summaryrefslogtreecommitdiffstats
path: root/library/core/src/macros/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/macros/mod.rs')
-rw-r--r--library/core/src/macros/mod.rs1554
1 files changed, 1554 insertions, 0 deletions
diff --git a/library/core/src/macros/mod.rs b/library/core/src/macros/mod.rs
new file mode 100644
index 000000000..3a115a8b8
--- /dev/null
+++ b/library/core/src/macros/mod.rs
@@ -0,0 +1,1554 @@
+#[doc = include_str!("panic.md")]
+#[macro_export]
+#[rustc_builtin_macro(core_panic)]
+#[allow_internal_unstable(edition_panic)]
+#[stable(feature = "core", since = "1.6.0")]
+#[rustc_diagnostic_item = "core_panic_macro"]
+macro_rules! panic {
+ // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
+ // depending on the edition of the caller.
+ ($($arg:tt)*) => {
+ /* compiler built-in */
+ };
+}
+
+/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
+///
+/// On panic, this macro will print the values of the expressions with their
+/// debug representations.
+///
+/// Like [`assert!`], this macro has a second form, where a custom
+/// panic message can be provided.
+///
+/// # Examples
+///
+/// ```
+/// let a = 3;
+/// let b = 1 + 2;
+/// assert_eq!(a, b);
+///
+/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "assert_eq_macro")]
+#[allow_internal_unstable(core_panic)]
+macro_rules! assert_eq {
+ ($left:expr, $right:expr $(,)?) => {
+ match (&$left, &$right) {
+ (left_val, right_val) => {
+ if !(*left_val == *right_val) {
+ let kind = $crate::panicking::AssertKind::Eq;
+ // The reborrows below are intentional. Without them, the stack slot for the
+ // borrow is initialized even before the values are compared, leading to a
+ // noticeable slow down.
+ $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
+ }
+ }
+ }
+ };
+ ($left:expr, $right:expr, $($arg:tt)+) => {
+ match (&$left, &$right) {
+ (left_val, right_val) => {
+ if !(*left_val == *right_val) {
+ let kind = $crate::panicking::AssertKind::Eq;
+ // The reborrows below are intentional. Without them, the stack slot for the
+ // borrow is initialized even before the values are compared, leading to a
+ // noticeable slow down.
+ $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
+ }
+ }
+ }
+ };
+}
+
+/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
+///
+/// On panic, this macro will print the values of the expressions with their
+/// debug representations.
+///
+/// Like [`assert!`], this macro has a second form, where a custom
+/// panic message can be provided.
+///
+/// # Examples
+///
+/// ```
+/// let a = 3;
+/// let b = 2;
+/// assert_ne!(a, b);
+///
+/// assert_ne!(a, b, "we are testing that the values are not equal");
+/// ```
+#[macro_export]
+#[stable(feature = "assert_ne", since = "1.13.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "assert_ne_macro")]
+#[allow_internal_unstable(core_panic)]
+macro_rules! assert_ne {
+ ($left:expr, $right:expr $(,)?) => {
+ match (&$left, &$right) {
+ (left_val, right_val) => {
+ if *left_val == *right_val {
+ let kind = $crate::panicking::AssertKind::Ne;
+ // The reborrows below are intentional. Without them, the stack slot for the
+ // borrow is initialized even before the values are compared, leading to a
+ // noticeable slow down.
+ $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
+ }
+ }
+ }
+ };
+ ($left:expr, $right:expr, $($arg:tt)+) => {
+ match (&($left), &($right)) {
+ (left_val, right_val) => {
+ if *left_val == *right_val {
+ let kind = $crate::panicking::AssertKind::Ne;
+ // The reborrows below are intentional. Without them, the stack slot for the
+ // borrow is initialized even before the values are compared, leading to a
+ // noticeable slow down.
+ $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
+ }
+ }
+ }
+ };
+}
+
+/// Asserts that an expression matches any of the given patterns.
+///
+/// Like in a `match` expression, the pattern can be optionally followed by `if`
+/// and a guard expression that has access to names bound by the pattern.
+///
+/// On panic, this macro will print the value of the expression with its
+/// debug representation.
+///
+/// Like [`assert!`], this macro has a second form, where a custom
+/// panic message can be provided.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(assert_matches)]
+///
+/// use std::assert_matches::assert_matches;
+///
+/// let a = 1u32.checked_add(2);
+/// let b = 1u32.checked_sub(2);
+/// assert_matches!(a, Some(_));
+/// assert_matches!(b, None);
+///
+/// let c = Ok("abc".to_string());
+/// assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
+/// ```
+#[unstable(feature = "assert_matches", issue = "82775")]
+#[allow_internal_unstable(core_panic)]
+#[rustc_macro_transparency = "semitransparent"]
+pub macro assert_matches {
+ ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
+ match $left {
+ $( $pattern )|+ $( if $guard )? => {}
+ ref left_val => {
+ $crate::panicking::assert_matches_failed(
+ left_val,
+ $crate::stringify!($($pattern)|+ $(if $guard)?),
+ $crate::option::Option::None
+ );
+ }
+ }
+ },
+ ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
+ match $left {
+ $( $pattern )|+ $( if $guard )? => {}
+ ref left_val => {
+ $crate::panicking::assert_matches_failed(
+ left_val,
+ $crate::stringify!($($pattern)|+ $(if $guard)?),
+ $crate::option::Option::Some($crate::format_args!($($arg)+))
+ );
+ }
+ }
+ },
+}
+
+/// Asserts that a boolean expression is `true` at runtime.
+///
+/// This will invoke the [`panic!`] macro if the provided expression cannot be
+/// evaluated to `true` at runtime.
