summaryrefslogtreecommitdiffstats
path: root/library/core/src/str/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/core/src/str/mod.rs')
-rw-r--r--library/core/src/str/mod.rs2640
1 files changed, 2640 insertions, 0 deletions
diff --git a/library/core/src/str/mod.rs b/library/core/src/str/mod.rs
new file mode 100644
index 000000000..c4f2e283e
--- /dev/null
+++ b/library/core/src/str/mod.rs
@@ -0,0 +1,2640 @@
+//! String manipulation.
+//!
+//! For more details, see the [`std::str`] module.
+//!
+//! [`std::str`]: ../../std/str/index.html
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+mod converts;
+mod count;
+mod error;
+mod iter;
+mod traits;
+mod validations;
+
+use self::pattern::Pattern;
+use self::pattern::{DoubleEndedSearcher, ReverseSearcher, Searcher};
+
+use crate::char::{self, EscapeDebugExtArgs};
+use crate::mem;
+use crate::slice::{self, SliceIndex};
+
+pub mod pattern;
+
+#[unstable(feature = "str_internals", issue = "none")]
+#[allow(missing_docs)]
+pub mod lossy;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use converts::{from_utf8, from_utf8_unchecked};
+
+#[stable(feature = "str_mut_extras", since = "1.20.0")]
+pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use error::{ParseBoolError, Utf8Error};
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use traits::FromStr;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[allow(deprecated)]
+pub use iter::LinesAny;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use iter::{RSplitN, SplitN};
+
+#[stable(feature = "str_matches", since = "1.2.0")]
+pub use iter::{Matches, RMatches};
+
+#[stable(feature = "str_match_indices", since = "1.5.0")]
+pub use iter::{MatchIndices, RMatchIndices};
+
+#[stable(feature = "encode_utf16", since = "1.8.0")]
+pub use iter::EncodeUtf16;
+
+#[stable(feature = "str_escape", since = "1.34.0")]
+pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
+
+#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
+pub use iter::SplitAsciiWhitespace;
+
+#[stable(feature = "split_inclusive", since = "1.51.0")]
+pub use iter::SplitInclusive;
+
+#[unstable(feature = "str_internals", issue = "none")]
+pub use validations::{next_code_point, utf8_char_width};
+
+use iter::MatchIndicesInternal;
+use iter::SplitInternal;
+use iter::{MatchesInternal, SplitNInternal};
+
+#[inline(never)]
+#[cold]
+#[track_caller]
+#[rustc_allow_const_fn_unstable(const_eval_select)]
+const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
+ // SAFETY: panics for both branches
+ unsafe {
+ crate::intrinsics::const_eval_select(
+ (s, begin, end),
+ slice_error_fail_ct,
+ slice_error_fail_rt,
+ )
+ }
+}
+
+const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
+ panic!("failed to slice string");
+}
+
+fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
+ const MAX_DISPLAY_LENGTH: usize = 256;
+ let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
+ let s_trunc = &s[..trunc_len];
+ let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
+
+ // 1. out of bounds
+ if begin > s.len() || end > s.len() {
+ let oob_index = if begin > s.len() { begin } else { end };
+ panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
+ }
+
+ // 2. begin <= end
+ assert!(
+ begin <= end,
+ "begin <= end ({} <= {}) when slicing `{}`{}",
+ begin,
+ end,
+ s_trunc,
+ ellipsis
+ );
+
+ // 3. character boundary
+ let index = if !s.is_char_boundary(begin) { begin } else { end };
+ // find the character
+ let char_start = s.floor_char_boundary(index);
+ // `char_start` must be less than len and a char boundary
+ let ch = s[char_start..].chars().next().unwrap();
+ let char_range = char_start..char_start + ch.len_utf8();
+ panic!(
+ "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
+ index, ch, char_range, s_trunc, ellipsis
+ );
+}
+
+#[cfg(not(test))]
+impl str {
+ /// Returns the length of `self`.
+ ///
+ /// This length is in bytes, not [`char`]s or graphemes. In other words,
+ /// it might not be what a human considers the length of the string.
+ ///
+ /// [`char`]: prim@char
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let len = "foo".len();
+ /// assert_eq!(3, len);
+ ///
+ /// assert_eq!("ƒoo".len(), 4); // fancy f!
+ /// assert_eq!("ƒoo".chars().count(), 3);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
+ #[must_use]
+ #[inline]
+ pub const fn len(&self) -> usize {
+ self.as_bytes().len()
+ }
+
+ /// Returns `true` if `self` has a length of zero bytes.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "";
+ /// assert!(s.is_empty());
+ ///
+ /// let s = "not empty";
+ /// assert!(!s.is_empty());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
+ #[must_use]
+ #[inline]
+ pub const fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Checks that `index`-th byte is the first byte in a UTF-8 code point
+ /// sequence or the end of the string.
+ ///
+ /// The start and end of the string (when `index == self.len()`) are
+ /// considered to be boundaries.
+ ///
+ /// Returns `false` if `index` is greater than `self.len()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard";
+ /// assert!(s.is_char_boundary(0));
+ /// // start of `老`
+ /// assert!(s.is_char_boundary(6));
+ /// assert!(s.is_char_boundary(s.len()));
+ ///
+ /// // second byte of `ö`
+ /// assert!(!s.is_char_boundary(2));
+ ///
+ /// // third byte of `老`
+ /// assert!(!s.is_char_boundary(8));
+ /// ```
+ #[must_use]
+ #[stable(feature = "is_char_boundary", since = "1.9.0")]
+ #[rustc_const_unstable(feature = "const_is_char_boundary", issue = "none")]
+ #[inline]
+ pub const fn is_char_boundary(&self, index: usize) -> bool {
+ // 0 is always ok.
+ // Test for 0 explicitly so that it can optimize out the check
+ // easily and skip reading string data for that case.
+ // Note that optimizing `self.get(..index)` relies on this.
+ if index == 0 {
+ return true;
+ }
+
+ match self.as_bytes().get(index) {
+ // For `None` we have two options:
+ //
+ // - index == self.len()
+ // Empty strings are valid, so return true
+ // - index > self.len()
+ // In this case return false
+ //
+ // The check is placed exactly here, because it improves generated
+ // code on higher opt-levels. See PR #84751 for more details.
+ None => index == self.len(),
+
+ Some(&b) => b.is_utf8_char_boundary(),
+ }
+ }
+
+ /// Finds the closest `x` not exceeding `index` where `is_char_boundary(x)` is `true`.
+ ///
+ /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
+ /// exceed a given number of bytes. Note that this is done purely at the character level
+ /// and can still visually split graphemes, even though the underlying characters aren't
+ /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
+ /// includes 🧑 (person) instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(round_char_boundary)]
+ /// let s = "❤️🧡💛💚💙💜";
+ /// assert_eq!(s.len(), 26);
+ /// assert!(!s.is_char_boundary(13));
+ ///
+ /// let closest = s.floor_char_boundary(13);
+ /// assert_eq!(closest, 10);
+ /// assert_eq!(&s[..closest], "❤️🧡");
+ /// ```
+ #[unstable(feature = "round_char_boundary", issue = "93743")]
+ #[inline]
+ pub fn floor_char_boundary(&self, index: usize) -> usize {
+ if index >= self.len() {
+ self.len()
+ } else {
+ let lower_bound = index.saturating_sub(3);
+ let new_index = self.as_bytes()[lower_bound..=index]
+ .iter()
+ .rposition(|b| b.is_utf8_char_boundary());
+
+ // SAFETY: we know that the character boundary will be within four bytes
+ unsafe { lower_bound + new_index.unwrap_unchecked() }
+ }
+ }
+
+ /// Finds the closest `x` not below `index` where `is_char_boundary(x)` is `true`.
+ ///
+ /// This method is the natural complement to [`floor_char_boundary`]. See that method
+ /// for more details.
