summaryrefslogtreecommitdiffstats
path: root/library/core/src/ops/range.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/ops/range.rs')
-rw-r--r--library/core/src/ops/range.rs991
1 files changed, 991 insertions, 0 deletions
diff --git a/library/core/src/ops/range.rs b/library/core/src/ops/range.rs
new file mode 100644
index 000000000..a3b148473
--- /dev/null
+++ b/library/core/src/ops/range.rs
@@ -0,0 +1,991 @@
+use crate::fmt;
+use crate::hash::Hash;
+
+/// An unbounded range (`..`).
+///
+/// `RangeFull` is primarily used as a [slicing index], its shorthand is `..`.
+/// It cannot serve as an [`Iterator`] because it doesn't have a starting point.
+///
+/// # Examples
+///
+/// The `..` syntax is a `RangeFull`:
+///
+/// ```
+/// assert_eq!((..), std::ops::RangeFull);
+/// ```
+///
+/// It does not have an [`IntoIterator`] implementation, so you can't use it in
+/// a `for` loop directly. This won't compile:
+///
+/// ```compile_fail,E0277
+/// for i in .. {
+/// // ...
+/// }
+/// ```
+///
+/// Used as a [slicing index], `RangeFull` produces the full array as a slice.
+///
+/// ```
+/// let arr = [0, 1, 2, 3, 4];
+/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]); // This is the `RangeFull`
+/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
+/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
+/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
+/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
+/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
+/// ```
+///
+/// [slicing index]: crate::slice::SliceIndex
+#[lang = "RangeFull"]
+#[doc(alias = "..")]
+#[derive(Copy, Clone, Default, PartialEq, Eq, Hash)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct RangeFull;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Debug for RangeFull {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(fmt, "..")
+ }
+}
+
+/// A (half-open) range bounded inclusively below and exclusively above
+/// (`start..end`).
+///
+/// The range `start..end` contains all values with `start <= x < end`.
+/// It is empty if `start >= end`.
+///
+/// # Examples
+///
+/// The `start..end` syntax is a `Range`:
+///
+/// ```
+/// assert_eq!((3..5), std::ops::Range { start: 3, end: 5 });
+/// assert_eq!(3 + 4 + 5, (3..6).sum());
+/// ```
+///
+/// ```
+/// let arr = [0, 1, 2, 3, 4];
+/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
+/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
+/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
+/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
+/// assert_eq!(arr[1.. 3], [ 1, 2 ]); // This is a `Range`
+/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
+/// ```
+#[lang = "Range"]
+#[doc(alias = "..")]
+#[derive(Clone, Default, PartialEq, Eq, Hash)] // not Copy -- see #27186
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Range<Idx> {
+ /// The lower bound of the range (inclusive).
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub start: Idx,
+ /// The upper bound of the range (exclusive).
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub end: Idx,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<Idx: fmt::Debug> fmt::Debug for Range<Idx> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.start.fmt(fmt)?;
+ write!(fmt, "..")?;
+ self.end.fmt(fmt)?;
+ Ok(())
+ }
+}
+
+impl<Idx: PartialOrd<Idx>> Range<Idx> {
+ /// Returns `true` if `item` is contained in the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!(!(3..5).contains(&2));
+ /// assert!( (3..5).contains(&3));
+ /// assert!( (3..5).contains(&4));
+ /// assert!(!(3..5).contains(&5));
+ ///
+ /// assert!(!(3..3).contains(&3));
+ /// assert!(!(3..2).contains(&3));
+ ///
+ /// assert!( (0.0..1.0).contains(&0.5));
+ /// assert!(!(0.0..1.0).contains(&f32::NAN));
+ /// assert!(!(0.0..f32::NAN).contains(&0.5));
+ /// assert!(!(f32::NAN..1.0).contains(&0.5));
+ /// ```
+ #[stable(feature = "range_contains", since = "1.35.0")]
+ pub fn contains<U>(&self, item: &U) -> bool
+ where
+ Idx: PartialOrd<U>,
+ U: ?Sized + PartialOrd<Idx>,
+ {
+ <Self as RangeBounds<Idx>>::contains(self, item)
+ }
+
+ /// Returns `true` if the range contains no items.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!(!(3..5).is_empty());
+ /// assert!( (3..3).is_empty());
+ /// assert!( (3..2).is_empty());
+ /// ```
+ ///
+ /// The range is empty if either side is incomparable:
+ ///
+ /// ```
+ /// assert!(!(3.0..5.0).is_empty());
+ /// assert!( (3.0..f32::NAN).is_empty());
+ /// assert!( (f32::NAN..5.0).is_empty());
+ /// ```
+ #[stable(feature = "range_is_empty", since = "1.47.0")]
+ pub fn is_empty(&self) -> bool {
+ !(self.start < self.end)
+ }
+}
+
+/// A range only bounded inclusively below (`start..`).
