summaryrefslogtreecommitdiffstats
path: root/library/core/src/num
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/num')
-rw-r--r--library/core/src/num/bignum.rs2
-rw-r--r--library/core/src/num/dec2flt/decimal.rs2
-rw-r--r--library/core/src/num/error.rs20
-rw-r--r--library/core/src/num/f32.rs153
-rw-r--r--library/core/src/num/f64.rs153
-rw-r--r--library/core/src/num/int_macros.rs116
-rw-r--r--library/core/src/num/mod.rs14
-rw-r--r--library/core/src/num/nonzero.rs46
-rw-r--r--library/core/src/num/uint_macros.rs42
9 files changed, 436 insertions, 112 deletions
diff --git a/library/core/src/num/bignum.rs b/library/core/src/num/bignum.rs
index de85fdd6e..d2a21b6b3 100644
--- a/library/core/src/num/bignum.rs
+++ b/library/core/src/num/bignum.rs
@@ -137,7 +137,7 @@ macro_rules! define_bignum {
// Find the most significant non-zero digit.
let msd = digits.iter().rposition(|&x| x != 0);
match msd {
- Some(msd) => msd * digitbits + digits[msd].log2() as usize + 1,
+ Some(msd) => msd * digitbits + digits[msd].ilog2() as usize + 1,
// There are no non-zero digits, i.e., the number is zero.
_ => 0,
}
diff --git a/library/core/src/num/dec2flt/decimal.rs b/library/core/src/num/dec2flt/decimal.rs
index f8edc3625..2019f71e6 100644
--- a/library/core/src/num/dec2flt/decimal.rs
+++ b/library/core/src/num/dec2flt/decimal.rs
@@ -32,7 +32,7 @@ impl Default for Decimal {
impl Decimal {
/// The maximum number of digits required to unambiguously round a float.
///
- /// For a double-precision IEEE-754 float, this required 767 digits,
+ /// For a double-precision IEEE 754 float, this required 767 digits,
/// so we store the max digits + 1.
///
/// We can exactly represent a float in radix `b` from radix 2 if
diff --git a/library/core/src/num/error.rs b/library/core/src/num/error.rs
index 1a223016d..1f6b40e5d 100644
--- a/library/core/src/num/error.rs
+++ b/library/core/src/num/error.rs
@@ -1,6 +1,8 @@
//! Error types for conversion to integral types.
use crate::convert::Infallible;
+#[cfg(not(bootstrap))]
+use crate::error::Error;
use crate::fmt;
/// The error type returned when a checked integral type conversion fails.
@@ -144,3 +146,21 @@ impl fmt::Display for ParseIntError {
self.__description().fmt(f)
}
}
+
+#[cfg(not(bootstrap))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Error for ParseIntError {
+ #[allow(deprecated)]
+ fn description(&self) -> &str {
+ self.__description()
+ }
+}
+
+#[cfg(not(bootstrap))]
+#[stable(feature = "try_from", since = "1.34.0")]
+impl Error for TryFromIntError {
+ #[allow(deprecated)]
+ fn description(&self) -> &str {
+ self.__description()
+ }
+}
diff --git a/library/core/src/num/f32.rs b/library/core/src/num/f32.rs
index 6548ad2e5..2c6a0ba64 100644
--- a/library/core/src/num/f32.rs
+++ b/library/core/src/num/f32.rs
@@ -1,4 +1,4 @@
-//! Constants specific to the `f32` single-precision floating point type.
+//! Constants for the `f32` single-precision floating point type.
//!
//! *[See also the `f32` primitive type][f32].*
//!
@@ -394,7 +394,7 @@ impl f32 {
/// Not a Number (NaN).
///
- /// Note that IEEE-745 doesn't define just a single NaN value;
+ /// Note that IEEE 754 doesn't define just a single NaN value;
/// a plethora of bit patterns are considered to be NaN.
/// Furthermore, the standard makes a difference
/// between a "signaling" and a "quiet" NaN,
@@ -632,7 +632,7 @@ impl f32 {
}
/// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
- /// positive sign bit and positive infinity. Note that IEEE-745 doesn't assign any
+ /// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
@@ -654,7 +654,7 @@ impl f32 {
}
/// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
- /// negative sign bit and negative infinity. Note that IEEE-745 doesn't assign any
+ /// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
@@ -678,6 +678,106 @@ impl f32 {
unsafe { mem::transmute::<f32, u32>(self) & 0x8000_0000 != 0 }
}
+ /// Returns the least number greater than `self`.
+ ///
+ /// Let `TINY` be the smallest representable positive `f32`. Then,
+ /// - if `self.is_nan()`, this returns `self`;
+ /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
+ /// - if `self` is `-TINY`, this returns -0.0;
+ /// - if `self` is -0.0 or +0.0, this returns `TINY`;
+ /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
+ /// - otherwise the unique least value greater than `self` is returned.
+ ///
+ /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
+ /// is finite `x == x.next_up().next_down()` also holds.
