summaryrefslogtreecommitdiffstats
path: root/library/std/src/sys/sgx/waitqueue/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--library/std/src/sys/sgx/waitqueue/mod.rs240
1 files changed, 240 insertions, 0 deletions
diff --git a/library/std/src/sys/sgx/waitqueue/mod.rs b/library/std/src/sys/sgx/waitqueue/mod.rs
new file mode 100644
index 000000000..61bb11d9a
--- /dev/null
+++ b/library/std/src/sys/sgx/waitqueue/mod.rs
@@ -0,0 +1,240 @@
+//! A simple queue implementation for synchronization primitives.
+//!
+//! This queue is used to implement condition variable and mutexes.
+//!
+//! Users of this API are expected to use the `WaitVariable<T>` type. Since
+//! that type is not `Sync`, it needs to be protected by e.g., a `SpinMutex` to
+//! allow shared access.
+//!
+//! Since userspace may send spurious wake-ups, the wakeup event state is
+//! recorded in the enclave. The wakeup event state is protected by a spinlock.
+//! The queue and associated wait state are stored in a `WaitVariable`.
+
+#[cfg(test)]
+mod tests;
+
+mod spin_mutex;
+mod unsafe_list;
+
+use crate::num::NonZeroUsize;
+use crate::ops::{Deref, DerefMut};
+use crate::time::Duration;
+
+use super::abi::thread;
+use super::abi::usercalls;
+use fortanix_sgx_abi::{Tcs, EV_UNPARK, WAIT_INDEFINITE};
+
+pub use self::spin_mutex::{try_lock_or_false, SpinMutex, SpinMutexGuard};
+use self::unsafe_list::{UnsafeList, UnsafeListEntry};
+
+/// An queue entry in a `WaitQueue`.
+struct WaitEntry {
+ /// TCS address of the thread that is waiting
+ tcs: Tcs,
+ /// Whether this thread has been notified to be awoken
+ wake: bool,
+}
+
+/// Data stored with a `WaitQueue` alongside it. This ensures accesses to the
+/// queue and the data are synchronized, since the type itself is not `Sync`.
+///
+/// Consumers of this API should use a synchronization primitive for shared
+/// access, such as `SpinMutex`.
+#[derive(Default)]
+pub struct WaitVariable<T> {
+ queue: WaitQueue,
+ lock: T,
+}
+
+impl<T> WaitVariable<T> {
+ pub const fn new(var: T) -> Self {
+ WaitVariable { queue: WaitQueue::new(), lock: var }
+ }
+
+ pub fn queue_empty(&self) -> bool {
+ self.queue.is_empty()
+ }
+
+ pub fn lock_var(&self) -> &T {
+ &self.lock
+ }
+
+ pub fn lock_var_mut(&mut self) -> &mut T {
+ &mut self.lock
+ }
+}
+
+#[derive(Copy, Clone)]
+pub enum NotifiedTcs {
+ Single(Tcs),
+ All { count: NonZeroUsize },
+}
+
+/// An RAII guard that will notify a set of target threads as well as unlock
+/// a mutex on drop.
+pub struct WaitGuard<'a, T: 'a> {
+ mutex_guard: Option<SpinMutexGuard<'a, WaitVariable<T>>>,
+ notified_tcs: NotifiedTcs,
+}
+
+/// A queue of threads that are waiting on some synchronization primitive.
+///
+/// `UnsafeList` entries are allocated on the waiting thread's stack. This
+/// avoids any global locking that might happen in the heap allocator. This is
+/// safe because the waiting thread will not return from that stack frame until
+/// after it is notified. The notifying thread ensures to clean up any
+/// references to the list entries before sending the wakeup event.
+pub struct WaitQueue {
+ // We use an inner Mutex here to protect the data in the face of spurious
+ // wakeups.
+ inner: UnsafeList<SpinMutex<WaitEntry>>,
+}
+unsafe impl Send for WaitQueue {}
+
+impl Default for WaitQueue {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<'a, T> WaitGuard<'a, T> {
+ /// Returns which TCSes will be notified when this guard drops.
+ pub fn notified_tcs(&self) -> NotifiedTcs {
+ self.notified_tcs
+ }
+
+ /// Drop this `WaitGuard`, after dropping another `guard`.
