summaryrefslogtreecommitdiffstats
path: root/library/std/src/io/buffered/bufwriter.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/io/buffered/bufwriter.rs')
-rw-r--r--library/std/src/io/buffered/bufwriter.rs674
1 files changed, 674 insertions, 0 deletions
diff --git a/library/std/src/io/buffered/bufwriter.rs b/library/std/src/io/buffered/bufwriter.rs
new file mode 100644
index 000000000..6acb937e7
--- /dev/null
+++ b/library/std/src/io/buffered/bufwriter.rs
@@ -0,0 +1,674 @@
+use crate::error;
+use crate::fmt;
+use crate::io::{
+ self, ErrorKind, IntoInnerError, IoSlice, Seek, SeekFrom, Write, DEFAULT_BUF_SIZE,
+};
+use crate::mem;
+use crate::ptr;
+
+/// Wraps a writer and buffers its output.
+///
+/// It can be excessively inefficient to work directly with something that
+/// implements [`Write`]. For example, every call to
+/// [`write`][`TcpStream::write`] on [`TcpStream`] results in a system call. A
+/// `BufWriter<W>` keeps an in-memory buffer of data and writes it to an underlying
+/// writer in large, infrequent batches.
+///
+/// `BufWriter<W>` can improve the speed of programs that make *small* and
+/// *repeated* write calls to the same file or network socket. It does not
+/// help when writing very large amounts at once, or writing just one or a few
+/// times. It also provides no advantage when writing to a destination that is
+/// in memory, like a <code>[Vec]\<u8></code>.
+///
+/// It is critical to call [`flush`] before `BufWriter<W>` is dropped. Though
+/// dropping will attempt to flush the contents of the buffer, any errors
+/// that happen in the process of dropping will be ignored. Calling [`flush`]
+/// ensures that the buffer is empty and thus dropping will not even attempt
+/// file operations.
+///
+/// # Examples
+///
+/// Let's write the numbers one through ten to a [`TcpStream`]:
+///
+/// ```no_run
+/// use std::io::prelude::*;
+/// use std::net::TcpStream;
+///
+/// let mut stream = TcpStream::connect("127.0.0.1:34254").unwrap();
+///
+/// for i in 0..10 {
+/// stream.write(&[i+1]).unwrap();
+/// }
+/// ```
+///
+/// Because we're not buffering, we write each one in turn, incurring the
+/// overhead of a system call per byte written. We can fix this with a
+/// `BufWriter<W>`:
+///
+/// ```no_run
+/// use std::io::prelude::*;
+/// use std::io::BufWriter;
+/// use std::net::TcpStream;
+///
+/// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+///
+/// for i in 0..10 {
+/// stream.write(&[i+1]).unwrap();
+/// }
+/// stream.flush().unwrap();
+/// ```
+///
+/// By wrapping the stream with a `BufWriter<W>`, these ten writes are all grouped
+/// together by the buffer and will all be written out in one system call when
+/// the `stream` is flushed.
+///
+// HACK(#78696): can't use `crate` for associated items
+/// [`TcpStream::write`]: super::super::super::net::TcpStream::write
+/// [`TcpStream`]: crate::net::TcpStream
+/// [`flush`]: BufWriter::flush
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct BufWriter<W: Write> {
+ inner: W,
+ // The buffer. Avoid using this like a normal `Vec` in common code paths.
+ // That is, don't use `buf.push`, `buf.extend_from_slice`, or any other
+ // methods that require bounds checking or the like. This makes an enormous
+ // difference to performance (we may want to stop using a `Vec` entirely).
+ buf: Vec<u8>,
+ // #30888: If the inner writer panics in a call to write, we don't want to
+ // write the buffered data a second time in BufWriter's destructor. This
+ // flag tells the Drop impl if it should skip the flush.
+ panicked: bool,
+}
+
+impl<W: Write> BufWriter<W> {
+ /// Creates a new `BufWriter<W>` with a default buffer capacity. The default is currently 8 KB,
+ /// but may change in the future.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ ///
+ /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn new(inner: W) -> BufWriter<W> {
+ BufWriter::with_capacity(DEFAULT_BUF_SIZE, inner)
+ }
+
+ /// Creates a new `BufWriter<W>` with at least the specified buffer capacity.
+ ///
+ /// # Examples
+ ///
+ /// Creating a buffer with a buffer of at least a hundred bytes.
