summaryrefslogtreecommitdiffstats
path: root/library/core/src/num/f64.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/num/f64.rs')
-rw-r--r--library/core/src/num/f64.rs1294
1 files changed, 1294 insertions, 0 deletions
diff --git a/library/core/src/num/f64.rs b/library/core/src/num/f64.rs
new file mode 100644
index 000000000..75c92c2f8
--- /dev/null
+++ b/library/core/src/num/f64.rs
@@ -0,0 +1,1294 @@
+//! Constants specific to the `f64` double-precision floating point type.
+//!
+//! *[See also the `f64` primitive type][f64].*
+//!
+//! Mathematically significant numbers are provided in the `consts` sub-module.
+//!
+//! For the constants defined directly in this module
+//! (as distinct from those defined in the `consts` sub-module),
+//! new code should instead use the associated constants
+//! defined directly on the `f64` type.
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+use crate::convert::FloatToInt;
+#[cfg(not(test))]
+use crate::intrinsics;
+use crate::mem;
+use crate::num::FpCategory;
+
+/// The radix or base of the internal representation of `f64`.
+/// Use [`f64::RADIX`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let r = std::f64::RADIX;
+///
+/// // intended way
+/// let r = f64::RADIX;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
+pub const RADIX: u32 = f64::RADIX;
+
+/// Number of significant digits in base 2.
+/// Use [`f64::MANTISSA_DIGITS`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let d = std::f64::MANTISSA_DIGITS;
+///
+/// // intended way
+/// let d = f64::MANTISSA_DIGITS;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(
+ since = "TBD",
+ note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
+)]
+pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
+
+/// Approximate number of significant digits in base 10.
+/// Use [`f64::DIGITS`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let d = std::f64::DIGITS;
+///
+/// // intended way
+/// let d = f64::DIGITS;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
+pub const DIGITS: u32 = f64::DIGITS;
+
+/// [Machine epsilon] value for `f64`.
+/// Use [`f64::EPSILON`] instead.
+///
+/// This is the difference between `1.0` and the next larger representable number.
+///
+/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let e = std::f64::EPSILON;
+///
+/// // intended way
+/// let e = f64::EPSILON;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
+pub const EPSILON: f64 = f64::EPSILON;
+
+/// Smallest finite `f64` value.
+/// Use [`f64::MIN`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let min = std::f64::MIN;
+///
+/// // intended way
+/// let min = f64::MIN;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
+pub const MIN: f64 = f64::MIN;
+
+/// Smallest positive normal `f64` value.
+/// Use [`f64::MIN_POSITIVE`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let min = std::f64::MIN_POSITIVE;
+///
+/// // intended way
+/// let min = f64::MIN_POSITIVE;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
+pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
+
+/// Largest finite `f64` value.
+/// Use [`f64::MAX`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let max = std::f64::MAX;
+///
+/// // intended way
+/// let max = f64::MAX;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
+pub const MAX: f64 = f64::MAX;
+
+/// One greater than the minimum possible normal power of 2 exponent.
+/// Use [`f64::MIN_EXP`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let min = std::f64::MIN_EXP;
+///
+/// // intended way
+/// let min = f64::MIN_EXP;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
+pub const MIN_EXP: i32 = f64::MIN_EXP;
+
+/// Maximum possible power of 2 exponent.
+/// Use [`f64::MAX_EXP`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let max = std::f64::MAX_EXP;
+///
+/// // intended way
+/// let max = f64::MAX_EXP;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
+pub const MAX_EXP: i32 = f64::MAX_EXP;
+
+/// Minimum possible normal power of 10 exponent.
+/// Use [`f64::MIN_10_EXP`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let min = std::f64::MIN_10_EXP;
+///
+/// // intended way
+/// let min = f64::MIN_10_EXP;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
+pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
+
+/// Maximum possible power of 10 exponent.
+/// Use [`f64::MAX_10_EXP`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let max = std::f64::MAX_10_EXP;
+///
+/// // intended way
+/// let max = f64::MAX_10_EXP;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
+pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
+
+/// Not a Number (NaN).
+/// Use [`f64::NAN`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let nan = std::f64::NAN;
+///
+/// // intended way
+/// let nan = f64::NAN;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
+pub const NAN: f64 = f64::NAN;
+
+/// Infinity (∞).
+/// Use [`f64::INFINITY`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let inf = std::f64::INFINITY;
+///
+/// // intended way
+/// let inf = f64::INFINITY;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
+pub const INFINITY: f64 = f64::INFINITY;
+
+/// Negative infinity (−∞).
