterator. If the iterator is already fused, the additional [`Fuse`]
+/// wrapper will be a no-op with no performance penalty.
+///
+/// [`Fuse`]: crate::iter::Fuse
+#[stable(feature = "fused", since = "1.26.0")]
+#[rustc_unsafe_specialization_marker]
+pub trait FusedIterator: Iterator {}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<I: FusedIterator + ?Sized> FusedIterator for &mut I {}
+
+/// An iterator that reports an accurate length using size_hint.
+///
+/// The iterator reports a size hint where it is either exact
+/// (lower bound is equal to upper bound), or the upper bound is [`None`].
+/// The upper bound must only be [`None`] if the actual iterator length is
+/// larger than [`usize::MAX`]. In that case, the lower bound must be
+/// [`usize::MAX`], resulting in an [`Iterator::size_hint()`] of
+/// `(usize::MAX, None)`.
+///
+/// The iterator must produce exactly the number of elements it reported
+/// or diverge before reaching the end.
+///
+/// # Safety
+///
+/// This trait must only be implemented when the contract is upheld. Consumers
+/// of this trait must inspect [`Iterator::size_hint()`]’s upper bound.
+#[unstable(feature = "trusted_len", issue = "37572")]
+#[rustc_unsafe_specialization_marker]
+pub unsafe trait TrustedLen: Iterator {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<I: TrustedLen + ?Sized> TrustedLen for &mut I {}
+
+/// An iterator that when yielding an item will have taken at least one element
+/// from its underlying [`SourceIter`].
+///
+/// Calling any method that advances the iterator, e.g. [`next()`] or [`try_fold()`],
+/// guarantees that for each step at least one value of the iterator's underlying source
+/// has been moved out and the result of the iterator chain could be inserted
+/// in its place, assuming structural constraints of the source allow such an insertion.
+/// In other words this trait indicates that an iterator pipeline can be collected in place.
+///
+/// The primary use of this trait is in-place iteration. Refer to the [`vec::in_place_collect`]
+/// module documentation for more information.
+///
+/// [`vec::in_place_collect`]: ../../../../alloc/vec/in_place_collect/index.html
+/// [`SourceIter`]: crate::iter::SourceIter
+/// [`next()`]: Iterator::next
+/// [`try_fold()`]: Iterator::try_fold
+#[unstable(issue = "none", feature = "inplace_iteration")]
+#[doc(hidden)]
+pub unsafe trait InPlaceIterable: Iterator {}
+
+/// A type that upholds all invariants of [`Step`].
+///
+/// The invariants of [`Step::steps_between()`] are a superset of the invariants
+/// of [`TrustedLen`]. As such, [`TrustedLen`] is implemented for all range
+/// types with the same generic type argument.
+///
+/// # Safety
+///
+/// The implementation of [`Step`] for the given type must guarantee all
+/// invariants of all methods are upheld. See the [`Step`] trait's documentation
+/// for details. Consumers are free to rely on the invariants in unsafe code.
+#[unstable(feature = "trusted_step", issue = "85731")]
+#[rustc_specialization_trait]
+pub unsafe trait TrustedStep: Step {}
diff --git a/library/core/src/iter/traits/mod.rs b/library/core/src/iter/traits/mod.rs
new file mode 100644
index 000000000..ed0fb634d
--- /dev/null
+++ b/library/core/src/iter/traits/mod.rs
@@ -0,0 +1,21 @@
+mod accum;
+mod collect;
+mod double_ended;
+mod exact_size;
+mod iterator;
+mod marker;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use self::{
+ accum::{Product, Sum},
+ collect::{Extend, FromIterator, IntoIterator},
+ double_ended::DoubleEndedIterator,
+ exact_size::ExactSizeIterator,
+ iterator::Iterator,
+ marker::{FusedIterator, TrustedLen},
+};
+
+#[unstable(issue = "none", feature = "inplace_iteration")]
+pub use self::marker::InPlaceIterable;
+#[unstable(feature = "trusted_step", issue = "85731")]
+pub use self::marker::TrustedStep;