+ ///
+ /// ```rust
+ /// #![feature(float_next_up_down)]
+ /// // f32::EPSILON is the difference between 1.0 and the next number up.
+ /// assert_eq!(1.0f32.next_up(), 1.0 + f32::EPSILON);
+ /// // But not for most numbers.
+ /// assert!(0.1f32.next_up() < 0.1 + f32::EPSILON);
+ /// assert_eq!(16777216f32.next_up(), 16777218.0);
+ /// ```
+ ///
+ /// [`NEG_INFINITY`]: Self::NEG_INFINITY
+ /// [`INFINITY`]: Self::INFINITY
+ /// [`MIN`]: Self::MIN
+ /// [`MAX`]: Self::MAX
+ #[unstable(feature = "float_next_up_down", issue = "91399")]
+ #[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
+ pub const fn next_up(self) -> Self {
+ // We must use strictly integer arithmetic to prevent denormals from
+ // flushing to zero after an arithmetic operation on some platforms.
+ const TINY_BITS: u32 = 0x1; // Smallest positive f32.
+ const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff;
+
+ let bits = self.to_bits();
+ if self.is_nan() || bits == Self::INFINITY.to_bits() {
+ return self;
+ }
+
+ let abs = bits & CLEAR_SIGN_MASK;
+ let next_bits = if abs == 0 {
+ TINY_BITS
+ } else if bits == abs {
+ bits + 1
+ } else {
+ bits - 1
+ };
+ Self::from_bits(next_bits)
+ }
+
+ /// Returns the greatest number less than `self`.
+ ///
+ /// Let `TINY` be the smallest representable positive `f32`. Then,
+ /// - if `self.is_nan()`, this returns `self`;
+ /// - if `self` is [`INFINITY`], this returns [`MAX`];
+ /// - if `self` is `TINY`, this returns 0.0;
+ /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
+ /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
+ /// - otherwise the unique greatest value less than `self` is returned.
+ ///
+ /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
+ /// is finite `x == x.next_down().next_up()` also holds.
+ ///
+ /// ```rust
+ /// #![feature(float_next_up_down)]
+ /// let x = 1.0f32;
+ /// // Clamp value into range [0, 1).
+ /// let clamped = x.clamp(0.0, 1.0f32.next_down());
+ /// assert!(clamped < 1.0);
+ /// assert_eq!(clamped.next_up(), 1.0);
+ /// ```
+ ///
+ /// [`NEG_INFINITY`]: Self::NEG_INFINITY
+ /// [`INFINITY`]: Self::INFINITY
+ /// [`MIN`]: Self::MIN
+ /// [`MAX`]: Self::MAX
+ #[unstable(feature = "float_next_up_down", issue = "91399")]
+ #[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
+ pub const fn next_down(self) -> Self {
+ // We must use strictly integer arithmetic to prevent denormals from
+ // flushing to zero after an arithmetic operation on some platforms.
+ const NEG_TINY_BITS: u32 = 0x8000_0001; // Smallest (in magnitude) negative f32.
+ const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff;
+
+ let bits = self.to_bits();
+ if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
+ return self;
+ }
+
+ let abs = bits & CLEAR_SIGN_MASK;
+ let next_bits = if abs == 0 {
+ NEG_TINY_BITS
+ } else if bits == abs {
+ bits - 1
+ } else {
+ bits + 1
+ };
+ Self::from_bits(next_bits)
+ }
+
/// Takes the reciprocal (inverse) of a number, `1/x`.
///
/// ```
@@ -733,7 +833,7 @@ impl f32 {
/// Returns the maximum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
- /// This follows the IEEE-754 2008 semantics for maxNum, except for handling of signaling NaNs;
+ /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
/// This also matches the behavior of libm’s fmax.
///
@@ -753,7 +853,7 @@ impl f32 {
/// Returns the minimum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
- /// This follows the IEEE-754 2008 semantics for minNum, except for handling of signaling NaNs;
+ /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids minNum's problems with associativity.
/// This also matches the behavior of libm’s fmin.
///
@@ -933,10 +1033,14 @@ impl f32 {
}
}
}
- // SAFETY: `u32` is a plain old datatype so we can always... uh...
- // ...look, just pretend you forgot what you just read.
- // Stability concerns.
- let rt_f32_to_u32 = |rt| unsafe { mem::transmute::<f32, u32>(rt) };
+
+ #[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
+ fn rt_f32_to_u32(x: f32) -> u32 {
+ // SAFETY: `u32` is a plain old datatype so we can always... uh...
+ // ...look, just pretend you forgot what you just read.
+ // Stability concerns.
+ unsafe { mem::transmute(x) }
+ }
// SAFETY: We use internal implementations that either always work or fail at compile time.
unsafe { intrinsics::const_eval_select((self,), ct_f32_to_u32, rt_f32_to_u32) }
}
@@ -947,9 +1051,9 @@ impl f32 {
/// It turns out this is incredibly portable, for two reasons:
///
/// * Floats and Ints have the same endianness on all supported platforms.