+ ///
+ /// [`floor_char_boundary`]: str::floor_char_boundary
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index > self.len()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(round_char_boundary)]
+ /// let s = "❤️🧡💛💚💙💜";
+ /// assert_eq!(s.len(), 26);
+ /// assert!(!s.is_char_boundary(13));
+ ///
+ /// let closest = s.ceil_char_boundary(13);
+ /// assert_eq!(closest, 14);
+ /// assert_eq!(&s[..closest], "❤️🧡💛");
+ /// ```
+ #[unstable(feature = "round_char_boundary", issue = "93743")]
+ #[inline]
+ pub fn ceil_char_boundary(&self, index: usize) -> usize {
+ if index > self.len() {
+ slice_error_fail(self, index, index)
+ } else {
+ let upper_bound = Ord::min(index + 4, self.len());
+ self.as_bytes()[index..upper_bound]
+ .iter()
+ .position(|b| b.is_utf8_char_boundary())
+ .map_or(upper_bound, |pos| pos + index)
+ }
+ }
+
+ /// Converts a string slice to a byte slice. To convert the byte slice back
+ /// into a string slice, use the [`from_utf8`] function.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let bytes = "bors".as_bytes();
+ /// assert_eq!(b"bors", bytes);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
+ #[must_use]
+ #[inline(always)]
+ #[allow(unused_attributes)]
+ pub const fn as_bytes(&self) -> &[u8] {
+ // SAFETY: const sound because we transmute two types with the same layout
+ unsafe { mem::transmute(self) }
+ }
+
+ /// Converts a mutable string slice to a mutable byte slice.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that the content of the slice is valid UTF-8
+ /// before the borrow ends and the underlying `str` is used.
+ ///
+ /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("Hello");
+ /// let bytes = unsafe { s.as_bytes_mut() };
+ ///
+ /// assert_eq!(b"Hello", bytes);
+ /// ```
+ ///
+ /// Mutability:
+ ///
+ /// ```
+ /// let mut s = String::from("🗻∈🌏");
+ ///
+ /// unsafe {
+ /// let bytes = s.as_bytes_mut();
+ ///
+ /// bytes[0] = 0xF0;
+ /// bytes[1] = 0x9F;
+ /// bytes[2] = 0x8D;
+ /// bytes[3] = 0x94;
+ /// }
+ ///
+ /// assert_eq!("🍔∈🌏", s);
+ /// ```
+ #[stable(feature = "str_mut_extras", since = "1.20.0")]
+ #[must_use]
+ #[inline(always)]
+ pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
+ // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
+ // has the same layout as `&[u8]` (only libstd can make this guarantee).
+ // The pointer dereference is safe since it comes from a mutable reference which
+ // is guaranteed to be valid for writes.
+ unsafe { &mut *(self as *mut str as *mut [u8]) }
+ }
+
+ /// Converts a string slice to a raw pointer.
+ ///
+ /// As string slices are a slice of bytes, the raw pointer points to a
+ /// [`u8`]. This pointer will be pointing to the first byte of the string
+ /// slice.
+ ///
+ /// The caller must ensure that the returned pointer is never written to.
+ /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
+ ///
+ /// [`as_mut_ptr`]: str::as_mut_ptr
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "Hello";
+ /// let ptr = s.as_ptr();
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
+ #[must_use]
+ #[inline]
+ pub const fn as_ptr(&self) -> *const u8 {
+ self as *const str as *const u8
+ }
+
+ /// Converts a mutable string slice to a raw pointer.
+ ///
+ /// As string slices are a slice of bytes, the raw pointer points to a
+ /// [`u8`]. This pointer will be pointing to the first byte of the string
+ /// slice.
+ ///
+ /// It is your responsibility to make sure that the string slice only gets
+ /// modified in a way that it remains valid UTF-8.
+ #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
+ #[must_use]
+ #[inline]
+ pub fn as_mut_ptr(&mut self) -> *mut u8 {
+ self as *mut str as *mut u8
+ }
+
+ /// Returns a subslice of `str`.
+ ///
+ /// This is the non-panicking alternative to indexing the `str`. Returns
+ /// [`None`] whenever equivalent indexing operation would panic.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = String::from("🗻∈🌏");
+ ///
+ /// assert_eq!(Some("🗻"), v.get(0..4));
+ ///
+ /// // indices not on UTF-8 sequence boundaries
+ /// assert!(v.get(1..).is_none());
+ /// assert!(v.get(..8).is_none());
+ ///
+ /// // out of bounds
+ /// assert!(v.get(..42).is_none());
+ /// ```
+ #[stable(feature = "str_checked_slicing", since = "1.20.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ pub const fn get<I: ~const SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
+ i.get(self)
+ }
+
+ /// Returns a mutable subslice of `str`.
+ ///
+ /// This is the non-panicking alternative to indexing the `str`. Returns
+ /// [`None`] whenever equivalent indexing operation would panic.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = String::from("hello");
+ /// // correct length
+ /// assert!(v.get_mut(0..5).is_some());
+ /// // out of bounds
+ /// assert!(v.get_mut(..42).is_none());
+ /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
+ ///
+ /// assert_eq!("hello", v);
+ /// {
+ /// let s = v.get_mut(0..2);
+ /// let s = s.map(|s| {
+ /// s.make_ascii_uppercase();
+ /// &*s
+ /// });
+ /// assert_eq!(Some("HE"), s);
+ /// }
+ /// assert_eq!("HEllo", v);
+ /// ```
+ #[stable(feature = "str_checked_slicing", since = "1.20.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ pub const fn get_mut<I: ~const SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
+ i.get_mut(self)
+ }
+
+ /// Returns an unchecked subslice of `str`.
+ ///
+ /// This is the unchecked alternative to indexing the `str`.
+ ///
+ /// # Safety
+ ///
+ /// Callers of this function are responsible that these preconditions are
+ /// satisfied:
+ ///
+ /// * The starting index must not exceed the ending index;
+ /// * Indexes must be within bounds of the original slice;
+ /// * Indexes must lie on UTF-8 sequence boundaries.
+ ///
+ /// Failing that, the returned string slice may reference invalid memory or
+ /// violate the invariants communicated by the `str` type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = "🗻∈🌏";
+ /// unsafe {
+ /// assert_eq!("🗻", v.get_unchecked(0..4));
+ /// assert_eq!("∈", v.get_unchecked(4..7));
+ /// assert_eq!("🌏", v.get_unchecked(7..11));
+ /// }
+ /// ```
+ #[stable(feature = "str_checked_slicing", since = "1.20.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ pub const unsafe fn get_unchecked<I: ~const SliceIndex<str>>(&self, i: I) -> &I::Output {
+ // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
+ // the slice is dereferenceable because `self` is a safe reference.
+ // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+ unsafe { &*i.get_unchecked(self) }
+ }
+
+ /// Returns a mutable, unchecked subslice of `str`.
+ ///
+ /// This is the unchecked alternative to indexing the `str`.
+ ///
+ /// # Safety
+ ///
+ /// Callers of this function are responsible that these preconditions are
+ /// satisfied:
+ ///
+ /// * The starting index must not exceed the ending index;
+ /// * Indexes must be within bounds of the original slice;
+ /// * Indexes must lie on UTF-8 sequence boundaries.
+ ///
+ /// Failing that, the returned string slice may reference invalid memory or
+ /// violate the invariants communicated by the `str` type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = String::from("🗻∈🌏");
+ /// unsafe {
+ /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
+ /// assert_eq!("∈", v.get_unchecked_mut(4..7));
+ /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
+ /// }
+ /// ```
+ #[stable(feature = "str_checked_slicing", since = "1.20.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ pub const unsafe fn get_unchecked_mut<I: ~const SliceIndex<str>>(
+ &mut self,
+ i: I,
+ ) -> &mut I::Output {
+ // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
+ // the slice is dereferenceable because `self` is a safe reference.
+ // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+ unsafe { &mut *i.get_unchecked_mut(self) }
+ }
+
+ /// Creates a string slice from another string slice, bypassing safety
+ /// checks.
+ ///
+ /// This is generally not recommended, use with caution! For a safe
+ /// alternative see [`str`] and [`Index`].
+ ///
+ /// [`Index`]: crate::ops::Index
+ ///
+ /// This new slice goes from `begin` to `end`, including `begin` but
+ /// excluding `end`.
+ ///
+ /// To get a mutable string slice instead, see the
+ /// [`slice_mut_unchecked`] method.
