diff options
Diffstat (limited to 'library/panic_unwind/src/gcc.rs')
-rw-r--r-- | library/panic_unwind/src/gcc.rs | 351 |
1 files changed, 351 insertions, 0 deletions
diff --git a/library/panic_unwind/src/gcc.rs b/library/panic_unwind/src/gcc.rs new file mode 100644 index 000000000..a59659231 --- /dev/null +++ b/library/panic_unwind/src/gcc.rs @@ -0,0 +1,351 @@ +//! Implementation of panics backed by libgcc/libunwind (in some form). +//! +//! For background on exception handling and stack unwinding please see +//! "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and +//! documents linked from it. +//! These are also good reads: +//! * <https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html> +//! * <https://monoinfinito.wordpress.com/series/exception-handling-in-c/> +//! * <https://www.airs.com/blog/index.php?s=exception+frames> +//! +//! ## A brief summary +//! +//! Exception handling happens in two phases: a search phase and a cleanup +//! phase. +//! +//! In both phases the unwinder walks stack frames from top to bottom using +//! information from the stack frame unwind sections of the current process's +//! modules ("module" here refers to an OS module, i.e., an executable or a +//! dynamic library). +//! +//! For each stack frame, it invokes the associated "personality routine", whose +//! address is also stored in the unwind info section. +//! +//! In the search phase, the job of a personality routine is to examine +//! exception object being thrown, and to decide whether it should be caught at +//! that stack frame. Once the handler frame has been identified, cleanup phase +//! begins. +//! +//! In the cleanup phase, the unwinder invokes each personality routine again. +//! This time it decides which (if any) cleanup code needs to be run for +//! the current stack frame. If so, the control is transferred to a special +//! branch in the function body, the "landing pad", which invokes destructors, +//! frees memory, etc. At the end of the landing pad, control is transferred +//! back to the unwinder and unwinding resumes. +//! +//! Once stack has been unwound down to the handler frame level, unwinding stops +//! and the last personality routine transfers control to the catch block. + +use alloc::boxed::Box; +use core::any::Any; + +use crate::dwarf::eh::{self, EHAction, EHContext}; +use libc::{c_int, uintptr_t}; +use unwind as uw; + +#[repr(C)] +struct Exception { + _uwe: uw::_Unwind_Exception, + cause: Box<dyn Any + Send>, +} + +pub unsafe fn panic(data: Box<dyn Any + Send>) -> u32 { + let exception = Box::new(Exception { + _uwe: uw::_Unwind_Exception { + exception_class: rust_exception_class(), + exception_cleanup, + private: [0; uw::unwinder_private_data_size], + }, + cause: data, + }); + let exception_param = Box::into_raw(exception) as *mut uw::_Unwind_Exception; + return uw::_Unwind_RaiseException(exception_param) as u32; + + extern "C" fn exception_cleanup( + _unwind_code: uw::_Unwind_Reason_Code, + exception: *mut uw::_Unwind_Exception, + ) { + unsafe { + let _: Box<Exception> = Box::from_raw(exception as *mut Exception); + super::__rust_drop_panic(); + } + } +} + +pub unsafe fn cleanup(ptr: *mut u8) -> Box<dyn Any + Send> { + let exception = ptr as *mut uw::_Unwind_Exception; + if (*exception).exception_class != rust_exception_class() { + uw::_Unwind_DeleteException(exception); + super::__rust_foreign_exception(); + } else { + let exception = Box::from_raw(exception as *mut Exception); + exception.cause + } +} + +// Rust's exception class identifier. This is used by personality routines to +// determine whether the exception was thrown by their own runtime. +fn rust_exception_class() -> uw::_Unwind_Exception_Class { + // M O Z \0 R U S T -- vendor, language + 0x4d4f5a_00_52555354 +} + +// Register ids were lifted from LLVM's TargetLowering::getExceptionPointerRegister() +// and TargetLowering::getExceptionSelectorRegister() for each architecture, +// then mapped to DWARF register numbers via register definition tables +// (typically <arch>RegisterInfo.td, search for "DwarfRegNum"). +// See also https://llvm.org/docs/WritingAnLLVMBackend.html#defining-a-register. + +#[cfg(target_arch = "x86")] +const UNWIND_DATA_REG: (i32, i32) = (0, 2); // EAX, EDX + +#[cfg(target_arch = "x86_64")] +const UNWIND_DATA_REG: (i32, i32) = (0, 1); // RAX, RDX + +#[cfg(any(target_arch = "arm", target_arch = "aarch64"))] +const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1 / X0, X1 + +#[cfg(target_arch = "m68k")] +const UNWIND_DATA_REG: (i32, i32) = (0, 1); // D0, D1 + +#[cfg(any(target_arch = "mips", target_arch = "mips64"))] +const UNWIND_DATA_REG: (i32, i32) = (4, 5); // A0, A1 + +#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))] +const UNWIND_DATA_REG: (i32, i32) = (3, 4); // R3, R4 / X3, X4 + +#[cfg(target_arch = "s390x")] +const UNWIND_DATA_REG: (i32, i32) = (6, 7); // R6, R7 + +#[cfg(any(target_arch = "sparc", target_arch = "sparc64"))] +const UNWIND_DATA_REG: (i32, i32) = (24, 25); // I0, I1 + +#[cfg(target_arch = "hexagon")] +const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1 + +#[cfg(any(target_arch = "riscv64", target_arch = "riscv32"))] +const UNWIND_DATA_REG: (i32, i32) = (10, 11); // x10, x11 + +// The following code is based on GCC's C and C++ personality routines. For reference, see: +// https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/eh_personality.cc +// https://github.com/gcc-mirror/gcc/blob/trunk/libgcc/unwind-c.c + +cfg_if::cfg_if! { + if #[cfg(all(target_arch = "arm", not(target_os = "ios"), not(target_os = "watchos"), not(target_os = "netbsd")))] { + // ARM EHABI personality routine. + // https://infocenter.arm.com/help/topic/com.arm.doc.ihi0038b/IHI0038B_ehabi.pdf + // + // iOS uses the default routine instead since it uses SjLj unwinding. + #[lang = "eh_personality"] + unsafe extern "C" fn rust_eh_personality(state: uw::_Unwind_State, + exception_object: *mut uw::_Unwind_Exception, + context: *mut uw::_Unwind_Context) + -> uw::_Unwind_Reason_Code { + let state = state as c_int; + let action = state & uw::_US_ACTION_MASK as c_int; + let search_phase = if action == uw::_US_VIRTUAL_UNWIND_FRAME as c_int { + // Backtraces on ARM will call the personality routine with + // state == _US_VIRTUAL_UNWIND_FRAME | _US_FORCE_UNWIND. In those cases + // we want to continue unwinding the stack, otherwise all our backtraces + // would end at __rust_try + if state & uw::_US_FORCE_UNWIND as c_int != 0 { + return continue_unwind(exception_object, context); + } + true + } else if action == uw::_US_UNWIND_FRAME_STARTING as c_int { + false + } else if action == uw::_US_UNWIND_FRAME_RESUME as c_int { + return continue_unwind(exception_object, context); + } else { + return uw::_URC_FAILURE; + }; + + // The DWARF unwinder assumes that _Unwind_Context holds things like the function + // and LSDA pointers, however ARM EHABI places them into the exception object. + // To preserve signatures of functions like _Unwind_GetLanguageSpecificData(), which + // take only the context pointer, GCC personality routines stash a pointer to + // exception_object in the context, using location reserved for ARM's + // "scratch register" (r12). + uw::_Unwind_SetGR(context, + uw::UNWIND_POINTER_REG, + exception_object as uw::_Unwind_Ptr); + // ...A more principled approach would be to provide the full definition of ARM's + // _Unwind_Context in our libunwind bindings and fetch the required data from there + // directly, bypassing DWARF compatibility functions. + + let eh_action = match find_eh_action(context) { + Ok(action) => action, + Err(_) => return uw::_URC_FAILURE, + }; + if search_phase { + match eh_action { + EHAction::None | + EHAction::Cleanup(_) => return continue_unwind(exception_object, context), + EHAction::Catch(_) => { + // EHABI requires the personality routine to update the + // SP value in the barrier cache of the exception object. + (*exception_object).private[5] = + uw::_Unwind_GetGR(context, uw::UNWIND_SP_REG); + return uw::_URC_HANDLER_FOUND; + } + EHAction::Terminate => return uw::_URC_FAILURE, + } + } else { + match eh_action { + EHAction::None => return continue_unwind(exception_object, context), + EHAction::Cleanup(lpad) | + EHAction::Catch(lpad) => { + uw::_Unwind_SetGR(context, UNWIND_DATA_REG.0, + exception_object as uintptr_t); + uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0); + uw::_Unwind_SetIP(context, lpad); + return uw::_URC_INSTALL_CONTEXT; + } + EHAction::Terminate => return uw::_URC_FAILURE, + } + } + + // On ARM EHABI the personality routine is responsible for actually + // unwinding a single stack frame before returning (ARM EHABI Sec. 6.1). + unsafe fn continue_unwind(exception_object: *mut uw::_Unwind_Exception, + context: *mut uw::_Unwind_Context) + -> uw::_Unwind_Reason_Code { + if __gnu_unwind_frame(exception_object, context) == uw::_URC_NO_REASON { + uw::_URC_CONTINUE_UNWIND + } else { + uw::_URC_FAILURE + } + } + // defined in libgcc + extern "C" { + fn __gnu_unwind_frame(exception_object: *mut uw::_Unwind_Exception, + context: *mut uw::_Unwind_Context) + -> uw::_Unwind_Reason_Code; + } + } + } else { + // Default personality routine, which is used directly on most targets + // and indirectly on Windows x86_64 via SEH. + unsafe