summaryrefslogtreecommitdiffstats
path: root/library/stdarch/crates/core_arch/src/core_arch_docs.md
diff options
context:
space:
mode:
Diffstat (limited to 'library/stdarch/crates/core_arch/src/core_arch_docs.md')
-rw-r--r--library/stdarch/crates/core_arch/src/core_arch_docs.md344
1 files changed, 344 insertions, 0 deletions
diff --git a/library/stdarch/crates/core_arch/src/core_arch_docs.md b/library/stdarch/crates/core_arch/src/core_arch_docs.md
new file mode 100644
index 000000000..eddd1fc0c
--- /dev/null
+++ b/library/stdarch/crates/core_arch/src/core_arch_docs.md
@@ -0,0 +1,344 @@
+SIMD and vendor intrinsics module.
+
+This module is intended to be the gateway to architecture-specific
+intrinsic functions, typically related to SIMD (but not always!). Each
+architecture that Rust compiles to may contain a submodule here, which
+means that this is not a portable module! If you're writing a portable
+library take care when using these APIs!
+
+Under this module you'll find an architecture-named module, such as
+`x86_64`. Each `#[cfg(target_arch)]` that Rust can compile to may have a
+module entry here, only present on that particular target. For example the
+`i686-pc-windows-msvc` target will have an `x86` module here, whereas
+`x86_64-pc-windows-msvc` has `x86_64`.
+
+[rfc]: https://github.com/rust-lang/rfcs/pull/2325
+[tracked]: https://github.com/rust-lang/rust/issues/48556
+
+# Overview
+
+This module exposes vendor-specific intrinsics that typically correspond to
+a single machine instruction. These intrinsics are not portable: their
+availability is architecture-dependent, and not all machines of that
+architecture might provide the intrinsic.
+
+The `arch` module is intended to be a low-level implementation detail for
+higher-level APIs. Using it correctly can be quite tricky as you need to
+ensure at least a few guarantees are upheld:
+
+* The correct architecture's module is used. For example the `arm` module
+ isn't available on the `x86_64-unknown-linux-gnu` target. This is
+ typically done by ensuring that `#[cfg]` is used appropriately when using
+ this module.
+* The CPU the program is currently running on supports the function being
+ called. For example it is unsafe to call an AVX2 function on a CPU that
+ doesn't actually support AVX2.
+
+As a result of the latter of these guarantees all intrinsics in this module
+are `unsafe` and extra care needs to be taken when calling them!
+
+# CPU Feature Detection
+
+In order to call these APIs in a safe fashion there's a number of
+mechanisms available to ensure that the correct CPU feature is available
+to call an intrinsic. Let's consider, for example, the `_mm256_add_epi64`
+intrinsics on the `x86` and `x86_64` architectures. This function requires
+the AVX2 feature as [documented by Intel][intel-dox] so to correctly call
+this function we need to (a) guarantee we only call it on `x86`/`x86_64`
+and (b) ensure that the CPU feature is available
+
+[intel-dox]: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_add_epi64&expand=100
+
+## Static CPU Feature Detection
+
+The first option available to us is to conditionally compile code via the
+`#[cfg]` attribute. CPU features correspond to the `target_feature` cfg
+available, and can be used like so:
+
+```ignore
+#[cfg(
+ all(
+ any(target_arch = "x86", target_arch = "x86_64"),
+ target_feature = "avx2"
+ )
+)]
+fn foo() {
+ #[cfg(target_arch = "x86")]
+ use std::arch::x86::_mm256_add_epi64;
+ #[cfg(target_arch = "x86_64")]
+ use std::arch::x86_64::_mm256_add_epi64;
+
+ unsafe {
+ _mm256_add_epi64(...);
+ }
+}
+```
+
+Here we're using `#[cfg(target_feature = "avx2")]` to conditionally compile
+this function into our module. This means that if the `avx2` feature is
+*enabled statically* then we'll use the `_mm256_add_epi64` function at
+runtime. The `unsafe` block here can be justified through the usage of
+`#[cfg]` to only compile the code in situations where the safety guarantees
+are upheld.
+
+Statically enabling a feature is typically done with the `-C
+target-feature` or `-C target-cpu` flags to the compiler. For example if
+your local CPU supports AVX2 then you can compile the above function with:
+
+```sh
+$ RUSTFLAGS='-C target-cpu=native' cargo build
+```
+
+Or otherwise you can specifically enable just the AVX2 feature:
+
+```sh
+$ RUSTFLAGS='-C target-feature=+avx2' cargo build
+```
+
+Note that when you compile a binary with a particular feature enabled it's
+important to ensure that you only run the binary on systems which satisfy
+the required feature set.