+/// Use [`f64::NEG_INFINITY`] instead.
+///
+/// # Examples
+///
+/// ```rust
+/// // deprecated way
+/// # #[allow(deprecated, deprecated_in_future)]
+/// let ninf = std::f64::NEG_INFINITY;
+///
+/// // intended way
+/// let ninf = f64::NEG_INFINITY;
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
+pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
+
+/// Basic mathematical constants.
+#[stable(feature = "rust1", since = "1.0.0")]
+pub mod consts {
+ // FIXME: replace with mathematical constants from cmath.
+
+ /// Archimedes' constant (π)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
+
+ /// The full circle constant (τ)
+ ///
+ /// Equal to 2π.
+ #[stable(feature = "tau_constant", since = "1.47.0")]
+ pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
+
+ /// π/2
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
+
+ /// π/3
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
+
+ /// π/4
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
+
+ /// π/6
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
+
+ /// π/8
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
+
+ /// 1/π
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
+
+ /// 2/π
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
+
+ /// 2/sqrt(π)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
+
+ /// sqrt(2)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
+
+ /// 1/sqrt(2)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
+
+ /// Euler's number (e)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const E: f64 = 2.71828182845904523536028747135266250_f64;
+
+ /// log<sub>2</sub>(10)
+ #[stable(feature = "extra_log_consts", since = "1.43.0")]
+ pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
+
+ /// log<sub>2</sub>(e)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
+
+ /// log<sub>10</sub>(2)
+ #[stable(feature = "extra_log_consts", since = "1.43.0")]
+ pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
+
+ /// log<sub>10</sub>(e)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
+
+ /// ln(2)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
+
+ /// ln(10)
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
+}
+
+#[cfg(not(test))]
+impl f64 {
+ /// The radix or base of the internal representation of `f64`.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const RADIX: u32 = 2;
+
+ /// Number of significant digits in base 2.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MANTISSA_DIGITS: u32 = 53;
+ /// Approximate number of significant digits in base 10.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const DIGITS: u32 = 15;
+
+ /// [Machine epsilon] value for `f64`.
+ ///
+ /// This is the difference between `1.0` and the next larger representable number.
+ ///
+ /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
+
+ /// Smallest finite `f64` value.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MIN: f64 = -1.7976931348623157e+308_f64;
+ /// Smallest positive normal `f64` value.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
+ /// Largest finite `f64` value.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MAX: f64 = 1.7976931348623157e+308_f64;
+
+ /// One greater than the minimum possible normal power of 2 exponent.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MIN_EXP: i32 = -1021;
+ /// Maximum possible power of 2 exponent.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MAX_EXP: i32 = 1024;
+
+ /// Minimum possible normal power of 10 exponent.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MIN_10_EXP: i32 = -307;
+ /// Maximum possible power of 10 exponent.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const MAX_10_EXP: i32 = 308;
+
+ /// Not a Number (NaN).
+ ///
+ /// Note that IEEE-745 doesn't define just a single NaN value;
+ /// a plethora of bit patterns are considered to be NaN.
+ /// Furthermore, the standard makes a difference
+ /// between a "signaling" and a "quiet" NaN,
+ /// and allows inspecting its "payload" (the unspecified bits in the bit pattern).
+ /// This constant isn't guaranteed to equal to any specific NaN bitpattern,
+ /// and the stability of its representation over Rust versions
+ /// and target platforms isn't guaranteed.
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const NAN: f64 = 0.0_f64 / 0.0_f64;
+ /// Infinity (∞).
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
+ /// Negative infinity (−∞).
+ #[stable(feature = "assoc_int_consts", since = "1.43.0")]
+ pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
+
+ /// Returns `true` if this value is NaN.
+ ///
+ /// ```
+ /// let nan = f64::NAN;
+ /// let f = 7.0_f64;
+ ///
+ /// assert!(nan.is_nan());
+ /// assert!(!f.is_nan());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ #[inline]
+ pub const fn is_nan(self) -> bool {
+ self != self
+ }
+
+ // FIXME(#50145): `abs` is publicly unavailable in libcore due to
+ // concerns about portability, so this implementation is for
+ // private use internally.
+ #[inline]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ pub(crate) const fn abs_private(self) -> f64 {
+ // SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
+ unsafe {
+ mem::transmute::<u64, f64>(mem::transmute::<f64, u64>(self) & 0x7fff_ffff_ffff_ffff)
+ }
+ }
+
+ /// Returns `true` if this value is positive infinity or negative infinity, and
+ /// `false` otherwise.