+ ///
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ ///
+ /// let stream = TcpStream::connect("127.0.0.1:34254").unwrap();
+ /// let mut buffer = BufWriter::with_capacity(100, stream);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn with_capacity(capacity: usize, inner: W) -> BufWriter<W> {
+ BufWriter { inner, buf: Vec::with_capacity(capacity), panicked: false }
+ }
+
+ /// Send data in our local buffer into the inner writer, looping as
+ /// necessary until either it's all been sent or an error occurs.
+ ///
+ /// Because all the data in the buffer has been reported to our owner as
+ /// "successfully written" (by returning nonzero success values from
+ /// `write`), any 0-length writes from `inner` must be reported as i/o
+ /// errors from this method.
+ pub(in crate::io) fn flush_buf(&mut self) -> io::Result<()> {
+ /// Helper struct to ensure the buffer is updated after all the writes
+ /// are complete. It tracks the number of written bytes and drains them
+ /// all from the front of the buffer when dropped.
+ struct BufGuard<'a> {
+ buffer: &'a mut Vec<u8>,
+ written: usize,
+ }
+
+ impl<'a> BufGuard<'a> {
+ fn new(buffer: &'a mut Vec<u8>) -> Self {
+ Self { buffer, written: 0 }
+ }
+
+ /// The unwritten part of the buffer
+ fn remaining(&self) -> &[u8] {
+ &self.buffer[self.written..]
+ }
+
+ /// Flag some bytes as removed from the front of the buffer
+ fn consume(&mut self, amt: usize) {
+ self.written += amt;
+ }
+
+ /// true if all of the bytes have been written
+ fn done(&self) -> bool {
+ self.written >= self.buffer.len()
+ }
+ }
+
+ impl Drop for BufGuard<'_> {
+ fn drop(&mut self) {
+ if self.written > 0 {
+ self.buffer.drain(..self.written);
+ }
+ }
+ }
+
+ let mut guard = BufGuard::new(&mut self.buf);
+ while !guard.done() {
+ self.panicked = true;
+ let r = self.inner.write(guard.remaining());
+ self.panicked = false;
+
+ match r {
+ Ok(0) => {
+ return Err(io::const_io_error!(
+ ErrorKind::WriteZero,
+ "failed to write the buffered data",
+ ));
+ }
+ Ok(n) => guard.consume(n),
+ Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
+ Err(e) => return Err(e),
+ }
+ }
+ Ok(())
+ }
+
+ /// Buffer some data without flushing it, regardless of the size of the
+ /// data. Writes as much as possible without exceeding capacity. Returns
+ /// the number of bytes written.
+ pub(super) fn write_to_buf(&mut self, buf: &[u8]) -> usize {
+ let available = self.spare_capacity();
+ let amt_to_buffer = available.min(buf.len());
+
+ // SAFETY: `amt_to_buffer` is <= buffer's spare capacity by construction.
+ unsafe {
+ self.write_to_buffer_unchecked(&buf[..amt_to_buffer]);
+ }
+
+ amt_to_buffer
+ }
+
+ /// Gets a reference to the underlying writer.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ ///
+ /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ ///
+ /// // we can use reference just like buffer
+ /// let reference = buffer.get_ref();
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn get_ref(&self) -> &W {
+ &self.inner
+ }
+
+ /// Gets a mutable reference to the underlying writer.
+ ///
+ /// It is inadvisable to directly write to the underlying writer.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ ///
+ /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ ///
+ /// // we can use reference just like buffer
+ /// let reference = buffer.get_mut();
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn get_mut(&mut self) -> &mut W {
+ &mut self.inner
+ }
+
+ /// Returns a reference to the internally buffered data.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ ///
+ /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ ///
+ /// // See how many bytes are currently buffered
+ /// let bytes_buffered = buf_writer.buffer().len();
+ /// ```
+ #[stable(feature = "bufreader_buffer", since = "1.37.0")]
+ pub fn buffer(&self) -> &[u8] {
+ &self.buf
+ }
+
+ /// Returns a mutable reference to the internal buffer.
+ ///
+ /// This can be used to write data directly into the buffer without triggering writers
+ /// to the underlying writer.
+ ///
+ /// That the buffer is a `Vec` is an implementation detail.
+ /// Callers should not modify the capacity as there currently is no public API to do so
+ /// and thus any capacity changes would be unexpected by the user.
+ pub(in crate::io) fn buffer_mut(&mut self) -> &mut Vec<u8> {
+ &mut self.buf
+ }
+
+ /// Returns the number of bytes the internal buffer can hold without flushing.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ ///
+ /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ ///
+ /// // Check the capacity of the inner buffer
+ /// let capacity = buf_writer.capacity();
+ /// // Calculate how many bytes can be written without flushing
+ /// let without_flush = capacity - buf_writer.buffer().len();
+ /// ```
+ #[stable(feature = "buffered_io_capacity", since = "1.46.0")]
+ pub fn capacity(&self) -> usize {
+ self.buf.capacity()
+ }
+
+ /// Unwraps this `BufWriter<W>`, returning the underlying writer.