- /// * IEEE-754 very precisely specifies the bit layout of floats.
+ /// * IEEE 754 very precisely specifies the bit layout of floats.
///
- /// However there is one caveat: prior to the 2008 version of IEEE-754, how
+ /// However there is one caveat: prior to the 2008 version of IEEE 754, how
/// to interpret the NaN signaling bit wasn't actually specified. Most platforms
/// (notably x86 and ARM) picked the interpretation that was ultimately
/// standardized in 2008, but some didn't (notably MIPS). As a result, all
@@ -1021,10 +1125,14 @@ impl f32 {
}
}
}
- // SAFETY: `u32` is a plain old datatype so we can always... uh...
- // ...look, just pretend you forgot what you just read.
- // Stability concerns.
- let rt_u32_to_f32 = |rt| unsafe { mem::transmute::<u32, f32>(rt) };
+
+ #[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
+ fn rt_u32_to_f32(x: u32) -> f32 {
+ // SAFETY: `u32` is a plain old datatype so we can always... uh...
+ // ...look, just pretend you forgot what you just read.
+ // Stability concerns.
+ unsafe { mem::transmute(x) }
+ }
// SAFETY: We use internal implementations that either always work or fail at compile time.
unsafe { intrinsics::const_eval_select((v,), ct_u32_to_f32, rt_u32_to_f32) }
}
@@ -1282,15 +1390,14 @@ impl f32 {
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "clamp", since = "1.50.0")]
#[inline]
- pub fn clamp(self, min: f32, max: f32) -> f32 {
+ pub fn clamp(mut self, min: f32, max: f32) -> f32 {
assert!(min <= max);
- let mut x = self;
- if x < min {
- x = min;
+ if self < min {
+ self = min;
}
- if x > max {
- x = max;
+ if self > max {
+ self = max;
}
- x
+ self
}
}
diff --git a/library/core/src/num/f64.rs b/library/core/src/num/f64.rs
index 75c92c2f8..fd3c18ce2 100644
--- a/library/core/src/num/f64.rs
+++ b/library/core/src/num/f64.rs
@@ -1,4 +1,4 @@
-//! Constants specific to the `f64` double-precision floating point type.
+//! Constants for the `f64` double-precision floating point type.
//!
//! *[See also the `f64` primitive type][f64].*
//!
@@ -393,7 +393,7 @@ impl f64 {
/// Not a Number (NaN).
///
- /// Note that IEEE-745 doesn't define just a single NaN value;
+ /// Note that IEEE 754 doesn't define just a single NaN value;
/// a plethora of bit patterns are considered to be NaN.
/// Furthermore, the standard makes a difference
/// between a "signaling" and a "quiet" NaN,
@@ -624,7 +624,7 @@ impl f64 {
}
/// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
- /// positive sign bit and positive infinity. Note that IEEE-745 doesn't assign any
+ /// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
@@ -655,7 +655,7 @@ impl f64 {
}
/// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
- /// negative sign bit and negative infinity. Note that IEEE-745 doesn't assign any
+ /// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
@@ -688,6 +688,106 @@ impl f64 {
self.is_sign_negative()
}
+ /// Returns the least number greater than `self`.
+ ///
+ /// Let `TINY` be the smallest representable positive `f64`. Then,
+ /// - if `self.is_nan()`, this returns `self`;
+ /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
+ /// - if `self` is `-TINY`, this returns -0.0;
+ /// - if `self` is -0.0 or +0.0, this returns `TINY`;
+ /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
+ /// - otherwise the unique least value greater than `self` is returned.
+ ///
+ /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
+ /// is finite `x == x.next_up().next_down()` also holds.
+ ///
+ /// ```rust
+ /// #![feature(float_next_up_down)]
+ /// // f64::EPSILON is the difference between 1.0 and the next number up.
+ /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
+ /// // But not for most numbers.
+ /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
+ /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
+ /// ```
+ ///
+ /// [`NEG_INFINITY`]: Self::NEG_INFINITY
+ /// [`INFINITY`]: Self::INFINITY
+ /// [`MIN`]: Self::MIN
+ /// [`MAX`]: Self::MAX
+ #[unstable(feature = "float_next_up_down", issue = "91399")]
+ #[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
+ pub const fn next_up(self) -> Self {
+ // We must use strictly integer arithmetic to prevent denormals from
+ // flushing to zero after an arithmetic operation on some platforms.
+ const TINY_BITS: u64 = 0x1; // Smallest positive f64.
+ const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff;
+
+ let bits = self.to_bits();
+ if self.is_nan() || bits == Self::INFINITY.to_bits() {
+ return self;
+ }
+
+ let abs = bits & CLEAR_SIGN_MASK;
+ let next_bits = if abs == 0 {
+ TINY_BITS
+ } else if bits == abs {
+ bits + 1
+ } else {
+ bits - 1
+ };
+ Self::from_bits(next_bits)
+ }
+
+ /// Returns the greatest number less than `self`.