+ ///
+ /// ```
+ /// let f = 7.0f64;
+ /// let inf = f64::INFINITY;
+ /// let neg_inf = f64::NEG_INFINITY;
+ /// let nan = f64::NAN;
+ ///
+ /// assert!(!f.is_infinite());
+ /// assert!(!nan.is_infinite());
+ ///
+ /// assert!(inf.is_infinite());
+ /// assert!(neg_inf.is_infinite());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ #[inline]
+ pub const fn is_infinite(self) -> bool {
+ // Getting clever with transmutation can result in incorrect answers on some FPUs
+ // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
+ // See https://github.com/rust-lang/rust/issues/72327
+ (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
+ }
+
+ /// Returns `true` if this number is neither infinite nor NaN.
+ ///
+ /// ```
+ /// let f = 7.0f64;
+ /// let inf: f64 = f64::INFINITY;
+ /// let neg_inf: f64 = f64::NEG_INFINITY;
+ /// let nan: f64 = f64::NAN;
+ ///
+ /// assert!(f.is_finite());
+ ///
+ /// assert!(!nan.is_finite());
+ /// assert!(!inf.is_finite());
+ /// assert!(!neg_inf.is_finite());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ #[inline]
+ pub const fn is_finite(self) -> bool {
+ // There's no need to handle NaN separately: if self is NaN,
+ // the comparison is not true, exactly as desired.
+ self.abs_private() < Self::INFINITY
+ }
+
+ /// Returns `true` if the number is [subnormal].
+ ///
+ /// ```
+ /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
+ /// let max = f64::MAX;
+ /// let lower_than_min = 1.0e-308_f64;
+ /// let zero = 0.0_f64;
+ ///
+ /// assert!(!min.is_subnormal());
+ /// assert!(!max.is_subnormal());
+ ///
+ /// assert!(!zero.is_subnormal());
+ /// assert!(!f64::NAN.is_subnormal());
+ /// assert!(!f64::INFINITY.is_subnormal());
+ /// // Values between `0` and `min` are Subnormal.
+ /// assert!(lower_than_min.is_subnormal());
+ /// ```
+ /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
+ #[must_use]
+ #[stable(feature = "is_subnormal", since = "1.53.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ #[inline]
+ pub const fn is_subnormal(self) -> bool {
+ matches!(self.classify(), FpCategory::Subnormal)
+ }
+
+ /// Returns `true` if the number is neither zero, infinite,
+ /// [subnormal], or NaN.
+ ///
+ /// ```
+ /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
+ /// let max = f64::MAX;
+ /// let lower_than_min = 1.0e-308_f64;
+ /// let zero = 0.0f64;
+ ///
+ /// assert!(min.is_normal());
+ /// assert!(max.is_normal());
+ ///
+ /// assert!(!zero.is_normal());
+ /// assert!(!f64::NAN.is_normal());
+ /// assert!(!f64::INFINITY.is_normal());
+ /// // Values between `0` and `min` are Subnormal.
+ /// assert!(!lower_than_min.is_normal());
+ /// ```
+ /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ #[inline]
+ pub const fn is_normal(self) -> bool {
+ matches!(self.classify(), FpCategory::Normal)
+ }
+
+ /// Returns the floating point category of the number. If only one property
+ /// is going to be tested, it is generally faster to use the specific
+ /// predicate instead.
+ ///
+ /// ```
+ /// use std::num::FpCategory;
+ ///
+ /// let num = 12.4_f64;
+ /// let inf = f64::INFINITY;
+ ///
+ /// assert_eq!(num.classify(), FpCategory::Normal);
+ /// assert_eq!(inf.classify(), FpCategory::Infinite);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ pub const fn classify(self) -> FpCategory {
+ // A previous implementation tried to only use bitmask-based checks,
+ // using f64::to_bits to transmute the float to its bit repr and match on that.
+ // Unfortunately, floating point numbers can be much worse than that.
+ // This also needs to not result in recursive evaluations of f64::to_bits.
+ //
+ // On some processors, in some cases, LLVM will "helpfully" lower floating point ops,
+ // in spite of a request for them using f32 and f64, to things like x87 operations.
+ // These have an f64's mantissa, but can have a larger than normal exponent.
+ // FIXME(jubilee): Using x87 operations is never necessary in order to function
+ // on x86 processors for Rust-to-Rust calls, so this issue should not happen.