+///
+/// Like [`assert!`], this macro also has a second version, where a custom panic
+/// message can be provided.
+///
+/// # Uses
+///
+/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
+/// optimized builds by default. An optimized build will not execute
+/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
+/// compiler. This makes `debug_assert!` useful for checks that are too
+/// expensive to be present in a release build but may be helpful during
+/// development. The result of expanding `debug_assert!` is always type checked.
+///
+/// An unchecked assertion allows a program in an inconsistent state to keep
+/// running, which might have unexpected consequences but does not introduce
+/// unsafety as long as this only happens in safe code. The performance cost
+/// of assertions, however, is not measurable in general. Replacing [`assert!`]
+/// with `debug_assert!` is thus only encouraged after thorough profiling, and
+/// more importantly, only in safe code!
+///
+/// # Examples
+///
+/// ```
+/// // the panic message for these assertions is the stringified value of the
+/// // expression given.
+/// debug_assert!(true);
+///
+/// fn some_expensive_computation() -> bool { true } // a very simple function
+/// debug_assert!(some_expensive_computation());
+///
+/// // assert with a custom message
+/// let x = true;
+/// debug_assert!(x, "x wasn't true!");
+///
+/// let a = 3; let b = 27;
+/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_diagnostic_item = "debug_assert_macro"]
+#[allow_internal_unstable(edition_panic)]
+macro_rules! debug_assert {
+ ($($arg:tt)*) => {
+ if $crate::cfg!(debug_assertions) {
+ $crate::assert!($($arg)*);
+ }
+ };
+}
+
+/// Asserts that two expressions are equal to each other.
+///
+/// On panic, this macro will print the values of the expressions with their
+/// debug representations.
+///
+/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
+/// optimized builds by default. An optimized build will not execute
+/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
+/// compiler. This makes `debug_assert_eq!` useful for checks that are too
+/// expensive to be present in a release build but may be helpful during
+/// development. The result of expanding `debug_assert_eq!` is always type checked.
+///
+/// # Examples
+///
+/// ```
+/// let a = 3;
+/// let b = 1 + 2;
+/// debug_assert_eq!(a, b);
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "debug_assert_eq_macro")]
+macro_rules! debug_assert_eq {
+ ($($arg:tt)*) => {
+ if $crate::cfg!(debug_assertions) {
+ $crate::assert_eq!($($arg)*);
+ }
+ };
+}
+
+/// Asserts that two expressions are not equal to each other.
+///
+/// On panic, this macro will print the values of the expressions with their
+/// debug representations.
+///
+/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
+/// optimized builds by default. An optimized build will not execute
+/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
+/// compiler. This makes `debug_assert_ne!` useful for checks that are too
+/// expensive to be present in a release build but may be helpful during
+/// development. The result of expanding `debug_assert_ne!` is always type checked.
+///
+/// # Examples
+///
+/// ```
+/// let a = 3;
+/// let b = 2;
+/// debug_assert_ne!(a, b);
+/// ```
+#[macro_export]
+#[stable(feature = "assert_ne", since = "1.13.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "debug_assert_ne_macro")]
+macro_rules! debug_assert_ne {
+ ($($arg:tt)*) => {
+ if $crate::cfg!(debug_assertions) {
+ $crate::assert_ne!($($arg)*);
+ }
+ };
+}
+
+/// Asserts that an expression matches any of the given patterns.
+///
+/// Like in a `match` expression, the pattern can be optionally followed by `if`
+/// and a guard expression that has access to names bound by the pattern.
+///
+/// On panic, this macro will print the value of the expression with its
+/// debug representation.
+///
+/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only
+/// enabled in non optimized builds by default. An optimized build will not
+/// execute `debug_assert_matches!` statements unless `-C debug-assertions` is
+/// passed to the compiler. This makes `debug_assert_matches!` useful for
+/// checks that are too expensive to be present in a release build but may be
+/// helpful during development. The result of expanding `debug_assert_matches!`
+/// is always type checked.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(assert_matches)]
+///
+/// use std::assert_matches::debug_assert_matches;
+///
+/// let a = 1u32.checked_add(2);
+/// let b = 1u32.checked_sub(2);
+/// debug_assert_matches!(a, Some(_));
+/// debug_assert_matches!(b, None);
+///
+/// let c = Ok("abc".to_string());
+/// debug_assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
+/// ```
+#[macro_export]
+#[unstable(feature = "assert_matches", issue = "82775")]
+#[allow_internal_unstable(assert_matches)]
+#[rustc_macro_transparency = "semitransparent"]
+pub macro debug_assert_matches($($arg:tt)*) {
+ if $crate::cfg!(debug_assertions) {
+ $crate::assert_matches::assert_matches!($($arg)*);
+ }
+}
+
+/// Returns whether the given expression matches any of the given patterns.
+///
+/// Like in a `match` expression, the pattern can be optionally followed by `if`
+/// and a guard expression that has access to names bound by the pattern.
+///
+/// # Examples
+///
+/// ```
+/// let foo = 'f';
+/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
+///
+/// let bar = Some(4);
+/// assert!(matches!(bar, Some(x) if x > 2));
+/// ```
+#[macro_export]
+#[stable(feature = "matches_macro", since = "1.42.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "matches_macro")]
+macro_rules! matches {
+ ($expression:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
+ match $expression {
+ $( $pattern )|+ $( if $guard )? => true,
+ _ => false
+ }
+ };
+}
+
+/// Unwraps a result or propagates its error.
+///
+/// The `?` operator was added to replace `try!` and should be used instead.
+/// Furthermore, `try` is a reserved word in Rust 2018, so if you must use
+/// it, you will need to use the [raw-identifier syntax][ris]: `r#try`.