+ ///
+ /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
+ ///
+ /// # Safety
+ ///
+ /// Callers of this function are responsible that three preconditions are
+ /// satisfied:
+ ///
+ /// * `begin` must not exceed `end`.
+ /// * `begin` and `end` must be byte positions within the string slice.
+ /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard";
+ ///
+ /// unsafe {
+ /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
+ /// }
+ ///
+ /// let s = "Hello, world!";
+ ///
+ /// unsafe {
+ /// assert_eq!("world", s.slice_unchecked(7, 12));
+ /// }
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
+ #[must_use]
+ #[inline]
+ pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
+ // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
+ // the slice is dereferenceable because `self` is a safe reference.
+ // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+ unsafe { &*(begin..end).get_unchecked(self) }
+ }
+
+ /// Creates a string slice from another string slice, bypassing safety
+ /// checks.
+ /// This is generally not recommended, use with caution! For a safe
+ /// alternative see [`str`] and [`IndexMut`].
+ ///
+ /// [`IndexMut`]: crate::ops::IndexMut
+ ///
+ /// This new slice goes from `begin` to `end`, including `begin` but
+ /// excluding `end`.
+ ///
+ /// To get an immutable string slice instead, see the
+ /// [`slice_unchecked`] method.
+ ///
+ /// [`slice_unchecked`]: str::slice_unchecked
+ ///
+ /// # Safety
+ ///
+ /// Callers of this function are responsible that three preconditions are
+ /// satisfied:
+ ///
+ /// * `begin` must not exceed `end`.
+ /// * `begin` and `end` must be byte positions within the string slice.
+ /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
+ #[stable(feature = "str_slice_mut", since = "1.5.0")]
+ #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
+ #[inline]
+ pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
+ // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
+ // the slice is dereferenceable because `self` is a safe reference.
+ // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+ unsafe { &mut *(begin..end).get_unchecked_mut(self) }
+ }
+
+ /// Divide one string slice into two at an index.
+ ///
+ /// The argument, `mid`, should be a byte offset from the start of the
+ /// string. It must also be on the boundary of a UTF-8 code point.
+ ///
+ /// The two slices returned go from the start of the string slice to `mid`,
+ /// and from `mid` to the end of the string slice.
+ ///
+ /// To get mutable string slices instead, see the [`split_at_mut`]
+ /// method.
+ ///
+ /// [`split_at_mut`]: str::split_at_mut
+ ///
+ /// # Panics
+ ///
+ /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
+ /// past the end of the last code point of the string slice.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "Per Martin-Löf";
+ ///
+ /// let (first, last) = s.split_at(3);
+ ///
+ /// assert_eq!("Per", first);
+ /// assert_eq!(" Martin-Löf", last);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "str_split_at", since = "1.4.0")]
+ pub fn split_at(&self, mid: usize) -> (&str, &str) {
+ // is_char_boundary checks that the index is in [0, .len()]
+ if self.is_char_boundary(mid) {
+ // SAFETY: just checked that `mid` is on a char boundary.
+ unsafe { (self.get_unchecked(0..mid), self.get_unchecked(mid..self.len())) }
+ } else {
+ slice_error_fail(self, 0, mid)
+ }
+ }
+
+ /// Divide one mutable string slice into two at an index.
+ ///
+ /// The argument, `mid`, should be a byte offset from the start of the
+ /// string. It must also be on the boundary of a UTF-8 code point.
+ ///
+ /// The two slices returned go from the start of the string slice to `mid`,
+ /// and from `mid` to the end of the string slice.
+ ///
+ /// To get immutable string slices instead, see the [`split_at`] method.
+ ///
+ /// [`split_at`]: str::split_at
+ ///
+ /// # Panics
+ ///
+ /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
+ /// past the end of the last code point of the string slice.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = "Per Martin-Löf".to_string();
+ /// {
+ /// let (first, last) = s.split_at_mut(3);
+ /// first.make_ascii_uppercase();
+ /// assert_eq!("PER", first);
+ /// assert_eq!(" Martin-Löf", last);
+ /// }
+ /// assert_eq!("PER Martin-Löf", s);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "str_split_at", since = "1.4.0")]
+ pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
+ // is_char_boundary checks that the index is in [0, .len()]
+ if self.is_char_boundary(mid) {
+ let len = self.len();
+ let ptr = self.as_mut_ptr();
+ // SAFETY: just checked that `mid` is on a char boundary.
+ unsafe {
+ (
+ from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
+ from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
+ )
+ }
+ } else {
+ slice_error_fail(self, 0, mid)
+ }
+ }
+
+ /// Returns an iterator over the [`char`]s of a string slice.
+ ///
+ /// As a string slice consists of valid UTF-8, we can iterate through a
+ /// string slice by [`char`]. This method returns such an iterator.
+ ///
+ /// It's important to remember that [`char`] represents a Unicode Scalar
+ /// Value, and might not match your idea of what a 'character' is. Iteration
+ /// over grapheme clusters may be what you actually want. This functionality
+ /// is not provided by Rust's standard library, check crates.io instead.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let word = "goodbye";
+ ///
+ /// let count = word.chars().count();
+ /// assert_eq!(7, count);
+ ///
+ /// let mut chars = word.chars();
+ ///
+ /// assert_eq!(Some('g'), chars.next());
+ /// assert_eq!(Some('o'), chars.next());
+ /// assert_eq!(Some('o'), chars.next());
+ /// assert_eq!(Some('d'), chars.next());
+ /// assert_eq!(Some('b'), chars.next());
+ /// assert_eq!(Some('y'), chars.next());
+ /// assert_eq!(Some('e'), chars.next());
+ ///
+ /// assert_eq!(None, chars.next());
+ /// ```
+ ///
+ /// Remember, [`char`]s might not match your intuition about characters:
+ ///
+ /// [`char`]: prim@char
+ ///
+ /// ```
+ /// let y = "y̆";
+ ///
+ /// let mut chars = y.chars();
+ ///
+ /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
+ /// assert_eq!(Some('\u{0306}'), chars.next());
+ ///
+ /// assert_eq!(None, chars.next());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn chars(&self) -> Chars<'_> {
+ Chars { iter: self.as_bytes().iter() }
+ }
+
+ /// Returns an iterator over the [`char`]s of a string slice, and their
+ /// positions.
+ ///
+ /// As a string slice consists of valid UTF-8, we can iterate through a
+ /// string slice by [`char`]. This method returns an iterator of both
+ /// these [`char`]s, as well as their byte positions.
+ ///
+ /// The iterator yields tuples. The position is first, the [`char`] is
+ /// second.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let word = "goodbye";
+ ///
+ /// let count = word.char_indices().count();
+ /// assert_eq!(7, count);
+ ///
+ /// let mut char_indices = word.char_indices();
+ ///
+ /// assert_eq!(Some((0, 'g')), char_indices.next());
+ /// assert_eq!(Some((1, 'o')), char_indices.next());
+ /// assert_eq!(Some((2, 'o')), char_indices.next());
+ /// assert_eq!(Some((3, 'd')), char_indices.next());
+ /// assert_eq!(Some((4, 'b')), char_indices.next());
+ /// assert_eq!(Some((5, 'y')), char_indices.next());
+ /// assert_eq!(Some((6, 'e')), char_indices.next());
+ ///
+ /// assert_eq!(None, char_indices.next());
+ /// ```
+ ///
+ /// Remember, [`char`]s might not match your intuition about characters:
+ ///
+ /// [`char`]: prim@char
+ ///
+ /// ```
+ /// let yes = "y̆es";
+ ///
+ /// let mut char_indices = yes.char_indices();
+ ///
+ /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
+ /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
+ ///
+ /// // note the 3 here - the last character took up two bytes
+ /// assert_eq!(Some((3, 'e')), char_indices.next());
+ /// assert_eq!(Some((4, 's')), char_indices.next());
+ ///
+ /// assert_eq!(None, char_indices.next());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn char_indices(&self) -> CharIndices<'_> {
+ CharIndices { front_offset: 0, iter: self.chars() }
+ }
+
+ /// An iterator over the bytes of a string slice.