+ ///
+ /// The buffer is written out before returning the writer.
+ ///
+ /// # Errors
+ ///
+ /// An [`Err`] will be returned if an error occurs while flushing the buffer.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ ///
+ /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ ///
+ /// // unwrap the TcpStream and flush the buffer
+ /// let stream = buffer.into_inner().unwrap();
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_inner(mut self) -> Result<W, IntoInnerError<BufWriter<W>>> {
+ match self.flush_buf() {
+ Err(e) => Err(IntoInnerError::new(self, e)),
+ Ok(()) => Ok(self.into_parts().0),
+ }
+ }
+
+ /// Disassembles this `BufWriter<W>`, returning the underlying writer, and any buffered but
+ /// unwritten data.
+ ///
+ /// If the underlying writer panicked, it is not known what portion of the data was written.
+ /// In this case, we return `WriterPanicked` for the buffered data (from which the buffer
+ /// contents can still be recovered).
+ ///
+ /// `into_parts` makes no attempt to flush data and cannot fail.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::io::{BufWriter, Write};
+ ///
+ /// let mut buffer = [0u8; 10];
+ /// let mut stream = BufWriter::new(buffer.as_mut());
+ /// write!(stream, "too much data").unwrap();
+ /// stream.flush().expect_err("it doesn't fit");
+ /// let (recovered_writer, buffered_data) = stream.into_parts();
+ /// assert_eq!(recovered_writer.len(), 0);
+ /// assert_eq!(&buffered_data.unwrap(), b"ata");
+ /// ```
+ #[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
+ pub fn into_parts(mut self) -> (W, Result<Vec<u8>, WriterPanicked>) {
+ let buf = mem::take(&mut self.buf);
+ let buf = if !self.panicked { Ok(buf) } else { Err(WriterPanicked { buf }) };
+
+ // SAFETY: forget(self) prevents double dropping inner
+ let inner = unsafe { ptr::read(&mut self.inner) };
+ mem::forget(self);
+
+ (inner, buf)
+ }
+
+ // Ensure this function does not get inlined into `write`, so that it
+ // remains inlineable and its common path remains as short as possible.
+ // If this function ends up being called frequently relative to `write`,
+ // it's likely a sign that the client is using an improperly sized buffer
+ // or their write patterns are somewhat pathological.
+ #[cold]
+ #[inline(never)]
+ fn write_cold(&mut self, buf: &[u8]) -> io::Result<usize> {
+ if buf.len() > self.spare_capacity() {
+ self.flush_buf()?;
+ }
+
+ // Why not len > capacity? To avoid a needless trip through the buffer when the input
+ // exactly fills it. We'd just need to flush it to the underlying writer anyway.
+ if buf.len() >= self.buf.capacity() {
+ self.panicked = true;
+ let r = self.get_mut().write(buf);
+ self.panicked = false;
+ r
+ } else {
+ // Write to the buffer. In this case, we write to the buffer even if it fills it
+ // exactly. Doing otherwise would mean flushing the buffer, then writing this
+ // input to the inner writer, which in many cases would be a worse strategy.
+
+ // SAFETY: There was either enough spare capacity already, or there wasn't and we
+ // flushed the buffer to ensure that there is. In the latter case, we know that there
+ // is because flushing ensured that our entire buffer is spare capacity, and we entered
+ // this block because the input buffer length is less than that capacity. In either
+ // case, it's safe to write the input buffer to our buffer.
+ unsafe {
+ self.write_to_buffer_unchecked(buf);
+ }
+
+ Ok(buf.len())
+ }
+ }
+
+ // Ensure this function does not get inlined into `write_all`, so that it
+ // remains inlineable and its common path remains as short as possible.
+ // If this function ends up being called frequently relative to `write_all`,
+ // it's likely a sign that the client is using an improperly sized buffer
+ // or their write patterns are somewhat pathological.
+ #[cold]
+ #[inline(never)]
+ fn write_all_cold(&mut self, buf: &[u8]) -> io::Result<()> {
+ // Normally, `write_all` just calls `write` in a loop. We can do better
+ // by calling `self.get_mut().write_all()` directly, which avoids
+ // round trips through the buffer in the event of a series of partial
+ // writes in some circumstances.
+
+ if buf.len() > self.spare_capacity() {
+ self.flush_buf()?;
+ }
+
+ // Why not len > capacity? To avoid a needless trip through the buffer when the input
+ // exactly fills it. We'd just need to flush it to the underlying writer anyway.