+ // Code generation should be adjusted to use non-C calling conventions, avoiding this.
+ //
+ // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask.
+ // And it may not be NaN, as it can simply be an "overextended" finite value.
+ if self.is_nan() {
+ FpCategory::Nan
+ } else {
+ // However, std can't simply compare to zero to check for zero, either,
+ // as correctness requires avoiding equality tests that may be Subnormal == -0.0
+ // because it may be wrong under "denormals are zero" and "flush to zero" modes.
+ // Most of std's targets don't use those, but they are used for thumbv7neon.
+ // So, this does use bitpattern matching for the rest.
+
+ // SAFETY: f64 to u64 is fine. Usually.
+ // If control flow has gotten this far, the value is definitely in one of the categories
+ // that f64::partial_classify can correctly analyze.
+ unsafe { f64::partial_classify(self) }
+ }
+ }
+
+ // This doesn't actually return a right answer for NaN on purpose,
+ // seeing as how it cannot correctly discern between a floating point NaN,
+ // and some normal floating point numbers truncated from an x87 FPU.
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ const unsafe fn partial_classify(self) -> FpCategory {
+ const EXP_MASK: u64 = 0x7ff0000000000000;
+ const MAN_MASK: u64 = 0x000fffffffffffff;
+
+ // SAFETY: The caller is not asking questions for which this will tell lies.
+ let b = unsafe { mem::transmute::<f64, u64>(self) };
+ match (b & MAN_MASK, b & EXP_MASK) {
+ (0, EXP_MASK) => FpCategory::Infinite,
+ (0, 0) => FpCategory::Zero,
+ (_, 0) => FpCategory::Subnormal,
+ _ => FpCategory::Normal,
+ }
+ }
+
+ // This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
+ // FIXME(jubilee): In a just world, this would be the entire impl for classify,
+ // plus a transmute. We do not live in a just world, but we can make it more so.
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ const fn classify_bits(b: u64) -> FpCategory {
+ const EXP_MASK: u64 = 0x7ff0000000000000;
+ const MAN_MASK: u64 = 0x000fffffffffffff;
+
+ match (b & MAN_MASK, b & EXP_MASK) {
+ (0, EXP_MASK) => FpCategory::Infinite,
+ (_, EXP_MASK) => FpCategory::Nan,
+ (0, 0) => FpCategory::Zero,
+ (_, 0) => FpCategory::Subnormal,
+ _ => FpCategory::Normal,
+ }
+ }
+
+ /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
+ /// positive sign bit and positive infinity. Note that IEEE-745 doesn't assign any
+ /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
+ /// the bit pattern of NaNs are conserved over arithmetic operations, the result of
+ /// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
+ /// See [explanation of NaN as a special value](f32) for more info.
+ ///
+ /// ```
+ /// let f = 7.0_f64;
+ /// let g = -7.0_f64;
+ ///
+ /// assert!(f.is_sign_positive());
+ /// assert!(!g.is_sign_positive());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ #[inline]
+ pub const fn is_sign_positive(self) -> bool {
+ !self.is_sign_negative()
+ }
+
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
+ #[inline]
+ #[doc(hidden)]
+ pub fn is_positive(self) -> bool {
+ self.is_sign_positive()
+ }
+
+ /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
+ /// negative sign bit and negative infinity. Note that IEEE-745 doesn't assign any
+ /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
+ /// the bit pattern of NaNs are conserved over arithmetic operations, the result of
+ /// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
+ /// See [explanation of NaN as a special value](f32) for more info.
+ ///
+ /// ```
+ /// let f = 7.0_f64;
+ /// let g = -7.0_f64;
+ ///
+ /// assert!(!f.is_sign_negative());
+ /// assert!(g.is_sign_negative());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
+ #[inline]
+ pub const fn is_sign_negative(self) -> bool {
+ // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
+ // applies to zeros and NaNs as well.
+ // SAFETY: This is just transmuting to get the sign bit, it's fine.
+ unsafe { mem::transmute::<f64, u64>(self) & 0x8000_0000_0000_0000 != 0 }
+ }
+
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
+ #[inline]
+ #[doc(hidden)]
+ pub fn is_negative(self) -> bool {
+ self.is_sign_negative()
+ }
+
+ /// Takes the reciprocal (inverse) of a number, `1/x`.
+ ///
+ /// ```
+ /// let x = 2.0_f64;
+ /// let abs_difference = (x.recip() - (1.0 / x)).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ #[must_use = "this returns the result of the operation, without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn recip(self) -> f64 {
+ 1.0 / self
+ }
+
+ /// Converts radians to degrees.