+///
+/// The `RangeFrom` `start..` contains all values with `x >= start`.
+///
+/// *Note*: Overflow in the [`Iterator`] implementation (when the contained
+/// data type reaches its numerical limit) is allowed to panic, wrap, or
+/// saturate. This behavior is defined by the implementation of the [`Step`]
+/// trait. For primitive integers, this follows the normal rules, and respects
+/// the overflow checks profile (panic in debug, wrap in release). Note also
+/// that overflow happens earlier than you might assume: the overflow happens
+/// in the call to `next` that yields the maximum value, as the range must be
+/// set to a state to yield the next value.
+///
+/// [`Step`]: crate::iter::Step
+///
+/// # Examples
+///
+/// The `start..` syntax is a `RangeFrom`:
+///
+/// ```
+/// assert_eq!((2..), std::ops::RangeFrom { start: 2 });
+/// assert_eq!(2 + 3 + 4, (2..).take(3).sum());
+/// ```
+///
+/// ```
+/// let arr = [0, 1, 2, 3, 4];
+/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
+/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
+/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
+/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]); // This is a `RangeFrom`
+/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
+/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
+/// ```
+#[lang = "RangeFrom"]
+#[doc(alias = "..")]
+#[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct RangeFrom<Idx> {
+ /// The lower bound of the range (inclusive).
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub start: Idx,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<Idx: fmt::Debug> fmt::Debug for RangeFrom<Idx> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.start.fmt(fmt)?;
+ write!(fmt, "..")?;
+ Ok(())
+ }
+}
+
+impl<Idx: PartialOrd<Idx>> RangeFrom<Idx> {
+ /// Returns `true` if `item` is contained in the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!(!(3..).contains(&2));
+ /// assert!( (3..).contains(&3));
+ /// assert!( (3..).contains(&1_000_000_000));
+ ///
+ /// assert!( (0.0..).contains(&0.5));
+ /// assert!(!(0.0..).contains(&f32::NAN));
+ /// assert!(!(f32::NAN..).contains(&0.5));
+ /// ```
+ #[stable(feature = "range_contains", since = "1.35.0")]
+ pub fn contains<U>(&self, item: &U) -> bool
+ where
+ Idx: PartialOrd<U>,
+ U: ?Sized + PartialOrd<Idx>,
+ {
+ <Self as RangeBounds<Idx>>::contains(self, item)
+ }
+}
+
+/// A range only bounded exclusively above (`..end`).
+///
+/// The `RangeTo` `..end` contains all values with `x < end`.
+/// It cannot serve as an [`Iterator`] because it doesn't have a starting point.