+ if buf.len() >= self.buf.capacity() {
+ self.panicked = true;
+ let r = self.get_mut().write_all(buf);
+ self.panicked = false;
+ r
+ } else {
+ // Write to the buffer. In this case, we write to the buffer even if it fills it
+ // exactly. Doing otherwise would mean flushing the buffer, then writing this
+ // input to the inner writer, which in many cases would be a worse strategy.
+
+ // SAFETY: There was either enough spare capacity already, or there wasn't and we
+ // flushed the buffer to ensure that there is. In the latter case, we know that there
+ // is because flushing ensured that our entire buffer is spare capacity, and we entered
+ // this block because the input buffer length is less than that capacity. In either
+ // case, it's safe to write the input buffer to our buffer.
+ unsafe {
+ self.write_to_buffer_unchecked(buf);
+ }
+
+ Ok(())
+ }
+ }
+
+ // SAFETY: Requires `buf.len() <= self.buf.capacity() - self.buf.len()`,
+ // i.e., that input buffer length is less than or equal to spare capacity.
+ #[inline]
+ unsafe fn write_to_buffer_unchecked(&mut self, buf: &[u8]) {
+ debug_assert!(buf.len() <= self.spare_capacity());
+ let old_len = self.buf.len();
+ let buf_len = buf.len();
+ let src = buf.as_ptr();
+ let dst = self.buf.as_mut_ptr().add(old_len);
+ ptr::copy_nonoverlapping(src, dst, buf_len);
+ self.buf.set_len(old_len + buf_len);
+ }
+
+ #[inline]
+ fn spare_capacity(&self) -> usize {
+ self.buf.capacity() - self.buf.len()
+ }
+}
+
+#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
+/// Error returned for the buffered data from `BufWriter::into_parts`, when the underlying
+/// writer has previously panicked. Contains the (possibly partly written) buffered data.
+///
+/// # Example
+///
+/// ```
+/// use std::io::{self, BufWriter, Write};
+/// use std::panic::{catch_unwind, AssertUnwindSafe};
+///
+/// struct PanickingWriter;
+/// impl Write for PanickingWriter {
+/// fn write(&mut self, buf: &[u8]) -> io::Result<usize> { panic!() }
+/// fn flush(&mut self) -> io::Result<()> { panic!() }
+/// }
+///
+/// let mut stream = BufWriter::new(PanickingWriter);
+/// write!(stream, "some data").unwrap();
+/// let result = catch_unwind(AssertUnwindSafe(|| {
+/// stream.flush().unwrap()
+/// }));
+/// assert!(result.is_err());
+/// let (recovered_writer, buffered_data) = stream.into_parts();
+/// assert!(matches!(recovered_writer, PanickingWriter));
+/// assert_eq!(buffered_data.unwrap_err().into_inner(), b"some data");
+/// ```
+pub struct WriterPanicked {
+ buf: Vec<u8>,
+}
+
+impl WriterPanicked {
+ /// Returns the perhaps-unwritten data. Some of this data may have been written by the
+ /// panicking call(s) to the underlying writer, so simply writing it again is not a good idea.
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
+ pub fn into_inner(self) -> Vec<u8> {
+ self.buf
+ }
+
+ const DESCRIPTION: &'static str =
+ "BufWriter inner writer panicked, what data remains unwritten is not known";
+}
+
+#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
+impl error::Error for WriterPanicked {
+ #[allow(deprecated, deprecated_in_future)]
+ fn description(&self) -> &str {
+ Self::DESCRIPTION
+ }
+}
+
+#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
+impl fmt::Display for WriterPanicked {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "{}", Self::DESCRIPTION)
+ }
+}
+
+#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
+impl fmt::Debug for WriterPanicked {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("WriterPanicked")
+ .field("buffer", &format_args!("{}/{}", self.buf.len(), self.buf.capacity()))
+ .finish()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<W: Write> Write for BufWriter<W> {
+ #[inline]
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ // Use < instead of <= to avoid a needless trip through the buffer in some cases.
+ // See `write_cold` for details.
+ if buf.len() < self.spare_capacity() {
+ // SAFETY: safe by above conditional.
+ unsafe {
+ self.write_to_buffer_unchecked(buf);
+ }
+
+ Ok(buf.len())
+ } else {
+ self.write_cold(buf)
+ }
+ }
+
+ #[inline]
+ fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
+ // Use < instead of <= to avoid a needless trip through the buffer in some cases.
+ // See `write_all_cold` for details.