+ ///
+ /// ```
+ /// let angle = std::f64::consts::PI;
+ ///
+ /// let abs_difference = (angle.to_degrees() - 180.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn to_degrees(self) -> f64 {
+ // The division here is correctly rounded with respect to the true
+ // value of 180/π. (This differs from f32, where a constant must be
+ // used to ensure a correctly rounded result.)
+ self * (180.0f64 / consts::PI)
+ }
+
+ /// Converts degrees to radians.
+ ///
+ /// ```
+ /// let angle = 180.0_f64;
+ ///
+ /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn to_radians(self) -> f64 {
+ let value: f64 = consts::PI;
+ self * (value / 180.0)
+ }
+
+ /// Returns the maximum of the two numbers, ignoring NaN.
+ ///
+ /// If one of the arguments is NaN, then the other argument is returned.
+ /// This follows the IEEE-754 2008 semantics for maxNum, except for handling of signaling NaNs;
+ /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
+ /// This also matches the behavior of libm’s fmax.
+ ///
+ /// ```
+ /// let x = 1.0_f64;
+ /// let y = 2.0_f64;
+ ///
+ /// assert_eq!(x.max(y), y);
+ /// ```
+ #[must_use = "this returns the result of the comparison, without modifying either input"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn max(self, other: f64) -> f64 {
+ intrinsics::maxnumf64(self, other)
+ }
+
+ /// Returns the minimum of the two numbers, ignoring NaN.
+ ///
+ /// If one of the arguments is NaN, then the other argument is returned.
+ /// This follows the IEEE-754 2008 semantics for minNum, except for handling of signaling NaNs;
+ /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
+ /// This also matches the behavior of libm’s fmin.
+ ///
+ /// ```
+ /// let x = 1.0_f64;
+ /// let y = 2.0_f64;
+ ///
+ /// assert_eq!(x.min(y), x);
+ /// ```
+ #[must_use = "this returns the result of the comparison, without modifying either input"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn min(self, other: f64) -> f64 {
+ intrinsics::minnumf64(self, other)
+ }
+
+ /// Returns the maximum of the two numbers, propagating NaN.
+ ///
+ /// This returns NaN when *either* argument is NaN, as opposed to
+ /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
+ ///
+ /// ```
+ /// #![feature(float_minimum_maximum)]
+ /// let x = 1.0_f64;
+ /// let y = 2.0_f64;
+ ///
+ /// assert_eq!(x.maximum(y), y);
+ /// assert!(x.maximum(f64::NAN).is_nan());
+ /// ```
+ ///
+ /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
+ /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
+ /// Note that this follows the semantics specified in IEEE 754-2019.
+ ///
+ /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
+ /// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
+ #[must_use = "this returns the result of the comparison, without modifying either input"]
+ #[unstable(feature = "float_minimum_maximum", issue = "91079")]
+ #[inline]
+ pub fn maximum(self, other: f64) -> f64 {
+ if self > other {
+ self
+ } else if other > self {
+ other
+ } else if self == other {
+ if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
+ } else {
+ self + other
+ }
+ }
+
+ /// Returns the minimum of the two numbers, propagating NaN.
+ ///
+ /// This returns NaN when *either* argument is NaN, as opposed to
+ /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
+ ///
+ /// ```
+ /// #![feature(float_minimum_maximum)]
+ /// let x = 1.0_f64;
+ /// let y = 2.0_f64;
+ ///
+ /// assert_eq!(x.minimum(y), x);
+ /// assert!(x.minimum(f64::NAN).is_nan());
+ /// ```
+ ///
+ /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
+ /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
+ /// Note that this follows the semantics specified in IEEE 754-2019.
+ ///
+ /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
+ /// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
+ #[must_use = "this returns the result of the comparison, without modifying either input"]
+ #[unstable(feature = "float_minimum_maximum", issue = "91079")]
+ #[inline]
+ pub fn minimum(self, other: f64) -> f64 {
+ if self < other {
+ self
+ } else if other < self {
+ other
+ } else if self == other {
+ if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
+ } else {
+ self + other
+ }
+ }
+
+ /// Rounds toward zero and converts to any primitive integer type,
+ /// assuming that the value is finite and fits in that type.
