summaryrefslogtreecommitdiffstats
path: root/library/std/src/sync/mpmc/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--library/std/src/sync/mpmc/mod.rs430
1 files changed, 430 insertions, 0 deletions
diff --git a/library/std/src/sync/mpmc/mod.rs b/library/std/src/sync/mpmc/mod.rs
new file mode 100644
index 000000000..7a602cecd
--- /dev/null
+++ b/library/std/src/sync/mpmc/mod.rs
@@ -0,0 +1,430 @@
+//! Multi-producer multi-consumer channels.
+
+// This module is not currently exposed publicly, but is used
+// as the implementation for the channels in `sync::mpsc`. The
+// implementation comes from the crossbeam-channel crate:
+//
+// Copyright (c) 2019 The Crossbeam Project Developers
+//
+// Permission is hereby granted, free of charge, to any
+// person obtaining a copy of this software and associated
+// documentation files (the "Software"), to deal in the
+// Software without restriction, including without
+// limitation the rights to use, copy, modify, merge,
+// publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following
+// conditions:
+//
+// The above copyright notice and this permission notice
+// shall be included in all copies or substantial portions
+// of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+// DEALINGS IN THE SOFTWARE.
+
+mod array;
+mod context;
+mod counter;
+mod error;
+mod list;
+mod select;
+mod utils;
+mod waker;
+mod zero;
+
+use crate::fmt;
+use crate::panic::{RefUnwindSafe, UnwindSafe};
+use crate::time::{Duration, Instant};
+pub use error::*;
+
+/// Creates a channel of unbounded capacity.
+///
+/// This channel has a growable buffer that can hold any number of messages at a time.
+pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
+ let (s, r) = counter::new(list::Channel::new());
+ let s = Sender { flavor: SenderFlavor::List(s) };
+ let r = Receiver { flavor: ReceiverFlavor::List(r) };
+ (s, r)
+}
+
+/// Creates a channel of bounded capacity.
+///
+/// This channel has a buffer that can hold at most `cap` messages at a time.
+///
+/// A special case is zero-capacity channel, which cannot hold any messages. Instead, send and
+/// receive operations must appear at the same time in order to pair up and pass the message over.
+pub fn sync_channel<T>(cap: usize) -> (Sender<T>, Receiver<T>) {
+ if cap == 0 {
+ let (s, r) = counter::new(zero::Channel::new());
+ let s = Sender { flavor: SenderFlavor::Zero(s) };
+ let r = Receiver { flavor: ReceiverFlavor::Zero(r) };
+ (s, r)
+ } else {
+ let (s, r) = counter::new(array::Channel::with_capacity(cap));
+ let s = Sender { flavor: SenderFlavor::Array(s) };
+ let r = Receiver { flavor: ReceiverFlavor::Array(r) };
+ (s, r)
+ }
+}
+
+/// The sending side of a channel.
+pub struct Sender<T> {
+ flavor: SenderFlavor<T>,
+}
+
+/// Sender flavors.
+enum SenderFlavor<T> {
+ /// Bounded channel based on a preallocated array.
+ Array(counter::Sender<array::Channel<T>>),
+
+ /// Unbounded channel implemented as a linked list.
+ List(counter::Sender<list::Channel<T>>),
+
+ /// Zero-capacity channel.
+ Zero(counter::Sender<zero::Channel<T>>),
+}
+
+unsafe impl<T: Send> Send for Sender<T> {}
+unsafe impl<T: Send> Sync for Sender<T> {}
+
+impl<T> UnwindSafe for Sender<T> {}
+impl<T> RefUnwindSafe for Sender<T> {}
+
+impl<T> Sender<T> {
+ /// Attempts to send a message into the channel without blocking.
+ ///
+ /// This method will either send a message into the channel immediately or return an error if
+ /// the channel is full or disconnected. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will send the message only if there
+ /// happens to be a receive operation on the other side of the channel at the same time.
+ pub fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.try_send(msg),
+ SenderFlavor::List(chan) => chan.try_send(msg),
+ SenderFlavor::Zero(chan) => chan.try_send(msg),
+ }
+ }
+
+ /// Blocks the current thread until a message is sent or the channel is disconnected.
+ ///
+ /// If the channel is full and not disconnected, this call will block until the send operation
+ /// can proceed. If the channel becomes disconnected, this call will wake up and return an
+ /// error. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a receive operation to
+ /// appear on the other side of the channel.
+ pub fn send(&self, msg: T) -> Result<(), SendError<T>> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.send(msg, None),
+ SenderFlavor::List(chan) => chan.send(msg, None),
+ SenderFlavor::Zero(chan) => chan.send(msg, None),
+ }
+ .map_err(|err| match err {
+ SendTimeoutError::Disconnected(msg) => SendError(msg),
+ SendTimeoutError::Timeout(_) => unreachable!(),
+ })
+ }
+}
+
+// The methods below are not used by `sync::mpsc`, but
+// are useful and we'll likely want to expose them
+// eventually
+#[allow(unused)]
+impl<T> Sender<T> {
+ /// Waits for a message to be sent into the channel, but only for a limited time.