+ ///
+ /// As a string slice consists of a sequence of bytes, we can iterate
+ /// through a string slice by byte. This method returns such an iterator.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut bytes = "bors".bytes();
+ ///
+ /// assert_eq!(Some(b'b'), bytes.next());
+ /// assert_eq!(Some(b'o'), bytes.next());
+ /// assert_eq!(Some(b'r'), bytes.next());
+ /// assert_eq!(Some(b's'), bytes.next());
+ ///
+ /// assert_eq!(None, bytes.next());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn bytes(&self) -> Bytes<'_> {
+ Bytes(self.as_bytes().iter().copied())
+ }
+
+ /// Splits a string slice by whitespace.
+ ///
+ /// The iterator returned will return string slices that are sub-slices of
+ /// the original string slice, separated by any amount of whitespace.
+ ///
+ /// 'Whitespace' is defined according to the terms of the Unicode Derived
+ /// Core Property `White_Space`. If you only want to split on ASCII whitespace
+ /// instead, use [`split_ascii_whitespace`].
+ ///
+ /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut iter = "A few words".split_whitespace();
+ ///
+ /// assert_eq!(Some("A"), iter.next());
+ /// assert_eq!(Some("few"), iter.next());
+ /// assert_eq!(Some("words"), iter.next());
+ ///
+ /// assert_eq!(None, iter.next());
+ /// ```
+ ///
+ /// All kinds of whitespace are considered:
+ ///
+ /// ```
+ /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
+ /// assert_eq!(Some("Mary"), iter.next());
+ /// assert_eq!(Some("had"), iter.next());
+ /// assert_eq!(Some("a"), iter.next());
+ /// assert_eq!(Some("little"), iter.next());
+ /// assert_eq!(Some("lamb"), iter.next());
+ ///
+ /// assert_eq!(None, iter.next());
+ /// ```
+ #[must_use = "this returns the split string as an iterator, \
+ without modifying the original"]
+ #[stable(feature = "split_whitespace", since = "1.1.0")]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "str_split_whitespace")]
+ #[inline]
+ pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
+ SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
+ }
+
+ /// Splits a string slice by ASCII whitespace.
+ ///
+ /// The iterator returned will return string slices that are sub-slices of
+ /// the original string slice, separated by any amount of ASCII whitespace.
+ ///
+ /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
+ ///
+ /// [`split_whitespace`]: str::split_whitespace
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut iter = "A few words".split_ascii_whitespace();
+ ///
+ /// assert_eq!(Some("A"), iter.next());
+ /// assert_eq!(Some("few"), iter.next());
+ /// assert_eq!(Some("words"), iter.next());
+ ///
+ /// assert_eq!(None, iter.next());
+ /// ```
+ ///
+ /// All kinds of ASCII whitespace are considered:
+ ///
+ /// ```
+ /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
+ /// assert_eq!(Some("Mary"), iter.next());
+ /// assert_eq!(Some("had"), iter.next());
+ /// assert_eq!(Some("a"), iter.next());
+ /// assert_eq!(Some("little"), iter.next());
+ /// assert_eq!(Some("lamb"), iter.next());
+ ///
+ /// assert_eq!(None, iter.next());
+ /// ```
+ #[must_use = "this returns the split string as an iterator, \
+ without modifying the original"]
+ #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
+ #[inline]
+ pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
+ let inner =
+ self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
+ SplitAsciiWhitespace { inner }
+ }
+
+ /// An iterator over the lines of a string, as string slices.
+ ///
+ /// Lines are ended with either a newline (`\n`) or a carriage return with
+ /// a line feed (`\r\n`).
+ ///
+ /// The final line ending is optional. A string that ends with a final line
+ /// ending will return the same lines as an otherwise identical string
+ /// without a final line ending.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let text = "foo\r\nbar\n\nbaz\n";
+ /// let mut lines = text.lines();
+ ///
+ /// assert_eq!(Some("foo"), lines.next());
+ /// assert_eq!(Some("bar"), lines.next());
+ /// assert_eq!(Some(""), lines.next());
+ /// assert_eq!(Some("baz"), lines.next());
+ ///
+ /// assert_eq!(None, lines.next());
+ /// ```
+ ///
+ /// The final line ending isn't required:
+ ///
+ /// ```
+ /// let text = "foo\nbar\n\r\nbaz";
+ /// let mut lines = text.lines();
+ ///
+ /// assert_eq!(Some("foo"), lines.next());
+ /// assert_eq!(Some("bar"), lines.next());
+ /// assert_eq!(Some(""), lines.next());
+ /// assert_eq!(Some("baz"), lines.next());
+ ///
+ /// assert_eq!(None, lines.next());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn lines(&self) -> Lines<'_> {
+ Lines(self.split_terminator('\n').map(LinesAnyMap))
+ }
+
+ /// An iterator over the lines of a string.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.4.0", note = "use lines() instead now")]
+ #[inline]
+ #[allow(deprecated)]
+ pub fn lines_any(&self) -> LinesAny<'_> {
+ LinesAny(self.lines())
+ }
+
+ /// Returns an iterator of `u16` over the string encoded as UTF-16.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let text = "Zażółć gęślą jaźń";
+ ///
+ /// let utf8_len = text.len();
+ /// let utf16_len = text.encode_utf16().count();
+ ///
+ /// assert!(utf16_len <= utf8_len);
+ /// ```
+ #[must_use = "this returns the encoded string as an iterator, \
+ without modifying the original"]
+ #[stable(feature = "encode_utf16", since = "1.8.0")]
+ pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
+ EncodeUtf16 { chars: self.chars(), extra: 0 }
+ }
+
+ /// Returns `true` if the given pattern matches a sub-slice of
+ /// this string slice.
+ ///
+ /// Returns `false` if it does not.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let bananas = "bananas";
+ ///
+ /// assert!(bananas.contains("nana"));
+ /// assert!(!bananas.contains("apples"));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
+ pat.is_contained_in(self)
+ }
+
+ /// Returns `true` if the given pattern matches a prefix of this
+ /// string slice.
+ ///
+ /// Returns `false` if it does not.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let bananas = "bananas";
+ ///
+ /// assert!(bananas.starts_with("bana"));
+ /// assert!(!bananas.starts_with("nana"));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
+ pat.is_prefix_of(self)
+ }
+
+ /// Returns `true` if the given pattern matches a suffix of this
+ /// string slice.
+ ///
+ /// Returns `false` if it does not.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let bananas = "bananas";
+ ///
+ /// assert!(bananas.ends_with("anas"));
+ /// assert!(!bananas.ends_with("nana"));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn ends_with<'a, P>(&'a self, pat: P) -> bool
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ pat.is_suffix_of(self)
+ }
+
+ /// Returns the byte index of the first character of this string slice that
+ /// matches the pattern.
+ ///
+ /// Returns [`None`] if the pattern doesn't match.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard Gepardi";
+ ///
+ /// assert_eq!(s.find('L'), Some(0));
+ /// assert_eq!(s.find('é'), Some(14));
+ /// assert_eq!(s.find("pard"), Some(17));
+ /// ```
+ ///
+ /// More complex patterns using point-free style and closures:
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard";
+ ///
+ /// assert_eq!(s.find(char::is_whitespace), Some(5));
+ /// assert_eq!(s.find(char::is_lowercase), Some(1));
+ /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
+ /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
+ /// ```
+ ///
+ /// Not finding the pattern:
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard";
+ /// let x: &[_] = &['1', '2'];
+ ///
+ /// assert_eq!(s.find(x), None);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> {
+ pat.into_searcher(self).next_match().map(|(i, _)| i)
+ }
+
+ /// Returns the byte index for the first character of the last match of the pattern in
+ /// this string slice.