+ ///
+ /// Let `TINY` be the smallest representable positive `f64`. Then,
+ /// - if `self.is_nan()`, this returns `self`;
+ /// - if `self` is [`INFINITY`], this returns [`MAX`];
+ /// - if `self` is `TINY`, this returns 0.0;
+ /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
+ /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
+ /// - otherwise the unique greatest value less than `self` is returned.
+ ///
+ /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
+ /// is finite `x == x.next_down().next_up()` also holds.
+ ///
+ /// ```rust
+ /// #![feature(float_next_up_down)]
+ /// let x = 1.0f64;
+ /// // Clamp value into range [0, 1).
+ /// let clamped = x.clamp(0.0, 1.0f64.next_down());
+ /// assert!(clamped < 1.0);
+ /// assert_eq!(clamped.next_up(), 1.0);
+ /// ```
+ ///
+ /// [`NEG_INFINITY`]: Self::NEG_INFINITY
+ /// [`INFINITY`]: Self::INFINITY
+ /// [`MIN`]: Self::MIN
+ /// [`MAX`]: Self::MAX
+ #[unstable(feature = "float_next_up_down", issue = "91399")]
+ #[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
+ pub const fn next_down(self) -> Self {
+ // We must use strictly integer arithmetic to prevent denormals from
+ // flushing to zero after an arithmetic operation on some platforms.
+ const NEG_TINY_BITS: u64 = 0x8000_0000_0000_0001; // Smallest (in magnitude) negative f64.
+ const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff;
+
+ let bits = self.to_bits();
+ if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
+ return self;
+ }
+
+ let abs = bits & CLEAR_SIGN_MASK;
+ let next_bits = if abs == 0 {
+ NEG_TINY_BITS
+ } else if bits == abs {
+ bits - 1
+ } else {
+ bits + 1
+ };
+ Self::from_bits(next_bits)
+ }
+
/// Takes the reciprocal (inverse) of a number, `1/x`.
///
/// ```
@@ -744,7 +844,7 @@ impl f64 {
/// Returns the maximum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
- /// This follows the IEEE-754 2008 semantics for maxNum, except for handling of signaling NaNs;
+ /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
/// This also matches the behavior of libm’s fmax.
///
@@ -764,7 +864,7 @@ impl f64 {
/// Returns the minimum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
- /// This follows the IEEE-754 2008 semantics for minNum, except for handling of signaling NaNs;
+ /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids minNum's problems with associativity.
/// This also matches the behavior of libm’s fmin.
///
@@ -926,10 +1026,14 @@ impl f64 {
}
}
}
- // SAFETY: `u64` is a plain old datatype so we can always... uh...
- // ...look, just pretend you forgot what you just read.
- // Stability concerns.
- let rt_f64_to_u64 = |rt| unsafe { mem::transmute::<f64, u64>(rt) };
+
+ #[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
+ fn rt_f64_to_u64(rt: f64) -> u64 {
+ // SAFETY: `u64` is a plain old datatype so we can always... uh...
+ // ...look, just pretend you forgot what you just read.
+ // Stability concerns.
+ unsafe { mem::transmute::<f64, u64>(rt) }
+ }
// SAFETY: We use internal implementations that either always work or fail at compile time.
unsafe { intrinsics::const_eval_select((self,), ct_f64_to_u64, rt_f64_to_u64) }
}
@@ -940,9 +1044,9 @@ impl f64 {
/// It turns out this is incredibly portable, for two reasons:
///
/// * Floats and Ints have the same endianness on all supported platforms.
- /// * IEEE-754 very precisely specifies the bit layout of floats.
+ /// * IEEE 754 very precisely specifies the bit layout of floats.
///
- /// However there is one caveat: prior to the 2008 version of IEEE-754, how
+ /// However there is one caveat: prior to the 2008 version of IEEE 754, how
/// to interpret the NaN signaling bit wasn't actually specified. Most platforms
/// (notably x86 and ARM) picked the interpretation that was ultimately
/// standardized in 2008, but some didn't (notably MIPS). As a result, all
@@ -1019,10 +1123,14 @@ impl f64 {
}
}
}
- // SAFETY: `u64` is a plain old datatype so we can always... uh...
- // ...look, just pretend you forgot what you just read.
- // Stability concerns.
- let rt_u64_to_f64 = |rt| unsafe { mem::transmute::<u64, f64>(rt) };
+
+ #[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
+ fn rt_u64_to_f64(rt: u64) -> f64 {
+ // SAFETY: `u64` is a plain old datatype so we can always... uh...
+ // ...look, just pretend you forgot what you just read.
+ // Stability concerns.