+ ///
+ /// ```
+ /// let value = 4.6_f64;
+ /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
+ /// assert_eq!(rounded, 4);
+ ///
+ /// let value = -128.9_f64;
+ /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
+ /// assert_eq!(rounded, i8::MIN);
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// The value must:
+ ///
+ /// * Not be `NaN`
+ /// * Not be infinite
+ /// * Be representable in the return type `Int`, after truncating off its fractional part
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
+ #[inline]
+ pub unsafe fn to_int_unchecked<Int>(self) -> Int
+ where
+ Self: FloatToInt<Int>,
+ {
+ // SAFETY: the caller must uphold the safety contract for
+ // `FloatToInt::to_int_unchecked`.
+ unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
+ }
+
+ /// Raw transmutation to `u64`.
+ ///
+ /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
+ ///
+ /// See [`from_bits`](Self::from_bits) for some discussion of the
+ /// portability of this operation (there are almost no issues).
+ ///
+ /// Note that this function is distinct from `as` casting, which attempts to
+ /// preserve the *numeric* value, and not the bitwise value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
+ /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
+ ///
+ /// ```
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "float_bits_conv", since = "1.20.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[inline]
+ pub const fn to_bits(self) -> u64 {
+ // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
+ // ...sorta.
+ //
+ // See the SAFETY comment in f64::from_bits for more.
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ const fn ct_f64_to_u64(ct: f64) -> u64 {
+ match ct.classify() {
+ FpCategory::Nan => {
+ panic!("const-eval error: cannot use f64::to_bits on a NaN")
+ }
+ FpCategory::Subnormal => {
+ panic!("const-eval error: cannot use f64::to_bits on a subnormal number")
+ }
+ FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
+ // SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy.
+ unsafe { mem::transmute::<f64, u64>(ct) }
+ }
+ }
+ }
+ // SAFETY: `u64` is a plain old datatype so we can always... uh...
+ // ...look, just pretend you forgot what you just read.
+ // Stability concerns.
+ let rt_f64_to_u64 = |rt| unsafe { mem::transmute::<f64, u64>(rt) };
+ // SAFETY: We use internal implementations that either always work or fail at compile time.
+ unsafe { intrinsics::const_eval_select((self,), ct_f64_to_u64, rt_f64_to_u64) }
+ }
+
+ /// Raw transmutation from `u64`.
+ ///
+ /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
+ /// It turns out this is incredibly portable, for two reasons:
+ ///
+ /// * Floats and Ints have the same endianness on all supported platforms.
+ /// * IEEE-754 very precisely specifies the bit layout of floats.
+ ///
+ /// However there is one caveat: prior to the 2008 version of IEEE-754, how
+ /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
+ /// (notably x86 and ARM) picked the interpretation that was ultimately
+ /// standardized in 2008, but some didn't (notably MIPS). As a result, all
+ /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
+ ///
+ /// Rather than trying to preserve signaling-ness cross-platform, this
+ /// implementation favors preserving the exact bits. This means that
+ /// any payloads encoded in NaNs will be preserved even if the result of
+ /// this method is sent over the network from an x86 machine to a MIPS one.
+ ///
+ /// If the results of this method are only manipulated by the same
+ /// architecture that produced them, then there is no portability concern.
+ ///
+ /// If the input isn't NaN, then there is no portability concern.
+ ///
+ /// If you don't care about signaling-ness (very likely), then there is no
+ /// portability concern.
+ ///
+ /// Note that this function is distinct from `as` casting, which attempts to
+ /// preserve the *numeric* value, and not the bitwise value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = f64::from_bits(0x4029000000000000);
+ /// assert_eq!(v, 12.5);
+ /// ```
+ #[stable(feature = "float_bits_conv", since = "1.20.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[must_use]
+ #[inline]
+ pub const fn from_bits(v: u64) -> Self {
+ // It turns out the safety issues with sNaN were overblown! Hooray!
+ // SAFETY: `u64` is a plain old datatype so we can always transmute from it
+ // ...sorta.
+ //
+ // It turns out that at runtime, it is possible for a floating point number
+ // to be subject to floating point modes that alter nonzero subnormal numbers
+ // to zero on reads and writes, aka "denormals are zero" and "flush to zero".
+ // This is not a problem usually, but at least one tier2 platform for Rust
+ // actually exhibits an FTZ behavior by default: thumbv7neon
+ // aka "the Neon FPU in AArch32 state"
+ //
+ // Even with this, not all instructions exhibit the FTZ behaviors on thumbv7neon,
+ // so this should load the same bits if LLVM emits the "correct" instructions,
+ // but LLVM sometimes makes interesting choices about float optimization,
+ // and other FPUs may do similar. Thus, it is wise to indulge luxuriously in caution.
