summaryrefslogtreecommitdiffstats
path: root/library/std/src/sys/sgx/abi/usercalls
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/sys/sgx/abi/usercalls')
-rw-r--r--library/std/src/sys/sgx/abi/usercalls/alloc.rs732
-rw-r--r--library/std/src/sys/sgx/abi/usercalls/mod.rs323
-rw-r--r--library/std/src/sys/sgx/abi/usercalls/raw.rs251
-rw-r--r--library/std/src/sys/sgx/abi/usercalls/tests.rs30
4 files changed, 1336 insertions, 0 deletions
diff --git a/library/std/src/sys/sgx/abi/usercalls/alloc.rs b/library/std/src/sys/sgx/abi/usercalls/alloc.rs
new file mode 100644
index 000000000..ea24fedd0
--- /dev/null
+++ b/library/std/src/sys/sgx/abi/usercalls/alloc.rs
@@ -0,0 +1,732 @@
+#![allow(unused)]
+
+use crate::arch::asm;
+use crate::cell::UnsafeCell;
+use crate::cmp;
+use crate::convert::TryInto;
+use crate::mem;
+use crate::ops::{CoerceUnsized, Deref, DerefMut, Index, IndexMut};
+use crate::ptr::{self, NonNull};
+use crate::slice;
+use crate::slice::SliceIndex;
+
+use super::super::mem::{is_enclave_range, is_user_range};
+use fortanix_sgx_abi::*;
+
+/// A type that can be safely read from or written to userspace.
+///
+/// Non-exhaustive list of specific requirements for reading and writing:
+/// * **Type is `Copy`** (and therefore also not `Drop`). Copies will be
+/// created when copying from/to userspace. Destructors will not be called.
+/// * **No references or Rust-style owned pointers** (`Vec`, `Arc`, etc.). When
+/// reading from userspace, references into enclave memory must not be
+/// created. Also, only enclave memory is considered managed by the Rust
+/// compiler's static analysis. When reading from userspace, there can be no
+/// guarantee that the value correctly adheres to the expectations of the
+/// type. When writing to userspace, memory addresses of data in enclave
+/// memory must not be leaked for confidentiality reasons. `User` and
+/// `UserRef` are also not allowed for the same reasons.
+/// * **No fat pointers.** When reading from userspace, the size or vtable
+/// pointer could be automatically interpreted and used by the code. When
+/// writing to userspace, memory addresses of data in enclave memory (such
+/// as vtable pointers) must not be leaked for confidentiality reasons.
+///
+/// Non-exhaustive list of specific requirements for reading from userspace:
+/// * **Any bit pattern is valid** for this type (no `enum`s). There can be no
+/// guarantee that the value correctly adheres to the expectations of the
+/// type, so any value must be valid for this type.
+///
+/// Non-exhaustive list of specific requirements for writing to userspace:
+/// * **No pointers to enclave memory.** Memory addresses of data in enclave
+/// memory must not be leaked for confidentiality reasons.
+/// * **No internal padding.** Padding might contain previously-initialized
+/// secret data stored at that memory location and must not be leaked for
+/// confidentiality reasons.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub unsafe trait UserSafeSized: Copy + Sized {}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl UserSafeSized for u8 {}
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl<T> UserSafeSized for FifoDescriptor<T> {}
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl UserSafeSized for ByteBuffer {}
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl UserSafeSized for Usercall {}
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl UserSafeSized for Return {}
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl<T: UserSafeSized> UserSafeSized for [T; 2] {}
+
+/// A type that can be represented in memory as one or more `UserSafeSized`s.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub unsafe trait UserSafe {
+ /// Equivalent to `mem::align_of::<Self>`.
+ fn align_of() -> usize;
+
+ /// Construct a pointer to `Self` given a memory range in user space.
+ ///
+ /// N.B., this takes a size, not a length!
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure the memory range is in user memory, is the
+ /// correct size and is correctly aligned and points to the right type.
+ unsafe fn from_raw_sized_unchecked(ptr: *mut u8, size: usize) -> *mut Self;
+
+ /// Construct a pointer to `Self` given a memory range.
+ ///
+ /// N.B., this takes a size, not a length!
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure the memory range points to the correct type.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if:
+ ///
+ /// * the pointer is not aligned.
+ /// * the pointer is null.
+ /// * the pointed-to range does not fit in the address space.
+ /// * the pointed-to range is not in user memory.
+ unsafe fn from_raw_sized(ptr: *mut u8, size: usize) -> NonNull<Self> {
+ assert!(ptr.wrapping_add(size) >= ptr);
+ // SAFETY: The caller has guaranteed the pointer is valid
+ let ret = unsafe { Self::from_raw_sized_unchecked(ptr, size) };
+ unsafe {
+ Self::check_ptr(ret);
+ NonNull::new_unchecked(ret as _)
+ }
+ }
+
+ /// Checks if a pointer may point to `Self` in user memory.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure the memory range points to the correct type and
+ /// length (if this is a slice).
+ ///
+ /// # Panics
+ ///
+ /// This function panics if:
+ ///
+ /// * the pointer is not aligned.
+ /// * the pointer is null.
+ /// * the pointed-to range is not in user memory.
+ unsafe fn check_ptr(ptr: *const Self) {
+ let is_aligned = |p| -> bool { 0 == (p as usize) & (Self::align_of() - 1) };
+
+ assert!(is_aligned(ptr as *const u8));
+ assert!(is_user_range(ptr as _, mem::size_of_val(unsafe { &*ptr })));
+ assert!(!ptr.is_null());
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl<T: UserSafeSized> UserSafe for T {
+ fn align_of() -> usize {
+ mem::align_of::<T>()
+ }
+
+ unsafe fn from_raw_sized_unchecked(ptr: *mut u8, size: usize) -> *mut Self {
+ assert_eq!(size, mem::size_of::<T>());
+ ptr as _
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+unsafe impl<T: UserSafeSized> UserSafe for [T] {
+ fn align_of() -> usize {
+ mem::align_of::<T>()
+ }
+
+ /// # Safety
+ /// Behavior is undefined if any of these conditions are violated:
+ /// * `ptr` must be [valid] for writes of `size` many bytes, and it must be
+ /// properly aligned.