+ ///
+ /// Returns [`None`] if the pattern doesn't match.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard Gepardi";
+ ///
+ /// assert_eq!(s.rfind('L'), Some(13));
+ /// assert_eq!(s.rfind('é'), Some(14));
+ /// assert_eq!(s.rfind("pard"), Some(24));
+ /// ```
+ ///
+ /// More complex patterns with closures:
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard";
+ ///
+ /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
+ /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
+ /// ```
+ ///
+ /// Not finding the pattern:
+ ///
+ /// ```
+ /// let s = "Löwe 老虎 Léopard";
+ /// let x: &[_] = &['1', '2'];
+ ///
+ /// assert_eq!(s.rfind(x), None);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize>
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ pat.into_searcher(self).next_match_back().map(|(i, _)| i)
+ }
+
+ /// An iterator over substrings of this string slice, separated by
+ /// characters matched by a pattern.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
+ /// allows a reverse search and forward/reverse search yields the same
+ /// elements. This is true for, e.g., [`char`], but not for `&str`.
+ ///
+ /// If the pattern allows a reverse search but its results might differ
+ /// from a forward search, the [`rsplit`] method can be used.
+ ///
+ /// [`rsplit`]: str::rsplit
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
+ /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
+ ///
+ /// let v: Vec<&str> = "".split('X').collect();
+ /// assert_eq!(v, [""]);
+ ///
+ /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
+ /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
+ ///
+ /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
+ /// assert_eq!(v, ["lion", "tiger", "leopard"]);
+ ///
+ /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
+ /// assert_eq!(v, ["abc", "def", "ghi"]);
+ ///
+ /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
+ /// assert_eq!(v, ["lion", "tiger", "leopard"]);
+ /// ```
+ ///
+ /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
+ /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
+ /// ```
+ ///
+ /// A more complex pattern, using a closure:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
+ /// assert_eq!(v, ["abc", "def", "ghi"]);
+ /// ```
+ ///
+ /// If a string contains multiple contiguous separators, you will end up
+ /// with empty strings in the output:
+ ///
+ /// ```
+ /// let x = "||||a||b|c".to_string();
+ /// let d: Vec<_> = x.split('|').collect();
+ ///
+ /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
+ /// ```
+ ///
+ /// Contiguous separators are separated by the empty string.
+ ///
+ /// ```
+ /// let x = "(///)".to_string();
+ /// let d: Vec<_> = x.split('/').collect();
+ ///
+ /// assert_eq!(d, &["(", "", "", ")"]);
+ /// ```
+ ///
+ /// Separators at the start or end of a string are neighbored
+ /// by empty strings.
+ ///
+ /// ```
+ /// let d: Vec<_> = "010".split("0").collect();
+ /// assert_eq!(d, &["", "1", ""]);
+ /// ```
+ ///
+ /// When the empty string is used as a separator, it separates
+ /// every character in the string, along with the beginning
+ /// and end of the string.
+ ///
+ /// ```
+ /// let f: Vec<_> = "rust".split("").collect();
+ /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
+ /// ```
+ ///
+ /// Contiguous separators can lead to possibly surprising behavior
+ /// when whitespace is used as the separator. This code is correct:
+ ///
+ /// ```
+ /// let x = " a b c".to_string();
+ /// let d: Vec<_> = x.split(' ').collect();
+ ///
+ /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
+ /// ```
+ ///
+ /// It does _not_ give you:
+ ///
+ /// ```,ignore
+ /// assert_eq!(d, &["a", "b", "c"]);
+ /// ```
+ ///
+ /// Use [`split_whitespace`] for this behavior.
+ ///
+ /// [`split_whitespace`]: str::split_whitespace
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> {
+ Split(SplitInternal {
+ start: 0,
+ end: self.len(),
+ matcher: pat.into_searcher(self),
+ allow_trailing_empty: true,
+ finished: false,
+ })
+ }
+
+ /// An iterator over substrings of this string slice, separated by
+ /// characters matched by a pattern. Differs from the iterator produced by
+ /// `split` in that `split_inclusive` leaves the matched part as the
+ /// terminator of the substring.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
+ /// .split_inclusive('\n').collect();
+ /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
+ /// ```
+ ///
+ /// If the last element of the string is matched,
+ /// that element will be considered the terminator of the preceding substring.
+ /// That substring will be the last item returned by the iterator.
+ ///
+ /// ```
+ /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
+ /// .split_inclusive('\n').collect();
+ /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
+ /// ```
+ #[stable(feature = "split_inclusive", since = "1.51.0")]
+ #[inline]
+ pub fn split_inclusive<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitInclusive<'a, P> {
+ SplitInclusive(SplitInternal {
+ start: 0,
+ end: self.len(),
+ matcher: pat.into_searcher(self),
+ allow_trailing_empty: false,
+ finished: false,
+ })
+ }
+
+ /// An iterator over substrings of the given string slice, separated by
+ /// characters matched by a pattern and yielded in reverse order.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator requires that the pattern supports a reverse
+ /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
+ /// search yields the same elements.
+ ///
+ /// For iterating from the front, the [`split`] method can be used.
+ ///
+ /// [`split`]: str::split
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
+ /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
+ ///
+ /// let v: Vec<&str> = "".rsplit('X').collect();
+ /// assert_eq!(v, [""]);
+ ///
+ /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
+ /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
+ ///
+ /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
+ /// assert_eq!(v, ["leopard", "tiger", "lion"]);
+ /// ```
+ ///
+ /// A more complex pattern, using a closure:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
+ /// assert_eq!(v, ["ghi", "def", "abc"]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P>
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ RSplit(self.split(pat).0)
+ }
+
+ /// An iterator over substrings of the given string slice, separated by
+ /// characters matched by a pattern.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// Equivalent to [`split`], except that the trailing substring
+ /// is skipped if empty.
+ ///
+ /// [`split`]: str::split
+ ///
+ /// This method can be used for string data that is _terminated_,
+ /// rather than _separated_ by a pattern.
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
+ /// allows a reverse search and forward/reverse search yields the same
+ /// elements. This is true for, e.g., [`char`], but not for `&str`.
+ ///
+ /// If the pattern allows a reverse search but its results might differ
+ /// from a forward search, the [`rsplit_terminator`] method can be used.
+ ///
+ /// [`rsplit_terminator`]: str::rsplit_terminator
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
+ /// assert_eq!(v, ["A", "B"]);
+ ///
+ /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
+ /// assert_eq!(v, ["A", "", "B", ""]);
+ ///
+ /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
+ /// assert_eq!(v, ["A", "B", "C", "D"]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> {
+ SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
+ }
+
+ /// An iterator over substrings of `self`, separated by characters
+ /// matched by a pattern and yielded in reverse order.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// Equivalent to [`split`], except that the trailing substring is
+ /// skipped if empty.
+ ///
+ /// [`split`]: str::split
+ ///
+ /// This method can be used for string data that is _terminated_,
+ /// rather than _separated_ by a pattern.
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator requires that the pattern supports a
+ /// reverse search, and it will be double ended if a forward/reverse
+ /// search yields the same elements.
+ ///
+ /// For iterating from the front, the [`split_terminator`] method can be
+ /// used.
+ ///
+ /// [`split_terminator`]: str::split_terminator
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
+ /// assert_eq!(v, ["B", "A"]);
+ ///
+ /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
+ /// assert_eq!(v, ["", "B", "", "A"]);
+ ///
+ /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
+ /// assert_eq!(v, ["D", "C", "B", "A"]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P>
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ RSplitTerminator(self.split_terminator(pat).0)
+ }
+
+ /// An iterator over substrings of the given string slice, separated by a
+ /// pattern, restricted to returning at most `n` items.
+ ///
+ /// If `n` substrings are returned, the last substring (the `n`th substring)
+ /// will contain the remainder of the string.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator will not be double ended, because it is
+ /// not efficient to support.
+ ///
+ /// If the pattern allows a reverse search, the [`rsplitn`] method can be
+ /// used.
+ ///
+ /// [`rsplitn`]: str::rsplitn
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
+ /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
+ ///
+ /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
+ /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
+ ///
+ /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
+ /// assert_eq!(v, ["abcXdef"]);
+ ///
+ /// let v: Vec<&str> = "".splitn(1, 'X').collect();
+ /// assert_eq!(v, [""]);
+ /// ```
+ ///
+ /// A more complex pattern, using a closure:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
+ /// assert_eq!(v, ["abc", "defXghi"]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> {
+ SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
+ }
+
+ /// An iterator over substrings of this string slice, separated by a
+ /// pattern, starting from the end of the string, restricted to returning
+ /// at most `n` items.