+///
+/// # Examples
+///
+/// The `..end` syntax is a `RangeTo`:
+///
+/// ```
+/// assert_eq!((..5), std::ops::RangeTo { end: 5 });
+/// ```
+///
+/// It does not have an [`IntoIterator`] implementation, so you can't use it in
+/// a `for` loop directly. This won't compile:
+///
+/// ```compile_fail,E0277
+/// // error[E0277]: the trait bound `std::ops::RangeTo<{integer}>:
+/// // std::iter::Iterator` is not satisfied
+/// for i in ..5 {
+/// // ...
+/// }
+/// ```
+///
+/// When used as a [slicing index], `RangeTo` produces a slice of all array
+/// elements before the index indicated by `end`.
+///
+/// ```
+/// let arr = [0, 1, 2, 3, 4];
+/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
+/// assert_eq!(arr[ .. 3], [0, 1, 2 ]); // This is a `RangeTo`
+/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
+/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
+/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
+/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
+/// ```
+///
+/// [slicing index]: crate::slice::SliceIndex
+#[lang = "RangeTo"]
+#[doc(alias = "..")]
+#[derive(Copy, Clone, PartialEq, Eq, Hash)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct RangeTo<Idx> {
+ /// The upper bound of the range (exclusive).
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub end: Idx,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<Idx: fmt::Debug> fmt::Debug for RangeTo<Idx> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(fmt, "..")?;
+ self.end.fmt(fmt)?;
+ Ok(())
+ }
+}
+
+impl<Idx: PartialOrd<Idx>> RangeTo<Idx> {
+ /// Returns `true` if `item` is contained in the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!( (..5).contains(&-1_000_000_000));
+ /// assert!( (..5).contains(&4));
+ /// assert!(!(..5).contains(&5));
+ ///
+ /// assert!( (..1.0).contains(&0.5));
+ /// assert!(!(..1.0).contains(&f32::NAN));
+ /// assert!(!(..f32::NAN).contains(&0.5));
+ /// ```
+ #[stable(feature = "range_contains", since = "1.35.0")]
+ pub fn contains<U>(&self, item: &U) -> bool
+ where
+ Idx: PartialOrd<U>,
+ U: ?Sized + PartialOrd<Idx>,
+ {
+ <Self as RangeBounds<Idx>>::contains(self, item)
+ }
+}
+
+/// A range bounded inclusively below and above (`start..=end`).
+///
+/// The `RangeInclusive` `start..=end` contains all values with `x >= start`
+/// and `x <= end`. It is empty unless `start <= end`.
+///
+/// This iterator is [fused], but the specific values of `start` and `end` after
+/// iteration has finished are **unspecified** other than that [`.is_empty()`]
+/// will return `true` once no more values will be produced.
+///
+/// [fused]: crate::iter::FusedIterator
+/// [`.is_empty()`]: RangeInclusive::is_empty
+///
+/// # Examples
+///
+/// The `start..=end` syntax is a `RangeInclusive`:
+///
+/// ```
+/// assert_eq!((3..=5), std::ops::RangeInclusive::new(3, 5));
+/// assert_eq!(3 + 4 + 5, (3..=5).sum());
+/// ```
+///
+/// ```
+/// let arr = [0, 1, 2, 3, 4];
+/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
+/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
+/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
+/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
+/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
+/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]); // This is a `RangeInclusive`
+/// ```
+#[lang = "RangeInclusive"]
+#[doc(alias = "..=")]
+#[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+pub struct RangeInclusive<Idx> {
+ // Note that the fields here are not public to allow changing the
+ // representation in the future; in particular, while we could plausibly
+ // expose start/end, modifying them without changing (future/current)
+ // private fields may lead to incorrect behavior, so we don't want to
+ // support that mode.
+ pub(crate) start: Idx,
+ pub(crate) end: Idx,
+
+ // This field is:
+ // - `false` upon construction
+ // - `false` when iteration has yielded an element and the iterator is not exhausted
+ // - `true` when iteration has been used to exhaust the iterator
+ //
+ // This is required to support PartialEq and Hash without a PartialOrd bound or specialization.