+ ///
+ /// [valid]: core::ptr#safety
+ /// # Panics
+ ///
+ /// This function panics if:
+ ///
+ /// * the element size is not a factor of the size
+ unsafe fn from_raw_sized_unchecked(ptr: *mut u8, size: usize) -> *mut Self {
+ let elem_size = mem::size_of::<T>();
+ assert_eq!(size % elem_size, 0);
+ let len = size / elem_size;
+ // SAFETY: The caller must uphold the safety contract for `from_raw_sized_unchecked`
+ unsafe { slice::from_raw_parts_mut(ptr as _, len) }
+ }
+}
+
+/// A reference to some type in userspace memory. `&UserRef<T>` is equivalent
+/// to `&T` in enclave memory. Access to the memory is only allowed by copying
+/// to avoid TOCTTOU issues. After copying, code should make sure to completely
+/// check the value before use.
+///
+/// It is also possible to obtain a mutable reference `&mut UserRef<T>`. Unlike
+/// regular mutable references, these are not exclusive. Userspace may always
+/// write to the backing memory at any time, so it can't be assumed that there
+/// the pointed-to memory is uniquely borrowed. The two different reference types
+/// are used solely to indicate intent: a mutable reference is for writing to
+/// user memory, an immutable reference for reading from user memory.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub struct UserRef<T: ?Sized>(UnsafeCell<T>);
+/// An owned type in userspace memory. `User<T>` is equivalent to `Box<T>` in
+/// enclave memory. Access to the memory is only allowed by copying to avoid
+/// TOCTTOU issues. The user memory will be freed when the value is dropped.
+/// After copying, code should make sure to completely check the value before
+/// use.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub struct User<T: UserSafe + ?Sized>(NonNull<UserRef<T>>);
+
+trait NewUserRef<T: ?Sized> {
+ unsafe fn new_userref(v: T) -> Self;
+}
+
+impl<T: ?Sized> NewUserRef<*mut T> for NonNull<UserRef<T>> {
+ unsafe fn new_userref(v: *mut T) -> Self {
+ // SAFETY: The caller has guaranteed the pointer is valid
+ unsafe { NonNull::new_unchecked(v as _) }
+ }
+}
+
+impl<T: ?Sized> NewUserRef<NonNull<T>> for NonNull<UserRef<T>> {
+ unsafe fn new_userref(v: NonNull<T>) -> Self {
+ // SAFETY: The caller has guaranteed the pointer is valid
+ unsafe { NonNull::new_userref(v.as_ptr()) }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T: ?Sized> User<T>
+where
+ T: UserSafe,
+{
+ // This function returns memory that is practically uninitialized, but is
+ // not considered "unspecified" or "undefined" for purposes of an
+ // optimizing compiler. This is achieved by returning a pointer from
+ // from outside as obtained by `super::alloc`.
+ fn new_uninit_bytes(size: usize) -> Self {
+ unsafe {
+ // Mustn't call alloc with size 0.
+ let ptr = if size > 0 {
+ // `copy_to_userspace` is more efficient when data is 8-byte aligned
+ let alignment = cmp::max(T::align_of(), 8);
+ rtunwrap!(Ok, super::alloc(size, alignment)) as _
+ } else {
+ T::align_of() as _ // dangling pointer ok for size 0
+ };
+ if let Ok(v) = crate::panic::catch_unwind(|| T::from_raw_sized(ptr, size)) {
+ User(NonNull::new_userref(v))
+ } else {
+ rtabort!("Got invalid pointer from alloc() usercall")
+ }
+ }
+ }
+
+ /// Copies `val` into freshly allocated space in user memory.
+ pub fn new_from_enclave(val: &T) -> Self {
+ unsafe {
+ let mut user = Self::new_uninit_bytes(mem::size_of_val(val));
+ user.copy_from_enclave(val);
+ user
+ }
+ }
+
+ /// Creates an owned `User<T>` from a raw pointer.
+ ///
+ /// # Safety
+ /// The caller must ensure `ptr` points to `T`, is freeable with the `free`
+ /// usercall and the alignment of `T`, and is uniquely owned.
+ ///
+ /// # Panics
+ /// This function panics if:
+ ///
+ /// * The pointer is not aligned
+ /// * The pointer is null
+ /// * The pointed-to range is not in user memory
+ pub unsafe fn from_raw(ptr: *mut T) -> Self {
+ // SAFETY: the caller must uphold the safety contract for `from_raw`.
+ unsafe { T::check_ptr(ptr) };
+ User(unsafe { NonNull::new_userref(ptr) })
+ }
+
+ /// Converts this value into a raw pointer. The value will no longer be
+ /// automatically freed.
+ pub fn into_raw(self) -> *mut T {
+ let ret = self.0;
+ mem::forget(self);
+ ret.as_ptr() as _
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T> User<T>
+where
+ T: UserSafe,
+{
+ /// Allocate space for `T` in user memory.
+ pub fn uninitialized() -> Self {
+ Self::new_uninit_bytes(mem::size_of::<T>())
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T> User<[T]>
+where
+ [T]: UserSafe,
+{
+ /// Allocate space for a `[T]` of `n` elements in user memory.
+ pub fn uninitialized(n: usize) -> Self {
+ Self::new_uninit_bytes(n * mem::size_of::<T>())
+ }
+
+ /// Creates an owned `User<[T]>` from a raw thin pointer and a slice length.
+ ///
+ /// # Safety
+ /// The caller must ensure `ptr` points to `len` elements of `T`, is
+ /// freeable with the `free` usercall and the alignment of `T`, and is
+ /// uniquely owned.