+ unsafe { mem::transmute::<u64, f64>(rt) }
+ }
// SAFETY: We use internal implementations that either always work or fail at compile time.
unsafe { intrinsics::const_eval_select((v,), ct_u64_to_f64, rt_u64_to_f64) }
}
@@ -1280,15 +1388,14 @@ impl f64 {
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "clamp", since = "1.50.0")]
#[inline]
- pub fn clamp(self, min: f64, max: f64) -> f64 {
+ pub fn clamp(mut self, min: f64, max: f64) -> f64 {
assert!(min <= max);
- let mut x = self;
- if x < min {
- x = min;
+ if self < min {
+ self = min;
}
- if x > max {
- x = max;
+ if self > max {
+ self = max;
}
- x
+ self
}
}
diff --git a/library/core/src/num/int_macros.rs b/library/core/src/num/int_macros.rs
index a66de19ba..e7deb728d 100644
--- a/library/core/src/num/int_macros.rs
+++ b/library/core/src/num/int_macros.rs
@@ -1518,6 +1518,51 @@ macro_rules! int_impl {
(a as Self, b)
}
+ /// Calculates `self + rhs + carry` without the ability to overflow.
+ ///
+ /// Performs "signed ternary addition" which takes in an extra bit to add, and may return an
+ /// additional bit of overflow. This signed function is used only on the highest-ordered data,
+ /// for which the signed overflow result indicates whether the big integer overflowed or not.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(bigint_helper_methods)]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".carrying_add(2, false), (7, false));")]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".carrying_add(2, true), (8, false));")]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(1, false), (", stringify!($SelfT), "::MIN, true));")]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(0, true), (", stringify!($SelfT), "::MIN, true));")]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(1, true), (", stringify!($SelfT), "::MIN + 1, true));")]
+ #[doc = concat!("assert_eq!(",
+ stringify!($SelfT), "::MAX.carrying_add(", stringify!($SelfT), "::MAX, true), ",
+ "(-1, true));"
+ )]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.carrying_add(-1, true), (", stringify!($SelfT), "::MIN, false));")]
+ #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".carrying_add(", stringify!($SelfT), "::MAX, true), (", stringify!($SelfT), "::MIN, true));")]
+ /// ```
+ ///
+ /// If `carry` is false, this method is equivalent to [`overflowing_add`](Self::overflowing_add):
+ ///
+ /// ```
+ /// #![feature(bigint_helper_methods)]
+ #[doc = concat!("assert_eq!(5_", stringify!($SelfT), ".carrying_add(2, false), 5_", stringify!($SelfT), ".overflowing_add(2));")]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(1, false), ", stringify!($SelfT), "::MAX.overflowing_add(1));")]
+ /// ```
+ #[unstable(feature = "bigint_helper_methods", issue = "85532")]
+ #[rustc_const_unstable(feature = "const_bigint_helper_methods", issue = "85532")]
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[inline]
+ pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
+ // note: longer-term this should be done via an intrinsic.
+ // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
+ let (a, b) = self.overflowing_add(rhs);
+ let (c, d) = a.overflowing_add(carry as $SelfT);
+ (c, b != d)
+ }
+
/// Calculates `self` + `rhs` with an unsigned `rhs`
///
/// Returns a tuple of the addition along with a boolean indicating
@@ -1569,6 +1614,39 @@ macro_rules! int_impl {
(a as Self, b)
}
+ /// Calculates `self - rhs - borrow` without the ability to overflow.
+ ///
+ /// Performs "signed ternary subtraction" which takes in an extra bit to subtract, and may return an
+ /// additional bit of overflow. This signed function is used only on the highest-ordered data,
+ /// for which the signed overflow result indicates whether the big integer overflowed or not.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// #![feature(bigint_helper_methods)]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".borrowing_sub(2, false), (3, false));")]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".borrowing_sub(2, true), (2, false));")]
+ #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".borrowing_sub(1, false), (-1, false));")]
+ #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".borrowing_sub(1, true), (-2, false));")]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.borrowing_sub(1, true), (", stringify!($SelfT), "::MAX - 1, true));")]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.borrowing_sub(-1, false), (", stringify!($SelfT), "::MIN, true));")]
+ #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.borrowing_sub(-1, true), (", stringify!($SelfT), "::MAX, false));")]
+ /// ```
+ #[unstable(feature = "bigint_helper_methods", issue = "85532")]
+ #[rustc_const_unstable(feature = "const_bigint_helper_methods", issue = "85532")]
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[inline]
+ pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
+ // note: longer-term this should be done via an intrinsic.
+ // note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
+ let (a, b) = self.overflowing_sub(rhs);
+ let (c, d) = a.overflowing_sub(borrow as $SelfT);
+ (c, b != d)
+ }
+
/// Calculates `self` - `rhs` with an unsigned `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating
@@ -2204,7 +2282,7 @@ macro_rules! int_impl {
/// rounded down.
///
/// This method might not be optimized owing to implementation details;
- /// `log2` can produce results more efficiently for base 2, and `log10`
+ /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
/// can produce results more efficiently for base 10.