+///
+/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
+///
+/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
+/// expression has the value of the wrapped value.
+///
+/// In case of the `Err` variant, it retrieves the inner error. `try!` then
+/// performs conversion using `From`. This provides automatic conversion
+/// between specialized errors and more general ones. The resulting
+/// error is then immediately returned.
+///
+/// Because of the early return, `try!` can only be used in functions that
+/// return [`Result`].
+///
+/// # Examples
+///
+/// ```
+/// use std::io;
+/// use std::fs::File;
+/// use std::io::prelude::*;
+///
+/// enum MyError {
+/// FileWriteError
+/// }
+///
+/// impl From<io::Error> for MyError {
+/// fn from(e: io::Error) -> MyError {
+/// MyError::FileWriteError
+/// }
+/// }
+///
+/// // The preferred method of quick returning Errors
+/// fn write_to_file_question() -> Result<(), MyError> {
+/// let mut file = File::create("my_best_friends.txt")?;
+/// file.write_all(b"This is a list of my best friends.")?;
+/// Ok(())
+/// }
+///
+/// // The previous method of quick returning Errors
+/// fn write_to_file_using_try() -> Result<(), MyError> {
+/// let mut file = r#try!(File::create("my_best_friends.txt"));
+/// r#try!(file.write_all(b"This is a list of my best friends."));
+/// Ok(())
+/// }
+///
+/// // This is equivalent to:
+/// fn write_to_file_using_match() -> Result<(), MyError> {
+/// let mut file = r#try!(File::create("my_best_friends.txt"));
+/// match file.write_all(b"This is a list of my best friends.") {
+/// Ok(v) => v,
+/// Err(e) => return Err(From::from(e)),
+/// }
+/// Ok(())
+/// }
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
+#[doc(alias = "?")]
+macro_rules! r#try {
+ ($expr:expr $(,)?) => {
+ match $expr {
+ $crate::result::Result::Ok(val) => val,
+ $crate::result::Result::Err(err) => {
+ return $crate::result::Result::Err($crate::convert::From::from(err));
+ }
+ }
+ };
+}
+
+/// Writes formatted data into a buffer.
+///
+/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
+/// formatted according to the specified format string and the result will be passed to the writer.
+/// The writer may be any value with a `write_fmt` method; generally this comes from an
+/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
+/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
+/// [`io::Result`].
+///
+/// See [`std::fmt`] for more information on the format string syntax.
+///
+/// [`std::fmt`]: ../std/fmt/index.html
+/// [`fmt::Write`]: crate::fmt::Write
+/// [`io::Write`]: ../std/io/trait.Write.html
+/// [`fmt::Result`]: crate::fmt::Result
+/// [`io::Result`]: ../std/io/type.Result.html
+///
+/// # Examples
+///
+/// ```
+/// use std::io::Write;
+///
+/// fn main() -> std::io::Result<()> {
+/// let mut w = Vec::new();
+/// write!(&mut w, "test")?;
+/// write!(&mut w, "formatted {}", "arguments")?;
+///
+/// assert_eq!(w, b"testformatted arguments");
+/// Ok(())
+/// }
+/// ```
+///
+/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
+/// implementing either, as objects do not typically implement both. However, the module must
+/// import the traits qualified so their names do not conflict:
+///
+/// ```
+/// use std::fmt::Write as FmtWrite;
+/// use std::io::Write as IoWrite;
+///
+/// fn main() -> Result<(), Box<dyn std::error::Error>> {
+/// let mut s = String::new();
+/// let mut v = Vec::new();
+///
+/// write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
+/// write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
+/// assert_eq!(v, b"s = \"abc 123\"");
+/// Ok(())
+/// }
+/// ```
+///
+/// Note: This macro can be used in `no_std` setups as well.
+/// In a `no_std` setup you are responsible for the implementation details of the components.
+///
+/// ```no_run
+/// # extern crate core;
+/// use core::fmt::Write;
+///
+/// struct Example;
+///
+/// impl Write for Example {
+/// fn write_str(&mut self, _s: &str) -> core::fmt::Result {
+/// unimplemented!();
+/// }
+/// }
+///
+/// let mut m = Example{};
+/// write!(&mut m, "Hello World").expect("Not written");
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "write_macro")]
+macro_rules! write {
+ ($dst:expr, $($arg:tt)*) => {
+ $dst.write_fmt($crate::format_args!($($arg)*))
+ };
+}
+
+/// Write formatted data into a buffer, with a newline appended.
+///
+/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
+/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
+///
+/// For more information, see [`write!`]. For information on the format string syntax, see
+/// [`std::fmt`].
+///
+/// [`std::fmt`]: ../std/fmt/index.html
+///
+/// # Examples
+///
+/// ```
+/// use std::io::{Write, Result};
+///
+/// fn main() -> Result<()> {
+/// let mut w = Vec::new();
+/// writeln!(&mut w)?;
+/// writeln!(&mut w, "test")?;
+/// writeln!(&mut w, "formatted {}", "arguments")?;
+///
+/// assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
+/// Ok(())
+/// }
+/// ```
+///
+/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
+/// implementing either, as objects do not typically implement both. However, the module must
+/// import the traits qualified so their names do not conflict:
+///
+/// ```
+/// use std::fmt::Write as FmtWrite;
+/// use std::io::Write as IoWrite;
+///
+/// fn main() -> Result<(), Box<dyn std::error::Error>> {
+/// let mut s = String::new();
+/// let mut v = Vec::new();
+///
+/// writeln!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
+/// writeln!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
+/// assert_eq!(v, b"s = \"abc 123\\n\"\n");
+/// Ok(())
+/// }
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "writeln_macro")]
+#[allow_internal_unstable(format_args_nl)]
+macro_rules! writeln {
+ ($dst:expr $(,)?) => {
+ $crate::write!($dst, "\n")
+ };
+ ($dst:expr, $($arg:tt)*) => {
+ $dst.write_fmt($crate::format_args_nl!($($arg)*))
+ };
+}
+
+/// Indicates unreachable code.