+ ///
+ /// # Panics
+ /// This function panics if:
+ ///
+ /// * The pointer is not aligned
+ /// * The pointer is null
+ /// * The pointed-to range does not fit in the address space
+ /// * The pointed-to range is not in user memory
+ pub unsafe fn from_raw_parts(ptr: *mut T, len: usize) -> Self {
+ User(unsafe {
+ NonNull::new_userref(<[T]>::from_raw_sized(ptr as _, len * mem::size_of::<T>()))
+ })
+ }
+}
+
+/// Copies `len` bytes of data from enclave pointer `src` to userspace `dst`
+///
+/// This function mitigates stale data vulnerabilities by ensuring all writes to untrusted memory are either:
+/// - preceded by the VERW instruction and followed by the MFENCE; LFENCE instruction sequence
+/// - or are in multiples of 8 bytes, aligned to an 8-byte boundary
+///
+/// # Panics
+/// This function panics if:
+///
+/// * The `src` pointer is null
+/// * The `dst` pointer is null
+/// * The `src` memory range is not in enclave memory
+/// * The `dst` memory range is not in user memory
+///
+/// # References
+/// - https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
+/// - https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html#inpage-nav-3-2-2
+pub(crate) unsafe fn copy_to_userspace(src: *const u8, dst: *mut u8, len: usize) {
+ unsafe fn copy_bytewise_to_userspace(src: *const u8, dst: *mut u8, len: usize) {
+ unsafe {
+ let mut seg_sel: u16 = 0;
+ for off in 0..len {
+ asm!("
+ mov %ds, ({seg_sel})
+ verw ({seg_sel})
+ movb {val}, ({dst})
+ mfence
+ lfence
+ ",
+ val = in(reg_byte) *src.offset(off as isize),
+ dst = in(reg) dst.offset(off as isize),
+ seg_sel = in(reg) &mut seg_sel,
+ options(nostack, att_syntax)
+ );
+ }
+ }
+ }
+
+ unsafe fn copy_aligned_quadwords_to_userspace(src: *const u8, dst: *mut u8, len: usize) {
+ unsafe {
+ asm!(
+ "rep movsq (%rsi), (%rdi)",
+ inout("rcx") len / 8 => _,
+ inout("rdi") dst => _,
+ inout("rsi") src => _,
+ options(att_syntax, nostack, preserves_flags)
+ );
+ }
+ }
+ assert!(!src.is_null());
+ assert!(!dst.is_null());
+ assert!(is_enclave_range(src, len));
+ assert!(is_user_range(dst, len));
+ assert!(len < isize::MAX as usize);
+ assert!(!(src as usize).overflowing_add(len).1);
+ assert!(!(dst as usize).overflowing_add(len).1);
+
+ if len < 8 {
+ // Can't align on 8 byte boundary: copy safely byte per byte
+ unsafe {
+ copy_bytewise_to_userspace(src, dst, len);
+ }
+ } else if len % 8 == 0 && dst as usize % 8 == 0 {
+ // Copying 8-byte aligned quadwords: copy quad word per quad word
+ unsafe {
+ copy_aligned_quadwords_to_userspace(src, dst, len);
+ }
+ } else {
+ // Split copies into three parts:
+ // +--------+
+ // | small0 | Chunk smaller than 8 bytes
+ // +--------+
+ // | big | Chunk 8-byte aligned, and size a multiple of 8 bytes
+ // +--------+
+ // | small1 | Chunk smaller than 8 bytes
+ // +--------+
+
+ unsafe {
+ // Copy small0
+ let small0_size = (8 - dst as usize % 8) as u8;
+ let small0_src = src;
+ let small0_dst = dst;
+ copy_bytewise_to_userspace(small0_src as _, small0_dst, small0_size as _);
+
+ // Copy big
+ let small1_size = ((len - small0_size as usize) % 8) as u8;
+ let big_size = len - small0_size as usize - small1_size as usize;
+ let big_src = src.offset(small0_size as _);
+ let big_dst = dst.offset(small0_size as _);
+ copy_aligned_quadwords_to_userspace(big_src as _, big_dst, big_size);
+
+ // Copy small1
+ let small1_src = src.offset(big_size as isize + small0_size as isize);
+ let small1_dst = dst.offset(big_size as isize + small0_size as isize);
+ copy_bytewise_to_userspace(small1_src, small1_dst, small1_size as _);
+ }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T: ?Sized> UserRef<T>
+where
+ T: UserSafe,
+{
+ /// Creates a `&UserRef<[T]>` from a raw pointer.
+ ///
+ /// # Safety
+ /// The caller must ensure `ptr` points to `T`.
+ ///
+ /// # Panics
+ /// This function panics if:
+ ///
+ /// * The pointer is not aligned
+ /// * The pointer is null
+ /// * The pointed-to range is not in user memory
+ pub unsafe fn from_ptr<'a>(ptr: *const T) -> &'a Self {
+ // SAFETY: The caller must uphold the safety contract for `from_ptr`.
+ unsafe { T::check_ptr(ptr) };
+ unsafe { &*(ptr as *const Self) }
+ }
+
+ /// Creates a `&mut UserRef<[T]>` from a raw pointer. See the struct
+ /// documentation for the nuances regarding a `&mut UserRef<T>`.
+ ///
+ /// # Safety
+ /// The caller must ensure `ptr` points to `T`.
+ ///
+ /// # Panics
+ /// This function panics if:
+ ///
+ /// * The pointer is not aligned
+ /// * The pointer is null
+ /// * The pointed-to range is not in user memory
+ pub unsafe fn from_mut_ptr<'a>(ptr: *mut T) -> &'a mut Self {
+ // SAFETY: The caller must uphold the safety contract for `from_mut_ptr`.
+ unsafe { T::check_ptr(ptr) };
+ unsafe { &mut *(ptr as *mut Self) }
+ }
+
+ /// Copies `val` into user memory.
+ ///
+ /// # Panics
+ /// This function panics if the destination doesn't have the same size as
+ /// the source. This can happen for dynamically-sized types such as slices.
+ pub fn copy_from_enclave(&mut self, val: &T) {
+ unsafe {
+ assert_eq!(mem::size_of_val(val), mem::size_of_val(&*self.0.get()));
+ copy_to_userspace(
+ val as *const T as *const u8,
+ self.0.get() as *mut T as *mut u8,
+ mem::size_of_val(val),
+ );
+ }
+ }
+
+ /// Copies the value from user memory and place it into `dest`.
+ ///
+ /// # Panics
+ /// This function panics if the destination doesn't have the same size as
+ /// the source. This can happen for dynamically-sized types such as slices.
+ pub fn copy_to_enclave(&self, dest: &mut T) {
+ unsafe {
+ assert_eq!(mem::size_of_val(dest), mem::size_of_val(&*self.0.get()));
+ ptr::copy(
+ self.0.get() as *const T as *const u8,
+ dest as *mut T as *mut u8,
+ mem::size_of_val(dest),
+ );
+ }
+ }
+
+ /// Obtain a raw pointer from this reference.
+ pub fn as_raw_ptr(&self) -> *const T {
+ self as *const _ as _
+ }
+
+ /// Obtain a raw pointer from this reference.