+ ///
+ /// If `n` substrings are returned, the last substring (the `n`th substring)
+ /// will contain the remainder of the string.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator will not be double ended, because it is not
+ /// efficient to support.
+ ///
+ /// For splitting from the front, the [`splitn`] method can be used.
+ ///
+ /// [`splitn`]: str::splitn
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
+ /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
+ ///
+ /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
+ /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
+ ///
+ /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
+ /// assert_eq!(v, ["leopard", "lion::tiger"]);
+ /// ```
+ ///
+ /// A more complex pattern, using a closure:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
+ /// assert_eq!(v, ["ghi", "abc1def"]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P>
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ RSplitN(self.splitn(n, pat).0)
+ }
+
+ /// Splits the string on the first occurrence of the specified delimiter and
+ /// returns prefix before delimiter and suffix after delimiter.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!("cfg".split_once('='), None);
+ /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
+ /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
+ /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
+ /// ```
+ #[stable(feature = "str_split_once", since = "1.52.0")]
+ #[inline]
+ pub fn split_once<'a, P: Pattern<'a>>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> {
+ let (start, end) = delimiter.into_searcher(self).next_match()?;
+ // SAFETY: `Searcher` is known to return valid indices.
+ unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
+ }
+
+ /// Splits the string on the last occurrence of the specified delimiter and
+ /// returns prefix before delimiter and suffix after delimiter.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!("cfg".rsplit_once('='), None);
+ /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
+ /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
+ /// ```
+ #[stable(feature = "str_split_once", since = "1.52.0")]
+ #[inline]
+ pub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)>
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ let (start, end) = delimiter.into_searcher(self).next_match_back()?;
+ // SAFETY: `Searcher` is known to return valid indices.
+ unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
+ }
+
+ /// An iterator over the disjoint matches of a pattern within the given string
+ /// slice.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
+ /// allows a reverse search and forward/reverse search yields the same
+ /// elements. This is true for, e.g., [`char`], but not for `&str`.
+ ///
+ /// If the pattern allows a reverse search but its results might differ
+ /// from a forward search, the [`rmatches`] method can be used.
+ ///
+ /// [`rmatches`]: str::matches
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
+ /// assert_eq!(v, ["abc", "abc", "abc"]);
+ ///
+ /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
+ /// assert_eq!(v, ["1", "2", "3"]);
+ /// ```
+ #[stable(feature = "str_matches", since = "1.2.0")]
+ #[inline]
+ pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> {
+ Matches(MatchesInternal(pat.into_searcher(self)))
+ }
+
+ /// An iterator over the disjoint matches of a pattern within this string slice,
+ /// yielded in reverse order.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator requires that the pattern supports a reverse
+ /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
+ /// search yields the same elements.
+ ///
+ /// For iterating from the front, the [`matches`] method can be used.
+ ///
+ /// [`matches`]: str::matches
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
+ /// assert_eq!(v, ["abc", "abc", "abc"]);
+ ///
+ /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
+ /// assert_eq!(v, ["3", "2", "1"]);
+ /// ```
+ #[stable(feature = "str_matches", since = "1.2.0")]
+ #[inline]
+ pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P>
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ RMatches(self.matches(pat).0)
+ }
+
+ /// An iterator over the disjoint matches of a pattern within this string
+ /// slice as well as the index that the match starts at.
+ ///
+ /// For matches of `pat` within `self` that overlap, only the indices
+ /// corresponding to the first match are returned.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
+ /// allows a reverse search and forward/reverse search yields the same
+ /// elements. This is true for, e.g., [`char`], but not for `&str`.
+ ///
+ /// If the pattern allows a reverse search but its results might differ
+ /// from a forward search, the [`rmatch_indices`] method can be used.
+ ///
+ /// [`rmatch_indices`]: str::rmatch_indices
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
+ /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
+ ///
+ /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
+ /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
+ ///
+ /// let v: Vec<_> = "ababa".match_indices("aba").collect();
+ /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
+ /// ```
+ #[stable(feature = "str_match_indices", since = "1.5.0")]
+ #[inline]
+ pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> {
+ MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
+ }
+
+ /// An iterator over the disjoint matches of a pattern within `self`,
+ /// yielded in reverse order along with the index of the match.
+ ///
+ /// For matches of `pat` within `self` that overlap, only the indices
+ /// corresponding to the last match are returned.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Iterator behavior
+ ///
+ /// The returned iterator requires that the pattern supports a reverse
+ /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
+ /// search yields the same elements.
+ ///
+ /// For iterating from the front, the [`match_indices`] method can be used.
+ ///
+ /// [`match_indices`]: str::match_indices
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
+ /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
+ ///
+ /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
+ /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
+ ///
+ /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
+ /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
+ /// ```
+ #[stable(feature = "str_match_indices", since = "1.5.0")]
+ #[inline]
+ pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P>
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ RMatchIndices(self.match_indices(pat).0)
+ }
+
+ /// Returns a string slice with leading and trailing whitespace removed.
+ ///
+ /// 'Whitespace' is defined according to the terms of the Unicode Derived
+ /// Core Property `White_Space`, which includes newlines.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "\n Hello\tworld\t\n";
+ ///
+ /// assert_eq!("Hello\tworld", s.trim());
+ /// ```
+ #[inline]
+ #[must_use = "this returns the trimmed string as a slice, \
+ without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim")]
+ pub fn trim(&self) -> &str {
+ self.trim_matches(|c: char| c.is_whitespace())
+ }
+
+ /// Returns a string slice with leading whitespace removed.
+ ///
+ /// 'Whitespace' is defined according to the terms of the Unicode Derived
+ /// Core Property `White_Space`, which includes newlines.
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. `start` in this context means the first
+ /// position of that byte string; for a left-to-right language like English or
+ /// Russian, this will be left side, and for right-to-left languages like
+ /// Arabic or Hebrew, this will be the right side.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "\n Hello\tworld\t\n";
+ /// assert_eq!("Hello\tworld\t\n", s.trim_start());
+ /// ```
+ ///
+ /// Directionality:
+ ///
+ /// ```
+ /// let s = " English ";
+ /// assert!(Some('E') == s.trim_start().chars().next());
+ ///
+ /// let s = " עברית ";
+ /// assert!(Some('ע') == s.trim_start().chars().next());
+ /// ```
+ #[inline]
+ #[must_use = "this returns the trimmed string as a new slice, \
+ without modifying the original"]
+ #[stable(feature = "trim_direction", since = "1.30.0")]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_start")]
+ pub fn trim_start(&self) -> &str {
+ self.trim_start_matches(|c: char| c.is_whitespace())
+ }
+
+ /// Returns a string slice with trailing whitespace removed.
+ ///
+ /// 'Whitespace' is defined according to the terms of the Unicode Derived
+ /// Core Property `White_Space`, which includes newlines.
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. `end` in this context means the last
+ /// position of that byte string; for a left-to-right language like English or
+ /// Russian, this will be right side, and for right-to-left languages like
+ /// Arabic or Hebrew, this will be the left side.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "\n Hello\tworld\t\n";
+ /// assert_eq!("\n Hello\tworld", s.trim_end());
+ /// ```
+ ///
+ /// Directionality:
+ ///
+ /// ```
+ /// let s = " English ";
+ /// assert!(Some('h') == s.trim_end().chars().rev().next());
+ ///
+ /// let s = " עברית ";
+ /// assert!(Some('ת') == s.trim_end().chars().rev().next());
+ /// ```
+ #[inline]
+ #[must_use = "this returns the trimmed string as a new slice, \
+ without modifying the original"]
+ #[stable(feature = "trim_direction", since = "1.30.0")]
+ #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_end")]
+ pub fn trim_end(&self) -> &str {
+ self.trim_end_matches(|c: char| c.is_whitespace())
+ }
+
+ /// Returns a string slice with leading whitespace removed.
+ ///
+ /// 'Whitespace' is defined according to the terms of the Unicode Derived
+ /// Core Property `White_Space`.