+
+## Dynamic CPU Feature Detection
+
+Sometimes statically dispatching isn't quite what you want. Instead you
+might want to build a portable binary that runs across a variety of CPUs,
+but at runtime it selects the most optimized implementation available. This
+allows you to build a "least common denominator" binary which has certain
+sections more optimized for different CPUs.
+
+Taking our previous example from before, we're going to compile our binary
+*without* AVX2 support, but we'd like to enable it for just one function.
+We can do that in a manner like:
+
+```ignore
+fn foo() {
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ {
+ if is_x86_feature_detected!("avx2") {
+ return unsafe { foo_avx2() };
+ }
+ }
+
+ // fallback implementation without using AVX2
+}
+
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+#[target_feature(enable = "avx2")]
+unsafe fn foo_avx2() {
+ #[cfg(target_arch = "x86")]
+ use std::arch::x86::_mm256_add_epi64;
+ #[cfg(target_arch = "x86_64")]
+ use std::arch::x86_64::_mm256_add_epi64;
+
+ _mm256_add_epi64(...);
+}
+```
+
+There's a couple of components in play here, so let's go through them in
+detail!
+
+* First up we notice the `is_x86_feature_detected!` macro. Provided by
+ the standard library, this macro will perform necessary runtime detection
+ to determine whether the CPU the program is running on supports the
+ specified feature. In this case the macro will expand to a boolean
+expression evaluating to whether the local CPU has the AVX2 feature or
+not.
+
+ Note that this macro, like the `arch` module, is platform-specific. For
+ example calling `is_x86_feature_detected!("avx2")` on ARM will be a
+ compile time error. To ensure we don't hit this error a statement level
+ `#[cfg]` is used to only compile usage of the macro on `x86`/`x86_64`.
+
+* Next up we see our AVX2-enabled function, `foo_avx2`. This function is
+ decorated with the `#[target_feature]` attribute which enables a CPU
+ feature for just this one function. Using a compiler flag like `-C
+ target-feature=+avx2` will enable AVX2 for the entire program, but using
+ an attribute will only enable it for the one function. Usage of the
+ `#[target_feature]` attribute currently requires the function to also be
+ `unsafe`, as we see here. This is because the function can only be
+ correctly called on systems which have the AVX2 (like the intrinsics
+ themselves).
+
+And with all that we should have a working program! This program will run
+across all machines and it'll use the optimized AVX2 implementation on
+machines where support is detected.
+
+# Ergonomics
+
+It's important to note that using the `arch` module is not the easiest
+thing in the world, so if you're curious to try it out you may want to
+brace yourself for some wordiness!
+
+The primary purpose of this module is to enable stable crates on crates.io
+to build up much more ergonomic abstractions which end up using SIMD under
+the hood. Over time these abstractions may also move into the standard
+library itself, but for now this module is tasked with providing the bare
+minimum necessary to use vendor intrinsics on stable Rust.
+
+# Other architectures
+
+This documentation is only for one particular architecture, you can find
+others at:
+
+* [`x86`]
+* [`x86_64`]
+* [`arm`]
+* [`aarch64`]
+* [`riscv32`]
+* [`riscv64`]
+* [`mips`]
+* [`mips64`]
+* [`powerpc`]
+* [`powerpc64`]
+* [`nvptx`]
+* [`wasm32`]
+
+[`x86`]: ../../core/arch/x86/index.html
+[`x86_64`]: ../../core/arch/x86_64/index.html
+[`arm`]: ../../core/arch/arm/index.html
+[`aarch64`]: ../../core/arch/aarch64/index.html
+[`riscv32`]: ../../core/arch/riscv32/index.html
+[`riscv64`]: ../../core/arch/riscv64/index.html
+[`mips`]: ../../core/arch/mips/index.html
+[`mips64`]: ../../core/arch/mips64/index.html
+[`powerpc`]: ../../core/arch/powerpc/index.html
+[`powerpc64`]: ../../core/arch/powerpc64/index.html
+[`nvptx`]: ../../core/arch/nvptx/index.html
+[`wasm32`]: ../../core/arch/wasm32/index.html
+
+# Examples
+
+First let's take a look at not actually using any intrinsics but instead
+using LLVM's auto-vectorization to produce optimized vectorized code for
+AVX2 and also for the default platform.
+
+```rust
+fn main() {
+ let mut dst = [0];
+ add_quickly(&[1], &[2], &mut dst);
+ assert_eq!(dst[0], 3);
+}
+
+fn add_quickly(a: &[u8], b: &[u8], c: &mut [u8]) {
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ {
+ // Note that this `unsafe` block is safe because we're testing
+ // that the `avx2` feature is indeed available on our CPU.