+ pub fn as_raw_mut_ptr(&mut self) -> *mut T {
+ self as *mut _ as _
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T> UserRef<T>
+where
+ T: UserSafe,
+{
+ /// Copies the value from user memory into enclave memory.
+ pub fn to_enclave(&self) -> T {
+ unsafe { ptr::read(self.0.get()) }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T> UserRef<[T]>
+where
+ [T]: UserSafe,
+{
+ /// Creates a `&UserRef<[T]>` from a raw thin pointer and a slice length.
+ ///
+ /// # Safety
+ /// The caller must ensure `ptr` points to `n` elements of `T`.
+ ///
+ /// # Panics
+ /// This function panics if:
+ ///
+ /// * The pointer is not aligned
+ /// * The pointer is null
+ /// * The pointed-to range does not fit in the address space
+ /// * The pointed-to range is not in user memory
+ pub unsafe fn from_raw_parts<'a>(ptr: *const T, len: usize) -> &'a Self {
+ // SAFETY: The caller must uphold the safety contract for `from_raw_parts`.
+ unsafe {
+ &*(<[T]>::from_raw_sized(ptr as _, len * mem::size_of::<T>()).as_ptr() as *const Self)
+ }
+ }
+
+ /// Creates a `&mut UserRef<[T]>` from a raw thin pointer and a slice length.
+ /// See the struct documentation for the nuances regarding a
+ /// `&mut UserRef<T>`.
+ ///
+ /// # Safety
+ /// The caller must ensure `ptr` points to `n` elements of `T`.
+ ///
+ /// # Panics
+ /// This function panics if:
+ ///
+ /// * The pointer is not aligned
+ /// * The pointer is null
+ /// * The pointed-to range does not fit in the address space
+ /// * The pointed-to range is not in user memory
+ pub unsafe fn from_raw_parts_mut<'a>(ptr: *mut T, len: usize) -> &'a mut Self {
+ // SAFETY: The caller must uphold the safety contract for `from_raw_parts_mut`.
+ unsafe {
+ &mut *(<[T]>::from_raw_sized(ptr as _, len * mem::size_of::<T>()).as_ptr() as *mut Self)
+ }
+ }
+
+ /// Obtain a raw pointer to the first element of this user slice.
+ pub fn as_ptr(&self) -> *const T {
+ self.0.get() as _
+ }
+
+ /// Obtain a raw pointer to the first element of this user slice.
+ pub fn as_mut_ptr(&mut self) -> *mut T {
+ self.0.get() as _
+ }
+
+ /// Obtain the number of elements in this user slice.
+ pub fn len(&self) -> usize {
+ unsafe { (*self.0.get()).len() }
+ }
+
+ /// Copies the value from user memory and place it into `dest`. Afterwards,
+ /// `dest` will contain exactly `self.len()` elements.
+ ///
+ /// # Panics
+ /// This function panics if the destination doesn't have the same size as
+ /// the source. This can happen for dynamically-sized types such as slices.
+ pub fn copy_to_enclave_vec(&self, dest: &mut Vec<T>) {
+ if let Some(missing) = self.len().checked_sub(dest.capacity()) {
+ dest.reserve(missing)
+ }
+ // SAFETY: We reserve enough space above.
+ unsafe { dest.set_len(self.len()) };
+ self.copy_to_enclave(&mut dest[..]);
+ }
+
+ /// Copies the value from user memory into a vector in enclave memory.
+ pub fn to_enclave(&self) -> Vec<T> {
+ let mut ret = Vec::with_capacity(self.len());
+ self.copy_to_enclave_vec(&mut ret);
+ ret
+ }
+
+ /// Returns an iterator over the slice.
+ pub fn iter(&self) -> Iter<'_, T>
+ where
+ T: UserSafe, // FIXME: should be implied by [T]: UserSafe?
+ {
+ unsafe { Iter((&*self.as_raw_ptr()).iter()) }
+ }
+
+ /// Returns an iterator that allows modifying each value.
+ pub fn iter_mut(&mut self) -> IterMut<'_, T>
+ where
+ T: UserSafe, // FIXME: should be implied by [T]: UserSafe?
+ {
+ unsafe { IterMut((&mut *self.as_raw_mut_ptr()).iter_mut()) }
+ }
+}
+
+/// Immutable user slice iterator
+///
+/// This struct is created by the `iter` method on `UserRef<[T]>`.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub struct Iter<'a, T: 'a + UserSafe>(slice::Iter<'a, T>);
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<'a, T: UserSafe> Iterator for Iter<'a, T> {
+ type Item = &'a UserRef<T>;
+
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ unsafe { self.0.next().map(|e| UserRef::from_ptr(e)) }
+ }
+}
+
+/// Mutable user slice iterator
+///
+/// This struct is created by the `iter_mut` method on `UserRef<[T]>`.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub struct IterMut<'a, T: 'a + UserSafe>(slice::IterMut<'a, T>);
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<'a, T: UserSafe> Iterator for IterMut<'a, T> {
+ type Item = &'a mut UserRef<T>;
+
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ unsafe { self.0.next().map(|e| UserRef::from_mut_ptr(e)) }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T: ?Sized> Deref for User<T>
+where
+ T: UserSafe,
+{
+ type Target = UserRef<T>;
+
+ fn deref(&self) -> &Self::Target {
+ unsafe { &*self.0.as_ptr() }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T: ?Sized> DerefMut for User<T>
+where
+ T: UserSafe,
+{
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ unsafe { &mut *self.0.as_ptr() }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T: ?Sized> Drop for User<T>
+where
+ T: UserSafe,
+{
+ fn drop(&mut self) {
+ unsafe {
+ let ptr = (*self.0.as_ptr()).0.get();
+ super::free(ptr as _, mem::size_of_val(&mut *ptr), T::align_of());
+ }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T: CoerceUnsized<U>, U> CoerceUnsized<UserRef<U>> for UserRef<T> {}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T, I> Index<I> for UserRef<[T]>
+where
+ [T]: UserSafe,
+ I: SliceIndex<[T]>,
+ I::Output: UserSafe,
+{
+ type Output = UserRef<I::Output>;
+
+ #[inline]
+ fn index(&self, index: I) -> &UserRef<I::Output> {
+ unsafe {
+ if let Some(slice) = index.get(&*self.as_raw_ptr()) {
+ UserRef::from_ptr(slice)
+ } else {
+ rtabort!("index out of range for user slice");
+ }
+ }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl<T, I> IndexMut<I> for UserRef<[T]>
+where
+ [T]: UserSafe,
+ I: SliceIndex<[T]>,
+ I::Output: UserSafe,
+{
+ #[inline]
+ fn index_mut(&mut self, index: I) -> &mut UserRef<I::Output> {
+ unsafe {
+ if let Some(slice) = index.get_mut(&mut *self.as_raw_mut_ptr()) {
+ UserRef::from_mut_ptr(slice)
+ } else {
+ rtabort!("index out of range for user slice");
+ }
+ }
+ }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+impl UserRef<super::raw::ByteBuffer> {
+ /// Copies the user memory range pointed to by the user `ByteBuffer` to
+ /// enclave memory.