+///
+/// This is useful any time that the compiler can't determine that some code is unreachable. For
+/// example:
+///
+/// * Match arms with guard conditions.
+/// * Loops that dynamically terminate.
+/// * Iterators that dynamically terminate.
+///
+/// If the determination that the code is unreachable proves incorrect, the
+/// program immediately terminates with a [`panic!`].
+///
+/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
+/// will cause undefined behavior if the code is reached.
+///
+/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
+///
+/// # Panics
+///
+/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
+/// fixed, specific message.
+///
+/// Like `panic!`, this macro has a second form for displaying custom values.
+///
+/// # Examples
+///
+/// Match arms:
+///
+/// ```
+/// # #[allow(dead_code)]
+/// fn foo(x: Option<i32>) {
+/// match x {
+/// Some(n) if n >= 0 => println!("Some(Non-negative)"),
+/// Some(n) if n < 0 => println!("Some(Negative)"),
+/// Some(_) => unreachable!(), // compile error if commented out
+/// None => println!("None")
+/// }
+/// }
+/// ```
+///
+/// Iterators:
+///
+/// ```
+/// # #[allow(dead_code)]
+/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
+/// for i in 0.. {
+/// if 3*i < i { panic!("u32 overflow"); }
+/// if x < 3*i { return i-1; }
+/// }
+/// unreachable!("The loop should always return");
+/// }
+/// ```
+#[macro_export]
+#[rustc_builtin_macro(unreachable)]
+#[allow_internal_unstable(edition_panic)]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "unreachable_macro")]
+macro_rules! unreachable {
+ // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
+ // depending on the edition of the caller.
+ ($($arg:tt)*) => {
+ /* compiler built-in */
+ };
+}
+
+/// Indicates unimplemented code by panicking with a message of "not implemented".
+///
+/// This allows your code to type-check, which is useful if you are prototyping or
+/// implementing a trait that requires multiple methods which you don't plan to use all of.
+///
+/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
+/// conveys an intent of implementing the functionality later and the message is "not yet
+/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
+/// Also some IDEs will mark `todo!`s.
+///
+/// # Panics
+///
+/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
+/// fixed, specific message.
+///
+/// Like `panic!`, this macro has a second form for displaying custom values.
+///
+/// [`todo!`]: crate::todo
+///
+/// # Examples
+///
+/// Say we have a trait `Foo`:
+///
+/// ```
+/// trait Foo {
+/// fn bar(&self) -> u8;
+/// fn baz(&self);
+/// fn qux(&self) -> Result<u64, ()>;
+/// }
+/// ```
+///
+/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
+/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
+/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
+/// to allow our code to compile.
+///
+/// We still want to have our program stop running if the unimplemented methods are
+/// reached.
+///
+/// ```
+/// # trait Foo {
+/// # fn bar(&self) -> u8;
+/// # fn baz(&self);
+/// # fn qux(&self) -> Result<u64, ()>;
+/// # }
+/// struct MyStruct;
+///
+/// impl Foo for MyStruct {
+/// fn bar(&self) -> u8 {
+/// 1 + 1
+/// }
+///
+/// fn baz(&self) {
+/// // It makes no sense to `baz` a `MyStruct`, so we have no logic here
+/// // at all.
+/// // This will display "thread 'main' panicked at 'not implemented'".
+/// unimplemented!();
+/// }
+///
+/// fn qux(&self) -> Result<u64, ()> {
+/// // We have some logic here,
+/// // We can add a message to unimplemented! to display our omission.
+/// // This will display:
+/// // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
+/// unimplemented!("MyStruct isn't quxable");
+/// }
+/// }
+///
+/// fn main() {
+/// let s = MyStruct;
+/// s.bar();
+/// }
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "unimplemented_macro")]
+#[allow_internal_unstable(core_panic)]
+macro_rules! unimplemented {
+ () => {
+ $crate::panicking::panic("not implemented")
+ };
+ ($($arg:tt)+) => {
+ $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
+ };
+}
+
+/// Indicates unfinished code.
+///
+/// This can be useful if you are prototyping and are just looking to have your
+/// code typecheck.
+///
+/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
+/// an intent of implementing the functionality later and the message is "not yet
+/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
+/// Also some IDEs will mark `todo!`s.
+///
+/// # Panics
+///
+/// This will always [`panic!`].
+///
+/// # Examples
+///
+/// Here's an example of some in-progress code. We have a trait `Foo`:
+///
+/// ```
+/// trait Foo {
+/// fn bar(&self);
+/// fn baz(&self);
+/// }
+/// ```
+///
+/// We want to implement `Foo` on one of our types, but we also want to work on
+/// just `bar()` first. In order for our code to compile, we need to implement
+/// `baz()`, so we can use `todo!`:
+///
+/// ```
+/// # trait Foo {
+/// # fn bar(&self);
+/// # fn baz(&self);
+/// # }
+/// struct MyStruct;
+///
+/// impl Foo for MyStruct {
+/// fn bar(&self) {
+/// // implementation goes here
+/// }
+///
+/// fn baz(&self) {
+/// // let's not worry about implementing baz() for now
+/// todo!();
+/// }
+/// }
+///
+/// fn main() {
+/// let s = MyStruct;
+/// s.bar();
+///
+/// // we aren't even using baz(), so this is fine.