+ if is_x86_feature_detected!("avx2") {
+ return unsafe { add_quickly_avx2(a, b, c) };
+ }
+ }
+
+ add_quickly_fallback(a, b, c)
+}
+
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+#[target_feature(enable = "avx2")]
+unsafe fn add_quickly_avx2(a: &[u8], b: &[u8], c: &mut [u8]) {
+ add_quickly_fallback(a, b, c) // the function below is inlined here
+}
+
+fn add_quickly_fallback(a: &[u8], b: &[u8], c: &mut [u8]) {
+ for ((a, b), c) in a.iter().zip(b).zip(c) {
+ *c = *a + *b;
+ }
+}
+```
+
+Next up let's take a look at an example of manually using intrinsics. Here
+we'll be using SSE4.1 features to implement hex encoding.
+
+```
+fn main() {
+ let mut dst = [0; 32];
+ hex_encode(b"\x01\x02\x03", &mut dst);
+ assert_eq!(&dst[..6], b"010203");
+
+ let mut src = [0; 16];
+ for i in 0..16 {
+ src[i] = (i + 1) as u8;
+ }
+ hex_encode(&src, &mut dst);
+ assert_eq!(&dst, b"0102030405060708090a0b0c0d0e0f10");
+}
+
+pub fn hex_encode(src: &[u8], dst: &mut [u8]) {
+ let len = src.len().checked_mul(2).unwrap();
+ assert!(dst.len() >= len);
+
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ {
+ if is_x86_feature_detected!("sse4.1") {
+ return unsafe { hex_encode_sse41(src, dst) };
+ }
+ }
+
+ hex_encode_fallback(src, dst)
+}
+
+// translated from
+// <https://github.com/Matherunner/bin2hex-sse/blob/master/base16_sse4.cpp>
+#[target_feature(enable = "sse4.1")]
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+unsafe fn hex_encode_sse41(mut src: &[u8], dst: &mut [u8]) {
+ #[cfg(target_arch = "x86")]
+ use std::arch::x86::*;
+ #[cfg(target_arch = "x86_64")]
+ use std::arch::x86_64::*;
+
+ let ascii_zero = _mm_set1_epi8(b'0' as i8);
+ let nines = _mm_set1_epi8(9);
+ let ascii_a = _mm_set1_epi8((b'a' - 9 - 1) as i8);
+ let and4bits = _mm_set1_epi8(0xf);
+
+ let mut i = 0_isize;
+ while src.len() >= 16 {
+ let invec = _mm_loadu_si128(src.as_ptr() as *const _);
+
+ let masked1 = _mm_and_si128(invec, and4bits);
+ let masked2 = _mm_and_si128(_mm_srli_epi64(invec, 4), and4bits);
+
+ // return 0xff corresponding to the elements > 9, or 0x00 otherwise
+ let cmpmask1 = _mm_cmpgt_epi8(masked1, nines);
+ let cmpmask2 = _mm_cmpgt_epi8(masked2, nines);
+
+ // add '0' or the offset depending on the masks
+ let masked1 = _mm_add_epi8(
+ masked1,
+ _mm_blendv_epi8(ascii_zero, ascii_a, cmpmask1),
+ );
+ let masked2 = _mm_add_epi8(
+ masked2,
+ _mm_blendv_epi8(ascii_zero, ascii_a, cmpmask2),
+ );
+
+ // interleave masked1 and masked2 bytes
+ let res1 = _mm_unpacklo_epi8(masked2, masked1);
+ let res2 = _mm_unpackhi_epi8(masked2, masked1);
+
+ _mm_storeu_si128(dst.as_mut_ptr().offset(i * 2) as *mut _, res1);
+ _mm_storeu_si128(
+ dst.as_mut_ptr().offset(i * 2 + 16) as *mut _,
+ res2,
+ );
+ src = &src[16..];
+ i += 16;
+ }
+
+ let i = i as usize;
+ hex_encode_fallback(src, &mut dst[i * 2..]);
+}
+
+fn hex_encode_fallback(src: &[u8], dst: &mut [u8]) {
+ fn hex(byte: u8) -> u8 {
+ static TABLE: &[u8] = b"0123456789abcdef";
+ TABLE[byte as usize]
+ }
+
+ for (byte, slots) in src.iter().zip(dst.chunks_mut(2)) {
+ slots[0] = hex((*byte >> 4) & 0xf);
+ slots[1] = hex(*byte & 0xf);
+ }
+}
+```