+ ///
+ /// # Panics
+ /// This function panics if, in the user `ByteBuffer`:
+ ///
+ /// * The pointer is null
+ /// * The pointed-to range does not fit in the address space
+ /// * The pointed-to range is not in user memory
+ pub fn copy_user_buffer(&self) -> Vec<u8> {
+ unsafe {
+ let buf = self.to_enclave();
+ if buf.len > 0 {
+ User::from_raw_parts(buf.data as _, buf.len).to_enclave()
+ } else {
+ // Mustn't look at `data` or call `free` if `len` is `0`.
+ Vec::with_capacity(0)
+ }
+ }
+ }
+}
diff --git a/library/std/src/sys/sgx/abi/usercalls/mod.rs b/library/std/src/sys/sgx/abi/usercalls/mod.rs
new file mode 100644
index 000000000..79d1db5e1
--- /dev/null
+++ b/library/std/src/sys/sgx/abi/usercalls/mod.rs
@@ -0,0 +1,323 @@
+use crate::cmp;
+use crate::io::{Error as IoError, ErrorKind, IoSlice, IoSliceMut, Result as IoResult};
+use crate::sys::rand::rdrand64;
+use crate::time::{Duration, Instant};
+
+pub(crate) mod alloc;
+#[macro_use]
+pub(crate) mod raw;
+#[cfg(test)]
+mod tests;
+
+use self::raw::*;
+
+/// Usercall `read`. See the ABI documentation for more information.
+///
+/// This will do a single `read` usercall and scatter the read data among
+/// `bufs`. To read to a single buffer, just pass a slice of length one.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn read(fd: Fd, bufs: &mut [IoSliceMut<'_>]) -> IoResult<usize> {
+ unsafe {
+ let total_len = bufs.iter().fold(0usize, |sum, buf| sum.saturating_add(buf.len()));
+ let mut userbuf = alloc::User::<[u8]>::uninitialized(total_len);
+ let ret_len = raw::read(fd, userbuf.as_mut_ptr(), userbuf.len()).from_sgx_result()?;
+ let userbuf = &userbuf[..ret_len];
+ let mut index = 0;
+ for buf in bufs {
+ let end = cmp::min(index + buf.len(), userbuf.len());
+ if let Some(buflen) = end.checked_sub(index) {
+ userbuf[index..end].copy_to_enclave(&mut buf[..buflen]);
+ index += buf.len();
+ } else {
+ break;
+ }
+ }
+ Ok(userbuf.len())
+ }
+}
+
+/// Usercall `read_alloc`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn read_alloc(fd: Fd) -> IoResult<Vec<u8>> {
+ unsafe {
+ let userbuf = ByteBuffer { data: crate::ptr::null_mut(), len: 0 };
+ let mut userbuf = alloc::User::new_from_enclave(&userbuf);
+ raw::read_alloc(fd, userbuf.as_raw_mut_ptr()).from_sgx_result()?;
+ Ok(userbuf.copy_user_buffer())
+ }
+}
+
+/// Usercall `write`. See the ABI documentation for more information.
+///
+/// This will do a single `write` usercall and gather the written data from
+/// `bufs`. To write from a single buffer, just pass a slice of length one.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn write(fd: Fd, bufs: &[IoSlice<'_>]) -> IoResult<usize> {
+ unsafe {
+ let total_len = bufs.iter().fold(0usize, |sum, buf| sum.saturating_add(buf.len()));
+ let mut userbuf = alloc::User::<[u8]>::uninitialized(total_len);
+ let mut index = 0;
+ for buf in bufs {
+ let end = cmp::min(index + buf.len(), userbuf.len());
+ if let Some(buflen) = end.checked_sub(index) {
+ userbuf[index..end].copy_from_enclave(&buf[..buflen]);
+ index += buf.len();
+ } else {
+ break;
+ }
+ }
+ raw::write(fd, userbuf.as_ptr(), userbuf.len()).from_sgx_result()
+ }
+}
+
+/// Usercall `flush`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn flush(fd: Fd) -> IoResult<()> {
+ unsafe { raw::flush(fd).from_sgx_result() }
+}
+
+/// Usercall `close`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn close(fd: Fd) {
+ unsafe { raw::close(fd) }
+}
+
+fn string_from_bytebuffer(buf: &alloc::UserRef<ByteBuffer>, usercall: &str, arg: &str) -> String {
+ String::from_utf8(buf.copy_user_buffer())
+ .unwrap_or_else(|_| rtabort!("Usercall {usercall}: expected {arg} to be valid UTF-8"))
+}
+
+/// Usercall `bind_stream`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn bind_stream(addr: &str) -> IoResult<(Fd, String)> {
+ unsafe {
+ let addr_user = alloc::User::new_from_enclave(addr.as_bytes());
+ let mut local = alloc::User::<ByteBuffer>::uninitialized();
+ let fd = raw::bind_stream(addr_user.as_ptr(), addr_user.len(), local.as_raw_mut_ptr())
+ .from_sgx_result()?;
+ let local = string_from_bytebuffer(&local, "bind_stream", "local_addr");
+ Ok((fd, local))
+ }
+}
+
+/// Usercall `accept_stream`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn accept_stream(fd: Fd) -> IoResult<(Fd, String, String)> {
+ unsafe {
+ let mut bufs = alloc::User::<[ByteBuffer; 2]>::uninitialized();
+ let mut buf_it = alloc::UserRef::iter_mut(&mut *bufs); // FIXME: can this be done
+ // without forcing coercion?