+ ///
+ /// If the channel is full and not disconnected, this call will block until the send operation
+ /// can proceed or the operation times out. If the channel becomes disconnected, this call will
+ /// wake up and return an error. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a receive operation to
+ /// appear on the other side of the channel.
+ pub fn send_timeout(&self, msg: T, timeout: Duration) -> Result<(), SendTimeoutError<T>> {
+ match Instant::now().checked_add(timeout) {
+ Some(deadline) => self.send_deadline(msg, deadline),
+ // So far in the future that it's practically the same as waiting indefinitely.
+ None => self.send(msg).map_err(SendTimeoutError::from),
+ }
+ }
+
+ /// Waits for a message to be sent into the channel, but only until a given deadline.
+ ///
+ /// If the channel is full and not disconnected, this call will block until the send operation
+ /// can proceed or the operation times out. If the channel becomes disconnected, this call will
+ /// wake up and return an error. The returned error contains the original message.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a receive operation to
+ /// appear on the other side of the channel.
+ pub fn send_deadline(&self, msg: T, deadline: Instant) -> Result<(), SendTimeoutError<T>> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.send(msg, Some(deadline)),
+ SenderFlavor::List(chan) => chan.send(msg, Some(deadline)),
+ SenderFlavor::Zero(chan) => chan.send(msg, Some(deadline)),
+ }
+ }
+
+ /// Returns `true` if the channel is empty.
+ ///
+ /// Note: Zero-capacity channels are always empty.
+ pub fn is_empty(&self) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.is_empty(),
+ SenderFlavor::List(chan) => chan.is_empty(),
+ SenderFlavor::Zero(chan) => chan.is_empty(),
+ }
+ }
+
+ /// Returns `true` if the channel is full.
+ ///
+ /// Note: Zero-capacity channels are always full.
+ pub fn is_full(&self) -> bool {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.is_full(),
+ SenderFlavor::List(chan) => chan.is_full(),
+ SenderFlavor::Zero(chan) => chan.is_full(),
+ }
+ }
+
+ /// Returns the number of messages in the channel.
+ pub fn len(&self) -> usize {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.len(),
+ SenderFlavor::List(chan) => chan.len(),
+ SenderFlavor::Zero(chan) => chan.len(),
+ }
+ }
+
+ /// If the channel is bounded, returns its capacity.
+ pub fn capacity(&self) -> Option<usize> {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.capacity(),
+ SenderFlavor::List(chan) => chan.capacity(),
+ SenderFlavor::Zero(chan) => chan.capacity(),
+ }
+ }
+
+ /// Returns `true` if senders belong to the same channel.
+ pub fn same_channel(&self, other: &Sender<T>) -> bool {
+ match (&self.flavor, &other.flavor) {
+ (SenderFlavor::Array(ref a), SenderFlavor::Array(ref b)) => a == b,
+ (SenderFlavor::List(ref a), SenderFlavor::List(ref b)) => a == b,
+ (SenderFlavor::Zero(ref a), SenderFlavor::Zero(ref b)) => a == b,
+ _ => false,
+ }
+ }
+}
+
+impl<T> Drop for Sender<T> {
+ fn drop(&mut self) {
+ unsafe {
+ match &self.flavor {
+ SenderFlavor::Array(chan) => chan.release(|c| c.disconnect()),
+ SenderFlavor::List(chan) => chan.release(|c| c.disconnect_senders()),
+ SenderFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
+ }
+ }
+ }
+}
+
+impl<T> Clone for Sender<T> {
+ fn clone(&self) -> Self {
+ let flavor = match &self.flavor {
+ SenderFlavor::Array(chan) => SenderFlavor::Array(chan.acquire()),
+ SenderFlavor::List(chan) => SenderFlavor::List(chan.acquire()),
+ SenderFlavor::Zero(chan) => SenderFlavor::Zero(chan.acquire()),
+ };
+
+ Sender { flavor }
+ }
+}
+
+impl<T> fmt::Debug for Sender<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Sender { .. }")
+ }
+}
+
+/// The receiving side of a channel.
+pub struct Receiver<T> {
+ flavor: ReceiverFlavor<T>,
+}
+
+/// Receiver flavors.
+enum ReceiverFlavor<T> {
+ /// Bounded channel based on a preallocated array.
+ Array(counter::Receiver<array::Channel<T>>),
+
+ /// Unbounded channel implemented as a linked list.
+ List(counter::Receiver<list::Channel<T>>),
+
+ /// Zero-capacity channel.
+ Zero(counter::Receiver<zero::Channel<T>>),
+}
+
+unsafe impl<T: Send> Send for Receiver<T> {}
+unsafe impl<T: Send> Sync for Receiver<T> {}
+
+impl<T> UnwindSafe for Receiver<T> {}
+impl<T> RefUnwindSafe for Receiver<T> {}
+
+impl<T> Receiver<T> {
+ /// Attempts to receive a message from the channel without blocking.
+ ///
+ /// This method will either receive a message from the channel immediately or return an error
+ /// if the channel is empty.
+ ///
+ /// If called on a zero-capacity channel, this method will receive a message only if there
+ /// happens to be a send operation on the other side of the channel at the same time.