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. 'Left' in this context means the first
+ /// position of that byte string; for a language like Arabic or Hebrew
+ /// which are 'right to left' rather than 'left to right', this will be
+ /// the _right_ side, not the left.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = " Hello\tworld\t";
+ ///
+ /// assert_eq!("Hello\tworld\t", s.trim_left());
+ /// ```
+ ///
+ /// Directionality:
+ ///
+ /// ```
+ /// let s = " English";
+ /// assert!(Some('E') == s.trim_left().chars().next());
+ ///
+ /// let s = " עברית";
+ /// assert!(Some('ע') == s.trim_left().chars().next());
+ /// ```
+ #[must_use = "this returns the trimmed string as a new slice, \
+ without modifying the original"]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
+ pub fn trim_left(&self) -> &str {
+ self.trim_start()
+ }
+
+ /// Returns a string slice with trailing whitespace removed.
+ ///
+ /// 'Whitespace' is defined according to the terms of the Unicode Derived
+ /// Core Property `White_Space`.
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. 'Right' in this context means the last
+ /// position of that byte string; for a language like Arabic or Hebrew
+ /// which are 'right to left' rather than 'left to right', this will be
+ /// the _left_ side, not the right.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = " Hello\tworld\t";
+ ///
+ /// assert_eq!(" Hello\tworld", s.trim_right());
+ /// ```
+ ///
+ /// Directionality:
+ ///
+ /// ```
+ /// let s = "English ";
+ /// assert!(Some('h') == s.trim_right().chars().rev().next());
+ ///
+ /// let s = "עברית ";
+ /// assert!(Some('ת') == s.trim_right().chars().rev().next());
+ /// ```
+ #[must_use = "this returns the trimmed string as a new slice, \
+ without modifying the original"]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
+ pub fn trim_right(&self) -> &str {
+ self.trim_end()
+ }
+
+ /// Returns a string slice with all prefixes and suffixes that match a
+ /// pattern repeatedly removed.
+ ///
+ /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
+ /// or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
+ /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
+ ///
+ /// let x: &[_] = &['1', '2'];
+ /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
+ /// ```
+ ///
+ /// A more complex pattern, using a closure:
+ ///
+ /// ```
+ /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
+ /// ```
+ #[must_use = "this returns the trimmed string as a new slice, \
+ without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str
+ where
+ P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>,
+ {
+ let mut i = 0;
+ let mut j = 0;
+ let mut matcher = pat.into_searcher(self);
+ if let Some((a, b)) = matcher.next_reject() {
+ i = a;
+ j = b; // Remember earliest known match, correct it below if
+ // last match is different
+ }
+ if let Some((_, b)) = matcher.next_reject_back() {
+ j = b;
+ }
+ // SAFETY: `Searcher` is known to return valid indices.
+ unsafe { self.get_unchecked(i..j) }
+ }
+
+ /// Returns a string slice with all prefixes that match a pattern
+ /// repeatedly removed.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. `start` in this context means the first
+ /// position of that byte string; for a left-to-right language like English or
+ /// Russian, this will be left side, and for right-to-left languages like
+ /// Arabic or Hebrew, this will be the right side.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
+ /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
+ ///
+ /// let x: &[_] = &['1', '2'];
+ /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
+ /// ```
+ #[must_use = "this returns the trimmed string as a new slice, \
+ without modifying the original"]
+ #[stable(feature = "trim_direction", since = "1.30.0")]
+ pub fn trim_start_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
+ let mut i = self.len();
+ let mut matcher = pat.into_searcher(self);
+ if let Some((a, _)) = matcher.next_reject() {
+ i = a;
+ }
+ // SAFETY: `Searcher` is known to return valid indices.
+ unsafe { self.get_unchecked(i..self.len()) }
+ }
+
+ /// Returns a string slice with the prefix removed.
+ ///
+ /// If the string starts with the pattern `prefix`, returns substring after the prefix, wrapped
+ /// in `Some`. Unlike `trim_start_matches`, this method removes the prefix exactly once.
+ ///
+ /// If the string does not start with `prefix`, returns `None`.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
+ /// assert_eq!("foo:bar".strip_prefix("bar"), None);
+ /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
+ /// ```
+ #[must_use = "this returns the remaining substring as a new slice, \
+ without modifying the original"]
+ #[stable(feature = "str_strip", since = "1.45.0")]
+ pub fn strip_prefix<'a, P: Pattern<'a>>(&'a self, prefix: P) -> Option<&'a str> {
+ prefix.strip_prefix_of(self)
+ }
+
+ /// Returns a string slice with the suffix removed.
+ ///
+ /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
+ /// wrapped in `Some`. Unlike `trim_end_matches`, this method removes the suffix exactly once.
+ ///
+ /// If the string does not end with `suffix`, returns `None`.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
+ /// assert_eq!("bar:foo".strip_suffix("bar"), None);
+ /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
+ /// ```
+ #[must_use = "this returns the remaining substring as a new slice, \
+ without modifying the original"]
+ #[stable(feature = "str_strip", since = "1.45.0")]
+ pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str>
+ where
+ P: Pattern<'a>,
+ <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
+ {
+ suffix.strip_suffix_of(self)
+ }
+
+ /// Returns a string slice with all suffixes that match a pattern
+ /// repeatedly removed.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. `end` in this context means the last
+ /// position of that byte string; for a left-to-right language like English or
+ /// Russian, this will be right side, and for right-to-left languages like
+ /// Arabic or Hebrew, this will be the left side.
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
+ /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
+ ///
+ /// let x: &[_] = &['1', '2'];
+ /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
+ /// ```
+ ///
+ /// A more complex pattern, using a closure:
+ ///
+ /// ```
+ /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
+ /// ```
+ #[must_use = "this returns the trimmed string as a new slice, \
+ without modifying the original"]
+ #[stable(feature = "trim_direction", since = "1.30.0")]
+ pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ let mut j = 0;
+ let mut matcher = pat.into_searcher(self);
+ if let Some((_, b)) = matcher.next_reject_back() {
+ j = b;
+ }
+ // SAFETY: `Searcher` is known to return valid indices.
+ unsafe { self.get_unchecked(0..j) }
+ }
+
+ /// Returns a string slice with all prefixes that match a pattern
+ /// repeatedly removed.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. 'Left' in this context means the first
+ /// position of that byte string; for a language like Arabic or Hebrew
+ /// which are 'right to left' rather than 'left to right', this will be
+ /// the _right_ side, not the left.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
+ /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
+ ///
+ /// let x: &[_] = &['1', '2'];
+ /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(
+ since = "1.33.0",
+ note = "superseded by `trim_start_matches`",
+ suggestion = "trim_start_matches"
+ )]
+ pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
+ self.trim_start_matches(pat)
+ }
+
+ /// Returns a string slice with all suffixes that match a pattern
+ /// repeatedly removed.
+ ///
+ /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
+ /// function or closure that determines if a character matches.
+ ///
+ /// [`char`]: prim@char
+ /// [pattern]: self::pattern
+ ///
+ /// # Text directionality
+ ///
+ /// A string is a sequence of bytes. 'Right' in this context means the last
+ /// position of that byte string; for a language like Arabic or Hebrew
+ /// which are 'right to left' rather than 'left to right', this will be
+ /// the _left_ side, not the right.
+ ///
+ /// # Examples
+ ///
+ /// Simple patterns:
+ ///
+ /// ```
+ /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
+ /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
+ ///
+ /// let x: &[_] = &['1', '2'];
+ /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
+ /// ```
+ ///
+ /// A more complex pattern, using a closure:
+ ///
+ /// ```
+ /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(
+ since = "1.33.0",
+ note = "superseded by `trim_end_matches`",
+ suggestion = "trim_end_matches"
+ )]
+ pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str
+ where
+ P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
+ {
+ self.trim_end_matches(pat)
+ }
+
+ /// Parses this string slice into another type.
+ ///
+ /// Because `parse` is so general, it can cause problems with type
+ /// inference. As such, `parse` is one of the few times you'll see
+ /// the syntax affectionately known as the 'turbofish': `::<>`. This
+ /// helps the inference algorithm understand specifically which type
+ /// you're trying to parse into.