+ let (local, peer) = (buf_it.next().unwrap(), buf_it.next().unwrap());
+ let fd = raw::accept_stream(fd, local.as_raw_mut_ptr(), peer.as_raw_mut_ptr())
+ .from_sgx_result()?;
+ let local = string_from_bytebuffer(&local, "accept_stream", "local_addr");
+ let peer = string_from_bytebuffer(&peer, "accept_stream", "peer_addr");
+ Ok((fd, local, peer))
+ }
+}
+
+/// Usercall `connect_stream`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn connect_stream(addr: &str) -> IoResult<(Fd, String, String)> {
+ unsafe {
+ let addr_user = alloc::User::new_from_enclave(addr.as_bytes());
+ let mut bufs = alloc::User::<[ByteBuffer; 2]>::uninitialized();
+ let mut buf_it = alloc::UserRef::iter_mut(&mut *bufs); // FIXME: can this be done
+ // without forcing coercion?
+ let (local, peer) = (buf_it.next().unwrap(), buf_it.next().unwrap());
+ let fd = raw::connect_stream(
+ addr_user.as_ptr(),
+ addr_user.len(),
+ local.as_raw_mut_ptr(),
+ peer.as_raw_mut_ptr(),
+ )
+ .from_sgx_result()?;
+ let local = string_from_bytebuffer(&local, "connect_stream", "local_addr");
+ let peer = string_from_bytebuffer(&peer, "connect_stream", "peer_addr");
+ Ok((fd, local, peer))
+ }
+}
+
+/// Usercall `launch_thread`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub unsafe fn launch_thread() -> IoResult<()> {
+ // SAFETY: The caller must uphold the safety contract for `launch_thread`.
+ unsafe { raw::launch_thread().from_sgx_result() }
+}
+
+/// Usercall `exit`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn exit(panic: bool) -> ! {
+ unsafe { raw::exit(panic) }
+}
+
+/// Usercall `wait`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn wait(event_mask: u64, mut timeout: u64) -> IoResult<u64> {
+ if timeout != WAIT_NO && timeout != WAIT_INDEFINITE {
+ // We don't want people to rely on accuracy of timeouts to make
+ // security decisions in an SGX enclave. That's why we add a random
+ // amount not exceeding +/- 10% to the timeout value to discourage
+ // people from relying on accuracy of timeouts while providing a way
+ // to make things work in other cases. Note that in the SGX threat
+ // model the enclave runner which is serving the wait usercall is not
+ // trusted to ensure accurate timeouts.
+ if let Ok(timeout_signed) = i64::try_from(timeout) {
+ let tenth = timeout_signed / 10;
+ let deviation = (rdrand64() as i64).checked_rem(tenth).unwrap_or(0);
+ timeout = timeout_signed.saturating_add(deviation) as _;
+ }
+ }
+ unsafe { raw::wait(event_mask, timeout).from_sgx_result() }
+}
+
+/// This function makes an effort to wait for a non-spurious event at least as
+/// long as `duration`. Note that in general there is no guarantee about accuracy
+/// of time and timeouts in SGX model. The enclave runner serving usercalls may
+/// lie about current time and/or ignore timeout values.
+///
+/// Once the event is observed, `should_wake_up` will be used to determine
+/// whether or not the event was spurious.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn wait_timeout<F>(event_mask: u64, duration: Duration, should_wake_up: F)
+where
+ F: Fn() -> bool,
+{
+ // Calls the wait usercall and checks the result. Returns true if event was
+ // returned, and false if WouldBlock/TimedOut was returned.
+ // If duration is None, it will use WAIT_NO.
+ fn wait_checked(event_mask: u64, duration: Option<Duration>) -> bool {
+ let timeout = duration.map_or(raw::WAIT_NO, |duration| {
+ cmp::min((u64::MAX - 1) as u128, duration.as_nanos()) as u64
+ });
+ match wait(event_mask, timeout) {
+ Ok(eventset) => {
+ if event_mask == 0 {
+ rtabort!("expected wait() to return Err, found Ok.");
+ }
+ rtassert!(eventset != 0 && eventset & !event_mask == 0);
+ true
+ }
+ Err(e) => {
+ rtassert!(e.kind() == ErrorKind::TimedOut || e.kind() == ErrorKind::WouldBlock);
+ false
+ }
+ }
+ }
+
+ match wait_checked(event_mask, Some(duration)) {
+ false => return, // timed out
+ true if should_wake_up() => return, // woken up
+ true => {} // spurious event
+ }
+
+ // Drain all cached events.
+ // Note that `event_mask != 0` is implied if we get here.
+ loop {
+ match wait_checked(event_mask, None) {
+ false => break, // no more cached events
+ true if should_wake_up() => return, // woken up
+ true => {} // spurious event
+ }
+ }
+
+ // Continue waiting, but take note of time spent waiting so we don't wait
+ // forever. We intentionally don't call `Instant::now()` before this point
+ // to avoid the cost of the `insecure_time` usercall in case there are no
+ // spurious wakeups.