+ pub(crate) exhausted: bool,
+}
+
+impl<Idx> RangeInclusive<Idx> {
+ /// Creates a new inclusive range. Equivalent to writing `start..=end`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ops::RangeInclusive;
+ ///
+ /// assert_eq!(3..=5, RangeInclusive::new(3, 5));
+ /// ```
+ #[lang = "range_inclusive_new"]
+ #[stable(feature = "inclusive_range_methods", since = "1.27.0")]
+ #[inline]
+ #[rustc_promotable]
+ #[rustc_const_stable(feature = "const_range_new", since = "1.32.0")]
+ pub const fn new(start: Idx, end: Idx) -> Self {
+ Self { start, end, exhausted: false }
+ }
+
+ /// Returns the lower bound of the range (inclusive).
+ ///
+ /// When using an inclusive range for iteration, the values of `start()` and
+ /// [`end()`] are unspecified after the iteration ended. To determine
+ /// whether the inclusive range is empty, use the [`is_empty()`] method
+ /// instead of comparing `start() > end()`.
+ ///
+ /// Note: the value returned by this method is unspecified after the range
+ /// has been iterated to exhaustion.
+ ///
+ /// [`end()`]: RangeInclusive::end
+ /// [`is_empty()`]: RangeInclusive::is_empty
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!((3..=5).start(), &3);
+ /// ```
+ #[stable(feature = "inclusive_range_methods", since = "1.27.0")]
+ #[rustc_const_stable(feature = "const_inclusive_range_methods", since = "1.32.0")]
+ #[inline]
+ pub const fn start(&self) -> &Idx {
+ &self.start
+ }
+
+ /// Returns the upper bound of the range (inclusive).
+ ///
+ /// When using an inclusive range for iteration, the values of [`start()`]
+ /// and `end()` are unspecified after the iteration ended. To determine
+ /// whether the inclusive range is empty, use the [`is_empty()`] method
+ /// instead of comparing `start() > end()`.
+ ///
+ /// Note: the value returned by this method is unspecified after the range
+ /// has been iterated to exhaustion.
+ ///
+ /// [`start()`]: RangeInclusive::start
+ /// [`is_empty()`]: RangeInclusive::is_empty
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!((3..=5).end(), &5);
+ /// ```
+ #[stable(feature = "inclusive_range_methods", since = "1.27.0")]
+ #[rustc_const_stable(feature = "const_inclusive_range_methods", since = "1.32.0")]
+ #[inline]
+ pub const fn end(&self) -> &Idx {
+ &self.end
+ }
+
+ /// Destructures the `RangeInclusive` into (lower bound, upper (inclusive) bound).
+ ///
+ /// Note: the value returned by this method is unspecified after the range
+ /// has been iterated to exhaustion.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!((3..=5).into_inner(), (3, 5));
+ /// ```
+ #[stable(feature = "inclusive_range_methods", since = "1.27.0")]
+ #[inline]
+ pub fn into_inner(self) -> (Idx, Idx) {
+ (self.start, self.end)
+ }
+}
+
+impl RangeInclusive<usize> {
+ /// Converts to an exclusive `Range` for `SliceIndex` implementations.
+ /// The caller is responsible for dealing with `end == usize::MAX`.
+ #[inline]
+ pub(crate) const fn into_slice_range(self) -> Range<usize> {
+ // If we're not exhausted, we want to simply slice `start..end + 1`.
+ // If we are exhausted, then slicing with `end + 1..end + 1` gives us an
+ // empty range that is still subject to bounds-checks for that endpoint.