///
/// # Panics
@@ -2217,7 +2295,7 @@ macro_rules! int_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".log(5), 1);")]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
@@ -2226,8 +2304,8 @@ macro_rules! int_impl {
#[track_caller]
#[rustc_inherit_overflow_checks]
#[allow(arithmetic_overflow)]
- pub const fn log(self, base: Self) -> u32 {
- match self.checked_log(base) {
+ pub const fn ilog(self, base: Self) -> u32 {
+ match self.checked_ilog(base) {
Some(n) => n,
None => {
// In debug builds, trigger a panic on None.
@@ -2250,7 +2328,7 @@ macro_rules! int_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".log2(), 1);")]
+ #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
@@ -2259,8 +2337,8 @@ macro_rules! int_impl {
#[track_caller]
#[rustc_inherit_overflow_checks]
#[allow(arithmetic_overflow)]
- pub const fn log2(self) -> u32 {
- match self.checked_log2() {
+ pub const fn ilog2(self) -> u32 {
+ match self.checked_ilog2() {
Some(n) => n,
None => {
// In debug builds, trigger a panic on None.
@@ -2283,7 +2361,7 @@ macro_rules! int_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".log10(), 1);")]
+ #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
@@ -2292,8 +2370,8 @@ macro_rules! int_impl {
#[track_caller]
#[rustc_inherit_overflow_checks]
#[allow(arithmetic_overflow)]
- pub const fn log10(self) -> u32 {
- match self.checked_log10() {
+ pub const fn ilog10(self) -> u32 {
+ match self.checked_ilog10() {
Some(n) => n,
None => {
// In debug builds, trigger a panic on None.
@@ -2311,20 +2389,20 @@ macro_rules! int_impl {
/// Returns `None` if the number is negative or zero, or if the base is not at least 2.
///
/// This method might not be optimized owing to implementation details;
- /// `checked_log2` can produce results more efficiently for base 2, and
- /// `checked_log10` can produce results more efficiently for base 10.
+ /// `checked_ilog2` can produce results more efficiently for base 2, and
+ /// `checked_ilog10` can produce results more efficiently for base 10.
///
/// # Examples
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_log(5), Some(1));")]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn checked_log(self, base: Self) -> Option<u32> {
+ pub const fn checked_ilog(self, base: Self) -> Option<u32> {
if self <= 0 || base <= 1 {
None
} else {
@@ -2333,7 +2411,7 @@ macro_rules! int_impl {
// Optimization for 128 bit wide integers.
if Self::BITS == 128 {
- let b = Self::log2(self) / (Self::log2(base) + 1);
+ let b = Self::ilog2(self) / (Self::ilog2(base) + 1);
n += b;
r /= base.pow(b as u32);
}
@@ -2354,13 +2432,13 @@ macro_rules! int_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_log2(), Some(1));")]
+ #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn checked_log2(self) -> Option<u32> {
+ pub const fn checked_ilog2(self) -> Option<u32> {
if self <= 0 {
None
} else {
@@ -2378,13 +2456,13 @@ macro_rules! int_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_log10(), Some(1));")]
+ #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn checked_log10(self) -> Option<u32> {
+ pub const fn checked_ilog10(self) -> Option<u32> {
if self > 0 {
Some(int_log10::$ActualT(self as $ActualT))
} else {
diff --git a/library/core/src/num/mod.rs b/library/core/src/num/mod.rs
index f481399fd..ab17aa0c8 100644
--- a/library/core/src/num/mod.rs
+++ b/library/core/src/num/mod.rs
@@ -3,6 +3,8 @@
#![stable(feature = "rust1", since = "1.0.0")]
use crate::ascii;
+#[cfg(not(bootstrap))]
+use crate::error::Error;
use crate::intrinsics;
use crate::mem;
use crate::ops::{Add, Mul, Sub};
@@ -57,6 +59,16 @@ pub use wrapping::Wrapping;
#[cfg(not(no_fp_fmt_parse))]
pub use dec2flt::ParseFloatError;
+#[cfg(not(bootstrap))]
+#[cfg(not(no_fp_fmt_parse))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Error for ParseFloatError {
+ #[allow(deprecated)]
+ fn description(&self) -> &str {
+ self.__description()
+ }
+}
+
#[stable(feature = "rust1", since = "1.0.0")]
pub use error::ParseIntError;
@@ -623,7 +635,7 @@ impl u8 {
///
/// - U+0021 ..= U+002F `! " # $ % & ' ( ) * + , - . /`, or
/// - U+003A ..= U+0040 `: ; < = > ? @`, or
- /// - U+005B ..= U+0060 ``[ \ ] ^ _ ` ``, or
+ /// - U+005B ..= U+0060 `` [ \ ] ^ _ ` ``, or
/// - U+007B ..= U+007E `{ | } ~`
///
/// # Examples
diff --git a/library/core/src/num/nonzero.rs b/library/core/src/num/nonzero.rs
index 4de0a0cf5..532a09736 100644
--- a/library/core/src/num/nonzero.rs
+++ b/library/core/src/num/nonzero.rs
@@ -56,7 +56,7 @@ macro_rules! nonzero_integers {
pub const unsafe fn new_unchecked(n: $Int) -> Self {
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
- core::intrinsics::assert_unsafe_precondition!(n != 0);
+ core::intrinsics::assert_unsafe_precondition!((n: $Int) => n != 0);
Self(n)
}
}
@@ -309,8 +309,8 @@ macro_rules! nonzero_unsigned_operations {
( $( $Ty: ident($Int: ident); )+ ) => {
$(
impl $Ty {
- /// Add an unsigned integer to a non-zero value.