+
+ let start = Instant::now();
+ let mut remaining = duration;
+ loop {
+ match wait_checked(event_mask, Some(remaining)) {
+ false => return, // timed out
+ true if should_wake_up() => return, // woken up
+ true => {} // spurious event
+ }
+ remaining = match duration.checked_sub(start.elapsed()) {
+ Some(remaining) => remaining,
+ None => break,
+ }
+ }
+}
+
+/// Usercall `send`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn send(event_set: u64, tcs: Option<Tcs>) -> IoResult<()> {
+ unsafe { raw::send(event_set, tcs).from_sgx_result() }
+}
+
+/// Usercall `insecure_time`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn insecure_time() -> Duration {
+ let t = unsafe { raw::insecure_time() };
+ Duration::new(t / 1_000_000_000, (t % 1_000_000_000) as _)
+}
+
+/// Usercall `alloc`. See the ABI documentation for more information.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub fn alloc(size: usize, alignment: usize) -> IoResult<*mut u8> {
+ unsafe { raw::alloc(size, alignment).from_sgx_result() }
+}
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+#[doc(inline)]
+pub use self::raw::free;
+
+fn check_os_error(err: Result) -> i32 {
+ // FIXME: not sure how to make sure all variants of Error are covered
+ if err == Error::NotFound as _
+ || err == Error::PermissionDenied as _
+ || err == Error::ConnectionRefused as _
+ || err == Error::ConnectionReset as _
+ || err == Error::ConnectionAborted as _
+ || err == Error::NotConnected as _
+ || err == Error::AddrInUse as _
+ || err == Error::AddrNotAvailable as _
+ || err == Error::BrokenPipe as _
+ || err == Error::AlreadyExists as _
+ || err == Error::WouldBlock as _
+ || err == Error::InvalidInput as _
+ || err == Error::InvalidData as _
+ || err == Error::TimedOut as _
+ || err == Error::WriteZero as _
+ || err == Error::Interrupted as _
+ || err == Error::Other as _
+ || err == Error::UnexpectedEof as _
+ || ((Error::UserRangeStart as _)..=(Error::UserRangeEnd as _)).contains(&err)
+ {
+ err
+ } else {
+ rtabort!("Usercall: returned invalid error value {err}")
+ }
+}
+
+trait FromSgxResult {
+ type Return;
+
+ fn from_sgx_result(self) -> IoResult<Self::Return>;
+}
+
+impl<T> FromSgxResult for (Result, T) {
+ type Return = T;
+
+ fn from_sgx_result(self) -> IoResult<Self::Return> {
+ if self.0 == RESULT_SUCCESS {
+ Ok(self.1)
+ } else {
+ Err(IoError::from_raw_os_error(check_os_error(self.0)))
+ }
+ }
+}
+
+impl FromSgxResult for Result {
+ type Return = ();
+
+ fn from_sgx_result(self) -> IoResult<Self::Return> {
+ if self == RESULT_SUCCESS {
+ Ok(())
+ } else {
+ Err(IoError::from_raw_os_error(check_os_error(self)))
+ }
+ }
+}
diff --git a/library/std/src/sys/sgx/abi/usercalls/raw.rs b/library/std/src/sys/sgx/abi/usercalls/raw.rs
new file mode 100644
index 000000000..4267b96cc
--- /dev/null
+++ b/library/std/src/sys/sgx/abi/usercalls/raw.rs
@@ -0,0 +1,251 @@
+#![allow(unused)]
+
+#[unstable(feature = "sgx_platform", issue = "56975")]
+pub use fortanix_sgx_abi::*;
+
+use crate::num::NonZeroU64;
+use crate::ptr::NonNull;
+
+#[repr(C)]
+struct UsercallReturn(u64, u64);
+
+extern "C" {
+ fn usercall(nr: NonZeroU64, p1: u64, p2: u64, abort: u64, p3: u64, p4: u64) -> UsercallReturn;
+}
+
+/// Performs the raw usercall operation as defined in the ABI calling convention.
+///
+/// # Safety
+///
+/// The caller must ensure to pass parameters appropriate for the usercall `nr`
+/// and to observe all requirements specified in the ABI.
+///
+/// # Panics
+///
+/// Panics if `nr` is `0`.
+#[unstable(feature = "sgx_platform", issue = "56975")]
+#[inline]
+pub unsafe fn do_usercall(
+ nr: NonZeroU64,
+ p1: u64,
+ p2: u64,
+ p3: u64,
+ p4: u64,
+ abort: bool,
+) -> (u64, u64) {
+ let UsercallReturn(a, b) = unsafe { usercall(nr, p1, p2, abort as _, p3, p4) };
+ (a, b)
+}
+
+type Register = u64;
+
+trait RegisterArgument {
+ fn from_register(_: Register) -> Self;
+ fn into_register(self) -> Register;
+}
+
+trait ReturnValue {
+ fn from_registers(call: &'static str, regs: (Register, Register)) -> Self;
+}
+
+macro_rules! define_usercalls {
+ ($(fn $f:ident($($n:ident: $t:ty),*) $(-> $r:tt)*; )*) => {
+ /// Usercall numbers as per the ABI.
+ #[repr(u64)]
+ #[unstable(feature = "sgx_platform", issue = "56975")]
+ #[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
+ #[allow(missing_docs, non_camel_case_types)]
+ #[non_exhaustive]
+ pub enum Usercalls {
+ #[doc(hidden)]
+ __enclave_usercalls_invalid = 0,
+ $($f,)*
+ }
+
+ $(enclave_usercalls_internal_define_usercalls!(def fn $f($($n: $t),*) $(-> $r)*);)*
+ };
+}
+
+macro_rules! define_ra {
+ (< $i:ident > $t:ty) => {
+ impl<$i> RegisterArgument for $t {
+ fn from_register(a: Register) -> Self {
+ a as _
+ }
+ fn into_register(self) -> Register {
+ self as _
+ }
+ }
+ };
+ ($i:ty as $t:ty) => {
+ impl RegisterArgument for $t {
+ fn from_register(a: Register) -> Self {
+ a as $i as _
+ }
+ fn into_register(self) -> Register {
+ self as $i as _
+ }
+ }
+ };
+ ($t:ty) => {
+ impl RegisterArgument for $t {
+ fn from_register(a: Register) -> Self {
+ a as _
+ }
+ fn into_register(self) -> Register {
+ self as _
+ }
+ }
+ };
+}
+
+define_ra!(Register);
+define_ra!(i64);
+define_ra!(u32);
+define_ra!(u32 as i32);
+define_ra!(u16);
+define_ra!(u16 as i16);
+define_ra!(u8);
+define_ra!(u8 as i8);
+define_ra!(usize);
+define_ra!(usize as isize);
+define_ra!(<T> *const T);
+define_ra!(<T> *mut T);
+
+impl RegisterArgument for bool {
+ fn from_register(a: Register) -> bool {
+ if a != 0 { true } else { false }
+ }
+ fn into_register(self) -> Register {
+ self as _
+ }
+}
+
+impl<T: RegisterArgument> RegisterArgument for Option<NonNull<T>> {
+ fn from_register(a: Register) -> Option<NonNull<T>> {
+ NonNull::new(a as _)
+ }
+ fn into_register(self) -> Register {
+ self.map_or(0 as _, NonNull::as_ptr) as _
+ }
+}
+
+impl ReturnValue for ! {
+ fn from_registers(call: &'static str, _regs: (Register, Register)) -> Self {
+ rtabort!("Usercall {call}: did not expect to be re-entered");
+ }
+}
+
+impl ReturnValue for () {
+ fn from_registers(call: &'static str, usercall_retval: (Register, Register)) -> Self {
+ rtassert!(usercall_retval.0 == 0);
+ rtassert!(usercall_retval.1 == 0);
+ ()
+ }
+}
+
+impl<T: RegisterArgument> ReturnValue for T {
+ fn from_registers(call: &'static str, usercall_retval: (Register, Register)) -> Self {
+ rtassert!(usercall_retval.1 == 0);
+ T::from_register(usercall_retval.0)
+ }
+}
+
+impl<T: RegisterArgument, U: RegisterArgument> ReturnValue for (T, U) {
+ fn from_registers(_call: &'static str, regs: (Register, Register)) -> Self {
+ (T::from_register(regs.0), U::from_register(regs.1))
+ }
+}
+
+macro_rules! return_type_is_abort {
+ (!) => {
+ true
+ };
+ ($r:ty) => {
+ false
+ };
+}
+
+// In this macro: using `$r:tt` because `$r:ty` doesn't match ! in `return_type_is_abort`
+macro_rules! enclave_usercalls_internal_define_usercalls {
+ (def fn $f:ident($n1:ident: $t1:ty, $n2:ident: $t2:ty,
+ $n3:ident: $t3:ty, $n4:ident: $t4:ty) -> $r:tt) => (
+ /// This is the raw function definition, see the ABI documentation for
+ /// more information.