+ let exclusive_end = self.end + 1;
+ let start = if self.exhausted { exclusive_end } else { self.start };
+ start..exclusive_end
+ }
+}
+
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl<Idx: fmt::Debug> fmt::Debug for RangeInclusive<Idx> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.start.fmt(fmt)?;
+ write!(fmt, "..=")?;
+ self.end.fmt(fmt)?;
+ if self.exhausted {
+ write!(fmt, " (exhausted)")?;
+ }
+ Ok(())
+ }
+}
+
+impl<Idx: PartialOrd<Idx>> RangeInclusive<Idx> {
+ /// Returns `true` if `item` is contained in the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!(!(3..=5).contains(&2));
+ /// assert!( (3..=5).contains(&3));
+ /// assert!( (3..=5).contains(&4));
+ /// assert!( (3..=5).contains(&5));
+ /// assert!(!(3..=5).contains(&6));
+ ///
+ /// assert!( (3..=3).contains(&3));
+ /// assert!(!(3..=2).contains(&3));
+ ///
+ /// assert!( (0.0..=1.0).contains(&1.0));
+ /// assert!(!(0.0..=1.0).contains(&f32::NAN));
+ /// assert!(!(0.0..=f32::NAN).contains(&0.0));
+ /// assert!(!(f32::NAN..=1.0).contains(&1.0));
+ /// ```
+ ///
+ /// This method always returns `false` after iteration has finished:
+ ///
+ /// ```
+ /// let mut r = 3..=5;
+ /// assert!(r.contains(&3) && r.contains(&5));
+ /// for _ in r.by_ref() {}
+ /// // Precise field values are unspecified here
+ /// assert!(!r.contains(&3) && !r.contains(&5));
+ /// ```
+ #[stable(feature = "range_contains", since = "1.35.0")]
+ pub fn contains<U>(&self, item: &U) -> bool
+ where
+ Idx: PartialOrd<U>,
+ U: ?Sized + PartialOrd<Idx>,
+ {
+ <Self as RangeBounds<Idx>>::contains(self, item)
+ }
+
+ /// Returns `true` if the range contains no items.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!(!(3..=5).is_empty());
+ /// assert!(!(3..=3).is_empty());
+ /// assert!( (3..=2).is_empty());
+ /// ```
+ ///
+ /// The range is empty if either side is incomparable:
+ ///
+ /// ```
+ /// assert!(!(3.0..=5.0).is_empty());
+ /// assert!( (3.0..=f32::NAN).is_empty());
+ /// assert!( (f32::NAN..=5.0).is_empty());
+ /// ```
+ ///
+ /// This method returns `true` after iteration has finished:
+ ///
+ /// ```
+ /// let mut r = 3..=5;
+ /// for _ in r.by_ref() {}
+ /// // Precise field values are unspecified here
+ /// assert!(r.is_empty());
+ /// ```
+ #[stable(feature = "range_is_empty", since = "1.47.0")]
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.exhausted || !(self.start <= self.end)
+ }
+}
+
+/// A range only bounded inclusively above (`..=end`).
+///
+/// The `RangeToInclusive` `..=end` contains all values with `x <= end`.
+/// It cannot serve as an [`Iterator`] because it doesn't have a starting point.
+///
+/// # Examples
+///
+/// The `..=end` syntax is a `RangeToInclusive`:
+///
+/// ```
+/// assert_eq!((..=5), std::ops::RangeToInclusive{ end: 5 });
+/// ```
+///
+/// It does not have an [`IntoIterator`] implementation, so you can't use it in a
+/// `for` loop directly. This won't compile:
+///
+/// ```compile_fail,E0277
+/// // error[E0277]: the trait bound `std::ops::RangeToInclusive<{integer}>:
+/// // std::iter::Iterator` is not satisfied
+/// for i in ..=5 {
+/// // ...
+/// }
+/// ```
+///
+/// When used as a [slicing index], `RangeToInclusive` produces a slice of all
+/// array elements up to and including the index indicated by `end`.