- /// Check for overflow and return [`None`] on overflow
+ /// Adds an unsigned integer to a non-zero value.
+ /// Checks for overflow and returns [`None`] on overflow.
/// As a consequence, the result cannot wrap to zero.
///
///
@@ -346,7 +346,7 @@ macro_rules! nonzero_unsigned_operations {
}
}
- /// Add an unsigned integer to a non-zero value.
+ /// Adds an unsigned integer to a non-zero value.
#[doc = concat!("Return [`", stringify!($Int), "::MAX`] on overflow.")]
///
/// # Examples
@@ -377,7 +377,7 @@ macro_rules! nonzero_unsigned_operations {
unsafe { $Ty::new_unchecked(self.get().saturating_add(other)) }
}
- /// Add an unsigned integer to a non-zero value,
+ /// Adds an unsigned integer to a non-zero value,
/// assuming overflow cannot occur.
/// Overflow is unchecked, and it is undefined behaviour to overflow
/// *even if the result would wrap to a non-zero value*.
@@ -409,7 +409,7 @@ macro_rules! nonzero_unsigned_operations {
}
/// Returns the smallest power of two greater than or equal to n.
- /// Check for overflow and return [`None`]
+ /// Checks for overflow and returns [`None`]
/// if the next power of two is greater than the type’s maximum value.
/// As a consequence, the result cannot wrap to zero.
///
@@ -450,7 +450,7 @@ macro_rules! nonzero_unsigned_operations {
/// Returns the base 2 logarithm of the number, rounded down.
///
/// This is the same operation as
- #[doc = concat!("[`", stringify!($Int), "::log2`],")]
+ #[doc = concat!("[`", stringify!($Int), "::ilog2`],")]
/// except that it has no failure cases to worry about
/// since this value can never be zero.
///
@@ -460,22 +460,22 @@ macro_rules! nonzero_unsigned_operations {
/// #![feature(int_log)]
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
///
- #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(7).unwrap().log2(), 2);")]
- #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(8).unwrap().log2(), 3);")]
- #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(9).unwrap().log2(), 3);")]
+ #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(7).unwrap().ilog2(), 2);")]
+ #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(8).unwrap().ilog2(), 3);")]
+ #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(9).unwrap().ilog2(), 3);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn log2(self) -> u32 {
+ pub const fn ilog2(self) -> u32 {
Self::BITS - 1 - self.leading_zeros()
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// This is the same operation as
- #[doc = concat!("[`", stringify!($Int), "::log10`],")]
+ #[doc = concat!("[`", stringify!($Int), "::ilog10`],")]
/// except that it has no failure cases to worry about
/// since this value can never be zero.
///
@@ -485,15 +485,15 @@ macro_rules! nonzero_unsigned_operations {
/// #![feature(int_log)]
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
///
- #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(99).unwrap().log10(), 1);")]
- #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(100).unwrap().log10(), 2);")]
- #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(101).unwrap().log10(), 2);")]
+ #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(99).unwrap().ilog10(), 1);")]
+ #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(100).unwrap().ilog10(), 2);")]
+ #[doc = concat!("assert_eq!(", stringify!($Ty), "::new(101).unwrap().ilog10(), 2);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn log10(self) -> u32 {
+ pub const fn ilog10(self) -> u32 {
super::int_log10::$Int(self.0)
}
}
@@ -545,7 +545,7 @@ macro_rules! nonzero_signed_operations {
}
/// Checked absolute value.
- /// Check for overflow and returns [`None`] if
+ /// Checks for overflow and returns [`None`] if
#[doc = concat!("`self == ", stringify!($Int), "::MIN`.")]
/// The result cannot be zero.
///
@@ -740,8 +740,8 @@ macro_rules! nonzero_unsigned_signed_operations {
( $( $signedness:ident $Ty: ident($Int: ty); )+ ) => {
$(
impl $Ty {
- /// Multiply two non-zero integers together.
- /// Check for overflow and return [`None`] on overflow.
+ /// Multiplies two non-zero integers together.
+ /// Checks for overflow and returns [`None`] on overflow.
/// As a consequence, the result cannot wrap to zero.
///
/// # Examples
@@ -777,7 +777,7 @@ macro_rules! nonzero_unsigned_signed_operations {
}
}
- /// Multiply two non-zero integers together.
+ /// Multiplies two non-zero integers together.
#[doc = concat!("Return [`", stringify!($Int), "::MAX`] on overflow.")]