+ ///
+ /// `parse` can parse into any type that implements the [`FromStr`] trait.
+
+ ///
+ /// # Errors
+ ///
+ /// Will return [`Err`] if it's not possible to parse this string slice into
+ /// the desired type.
+ ///
+ /// [`Err`]: FromStr::Err
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```
+ /// let four: u32 = "4".parse().unwrap();
+ ///
+ /// assert_eq!(4, four);
+ /// ```
+ ///
+ /// Using the 'turbofish' instead of annotating `four`:
+ ///
+ /// ```
+ /// let four = "4".parse::<u32>();
+ ///
+ /// assert_eq!(Ok(4), four);
+ /// ```
+ ///
+ /// Failing to parse:
+ ///
+ /// ```
+ /// let nope = "j".parse::<u32>();
+ ///
+ /// assert!(nope.is_err());
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
+ FromStr::from_str(self)
+ }
+
+ /// Checks if all characters in this string are within the ASCII range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let ascii = "hello!\n";
+ /// let non_ascii = "Grüße, Jürgen ❤";
+ ///
+ /// assert!(ascii.is_ascii());
+ /// assert!(!non_ascii.is_ascii());
+ /// ```
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[must_use]
+ #[inline]
+ pub fn is_ascii(&self) -> bool {
+ // We can treat each byte as character here: all multibyte characters
+ // start with a byte that is not in the ascii range, so we will stop
+ // there already.
+ self.as_bytes().is_ascii()
+ }
+
+ /// Checks that two strings are an ASCII case-insensitive match.
+ ///
+ /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
+ /// but without allocating and copying temporaries.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
+ /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
+ /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
+ /// ```
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[must_use]
+ #[inline]
+ pub fn eq_ignore_ascii_case(&self, other: &str) -> bool {
+ self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
+ }
+
+ /// Converts this string to its ASCII upper case equivalent in-place.
+ ///
+ /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To return a new uppercased value without modifying the existing one, use
+ /// [`to_ascii_uppercase()`].
+ ///
+ /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("Grüße, Jürgen ❤");
+ ///
+ /// s.make_ascii_uppercase();
+ ///
+ /// assert_eq!("GRüßE, JüRGEN ❤", s);
+ /// ```
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn make_ascii_uppercase(&mut self) {
+ // SAFETY: changing ASCII letters only does not invalidate UTF-8.
+ let me = unsafe { self.as_bytes_mut() };
+ me.make_ascii_uppercase()
+ }
+
+ /// Converts this string to its ASCII lower case equivalent in-place.
+ ///
+ /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To return a new lowercased value without modifying the existing one, use
+ /// [`to_ascii_lowercase()`].
+ ///
+ /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
+ ///
+ /// s.make_ascii_lowercase();
+ ///
+ /// assert_eq!("grÜße, jÜrgen ❤", s);
+ /// ```
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn make_ascii_lowercase(&mut self) {
+ // SAFETY: changing ASCII letters only does not invalidate UTF-8.
+ let me = unsafe { self.as_bytes_mut() };
+ me.make_ascii_lowercase()
+ }
+
+ /// Return an iterator that escapes each char in `self` with [`char::escape_debug`].
+ ///
+ /// Note: only extended grapheme codepoints that begin the string will be
+ /// escaped.
+ ///
+ /// # Examples
+ ///
+ /// As an iterator:
+ ///
+ /// ```
+ /// for c in "❤\n!".escape_debug() {
+ /// print!("{c}");
+ /// }
+ /// println!();
+ /// ```
+ ///
+ /// Using `println!` directly:
+ ///
+ /// ```
+ /// println!("{}", "❤\n!".escape_debug());
+ /// ```
+ ///
+ ///
+ /// Both are equivalent to:
+ ///
+ /// ```
+ /// println!("❤\\n!");
+ /// ```
+ ///
+ /// Using `to_string`:
+ ///
+ /// ```
+ /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
+ /// ```
+ #[must_use = "this returns the escaped string as an iterator, \
+ without modifying the original"]
+ #[stable(feature = "str_escape", since = "1.34.0")]
+ pub fn escape_debug(&self) -> EscapeDebug<'_> {
+ let mut chars = self.chars();
+ EscapeDebug {
+ inner: chars
+ .next()
+ .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
+ .into_iter()
+ .flatten()
+ .chain(chars.flat_map(CharEscapeDebugContinue)),
+ }
+ }
+
+ /// Return an iterator that escapes each char in `self` with [`char::escape_default`].
+ ///
+ /// # Examples
+ ///
+ /// As an iterator:
+ ///
+ /// ```
+ /// for c in "❤\n!".escape_default() {
+ /// print!("{c}");
+ /// }
+ /// println!();
+ /// ```
+ ///
+ /// Using `println!` directly:
+ ///
+ /// ```
+ /// println!("{}", "❤\n!".escape_default());
+ /// ```
+ ///
+ ///
+ /// Both are equivalent to:
+ ///
+ /// ```
+ /// println!("\\u{{2764}}\\n!");
+ /// ```
+ ///
+ /// Using `to_string`:
+ ///
+ /// ```
+ /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
+ /// ```
+ #[must_use = "this returns the escaped string as an iterator, \
+ without modifying the original"]
+ #[stable(feature = "str_escape", since = "1.34.0")]
+ pub fn escape_default(&self) -> EscapeDefault<'_> {
+ EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
+ }
+
+ /// Return an iterator that escapes each char in `self` with [`char::escape_unicode`].
+ ///
+ /// # Examples
+ ///
+ /// As an iterator:
+ ///
+ /// ```
+ /// for c in "❤\n!".escape_unicode() {
+ /// print!("{c}");
+ /// }
+ /// println!();
+ /// ```
+ ///
+ /// Using `println!` directly:
+ ///
+ /// ```
+ /// println!("{}", "❤\n!".escape_unicode());
+ /// ```
+ ///
+ ///
+ /// Both are equivalent to:
+ ///
+ /// ```
+ /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
+ /// ```
+ ///
+ /// Using `to_string`:
+ ///
+ /// ```
+ /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
+ /// ```
+ #[must_use = "this returns the escaped string as an iterator, \
+ without modifying the original"]
+ #[stable(feature = "str_escape", since = "1.34.0")]
+ pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
+ EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl AsRef<[u8]> for str {
+ #[inline]
+ fn as_ref(&self) -> &[u8] {
+ self.as_bytes()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl const Default for &str {
+ /// Creates an empty str
+ #[inline]
+ fn default() -> Self {
+ ""
+ }
+}
+
+#[stable(feature = "default_mut_str", since = "1.28.0")]
+impl Default for &mut str {
+ /// Creates an empty mutable str
+ #[inline]
+ fn default() -> Self {
+ // SAFETY: The empty string is valid UTF-8.
+ unsafe { from_utf8_unchecked_mut(&mut []) }
+ }
+}
+
+impl_fn_for_zst! {
+ /// A nameable, cloneable fn type
+ #[derive(Clone)]
+ struct LinesAnyMap impl<'a> Fn = |line: &'a str| -> &'a str {
+ let l = line.len();
+ if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] }
+ else { line }
+ };
+
+ #[derive(Clone)]
+ struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
+ c.escape_debug_ext(EscapeDebugExtArgs {
+ escape_grapheme_extended: false,
+ escape_single_quote: true,
+ escape_double_quote: true
+ })
+ };
+
+ #[derive(Clone)]
+ struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
+ c.escape_unicode()
+ };
+ #[derive(Clone)]
+ struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
+ c.escape_default()
+ };
+
+ #[derive(Clone)]
+ struct IsWhitespace impl Fn = |c: char| -> bool {
+ c.is_whitespace()
+ };
+
+ #[derive(Clone)]
+ struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
+ byte.is_ascii_whitespace()
+ };
+
+ #[derive(Clone)]
+ struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
+ !s.is_empty()
+ };
+
+ #[derive(Clone)]
+ struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
+ !s.is_empty()
+ };
+
+ #[derive(Clone)]
+ struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
+ // SAFETY: not safe
+ unsafe { from_utf8_unchecked(bytes) }
+ };
+}