summaryrefslogtreecommitdiffstats
path: root/library/core/src/num/dec2flt/slow.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/num/dec2flt/slow.rs')
-rw-r--r--library/core/src/num/dec2flt/slow.rs109
1 files changed, 109 insertions, 0 deletions
diff --git a/library/core/src/num/dec2flt/slow.rs b/library/core/src/num/dec2flt/slow.rs
new file mode 100644
index 000000000..bf1044033
--- /dev/null
+++ b/library/core/src/num/dec2flt/slow.rs
@@ -0,0 +1,109 @@
+//! Slow, fallback algorithm for cases the Eisel-Lemire algorithm cannot round.
+
+use crate::num::dec2flt::common::BiasedFp;
+use crate::num::dec2flt::decimal::{parse_decimal, Decimal};
+use crate::num::dec2flt::float::RawFloat;
+
+/// Parse the significant digits and biased, binary exponent of a float.
+///
+/// This is a fallback algorithm that uses a big-integer representation
+/// of the float, and therefore is considerably slower than faster
+/// approximations. However, it will always determine how to round
+/// the significant digits to the nearest machine float, allowing
+/// use to handle near half-way cases.
+///
+/// Near half-way cases are halfway between two consecutive machine floats.
+/// For example, the float `16777217.0` has a bitwise representation of
+/// `100000000000000000000000 1`. Rounding to a single-precision float,
+/// the trailing `1` is truncated. Using round-nearest, tie-even, any
+/// value above `16777217.0` must be rounded up to `16777218.0`, while
+/// any value before or equal to `16777217.0` must be rounded down
+/// to `16777216.0`. These near-halfway conversions therefore may require
+/// a large number of digits to unambiguously determine how to round.
+///
+/// The algorithms described here are based on "Processing Long Numbers Quickly",
+/// available here: <https://arxiv.org/pdf/2101.11408.pdf#section.11>.
+pub(crate) fn parse_long_mantissa<F: RawFloat>(s: &[u8]) -> BiasedFp {
+ const MAX_SHIFT: usize = 60;
+ const NUM_POWERS: usize = 19;
+ const POWERS: [u8; 19] =
+ [0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59];
+
+ let get_shift = |n| {
+ if n < NUM_POWERS { POWERS[n] as usize } else { MAX_SHIFT }
+ };
+
+ let fp_zero = BiasedFp::zero_pow2(0);
+ let fp_inf = BiasedFp::zero_pow2(F::INFINITE_POWER);
+
+ let mut d = parse_decimal(s);
+
+ // Short-circuit if the value can only be a literal 0 or infinity.
+ if d.num_digits == 0 || d.decimal_point < -324 {
+ return fp_zero;
+ } else if d.decimal_point >= 310 {
+ return fp_inf;
+ }
+ let mut exp2 = 0_i32;
+ // Shift right toward (1/2 ... 1].
+ while d.decimal_point > 0 {
+ let n = d.decimal_point as usize;
+ let shift = get_shift(n);
+ d.right_shift(shift);
+ if d.decimal_point < -Decimal::DECIMAL_POINT_RANGE {
+ return fp_zero;
+ }
+ exp2 += shift as i32;
+ }
+ // Shift left toward (1/2 ... 1].
+ while d.decimal_point <= 0 {
+ let shift = if d.decimal_point == 0 {
+ match d.digits[0] {
+ digit if digit >= 5 => break,
+ 0 | 1 => 2,
+ _ => 1,
+ }
+ } else {
+ get_shift((-d.decimal_point) as _)
+ };
+ d.left_shift(shift);
+ if d.decimal_point > Decimal::DECIMAL_POINT_RANGE {
+ return fp_inf;
+ }
+ exp2 -= shift as i32;
+ }
+ // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2].
+ exp2 -= 1;
+ while (F::MINIMUM_EXPONENT + 1) > exp2 {
+ let mut n = ((F::MINIMUM_EXPONENT + 1) - exp2) as usize;
+ if n > MAX_SHIFT {
+ n = MAX_SHIFT;
+ }
+ d.right_shift(n);
+ exp2 += n as i32;
+ }
+ if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
+ return fp_inf;
+ }
+ // Shift the decimal to the hidden bit, and then round the value
+ // to get the high mantissa+1 bits.
+ d.left_shift(F::MANTISSA_EXPLICIT_BITS + 1);
+ let mut mantissa = d.round();
+ if mantissa >= (1_u64 << (F::MANTISSA_EXPLICIT_BITS + 1)) {
+ // Rounding up overflowed to the carry bit, need to
+ // shift back to the hidden bit.
+ d.right_shift(1);
+ exp2 += 1;
+ mantissa = d.round();
+ if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
+ return fp_inf;
+ }
+ }
+ let mut power2 = exp2 - F::MINIMUM_EXPONENT;
+ if mantissa < (1_u64 << F::MANTISSA_EXPLICIT_BITS) {
+ power2 -= 1;
+ }
+ // Zero out all the bits above the explicit mantissa bits.
+ mantissa &= (1_u64 << F::MANTISSA_EXPLICIT_BITS) - 1;
+ BiasedFp { f: mantissa, e: power2 }
+}