+ //
+ // In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
+ // i.e. not soft-float, the way Rust does parameter passing can actually alter
+ // a number that is "not infinity" to have the same exponent as infinity,
+ // in a slightly unpredictable manner.
+ //
+ // And, of course evaluating to a NaN value is fairly nondeterministic.
+ // More precisely: when NaN should be returned is knowable, but which NaN?
+ // So far that's defined by a combination of LLVM and the CPU, not Rust.
+ // This function, however, allows observing the bitstring of a NaN,
+ // thus introspection on CTFE.
+ //
+ // In order to preserve, at least for the moment, const-to-runtime equivalence,
+ // reject any of these possible situations from happening.
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ const fn ct_u64_to_f64(ct: u64) -> f64 {
+ match f64::classify_bits(ct) {
+ FpCategory::Subnormal => {
+ panic!("const-eval error: cannot use f64::from_bits on a subnormal number")
+ }
+ FpCategory::Nan => {
+ panic!("const-eval error: cannot use f64::from_bits on NaN")
+ }
+ FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
+ // SAFETY: It's not a frumious number
+ unsafe { mem::transmute::<u64, f64>(ct) }
+ }
+ }
+ }
+ // SAFETY: `u64` is a plain old datatype so we can always... uh...
+ // ...look, just pretend you forgot what you just read.
+ // Stability concerns.
+ let rt_u64_to_f64 = |rt| unsafe { mem::transmute::<u64, f64>(rt) };
+ // SAFETY: We use internal implementations that either always work or fail at compile time.
+ unsafe { intrinsics::const_eval_select((v,), ct_u64_to_f64, rt_u64_to_f64) }
+ }
+
+ /// Return the memory representation of this floating point number as a byte array in
+ /// big-endian (network) byte order.
+ ///
+ /// See [`from_bits`](Self::from_bits) for some discussion of the
+ /// portability of this operation (there are almost no issues).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let bytes = 12.5f64.to_be_bytes();
+ /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
+ /// ```
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[inline]
+ pub const fn to_be_bytes(self) -> [u8; 8] {
+ self.to_bits().to_be_bytes()
+ }
+
+ /// Return the memory representation of this floating point number as a byte array in
+ /// little-endian byte order.
+ ///
+ /// See [`from_bits`](Self::from_bits) for some discussion of the
+ /// portability of this operation (there are almost no issues).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let bytes = 12.5f64.to_le_bytes();
+ /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
+ /// ```
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[inline]
+ pub const fn to_le_bytes(self) -> [u8; 8] {
+ self.to_bits().to_le_bytes()
+ }
+
+ /// Return the memory representation of this floating point number as a byte array in
+ /// native byte order.
+ ///
+ /// As the target platform's native endianness is used, portable code
+ /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
+ ///
+ /// [`to_be_bytes`]: f64::to_be_bytes
+ /// [`to_le_bytes`]: f64::to_le_bytes
+ ///
+ /// See [`from_bits`](Self::from_bits) for some discussion of the
+ /// portability of this operation (there are almost no issues).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let bytes = 12.5f64.to_ne_bytes();
+ /// assert_eq!(
+ /// bytes,
+ /// if cfg!(target_endian = "big") {
+ /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
+ /// } else {
+ /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
+ /// }
+ /// );
+ /// ```
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[inline]
+ pub const fn to_ne_bytes(self) -> [u8; 8] {
+ self.to_bits().to_ne_bytes()
+ }
+
+ /// Create a floating point value from its representation as a byte array in big endian.
+ ///
+ /// See [`from_bits`](Self::from_bits) for some discussion of the
+ /// portability of this operation (there are almost no issues).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
+ /// assert_eq!(value, 12.5);
+ /// ```
+ #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[must_use]
+ #[inline]
+ pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
+ Self::from_bits(u64::from_be_bytes(bytes))
+ }
+
+ /// Create a floating point value from its representation as a byte array in little endian.
+ ///
+ /// See [`from_bits`](Self::from_bits) for some discussion of the
+ /// portability of this operation (there are almost no issues).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
+ /// assert_eq!(value, 12.5);
+ /// ```
+ #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[must_use]
+ #[inline]
+ pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
+ Self::from_bits(u64::from_le_bytes(bytes))
+ }
+
+ /// Create a floating point value from its representation as a byte array in native endian.