+///
+/// ```
+/// let arr = [0, 1, 2, 3, 4];
+/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
+/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
+/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]); // This is a `RangeToInclusive`
+/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
+/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
+/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
+/// ```
+///
+/// [slicing index]: crate::slice::SliceIndex
+#[lang = "RangeToInclusive"]
+#[doc(alias = "..=")]
+#[derive(Copy, Clone, PartialEq, Eq, Hash)]
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+pub struct RangeToInclusive<Idx> {
+ /// The upper bound of the range (inclusive)
+ #[stable(feature = "inclusive_range", since = "1.26.0")]
+ pub end: Idx,
+}
+
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl<Idx: fmt::Debug> fmt::Debug for RangeToInclusive<Idx> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(fmt, "..=")?;
+ self.end.fmt(fmt)?;
+ Ok(())
+ }
+}
+
+impl<Idx: PartialOrd<Idx>> RangeToInclusive<Idx> {
+ /// Returns `true` if `item` is contained in the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!( (..=5).contains(&-1_000_000_000));
+ /// assert!( (..=5).contains(&5));
+ /// assert!(!(..=5).contains(&6));
+ ///
+ /// assert!( (..=1.0).contains(&1.0));
+ /// assert!(!(..=1.0).contains(&f32::NAN));
+ /// assert!(!(..=f32::NAN).contains(&0.5));
+ /// ```
+ #[stable(feature = "range_contains", since = "1.35.0")]
+ pub fn contains<U>(&self, item: &U) -> bool
+ where
+ Idx: PartialOrd<U>,
+ U: ?Sized + PartialOrd<Idx>,
+ {
+ <Self as RangeBounds<Idx>>::contains(self, item)
+ }
+}
+
+// RangeToInclusive<Idx> cannot impl From<RangeTo<Idx>>
+// because underflow would be possible with (..0).into()
+
+/// An endpoint of a range of keys.
+///
+/// # Examples
+///
+/// `Bound`s are range endpoints:
+///
+/// ```
+/// use std::ops::Bound::*;
+/// use std::ops::RangeBounds;
+///
+/// assert_eq!((..100).start_bound(), Unbounded);
+/// assert_eq!((1..12).start_bound(), Included(&1));
+/// assert_eq!((1..12).end_bound(), Excluded(&12));
+/// ```
+///
+/// Using a tuple of `Bound`s as an argument to [`BTreeMap::range`].
+/// Note that in most cases, it's better to use range syntax (`1..5`) instead.
+///
+/// ```
+/// use std::collections::BTreeMap;
+/// use std::ops::Bound::{Excluded, Included, Unbounded};
+///
+/// let mut map = BTreeMap::new();
+/// map.insert(3, "a");
+/// map.insert(5, "b");
+/// map.insert(8, "c");
+///
+/// for (key, value) in map.range((Excluded(3), Included(8))) {
+/// println!("{key}: {value}");
+/// }
+///
+/// assert_eq!(Some((&3, &"a")), map.range((Unbounded, Included(5))).next());
+/// ```
+///
+/// [`BTreeMap::range`]: ../../std/collections/btree_map/struct.BTreeMap.html#method.range
+#[stable(feature = "collections_bound", since = "1.17.0")]
+#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
+pub enum Bound<T> {
+ /// An inclusive bound.
+ #[stable(feature = "collections_bound", since = "1.17.0")]
+ Included(#[stable(feature = "collections_bound", since = "1.17.0")] T),
+ /// An exclusive bound.
+ #[stable(feature = "collections_bound", since = "1.17.0")]
+ Excluded(#[stable(feature = "collections_bound", since = "1.17.0")] T),
+ /// An infinite endpoint. Indicates that there is no bound in this direction.
+ #[stable(feature = "collections_bound", since = "1.17.0")]
+ Unbounded,
+}
+
+impl<T> Bound<T> {
+ /// Converts from `&Bound<T>` to `Bound<&T>`.
+ #[inline]
+ #[unstable(feature = "bound_as_ref", issue = "80996")]
+ pub fn as_ref(&self) -> Bound<&T> {
+ match *self {
+ Included(ref x) => Included(x),
+ Excluded(ref x) => Excluded(x),
+ Unbounded => Unbounded,
+ }
+ }
+
+ /// Converts from `&mut Bound<T>` to `Bound<&mut T>`.