+ if buf.len() < self.spare_capacity() {
+ // SAFETY: safe by above conditional.
+ unsafe {
+ self.write_to_buffer_unchecked(buf);
+ }
+
+ Ok(())
+ } else {
+ self.write_all_cold(buf)
+ }
+ }
+
+ fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
+ // FIXME: Consider applying `#[inline]` / `#[inline(never)]` optimizations already applied
+ // to `write` and `write_all`. The performance benefits can be significant. See #79930.
+ if self.get_ref().is_write_vectored() {
+ // We have to handle the possibility that the total length of the buffers overflows
+ // `usize` (even though this can only happen if multiple `IoSlice`s reference the
+ // same underlying buffer, as otherwise the buffers wouldn't fit in memory). If the
+ // computation overflows, then surely the input cannot fit in our buffer, so we forward
+ // to the inner writer's `write_vectored` method to let it handle it appropriately.
+ let saturated_total_len =
+ bufs.iter().fold(0usize, |acc, b| acc.saturating_add(b.len()));
+
+ if saturated_total_len > self.spare_capacity() {
+ // Flush if the total length of the input exceeds our buffer's spare capacity.
+ // If we would have overflowed, this condition also holds, and we need to flush.
+ self.flush_buf()?;
+ }
+
+ if saturated_total_len >= self.buf.capacity() {
+ // Forward to our inner writer if the total length of the input is greater than or
+ // equal to our buffer capacity. If we would have overflowed, this condition also
+ // holds, and we punt to the inner writer.
+ self.panicked = true;
+ let r = self.get_mut().write_vectored(bufs);
+ self.panicked = false;
+ r
+ } else {
+ // `saturated_total_len < self.buf.capacity()` implies that we did not saturate.
+
+ // SAFETY: We checked whether or not the spare capacity was large enough above. If
+ // it was, then we're safe already. If it wasn't, we flushed, making sufficient
+ // room for any input <= the buffer size, which includes this input.
+ unsafe {
+ bufs.iter().for_each(|b| self.write_to_buffer_unchecked(b));
+ };
+
+ Ok(saturated_total_len)
+ }
+ } else {
+ let mut iter = bufs.iter();
+ let mut total_written = if let Some(buf) = iter.by_ref().find(|&buf| !buf.is_empty()) {
+ // This is the first non-empty slice to write, so if it does
+ // not fit in the buffer, we still get to flush and proceed.
+ if buf.len() > self.spare_capacity() {
+ self.flush_buf()?;
+ }
+ if buf.len() >= self.buf.capacity() {
+ // The slice is at least as large as the buffering capacity,
+ // so it's better to write it directly, bypassing the buffer.
+ self.panicked = true;
+ let r = self.get_mut().write(buf);
+ self.panicked = false;
+ return r;
+ } else {
+ // SAFETY: We checked whether or not the spare capacity was large enough above.
+ // If it was, then we're safe already. If it wasn't, we flushed, making
+ // sufficient room for any input <= the buffer size, which includes this input.
+ unsafe {
+ self.write_to_buffer_unchecked(buf);
+ }
+
+ buf.len()
+ }
+ } else {
+ return Ok(0);
+ };
+ debug_assert!(total_written != 0);
+ for buf in iter {
+ if buf.len() <= self.spare_capacity() {
+ // SAFETY: safe by above conditional.
+ unsafe {
+ self.write_to_buffer_unchecked(buf);
+ }
+
+ // This cannot overflow `usize`. If we are here, we've written all of the bytes
+ // so far to our buffer, and we've ensured that we never exceed the buffer's
+ // capacity. Therefore, `total_written` <= `self.buf.capacity()` <= `usize::MAX`.
+ total_written += buf.len();
+ } else {
+ break;
+ }
+ }
+ Ok(total_written)
+ }
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ self.flush_buf().and_then(|()| self.get_mut().flush())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<W: Write> fmt::Debug for BufWriter<W>
+where
+ W: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("BufWriter")
+ .field("writer", &self.inner)
+ .field("buffer", &format_args!("{}/{}", self.buf.len(), self.buf.capacity()))
+ .finish()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<W: Write + Seek> Seek for BufWriter<W> {
+ /// Seek to the offset, in bytes, in the underlying writer.
+ ///
+ /// Seeking always writes out the internal buffer before seeking.
+ fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
+ self.flush_buf()?;
+ self.get_mut().seek(pos)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<W: Write> Drop for BufWriter<W> {
+ fn drop(&mut self) {
+ if !self.panicked {
+ // dtors should not panic, so we ignore a failed flush
+ let _r = self.flush_buf();
+ }
+ }
+}