+ ///
+ /// As the target platform's native endianness is used, portable code
+ /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
+ /// appropriate instead.
+ ///
+ /// [`from_be_bytes`]: f64::from_be_bytes
+ /// [`from_le_bytes`]: f64::from_le_bytes
+ ///
+ /// See [`from_bits`](Self::from_bits) for some discussion of the
+ /// portability of this operation (there are almost no issues).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
+ /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
+ /// } else {
+ /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
+ /// });
+ /// assert_eq!(value, 12.5);
+ /// ```
+ #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
+ #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
+ #[must_use]
+ #[inline]
+ pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
+ Self::from_bits(u64::from_ne_bytes(bytes))
+ }
+
+ /// Return the ordering between `self` and `other`.
+ ///
+ /// Unlike the standard partial comparison between floating point numbers,
+ /// this comparison always produces an ordering in accordance to
+ /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
+ /// floating point standard. The values are ordered in the following sequence:
+ ///
+ /// - negative quiet NaN
+ /// - negative signaling NaN
+ /// - negative infinity
+ /// - negative numbers
+ /// - negative subnormal numbers
+ /// - negative zero
+ /// - positive zero
+ /// - positive subnormal numbers
+ /// - positive numbers
+ /// - positive infinity
+ /// - positive signaling NaN
+ /// - positive quiet NaN.
+ ///
+ /// The ordering established by this function does not always agree with the
+ /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
+ /// they consider negative and positive zero equal, while `total_cmp`
+ /// doesn't.
+ ///
+ /// The interpretation of the signaling NaN bit follows the definition in
+ /// the IEEE 754 standard, which may not match the interpretation by some of
+ /// the older, non-conformant (e.g. MIPS) hardware implementations.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// struct GoodBoy {
+ /// name: String,
+ /// weight: f64,
+ /// }
+ ///
+ /// let mut bois = vec![
+ /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
+ /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
+ /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
+ /// GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
+ /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
+ /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
+ /// ];
+ ///
+ /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
+ /// # assert!(bois.into_iter().map(|b| b.weight)
+ /// # .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
+ /// # .all(|(a, b)| a.to_bits() == b.to_bits()))
+ /// ```
+ #[stable(feature = "total_cmp", since = "1.62.0")]
+ #[must_use]
+ #[inline]
+ pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
+ let mut left = self.to_bits() as i64;
+ let mut right = other.to_bits() as i64;
+
+ // In case of negatives, flip all the bits except the sign
+ // to achieve a similar layout as two's complement integers
+ //
+ // Why does this work? IEEE 754 floats consist of three fields:
+ // Sign bit, exponent and mantissa. The set of exponent and mantissa
+ // fields as a whole have the property that their bitwise order is
+ // equal to the numeric magnitude where the magnitude is defined.
+ // The magnitude is not normally defined on NaN values, but
+ // IEEE 754 totalOrder defines the NaN values also to follow the
+ // bitwise order. This leads to order explained in the doc comment.
+ // However, the representation of magnitude is the same for negative
+ // and positive numbers – only the sign bit is different.
+ // To easily compare the floats as signed integers, we need to
+ // flip the exponent and mantissa bits in case of negative numbers.
+ // We effectively convert the numbers to "two's complement" form.
+ //
+ // To do the flipping, we construct a mask and XOR against it.
+ // We branchlessly calculate an "all-ones except for the sign bit"
+ // mask from negative-signed values: right shifting sign-extends
+ // the integer, so we "fill" the mask with sign bits, and then
+ // convert to unsigned to push one more zero bit.
+ // On positive values, the mask is all zeros, so it's a no-op.
+ left ^= (((left >> 63) as u64) >> 1) as i64;
+ right ^= (((right >> 63) as u64) >> 1) as i64;
+
+ left.cmp(&right)
+ }
+
+ /// Restrict a value to a certain interval unless it is NaN.
+ ///
+ /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
+ /// less than `min`. Otherwise this returns `self`.
+ ///
+ /// Note that this function returns NaN if the initial value was NaN as
+ /// well.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
+ /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
+ /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
+ /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
+ /// ```
+ #[must_use = "method returns a new number and does not mutate the original value"]
+ #[stable(feature = "clamp", since = "1.50.0")]
+ #[inline]
+ pub fn clamp(self, min: f64, max: f64) -> f64 {
+ assert!(min <= max);
+ let mut x = self;
+ if x < min {
+ x = min;
+ }
+ if x > max {
+ x = max;
+ }
+ x
+ }
+}