+ #[inline]
+ #[unstable(feature = "bound_as_ref", issue = "80996")]
+ pub fn as_mut(&mut self) -> Bound<&mut T> {
+ match *self {
+ Included(ref mut x) => Included(x),
+ Excluded(ref mut x) => Excluded(x),
+ Unbounded => Unbounded,
+ }
+ }
+
+ /// Maps a `Bound<T>` to a `Bound<U>` by applying a function to the contained value (including
+ /// both `Included` and `Excluded`), returning a `Bound` of the same kind.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(bound_map)]
+ /// use std::ops::Bound::*;
+ ///
+ /// let bound_string = Included("Hello, World!");
+ ///
+ /// assert_eq!(bound_string.map(|s| s.len()), Included(13));
+ /// ```
+ ///
+ /// ```
+ /// #![feature(bound_map)]
+ /// use std::ops::Bound;
+ /// use Bound::*;
+ ///
+ /// let unbounded_string: Bound<String> = Unbounded;
+ ///
+ /// assert_eq!(unbounded_string.map(|s| s.len()), Unbounded);
+ /// ```
+ #[inline]
+ #[unstable(feature = "bound_map", issue = "86026")]
+ pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Bound<U> {
+ match self {
+ Unbounded => Unbounded,
+ Included(x) => Included(f(x)),
+ Excluded(x) => Excluded(f(x)),
+ }
+ }
+}
+
+impl<T: Clone> Bound<&T> {
+ /// Map a `Bound<&T>` to a `Bound<T>` by cloning the contents of the bound.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ops::Bound::*;
+ /// use std::ops::RangeBounds;
+ ///
+ /// assert_eq!((1..12).start_bound(), Included(&1));
+ /// assert_eq!((1..12).start_bound().cloned(), Included(1));
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "bound_cloned", since = "1.55.0")]
+ pub fn cloned(self) -> Bound<T> {
+ match self {
+ Bound::Unbounded => Bound::Unbounded,
+ Bound::Included(x) => Bound::Included(x.clone()),
+ Bound::Excluded(x) => Bound::Excluded(x.clone()),
+ }
+ }
+}
+
+/// `RangeBounds` is implemented by Rust's built-in range types, produced
+/// by range syntax like `..`, `a..`, `..b`, `..=c`, `d..e`, or `f..=g`.
+#[stable(feature = "collections_range", since = "1.28.0")]
+pub trait RangeBounds<T: ?Sized> {
+ /// Start index bound.
+ ///
+ /// Returns the start value as a `Bound`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # fn main() {
+ /// use std::ops::Bound::*;
+ /// use std::ops::RangeBounds;
+ ///
+ /// assert_eq!((..10).start_bound(), Unbounded);
+ /// assert_eq!((3..10).start_bound(), Included(&3));
+ /// # }
+ /// ```
+ #[stable(feature = "collections_range", since = "1.28.0")]
+ fn start_bound(&self) -> Bound<&T>;
+
+ /// End index bound.