+ #[unstable(feature = "sgx_platform", issue = "56975")]
+ #[inline(always)]
+ pub unsafe fn $f($n1: $t1, $n2: $t2, $n3: $t3, $n4: $t4) -> $r {
+ ReturnValue::from_registers(stringify!($f), unsafe { do_usercall(
+ rtunwrap!(Some, NonZeroU64::new(Usercalls::$f as Register)),
+ RegisterArgument::into_register($n1),
+ RegisterArgument::into_register($n2),
+ RegisterArgument::into_register($n3),
+ RegisterArgument::into_register($n4),
+ return_type_is_abort!($r)
+ ) })
+ }
+ );
+ (def fn $f:ident($n1:ident: $t1:ty, $n2:ident: $t2:ty, $n3:ident: $t3:ty) -> $r:tt) => (
+ /// This is the raw function definition, see the ABI documentation for
+ /// more information.
+ #[unstable(feature = "sgx_platform", issue = "56975")]
+ #[inline(always)]
+ pub unsafe fn $f($n1: $t1, $n2: $t2, $n3: $t3) -> $r {
+ ReturnValue::from_registers(stringify!($f), unsafe { do_usercall(
+ rtunwrap!(Some, NonZeroU64::new(Usercalls::$f as Register)),
+ RegisterArgument::into_register($n1),
+ RegisterArgument::into_register($n2),
+ RegisterArgument::into_register($n3),
+ 0,
+ return_type_is_abort!($r)
+ ) })
+ }
+ );
+ (def fn $f:ident($n1:ident: $t1:ty, $n2:ident: $t2:ty) -> $r:tt) => (
+ /// This is the raw function definition, see the ABI documentation for
+ /// more information.
+ #[unstable(feature = "sgx_platform", issue = "56975")]
+ #[inline(always)]
+ pub unsafe fn $f($n1: $t1, $n2: $t2) -> $r {
+ ReturnValue::from_registers(stringify!($f), unsafe { do_usercall(
+ rtunwrap!(Some, NonZeroU64::new(Usercalls::$f as Register)),
+ RegisterArgument::into_register($n1),
+ RegisterArgument::into_register($n2),
+ 0,0,
+ return_type_is_abort!($r)
+ ) })
+ }
+ );
+ (def fn $f:ident($n1:ident: $t1:ty) -> $r:tt) => (
+ /// This is the raw function definition, see the ABI documentation for
+ /// more information.
+ #[unstable(feature = "sgx_platform", issue = "56975")]
+ #[inline(always)]
+ pub unsafe fn $f($n1: $t1) -> $r {
+ ReturnValue::from_registers(stringify!($f), unsafe { do_usercall(
+ rtunwrap!(Some, NonZeroU64::new(Usercalls::$f as Register)),
+ RegisterArgument::into_register($n1),
+ 0,0,0,
+ return_type_is_abort!($r)
+ ) })
+ }
+ );
+ (def fn $f:ident() -> $r:tt) => (
+ /// This is the raw function definition, see the ABI documentation for
+ /// more information.
+ #[unstable(feature = "sgx_platform", issue = "56975")]
+ #[inline(always)]
+ pub unsafe fn $f() -> $r {
+ ReturnValue::from_registers(stringify!($f), unsafe { do_usercall(
+ rtunwrap!(Some, NonZeroU64::new(Usercalls::$f as Register)),
+ 0,0,0,0,
+ return_type_is_abort!($r)
+ ) })
+ }
+ );
+ (def fn $f:ident($($n:ident: $t:ty),*)) => (
+ enclave_usercalls_internal_define_usercalls!(def fn $f($($n: $t),*) -> ());
+ );
+}
+
+invoke_with_usercalls!(define_usercalls);
diff --git a/library/std/src/sys/sgx/abi/usercalls/tests.rs b/library/std/src/sys/sgx/abi/usercalls/tests.rs
new file mode 100644
index 000000000..cbf7d7d54
--- /dev/null
+++ b/library/std/src/sys/sgx/abi/usercalls/tests.rs
@@ -0,0 +1,30 @@
+use super::alloc::copy_to_userspace;
+use super::alloc::User;
+
+#[test]
+fn test_copy_function() {
+ let mut src = [0u8; 100];
+ let mut dst = User::<[u8]>::uninitialized(100);
+
+ for i in 0..src.len() {
+ src[i] = i as _;
+ }
+
+ for size in 0..48 {
+ // For all possible alignment
+ for offset in 0..8 {
+ // overwrite complete dst
+ dst.copy_from_enclave(&[0u8; 100]);
+
+ // Copy src[0..size] to dst + offset
+ unsafe { copy_to_userspace(src.as_ptr(), dst.as_mut_ptr().offset(offset), size) };
+
+ // Verify copy
+ for byte in 0..size {
+ unsafe {
+ assert_eq!(*dst.as_ptr().offset(offset + byte as isize), src[byte as usize]);
+ }
+ }
+ }
+ }
+}