+/// }
+/// ```
+#[macro_export]
+#[stable(feature = "todo_macro", since = "1.40.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "todo_macro")]
+#[allow_internal_unstable(core_panic)]
+macro_rules! todo {
+ () => {
+ $crate::panicking::panic("not yet implemented")
+ };
+ ($($arg:tt)+) => {
+ $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
+ };
+}
+
+/// Definitions of built-in macros.
+///
+/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
+/// with exception of expansion functions transforming macro inputs into outputs,
+/// those functions are provided by the compiler.
+pub(crate) mod builtin {
+
+ /// Causes compilation to fail with the given error message when encountered.
+ ///
+ /// This macro should be used when a crate uses a conditional compilation strategy to provide
+ /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
+ /// but emits an error during *compilation* rather than at *runtime*.
+ ///
+ /// # Examples
+ ///
+ /// Two such examples are macros and `#[cfg]` environments.
+ ///
+ /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
+ /// the compiler would still emit an error, but the error's message would not mention the two
+ /// valid values.
+ ///
+ /// ```compile_fail
+ /// macro_rules! give_me_foo_or_bar {
+ /// (foo) => {};
+ /// (bar) => {};
+ /// ($x:ident) => {
+ /// compile_error!("This macro only accepts `foo` or `bar`");
+ /// }
+ /// }
+ ///
+ /// give_me_foo_or_bar!(neither);
+ /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
+ /// ```
+ ///
+ /// Emit a compiler error if one of a number of features isn't available.
+ ///
+ /// ```compile_fail
+ /// #[cfg(not(any(feature = "foo", feature = "bar")))]
+ /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
+ /// ```
+ #[stable(feature = "compile_error_macro", since = "1.20.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "compile_error_macro")]
+ macro_rules! compile_error {
+ ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Constructs parameters for the other string-formatting macros.
+ ///
+ /// This macro functions by taking a formatting string literal containing
+ /// `{}` for each additional argument passed. `format_args!` prepares the
+ /// additional parameters to ensure the output can be interpreted as a string
+ /// and canonicalizes the arguments into a single type. Any value that implements
+ /// the [`Display`] trait can be passed to `format_args!`, as can any
+ /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
+ ///
+ /// This macro produces a value of type [`fmt::Arguments`]. This value can be
+ /// passed to the macros within [`std::fmt`] for performing useful redirection.
+ /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
+ /// proxied through this one. `format_args!`, unlike its derived macros, avoids
+ /// heap allocations.
+ ///
+ /// You can use the [`fmt::Arguments`] value that `format_args!` returns
+ /// in `Debug` and `Display` contexts as seen below. The example also shows
+ /// that `Debug` and `Display` format to the same thing: the interpolated
+ /// format string in `format_args!`.
+ ///
+ /// ```rust
+ /// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
+ /// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
+ /// assert_eq!("1 foo 2", display);
+ /// assert_eq!(display, debug);
+ /// ```
+ ///
+ /// For more information, see the documentation in [`std::fmt`].
+ ///
+ /// [`Display`]: crate::fmt::Display
+ /// [`Debug`]: crate::fmt::Debug
+ /// [`fmt::Arguments`]: crate::fmt::Arguments
+ /// [`std::fmt`]: ../std/fmt/index.html
+ /// [`format!`]: ../std/macro.format.html
+ /// [`println!`]: ../std/macro.println.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// let s = fmt::format(format_args!("hello {}", "world"));
+ /// assert_eq!(s, format!("hello {}", "world"));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "format_args_macro")]
+ #[allow_internal_unsafe]
+ #[allow_internal_unstable(fmt_internals)]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ macro_rules! format_args {
+ ($fmt:expr) => {{ /* compiler built-in */ }};
+ ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
+ }
+
+ /// Same as [`format_args`], but can be used in some const contexts.
+ ///
+ /// This macro is used by the panic macros for the `const_panic` feature.
+ ///
+ /// This macro will be removed once `format_args` is allowed in const contexts.
+ #[unstable(feature = "const_format_args", issue = "none")]
+ #[allow_internal_unstable(fmt_internals, const_fmt_arguments_new)]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ macro_rules! const_format_args {
+ ($fmt:expr) => {{ /* compiler built-in */ }};
+ ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
+ }
+
+ /// Same as [`format_args`], but adds a newline in the end.
+ #[unstable(
+ feature = "format_args_nl",
+ issue = "none",
+ reason = "`format_args_nl` is only for internal \
+ language use and is subject to change"
+ )]
+ #[allow_internal_unstable(fmt_internals)]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ macro_rules! format_args_nl {
+ ($fmt:expr) => {{ /* compiler built-in */ }};
+ ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
+ }
+
+ /// Inspects an environment variable at compile time.
+ ///
+ /// This macro will expand to the value of the named environment variable at
+ /// compile time, yielding an expression of type `&'static str`. Use
+ /// [`std::env::var`] instead if you want to read the value at runtime.
+ ///
+ /// [`std::env::var`]: ../std/env/fn.var.html
+ ///
+ /// If the environment variable is not defined, then a compilation error
+ /// will be emitted. To not emit a compile error, use the [`option_env!`]
+ /// macro instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let path: &'static str = env!("PATH");
+ /// println!("the $PATH variable at the time of compiling was: {path}");
+ /// ```
+ ///
+ /// You can customize the error message by passing a string as the second
+ /// parameter:
+ ///
+ /// ```compile_fail
+ /// let doc: &'static str = env!("documentation", "what's that?!");
+ /// ```
+ ///
+ /// If the `documentation` environment variable is not defined, you'll get
+ /// the following error:
+ ///
+ /// ```text
+ /// error: what's that?!
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "env_macro")]
+ macro_rules! env {
+ ($name:expr $(,)?) => {{ /* compiler built-in */ }};
+ ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Optionally inspects an environment variable at compile time.
