summaryrefslogtreecommitdiffstats
path: root/library/std/src/sys_common/thread_parker/generic.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--library/std/src/sys_common/thread_parker/generic.rs125
1 files changed, 125 insertions, 0 deletions
diff --git a/library/std/src/sys_common/thread_parker/generic.rs b/library/std/src/sys_common/thread_parker/generic.rs
new file mode 100644
index 000000000..f3d8b34d3
--- /dev/null
+++ b/library/std/src/sys_common/thread_parker/generic.rs
@@ -0,0 +1,125 @@
+//! Parker implementation based on a Mutex and Condvar.
+
+use crate::pin::Pin;
+use crate::sync::atomic::AtomicUsize;
+use crate::sync::atomic::Ordering::SeqCst;
+use crate::sync::{Condvar, Mutex};
+use crate::time::Duration;
+
+const EMPTY: usize = 0;
+const PARKED: usize = 1;
+const NOTIFIED: usize = 2;
+
+pub struct Parker {
+ state: AtomicUsize,
+ lock: Mutex<()>,
+ cvar: Condvar,
+}
+
+impl Parker {
+ /// Construct the generic parker. The UNIX parker implementation
+ /// requires this to happen in-place.
+ pub unsafe fn new(parker: *mut Parker) {
+ parker.write(Parker {
+ state: AtomicUsize::new(EMPTY),
+ lock: Mutex::new(()),
+ cvar: Condvar::new(),
+ });
+ }
+
+ // This implementation doesn't require `unsafe` and `Pin`, but other implementations do.
+ pub unsafe fn park(self: Pin<&Self>) {
+ // If we were previously notified then we consume this notification and
+ // return quickly.
+ if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
+ return;
+ }
+
+ // Otherwise we need to coordinate going to sleep
+ let mut m = self.lock.lock().unwrap();
+ match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
+ Ok(_) => {}
+ Err(NOTIFIED) => {
+ // We must read here, even though we know it will be `NOTIFIED`.
+ // This is because `unpark` may have been called again since we read
+ // `NOTIFIED` in the `compare_exchange` above. We must perform an
+ // acquire operation that synchronizes with that `unpark` to observe
+ // any writes it made before the call to unpark. To do that we must
+ // read from the write it made to `state`.
+ let old = self.state.swap(EMPTY, SeqCst);
+ assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
+ return;
+ } // should consume this notification, so prohibit spurious wakeups in next park.
+ Err(_) => panic!("inconsistent park state"),
+ }
+ loop {
+ m = self.cvar.wait(m).unwrap();
+ match self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) {
+ Ok(_) => return, // got a notification
+ Err(_) => {} // spurious wakeup, go back to sleep
+ }
+ }
+ }
+
+ // This implementation doesn't require `unsafe` and `Pin`, but other implementations do.
+ pub unsafe fn park_timeout(self: Pin<&Self>, dur: Duration) {
+ // Like `park` above we have a fast path for an already-notified thread, and
+ // afterwards we start coordinating for a sleep.
+ // return quickly.
+ if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
+ return;
+ }
+ let m = self.lock.lock().unwrap();
+ match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
+ Ok(_) => {}
+ Err(NOTIFIED) => {
+ // We must read again here, see `park`.
+ let old = self.state.swap(EMPTY, SeqCst);
+ assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
+ return;
+ } // should consume this notification, so prohibit spurious wakeups in next park.
+ Err(_) => panic!("inconsistent park_timeout state"),
+ }
+
+ // Wait with a timeout, and if we spuriously wake up or otherwise wake up
+ // from a notification we just want to unconditionally set the state back to
+ // empty, either consuming a notification or un-flagging ourselves as
+ // parked.
+ let (_m, _result) = self.cvar.wait_timeout(m, dur).unwrap();
+ match self.state.swap(EMPTY, SeqCst) {
+ NOTIFIED => {} // got a notification, hurray!
+ PARKED => {} // no notification, alas
+ n => panic!("inconsistent park_timeout state: {n}"),
+ }
+ }
+
+ // This implementation doesn't require `Pin`, but other implementations do.
+ pub fn unpark(self: Pin<&Self>) {
+ // To ensure the unparked thread will observe any writes we made
+ // before this call, we must perform a release operation that `park`
+ // can synchronize with. To do that we must write `NOTIFIED` even if
+ // `state` is already `NOTIFIED`. That is why this must be a swap
+ // rather than a compare-and-swap that returns if it reads `NOTIFIED`
+ // on failure.
+ match self.state.swap(NOTIFIED, SeqCst) {
+ EMPTY => return, // no one was waiting
+ NOTIFIED => return, // already unparked
+ PARKED => {} // gotta go wake someone up
+ _ => panic!("inconsistent state in unpark"),
+ }
+
+ // There is a period between when the parked thread sets `state` to
+ // `PARKED` (or last checked `state` in the case of a spurious wake
+ // up) and when it actually waits on `cvar`. If we were to notify
+ // during this period it would be ignored and then when the parked
+ // thread went to sleep it would never wake up. Fortunately, it has
+ // `lock` locked at this stage so we can acquire `lock` to wait until
+ // it is ready to receive the notification.
+ //
+ // Releasing `lock` before the call to `notify_one` means that when the
+ // parked thread wakes it doesn't get woken only to have to wait for us
+ // to release `lock`.
+ drop(self.lock.lock().unwrap());
+ self.cvar.notify_one()
+ }
+}