+ pub fn try_recv(&self) -> Result<T, TryRecvError> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.try_recv(),
+ ReceiverFlavor::List(chan) => chan.try_recv(),
+ ReceiverFlavor::Zero(chan) => chan.try_recv(),
+ }
+ }
+
+ /// Blocks the current thread until a message is received or the channel is empty and
+ /// disconnected.
+ ///
+ /// If the channel is empty and not disconnected, this call will block until the receive
+ /// operation can proceed. If the channel is empty and becomes disconnected, this call will
+ /// wake up and return an error.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a send operation to appear
+ /// on the other side of the channel.
+ pub fn recv(&self) -> Result<T, RecvError> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.recv(None),
+ ReceiverFlavor::List(chan) => chan.recv(None),
+ ReceiverFlavor::Zero(chan) => chan.recv(None),
+ }
+ .map_err(|_| RecvError)
+ }
+
+ /// Waits for a message to be received from the channel, but only for a limited time.
+ ///
+ /// If the channel is empty and not disconnected, this call will block until the receive
+ /// operation can proceed or the operation times out. If the channel is empty and becomes
+ /// disconnected, this call will wake up and return an error.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a send operation to appear
+ /// on the other side of the channel.
+ pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
+ match Instant::now().checked_add(timeout) {
+ Some(deadline) => self.recv_deadline(deadline),
+ // So far in the future that it's practically the same as waiting indefinitely.
+ None => self.recv().map_err(RecvTimeoutError::from),
+ }
+ }
+
+ /// Waits for a message to be received from the channel, but only for a limited time.
+ ///
+ /// If the channel is empty and not disconnected, this call will block until the receive
+ /// operation can proceed or the operation times out. If the channel is empty and becomes
+ /// disconnected, this call will wake up and return an error.
+ ///
+ /// If called on a zero-capacity channel, this method will wait for a send operation to appear
+ /// on the other side of the channel.
+ pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.recv(Some(deadline)),
+ ReceiverFlavor::List(chan) => chan.recv(Some(deadline)),
+ ReceiverFlavor::Zero(chan) => chan.recv(Some(deadline)),
+ }
+ }
+}
+
+// The methods below are not used by `sync::mpsc`, but
+// are useful and we'll likely want to expose them
+// eventually
+#[allow(unused)]
+impl<T> Receiver<T> {
+ /// Returns `true` if the channel is empty.
+ ///
+ /// Note: Zero-capacity channels are always empty.
+ pub fn is_empty(&self) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.is_empty(),
+ ReceiverFlavor::List(chan) => chan.is_empty(),
+ ReceiverFlavor::Zero(chan) => chan.is_empty(),
+ }
+ }
+
+ /// Returns `true` if the channel is full.
+ ///
+ /// Note: Zero-capacity channels are always full.
+ pub fn is_full(&self) -> bool {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.is_full(),
+ ReceiverFlavor::List(chan) => chan.is_full(),
+ ReceiverFlavor::Zero(chan) => chan.is_full(),
+ }
+ }
+
+ /// Returns the number of messages in the channel.
+ pub fn len(&self) -> usize {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.len(),
+ ReceiverFlavor::List(chan) => chan.len(),
+ ReceiverFlavor::Zero(chan) => chan.len(),
+ }
+ }
+
+ /// If the channel is bounded, returns its capacity.
+ pub fn capacity(&self) -> Option<usize> {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.capacity(),
+ ReceiverFlavor::List(chan) => chan.capacity(),
+ ReceiverFlavor::Zero(chan) => chan.capacity(),
+ }
+ }
+
+ /// Returns `true` if receivers belong to the same channel.
+ pub fn same_channel(&self, other: &Receiver<T>) -> bool {
+ match (&self.flavor, &other.flavor) {
+ (ReceiverFlavor::Array(a), ReceiverFlavor::Array(b)) => a == b,
+ (ReceiverFlavor::List(a), ReceiverFlavor::List(b)) => a == b,
+ (ReceiverFlavor::Zero(a), ReceiverFlavor::Zero(b)) => a == b,
+ _ => false,
+ }
+ }
+}
+
+impl<T> Drop for Receiver<T> {
+ fn drop(&mut self) {
+ unsafe {
+ match &self.flavor {
+ ReceiverFlavor::Array(chan) => chan.release(|c| c.disconnect()),
+ ReceiverFlavor::List(chan) => chan.release(|c| c.disconnect_receivers()),
+ ReceiverFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
+ }
+ }
+ }
+}
+
+impl<T> Clone for Receiver<T> {
+ fn clone(&self) -> Self {
+ let flavor = match &self.flavor {
+ ReceiverFlavor::Array(chan) => ReceiverFlavor::Array(chan.acquire()),
+ ReceiverFlavor::List(chan) => ReceiverFlavor::List(chan.acquire()),
+ ReceiverFlavor::Zero(chan) => ReceiverFlavor::Zero(chan.acquire()),
+ };
+
+ Receiver { flavor }
+ }
+}
+
+impl<T> fmt::Debug for Receiver<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Receiver { .. }")
+ }
+}