+ ///
+ /// If the named environment variable is present at compile time, this will
+ /// expand into an expression of type `Option<&'static str>` whose value is
+ /// `Some` of the value of the environment variable. If the environment
+ /// variable is not present, then this will expand to `None`. See
+ /// [`Option<T>`][Option] for more information on this type. Use
+ /// [`std::env::var`] instead if you want to read the value at runtime.
+ ///
+ /// [`std::env::var`]: ../std/env/fn.var.html
+ ///
+ /// A compile time error is never emitted when using this macro regardless
+ /// of whether the environment variable is present or not.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let key: Option<&'static str> = option_env!("SECRET_KEY");
+ /// println!("the secret key might be: {key:?}");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "option_env_macro")]
+ macro_rules! option_env {
+ ($name:expr $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Concatenates identifiers into one identifier.
+ ///
+ /// This macro takes any number of comma-separated identifiers, and
+ /// concatenates them all into one, yielding an expression which is a new
+ /// identifier. Note that hygiene makes it such that this macro cannot
+ /// capture local variables. Also, as a general rule, macros are only
+ /// allowed in item, statement or expression position. That means while
+ /// you may use this macro for referring to existing variables, functions or
+ /// modules etc, you cannot define a new one with it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(concat_idents)]
+ ///
+ /// # fn main() {
+ /// fn foobar() -> u32 { 23 }
+ ///
+ /// let f = concat_idents!(foo, bar);
+ /// println!("{}", f());
+ ///
+ /// // fn concat_idents!(new, fun, name) { } // not usable in this way!
+ /// # }
+ /// ```
+ #[unstable(
+ feature = "concat_idents",
+ issue = "29599",
+ reason = "`concat_idents` is not stable enough for use and is subject to change"
+ )]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ macro_rules! concat_idents {
+ ($($e:ident),+ $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Concatenates literals into a byte slice.
+ ///
+ /// This macro takes any number of comma-separated literals, and concatenates them all into
+ /// one, yielding an expression of type `&[u8, _]`, which represents all of the literals
+ /// concatenated left-to-right. The literals passed can be any combination of:
+ ///
+ /// - byte literals (`b'r'`)
+ /// - byte strings (`b"Rust"`)
+ /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(concat_bytes)]
+ ///
+ /// # fn main() {
+ /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
+ /// assert_eq!(s, b"ABCDEF");
+ /// # }
+ /// ```
+ #[unstable(feature = "concat_bytes", issue = "87555")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ macro_rules! concat_bytes {
+ ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Concatenates literals into a static string slice.
+ ///
+ /// This macro takes any number of comma-separated literals, yielding an
+ /// expression of type `&'static str` which represents all of the literals
+ /// concatenated left-to-right.
+ ///
+ /// Integer and floating point literals are stringified in order to be
+ /// concatenated.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s = concat!("test", 10, 'b', true);
+ /// assert_eq!(s, "test10btrue");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "concat_macro")]
+ macro_rules! concat {
+ ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Expands to the line number on which it was invoked.
+ ///
+ /// With [`column!`] and [`file!`], these macros provide debugging information for
+ /// developers about the location within the source.
+ ///
+ /// The expanded expression has type `u32` and is 1-based, so the first line
+ /// in each file evaluates to 1, the second to 2, etc. This is consistent
+ /// with error messages by common compilers or popular editors.
+ /// The returned line is *not necessarily* the line of the `line!` invocation itself,
+ /// but rather the first macro invocation leading up to the invocation
+ /// of the `line!` macro.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let current_line = line!();
+ /// println!("defined on line: {current_line}");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "line_macro")]
+ macro_rules! line {
+ () => {
+ /* compiler built-in */
+ };
+ }
+
+ /// Expands to the column number at which it was invoked.
+ ///
+ /// With [`line!`] and [`file!`], these macros provide debugging information for
+ /// developers about the location within the source.
+ ///
+ /// The expanded expression has type `u32` and is 1-based, so the first column
+ /// in each line evaluates to 1, the second to 2, etc. This is consistent
+ /// with error messages by common compilers or popular editors.
+ /// The returned column is *not necessarily* the line of the `column!` invocation itself,
+ /// but rather the first macro invocation leading up to the invocation
+ /// of the `column!` macro.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let current_col = column!();
+ /// println!("defined on column: {current_col}");
+ /// ```
+ ///
+ /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
+ /// invocations return the same value, but the third does not.
+ ///
+ /// ```
+ /// let a = ("foobar", column!()).1;
+ /// let b = ("人之初性本善", column!()).1;
+ /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
+ ///
+ /// assert_eq!(a, b);
+ /// assert_ne!(b, c);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "column_macro")]
+ macro_rules! column {
+ () => {
+ /* compiler built-in */
+ };
+ }
+
+ /// Expands to the file name in which it was invoked.
+ ///
+ /// With [`line!`] and [`column!`], these macros provide debugging information for
+ /// developers about the location within the source.
+ ///
+ /// The expanded expression has type `&'static str`, and the returned file
+ /// is not the invocation of the `file!` macro itself, but rather the
+ /// first macro invocation leading up to the invocation of the `file!`
+ /// macro.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let this_file = file!();
+ /// println!("defined in file: {this_file}");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "file_macro")]
+ macro_rules! file {
+ () => {
+ /* compiler built-in */
+ };
+ }
+
+ /// Stringifies its arguments.
+ ///
+ /// This macro will yield an expression of type `&'static str` which is the
+ /// stringification of all the tokens passed to the macro. No restrictions
+ /// are placed on the syntax of the macro invocation itself.