+ ///
+ /// Returns the end value as a `Bound`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # fn main() {
+ /// use std::ops::Bound::*;
+ /// use std::ops::RangeBounds;
+ ///
+ /// assert_eq!((3..).end_bound(), Unbounded);
+ /// assert_eq!((3..10).end_bound(), Excluded(&10));
+ /// # }
+ /// ```
+ #[stable(feature = "collections_range", since = "1.28.0")]
+ fn end_bound(&self) -> Bound<&T>;
+
+ /// Returns `true` if `item` is contained in the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!( (3..5).contains(&4));
+ /// assert!(!(3..5).contains(&2));
+ ///
+ /// assert!( (0.0..1.0).contains(&0.5));
+ /// assert!(!(0.0..1.0).contains(&f32::NAN));
+ /// assert!(!(0.0..f32::NAN).contains(&0.5));
+ /// assert!(!(f32::NAN..1.0).contains(&0.5));
+ #[stable(feature = "range_contains", since = "1.35.0")]
+ fn contains<U>(&self, item: &U) -> bool
+ where
+ T: PartialOrd<U>,
+ U: ?Sized + PartialOrd<T>,
+ {
+ (match self.start_bound() {
+ Included(start) => start <= item,
+ Excluded(start) => start < item,
+ Unbounded => true,
+ }) && (match self.end_bound() {
+ Included(end) => item <= end,
+ Excluded(end) => item < end,
+ Unbounded => true,
+ })
+ }
+}
+
+use self::Bound::{Excluded, Included, Unbounded};
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T: ?Sized> RangeBounds<T> for RangeFull {
+ fn start_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeFrom<T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Included(&self.start)
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeTo<T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Excluded(&self.end)
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for Range<T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Included(&self.start)
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Excluded(&self.end)
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeInclusive<T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Included(&self.start)
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ if self.exhausted {
+ // When the iterator is exhausted, we usually have start == end,
+ // but we want the range to appear empty, containing nothing.
+ Excluded(&self.end)
+ } else {
+ Included(&self.end)
+ }
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeToInclusive<T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Included(&self.end)
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for (Bound<T>, Bound<T>) {
+ fn start_bound(&self) -> Bound<&T> {
+ match *self {
+ (Included(ref start), _) => Included(start),
+ (Excluded(ref start), _) => Excluded(start),
+ (Unbounded, _) => Unbounded,
+ }
+ }
+
+ fn end_bound(&self) -> Bound<&T> {
+ match *self {
+ (_, Included(ref end)) => Included(end),
+ (_, Excluded(ref end)) => Excluded(end),
+ (_, Unbounded) => Unbounded,
+ }
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<'a, T: ?Sized + 'a> RangeBounds<T> for (Bound<&'a T>, Bound<&'a T>) {
+ fn start_bound(&self) -> Bound<&T> {
+ self.0
+ }
+
+ fn end_bound(&self) -> Bound<&T> {
+ self.1
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeFrom<&T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Included(self.start)
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeTo<&T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Excluded(self.end)
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for Range<&T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Included(self.start)
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Excluded(self.end)
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeInclusive<&T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Included(self.start)
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Included(self.end)
+ }
+}
+
+#[stable(feature = "collections_range", since = "1.28.0")]
+impl<T> RangeBounds<T> for RangeToInclusive<&T> {
+ fn start_bound(&self) -> Bound<&T> {
+ Unbounded
+ }
+ fn end_bound(&self) -> Bound<&T> {
+ Included(self.end)
+ }
+}
+
+/// `OneSidedRange` is implemented for built-in range types that are unbounded
+/// on one side. For example, `a..`, `..b` and `..=c` implement `OneSidedRange`,
+/// but `..`, `d..e`, and `f..=g` do not.
+///
+/// Types that implement `OneSidedRange<T>` must return `Bound::Unbounded`
+/// from one of `RangeBounds::start_bound` or `RangeBounds::end_bound`.
+#[unstable(feature = "one_sided_range", issue = "69780")]
+pub trait OneSidedRange<T: ?Sized>: RangeBounds<T> {}
+
+#[unstable(feature = "one_sided_range", issue = "69780")]
+impl<T> OneSidedRange<T> for RangeTo<T> where Self: RangeBounds<T> {}
+
+#[unstable(feature = "one_sided_range", issue = "69780")]
+impl<T> OneSidedRange<T> for RangeFrom<T> where Self: RangeBounds<T> {}
+
+#[unstable(feature = "one_sided_range", issue = "69780")]
+impl<T> OneSidedRange<T> for RangeToInclusive<T> where Self: RangeBounds<T> {}