///
/// # Examples
@@ -809,7 +809,7 @@ macro_rules! nonzero_unsigned_signed_operations {
unsafe { $Ty::new_unchecked(self.get().saturating_mul(other.get())) }
}
- /// Multiply two non-zero integers together,
+ /// Multiplies two non-zero integers together,
/// assuming overflow cannot occur.
/// Overflow is unchecked, and it is undefined behaviour to overflow
/// *even if the result would wrap to a non-zero value*.
@@ -849,8 +849,8 @@ macro_rules! nonzero_unsigned_signed_operations {
unsafe { $Ty::new_unchecked(self.get().unchecked_mul(other.get())) }
}
- /// Raise non-zero value to an integer power.
- /// Check for overflow and return [`None`] on overflow.
+ /// Raises non-zero value to an integer power.
+ /// Checks for overflow and returns [`None`] on overflow.
/// As a consequence, the result cannot wrap to zero.
///
/// # Examples
diff --git a/library/core/src/num/uint_macros.rs b/library/core/src/num/uint_macros.rs
index 733655442..46fd7f2d0 100644
--- a/library/core/src/num/uint_macros.rs
+++ b/library/core/src/num/uint_macros.rs
@@ -688,7 +688,7 @@ macro_rules! uint_impl {
/// rounded down.
///
/// This method might not be optimized owing to implementation details;
- /// `log2` can produce results more efficiently for base 2, and `log10`
+ /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
/// can produce results more efficiently for base 10.
///
/// # Panics
@@ -700,7 +700,7 @@ macro_rules! uint_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".log(5), 1);")]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
@@ -709,8 +709,8 @@ macro_rules! uint_impl {
#[track_caller]
#[rustc_inherit_overflow_checks]
#[allow(arithmetic_overflow)]
- pub const fn log(self, base: Self) -> u32 {
- match self.checked_log(base) {
+ pub const fn ilog(self, base: Self) -> u32 {
+ match self.checked_ilog(base) {
Some(n) => n,
None => {
// In debug builds, trigger a panic on None.
@@ -733,7 +733,7 @@ macro_rules! uint_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".log2(), 1);")]
+ #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
@@ -742,8 +742,8 @@ macro_rules! uint_impl {
#[track_caller]
#[rustc_inherit_overflow_checks]
#[allow(arithmetic_overflow)]
- pub const fn log2(self) -> u32 {
- match self.checked_log2() {
+ pub const fn ilog2(self) -> u32 {
+ match self.checked_ilog2() {
Some(n) => n,
None => {
// In debug builds, trigger a panic on None.
@@ -766,7 +766,7 @@ macro_rules! uint_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".log10(), 1);")]
+ #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
@@ -775,8 +775,8 @@ macro_rules! uint_impl {
#[track_caller]
#[rustc_inherit_overflow_checks]
#[allow(arithmetic_overflow)]
- pub const fn log10(self) -> u32 {
- match self.checked_log10() {
+ pub const fn ilog10(self) -> u32 {
+ match self.checked_ilog10() {
Some(n) => n,
None => {
// In debug builds, trigger a panic on None.
@@ -794,20 +794,20 @@ macro_rules! uint_impl {
/// Returns `None` if the number is zero, or if the base is not at least 2.
///
/// This method might not be optimized owing to implementation details;
- /// `checked_log2` can produce results more efficiently for base 2, and
- /// `checked_log10` can produce results more efficiently for base 10.
+ /// `checked_ilog2` can produce results more efficiently for base 2, and
+ /// `checked_ilog10` can produce results more efficiently for base 10.
///
/// # Examples
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_log(5), Some(1));")]
+ #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn checked_log(self, base: Self) -> Option<u32> {
+ pub const fn checked_ilog(self, base: Self) -> Option<u32> {
if self <= 0 || base <= 1 {
None
} else {
@@ -816,7 +816,7 @@ macro_rules! uint_impl {
// Optimization for 128 bit wide integers.
if Self::BITS == 128 {
- let b = Self::log2(self) / (Self::log2(base) + 1);
+ let b = Self::ilog2(self) / (Self::ilog2(base) + 1);
n += b;
r /= base.pow(b as u32);
}
@@ -837,15 +837,15 @@ macro_rules! uint_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_log2(), Some(1));")]
+ #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn checked_log2(self) -> Option<u32> {
+ pub const fn checked_ilog2(self) -> Option<u32> {
if let Some(x) = <$NonZeroT>::new(self) {
- Some(x.log2())
+ Some(x.ilog2())
} else {
None
}
@@ -859,15 +859,15 @@ macro_rules! uint_impl {
///
/// ```
/// #![feature(int_log)]
- #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_log10(), Some(1));")]
+ #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
/// ```
#[unstable(feature = "int_log", issue = "70887")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
- pub const fn checked_log10(self) -> Option<u32> {
+ pub const fn checked_ilog10(self) -> Option<u32> {
if let Some(x) = <$NonZeroT>::new(self) {
- Some(x.log10())
+ Some(x.ilog10())
} else {
None
}