+ ///
+ /// Note that the expanded results of the input tokens may change in the
+ /// future. You should be careful if you rely on the output.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let one_plus_one = stringify!(1 + 1);
+ /// assert_eq!(one_plus_one, "1 + 1");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "stringify_macro")]
+ macro_rules! stringify {
+ ($($t:tt)*) => {
+ /* compiler built-in */
+ };
+ }
+
+ /// Includes a UTF-8 encoded file as a string.
+ ///
+ /// The file is located relative to the current file (similarly to how
+ /// modules are found). The provided path is interpreted in a platform-specific
+ /// way at compile time. So, for instance, an invocation with a Windows path
+ /// containing backslashes `\` would not compile correctly on Unix.
+ ///
+ /// This macro will yield an expression of type `&'static str` which is the
+ /// contents of the file.
+ ///
+ /// # Examples
+ ///
+ /// Assume there are two files in the same directory with the following
+ /// contents:
+ ///
+ /// File 'spanish.in':
+ ///
+ /// ```text
+ /// adiós
+ /// ```
+ ///
+ /// File 'main.rs':
+ ///
+ /// ```ignore (cannot-doctest-external-file-dependency)
+ /// fn main() {
+ /// let my_str = include_str!("spanish.in");
+ /// assert_eq!(my_str, "adiós\n");
+ /// print!("{my_str}");
+ /// }
+ /// ```
+ ///
+ /// Compiling 'main.rs' and running the resulting binary will print "adiós".
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "include_str_macro")]
+ macro_rules! include_str {
+ ($file:expr $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Includes a file as a reference to a byte array.
+ ///
+ /// The file is located relative to the current file (similarly to how
+ /// modules are found). The provided path is interpreted in a platform-specific
+ /// way at compile time. So, for instance, an invocation with a Windows path
+ /// containing backslashes `\` would not compile correctly on Unix.
+ ///
+ /// This macro will yield an expression of type `&'static [u8; N]` which is
+ /// the contents of the file.
+ ///
+ /// # Examples
+ ///
+ /// Assume there are two files in the same directory with the following
+ /// contents:
+ ///
+ /// File 'spanish.in':
+ ///
+ /// ```text
+ /// adiós
+ /// ```
+ ///
+ /// File 'main.rs':
+ ///
+ /// ```ignore (cannot-doctest-external-file-dependency)
+ /// fn main() {
+ /// let bytes = include_bytes!("spanish.in");
+ /// assert_eq!(bytes, b"adi\xc3\xb3s\n");
+ /// print!("{}", String::from_utf8_lossy(bytes));
+ /// }
+ /// ```
+ ///
+ /// Compiling 'main.rs' and running the resulting binary will print "adiós".
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "include_bytes_macro")]
+ macro_rules! include_bytes {
+ ($file:expr $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Expands to a string that represents the current module path.
+ ///
+ /// The current module path can be thought of as the hierarchy of modules
+ /// leading back up to the crate root. The first component of the path
+ /// returned is the name of the crate currently being compiled.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// mod test {
+ /// pub fn foo() {
+ /// assert!(module_path!().ends_with("test"));
+ /// }
+ /// }
+ ///
+ /// test::foo();
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "module_path_macro")]
+ macro_rules! module_path {
+ () => {
+ /* compiler built-in */
+ };
+ }
+
+ /// Evaluates boolean combinations of configuration flags at compile-time.
+ ///
+ /// In addition to the `#[cfg]` attribute, this macro is provided to allow
+ /// boolean expression evaluation of configuration flags. This frequently
+ /// leads to less duplicated code.
+ ///
+ /// The syntax given to this macro is the same syntax as the [`cfg`]
+ /// attribute.
+ ///
+ /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
+ /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
+ /// the condition, regardless of what `cfg!` is evaluating.
+ ///
+ /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let my_directory = if cfg!(windows) {
+ /// "windows-specific-directory"
+ /// } else {
+ /// "unix-directory"
+ /// };
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "cfg_macro")]
+ macro_rules! cfg {
+ ($($cfg:tt)*) => {
+ /* compiler built-in */
+ };
+ }
+
+ /// Parses a file as an expression or an item according to the context.
+ ///
+ /// The file is located relative to the current file (similarly to how
+ /// modules are found). The provided path is interpreted in a platform-specific
+ /// way at compile time. So, for instance, an invocation with a Windows path
+ /// containing backslashes `\` would not compile correctly on Unix.
+ ///
+ /// Using this macro is often a bad idea, because if the file is
+ /// parsed as an expression, it is going to be placed in the
+ /// surrounding code unhygienically. This could result in variables
+ /// or functions being different from what the file expected if
+ /// there are variables or functions that have the same name in
+ /// the current file.
+ ///
+ /// # Examples
+ ///
+ /// Assume there are two files in the same directory with the following
+ /// contents:
+ ///
+ /// File 'monkeys.in':
+ ///
+ /// ```ignore (only-for-syntax-highlight)
+ /// ['🙈', '🙊', '🙉']
+ /// .iter()
+ /// .cycle()
+ /// .take(6)
+ /// .collect::<String>()
+ /// ```
+ ///
+ /// File 'main.rs':
+ ///
+ /// ```ignore (cannot-doctest-external-file-dependency)
+ /// fn main() {
+ /// let my_string = include!("monkeys.in");
+ /// assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
+ /// println!("{my_string}");
+ /// }
+ /// ```
+ ///
+ /// Compiling 'main.rs' and running the resulting binary will print
+ /// "🙈🙊🙉🙈🙊🙉".
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "include_macro")]
+ macro_rules! include {
+ ($file:expr $(,)?) => {{ /* compiler built-in */ }};
+ }
+
+ /// Asserts that a boolean expression is `true` at runtime.