extern "C" fn rust_eh_personality_impl(version: c_int, + actions: uw::_Unwind_Action, + _exception_class: uw::_Unwind_Exception_Class, + exception_object: *mut uw::_Unwind_Exception, + context: *mut uw::_Unwind_Context) + -> uw::_Unwind_Reason_Code { + if version != 1 { + return uw::_URC_FATAL_PHASE1_ERROR; + } + let eh_action = match find_eh_action(context) { + Ok(action) => action, + Err(_) => return uw::_URC_FATAL_PHASE1_ERROR, + }; + if actions as i32 & uw::_UA_SEARCH_PHASE as i32 != 0 { + match eh_action { + EHAction::None | + EHAction::Cleanup(_) => uw::_URC_CONTINUE_UNWIND, + EHAction::Catch(_) => uw::_URC_HANDLER_FOUND, + EHAction::Terminate => uw::_URC_FATAL_PHASE1_ERROR, + } + } else { + match eh_action { + EHAction::None => uw::_URC_CONTINUE_UNWIND, + EHAction::Cleanup(lpad) | + EHAction::Catch(lpad) => { + uw::_Unwind_SetGR(context, UNWIND_DATA_REG.0, + exception_object as uintptr_t); + uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0); + uw::_Unwind_SetIP(context, lpad); + uw::_URC_INSTALL_CONTEXT + } + EHAction::Terminate => uw::_URC_FATAL_PHASE2_ERROR, + } + } + } + + cfg_if::cfg_if! { + if #[cfg(all(windows, target_arch = "x86_64", target_env = "gnu"))] { + // On x86_64 MinGW targets, the unwinding mechanism is SEH however the unwind + // handler data (aka LSDA) uses GCC-compatible encoding. + #[lang = "eh_personality"] + #[allow(nonstandard_style)] + unsafe extern "C" fn rust_eh_personality(exceptionRecord: *mut uw::EXCEPTION_RECORD, + establisherFrame: uw::LPVOID, + contextRecord: *mut uw::CONTEXT, + dispatcherContext: *mut uw::DISPATCHER_CONTEXT) + -> uw::EXCEPTION_DISPOSITION { + uw::_GCC_specific_handler(exceptionRecord, + establisherFrame, + contextRecord, + dispatcherContext, + rust_eh_personality_impl) + } + } else { + // The personality routine for most of our targets. + #[lang = "eh_personality"] + unsafe extern "C" fn rust_eh_personality(version: c_int, + actions: uw::_Unwind_Action, + exception_class: uw::_Unwind_Exception_Class, + exception_object: *mut uw::_Unwind_Exception, + context: *mut uw::_Unwind_Context) + -> uw::_Unwind_Reason_Code { + rust_eh_personality_impl(version, + actions, + exception_class, + exception_object, + context) + } + } + } + } +} + +unsafe fn find_eh_action(context: *mut uw::_Unwind_Context) -> Result<EHAction, ()> { + let lsda = uw::_Unwind_GetLanguageSpecificData(context) as *const u8; + let mut ip_before_instr: c_int = 0; + let ip = uw::_Unwind_GetIPInfo(context, &mut ip_before_instr); + let eh_context = EHContext { + // The return address points 1 byte past the call instruction, + // which could be in the next IP range in LSDA range table. + // + // `ip = -1` has special meaning, so use wrapping sub to allow for that + ip: if ip_before_instr != 0 { ip } else { ip.wrapping_sub(1) }, + func_start: uw::_Unwind_GetRegionStart(context), + get_text_start: &|| uw::_Unwind_GetTextRelBase(context), + get_data_start: &|| uw::_Unwind_GetDataRelBase(context), + }; + eh::find_eh_action(lsda, &eh_context) +} + +// Frame unwind info registration +// +// Each module's image contains a frame unwind info section (usually +// ".eh_frame"). When a module is loaded/unloaded into the process, the +// unwinder must be informed about the location of this section in memory. The +// methods of achieving that vary by the platform. On some (e.g., Linux), the +// unwinder can discover unwind info sections on its own (by dynamically +// enumerating currently loaded modules via the dl_iterate_phdr() API and +// finding their ".eh_frame" sections); Others, like Windows, require modules +// to actively register their unwind info sections via unwinder API. +// +// This module defines two symbols which are referenced and called from +// rsbegin.rs to register our information with the GCC runtime. The +// implementation of stack unwinding is (for now) deferred to libgcc_eh, however +// Rust crates use these Rust-specific entry points to avoid potential clashes +// with any GCC runtime. +#[cfg(all(target_os = "windows", target_arch = "x86", target_env = "gnu"))] +pub mod eh_frame_registry { + extern "C" { + fn __register_frame_info(eh_frame_begin: *const u8, object: *mut u8); + fn __deregister_frame_info(eh_frame_begin: *const u8, object: *mut u8); + } + + #[rustc_std_internal_symbol] + pub unsafe extern "C" fn rust_eh_register_frames(eh_frame_begin: *const u8, object: *mut u8) { + __register_frame_info(eh_frame_begin, object); + } + + #[rustc_std_internal_symbol] + pub unsafe extern "C" fn rust_eh_unregister_frames(eh_frame_begin: *const u8, object: *mut u8) { + __deregister_frame_info(eh_frame_begin, object); + } +} |