+ pub fn drop_after<U>(self, guard: U) {
+ drop(guard);
+ drop(self);
+ }
+}
+
+impl<'a, T> Deref for WaitGuard<'a, T> {
+ type Target = SpinMutexGuard<'a, WaitVariable<T>>;
+
+ fn deref(&self) -> &Self::Target {
+ self.mutex_guard.as_ref().unwrap()
+ }
+}
+
+impl<'a, T> DerefMut for WaitGuard<'a, T> {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ self.mutex_guard.as_mut().unwrap()
+ }
+}
+
+impl<'a, T> Drop for WaitGuard<'a, T> {
+ fn drop(&mut self) {
+ drop(self.mutex_guard.take());
+ let target_tcs = match self.notified_tcs {
+ NotifiedTcs::Single(tcs) => Some(tcs),
+ NotifiedTcs::All { .. } => None,
+ };
+ rtunwrap!(Ok, usercalls::send(EV_UNPARK, target_tcs));
+ }
+}
+
+impl WaitQueue {
+ pub const fn new() -> Self {
+ WaitQueue { inner: UnsafeList::new() }
+ }
+
+ pub fn is_empty(&self) -> bool {
+ self.inner.is_empty()
+ }
+
+ /// Adds the calling thread to the `WaitVariable`'s wait queue, then wait
+ /// until a wakeup event.
+ ///
+ /// This function does not return until this thread has been awoken.
+ pub fn wait<T, F: FnOnce()>(mut guard: SpinMutexGuard<'_, WaitVariable<T>>, before_wait: F) {
+ // very unsafe: check requirements of UnsafeList::push
+ unsafe {
+ let mut entry = UnsafeListEntry::new(SpinMutex::new(WaitEntry {
+ tcs: thread::current(),
+ wake: false,
+ }));
+ let entry = guard.queue.inner.push(&mut entry);
+ drop(guard);
+ before_wait();
+ while !entry.lock().wake {
+ // don't panic, this would invalidate `entry` during unwinding
+ let eventset = rtunwrap!(Ok, usercalls::wait(EV_UNPARK, WAIT_INDEFINITE));
+ rtassert!(eventset & EV_UNPARK == EV_UNPARK);
+ }
+ }
+ }
+
+ /// Adds the calling thread to the `WaitVariable`'s wait queue, then wait
+ /// until a wakeup event or timeout. If event was observed, returns true.
+ /// If not, it will remove the calling thread from the wait queue.
+ pub fn wait_timeout<T, F: FnOnce()>(
+ lock: &SpinMutex<WaitVariable<T>>,
+ timeout: Duration,
+ before_wait: F,
+ ) -> bool {
+ // very unsafe: check requirements of UnsafeList::push
+ unsafe {
+ let mut entry = UnsafeListEntry::new(SpinMutex::new(WaitEntry {
+ tcs: thread::current(),
+ wake: false,
+ }));
+ let entry_lock = lock.lock().queue.inner.push(&mut entry);
+ before_wait();
+ usercalls::wait_timeout(EV_UNPARK, timeout, || entry_lock.lock().wake);
+ // acquire the wait queue's lock first to avoid deadlock.
+ let mut guard = lock.lock();
+ let success = entry_lock.lock().wake;
+ if !success {
+ // nobody is waking us up, so remove our entry from the wait queue.
+ guard.queue.inner.remove(&mut entry);
+ }
+ success
+ }
+ }
+
+ /// Either find the next waiter on the wait queue, or return the mutex
+ /// guard unchanged.
+ ///
+ /// If a waiter is found, a `WaitGuard` is returned which will notify the
+ /// waiter when it is dropped.
+ pub fn notify_one<T>(
+ mut guard: SpinMutexGuard<'_, WaitVariable<T>>,
+ ) -> Result<WaitGuard<'_, T>, SpinMutexGuard<'_, WaitVariable<T>>> {
+ unsafe {
+ if let Some(entry) = guard.queue.inner.pop() {
+ let mut entry_guard = entry.lock();
+ let tcs = entry_guard.tcs;
+ entry_guard.wake = true;
+ drop(entry);
+ Ok(WaitGuard { mutex_guard: Some(guard), notified_tcs: NotifiedTcs::Single(tcs) })
+ } else {
+ Err(guard)
+ }
+ }
+ }
+
+ /// Either find any and all waiters on the wait queue, or return the mutex
+ /// guard unchanged.
+ ///
+ /// If at least one waiter is found, a `WaitGuard` is returned which will
+ /// notify all waiters when it is dropped.
+ pub fn notify_all<T>(
+ mut guard: SpinMutexGuard<'_, WaitVariable<T>>,
+ ) -> Result<WaitGuard<'_, T>, SpinMutexGuard<'_, WaitVariable<T>>> {
+ unsafe {
+ let mut count = 0;
+ while let Some(entry) = guard.queue.inner.pop() {
+ count += 1;
+ let mut entry_guard = entry.lock();
+ entry_guard.wake = true;
+ }
+ if let Some(count) = NonZeroUsize::new(count) {
+ Ok(WaitGuard { mutex_guard: Some(guard), notified_tcs: NotifiedTcs::All { count } })
+ } else {
+ Err(guard)
+ }
+ }
+ }
+}