+ ///
+ /// This will invoke the [`panic!`] macro if the provided expression cannot be
+ /// evaluated to `true` at runtime.
+ ///
+ /// # Uses
+ ///
+ /// Assertions are always checked in both debug and release builds, and cannot
+ /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
+ /// release builds by default.
+ ///
+ /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
+ /// violated could lead to unsafety.
+ ///
+ /// Other use-cases of `assert!` include testing and enforcing run-time
+ /// invariants in safe code (whose violation cannot result in unsafety).
+ ///
+ /// # Custom Messages
+ ///
+ /// This macro has a second form, where a custom panic message can
+ /// be provided with or without arguments for formatting. See [`std::fmt`]
+ /// for syntax for this form. Expressions used as format arguments will only
+ /// be evaluated if the assertion fails.
+ ///
+ /// [`std::fmt`]: ../std/fmt/index.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// // the panic message for these assertions is the stringified value of the
+ /// // expression given.
+ /// assert!(true);
+ ///
+ /// fn some_computation() -> bool { true } // a very simple function
+ ///
+ /// assert!(some_computation());
+ ///
+ /// // assert with a custom message
+ /// let x = true;
+ /// assert!(x, "x wasn't true!");
+ ///
+ /// let a = 3; let b = 27;
+ /// assert!(a + b == 30, "a = {}, b = {}", a, b);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ #[rustc_diagnostic_item = "assert_macro"]
+ #[allow_internal_unstable(core_panic, edition_panic)]
+ macro_rules! assert {
+ ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
+ ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
+ }
+
+ /// Prints passed tokens into the standard output.
+ #[unstable(
+ feature = "log_syntax",
+ issue = "29598",
+ reason = "`log_syntax!` is not stable enough for use and is subject to change"
+ )]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ macro_rules! log_syntax {
+ ($($arg:tt)*) => {
+ /* compiler built-in */
+ };
+ }
+
+ /// Enables or disables tracing functionality used for debugging other macros.
+ #[unstable(
+ feature = "trace_macros",
+ issue = "29598",
+ reason = "`trace_macros` is not stable enough for use and is subject to change"
+ )]
+ #[rustc_builtin_macro]
+ #[macro_export]
+ macro_rules! trace_macros {
+ (true) => {{ /* compiler built-in */ }};
+ (false) => {{ /* compiler built-in */ }};
+ }
+
+ /// Attribute macro used to apply derive macros.
+ ///
+ /// See [the reference] for more info.
+ ///
+ /// [the reference]: ../../../reference/attributes/derive.html
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_builtin_macro]
+ pub macro derive($item:item) {
+ /* compiler built-in */
+ }
+
+ /// Attribute macro applied to a function to turn it into a unit test.
+ ///
+ /// See [the reference] for more info.
+ ///
+ /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[allow_internal_unstable(test, rustc_attrs)]
+ #[rustc_builtin_macro]
+ pub macro test($item:item) {
+ /* compiler built-in */
+ }
+
+ /// Attribute macro applied to a function to turn it into a benchmark test.
+ #[unstable(
+ feature = "test",
+ issue = "50297",
+ soft,
+ reason = "`bench` is a part of custom test frameworks which are unstable"
+ )]
+ #[allow_internal_unstable(test, rustc_attrs)]
+ #[rustc_builtin_macro]
+ pub macro bench($item:item) {
+ /* compiler built-in */
+ }
+
+ /// An implementation detail of the `#[test]` and `#[bench]` macros.
+ #[unstable(
+ feature = "custom_test_frameworks",
+ issue = "50297",
+ reason = "custom test frameworks are an unstable feature"
+ )]
+ #[allow_internal_unstable(test, rustc_attrs)]
+ #[rustc_builtin_macro]
+ pub macro test_case($item:item) {
+ /* compiler built-in */
+ }
+
+ /// Attribute macro applied to a static to register it as a global allocator.
+ ///
+ /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
+ #[stable(feature = "global_allocator", since = "1.28.0")]
+ #[allow_internal_unstable(rustc_attrs)]
+ #[rustc_builtin_macro]
+ pub macro global_allocator($item:item) {
+ /* compiler built-in */
+ }
+
+ /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
+ #[unstable(
+ feature = "cfg_accessible",
+ issue = "64797",
+ reason = "`cfg_accessible` is not fully implemented"
+ )]
+ #[rustc_builtin_macro]
+ pub macro cfg_accessible($item:item) {
+ /* compiler built-in */
+ }
+
+ /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
+ #[unstable(
+ feature = "cfg_eval",
+ issue = "82679",
+ reason = "`cfg_eval` is a recently implemented feature"
+ )]
+ #[rustc_builtin_macro]
+ pub macro cfg_eval($($tt:tt)*) {
+ /* compiler built-in */
+ }
+
+ /// Unstable implementation detail of the `rustc` compiler, do not use.
+ #[rustc_builtin_macro]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[allow_internal_unstable(core_intrinsics, libstd_sys_internals, rt)]
+ #[deprecated(since = "1.52.0", note = "rustc-serialize is deprecated and no longer supported")]
+ #[doc(hidden)] // While technically stable, using it is unstable, and deprecated. Hide it.
+ pub macro RustcDecodable($item:item) {
+ /* compiler built-in */
+ }
+
+ /// Unstable implementation detail of the `rustc` compiler, do not use.
+ #[rustc_builtin_macro]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[allow_internal_unstable(core_intrinsics, rt)]
+ #[deprecated(since = "1.52.0", note = "rustc-serialize is deprecated and no longer supported")]
+ #[doc(hidden)] // While technically stable, using it is unstable, and deprecated. Hide it.
+ pub macro RustcEncodable($item:item) {
+ /* compiler built-in */
+ }
+}