summaryrefslogtreecommitdiffstats
path: root/library/test/src/stats.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/test/src/stats.rs')
-rw-r--r--library/test/src/stats.rs302
1 files changed, 302 insertions, 0 deletions
diff --git a/library/test/src/stats.rs b/library/test/src/stats.rs
new file mode 100644
index 000000000..40b05704b
--- /dev/null
+++ b/library/test/src/stats.rs
@@ -0,0 +1,302 @@
+#![allow(missing_docs)]
+
+use std::mem;
+
+#[cfg(test)]
+mod tests;
+
+fn local_sort(v: &mut [f64]) {
+ v.sort_by(|x: &f64, y: &f64| x.total_cmp(y));
+}
+
+/// Trait that provides simple descriptive statistics on a univariate set of numeric samples.
+pub trait Stats {
+ /// Sum of the samples.
+ ///
+ /// Note: this method sacrifices performance at the altar of accuracy
+ /// Depends on IEEE-754 arithmetic guarantees. See proof of correctness at:
+ /// ["Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
+ /// Predicates"][paper]
+ ///
+ /// [paper]: https://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps
+ fn sum(&self) -> f64;
+
+ /// Minimum value of the samples.
+ fn min(&self) -> f64;
+
+ /// Maximum value of the samples.
+ fn max(&self) -> f64;
+
+ /// Arithmetic mean (average) of the samples: sum divided by sample-count.
+ ///
+ /// See: <https://en.wikipedia.org/wiki/Arithmetic_mean>
+ fn mean(&self) -> f64;
+
+ /// Median of the samples: value separating the lower half of the samples from the higher half.
+ /// Equal to `self.percentile(50.0)`.
+ ///
+ /// See: <https://en.wikipedia.org/wiki/Median>
+ fn median(&self) -> f64;
+
+ /// Variance of the samples: bias-corrected mean of the squares of the differences of each
+ /// sample from the sample mean. Note that this calculates the _sample variance_ rather than the
+ /// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n`
+ /// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather
+ /// than `n`.
+ ///
+ /// See: <https://en.wikipedia.org/wiki/Variance>
+ fn var(&self) -> f64;
+
+ /// Standard deviation: the square root of the sample variance.
+ ///
+ /// Note: this is not a robust statistic for non-normal distributions. Prefer the
+ /// `median_abs_dev` for unknown distributions.
+ ///
+ /// See: <https://en.wikipedia.org/wiki/Standard_deviation>
+ fn std_dev(&self) -> f64;
+
+ /// Standard deviation as a percent of the mean value. See `std_dev` and `mean`.
+ ///
+ /// Note: this is not a robust statistic for non-normal distributions. Prefer the
+ /// `median_abs_dev_pct` for unknown distributions.
+ fn std_dev_pct(&self) -> f64;
+
+ /// Scaled median of the absolute deviations of each sample from the sample median. This is a
+ /// robust (distribution-agnostic) estimator of sample variability. Use this in preference to
+ /// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled
+ /// by the constant `1.4826` to allow its use as a consistent estimator for the standard
+ /// deviation.
+ ///
+ /// See: <https://en.wikipedia.org/wiki/Median_absolute_deviation>
+ fn median_abs_dev(&self) -> f64;
+
+ /// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`.
+ fn median_abs_dev_pct(&self) -> f64;
+
+ /// Percentile: the value below which `pct` percent of the values in `self` fall. For example,
+ /// percentile(95.0) will return the value `v` such that 95% of the samples `s` in `self`
+ /// satisfy `s <= v`.
+ ///
+ /// Calculated by linear interpolation between closest ranks.
+ ///
+ /// See: <https://en.wikipedia.org/wiki/Percentile>
+ fn percentile(&self, pct: f64) -> f64;
+
+ /// Quartiles of the sample: three values that divide the sample into four equal groups, each
+ /// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This
+ /// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but
+ /// is otherwise equivalent.
+ ///
+ /// See also: <https://en.wikipedia.org/wiki/Quartile>
+ fn quartiles(&self) -> (f64, f64, f64);
+
+ /// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th
+ /// percentile (3rd quartile). See `quartiles`.
+ ///
+ /// See also: <https://en.wikipedia.org/wiki/Interquartile_range>
+ fn iqr(&self) -> f64;
+}
+
+/// Extracted collection of all the summary statistics of a sample set.
+#[derive(Debug, Clone, PartialEq, Copy)]
+#[allow(missing_docs)]
+pub struct Summary {
+ pub sum: f64,
+ pub min: f64,
+ pub max: f64,
+ pub mean: f64,
+ pub median: f64,
+ pub var: f64,
+ pub std_dev: f64,
+ pub std_dev_pct: f64,
+ pub median_abs_dev: f64,
+ pub median_abs_dev_pct: f64,
+ pub quartiles: (f64, f64, f64),
+ pub iqr: f64,
+}
+
+impl Summary {
+ /// Construct a new summary of a sample set.
+ pub fn new(samples: &[f64]) -> Summary {
+ Summary {
+ sum: samples.sum(),
+ min: samples.min(),
+ max: samples.max(),
+ mean: samples.mean(),
+ median: samples.median(),
+ var: samples.var(),
+ std_dev: samples.std_dev(),
+ std_dev_pct: samples.std_dev_pct(),
+ median_abs_dev: samples.median_abs_dev(),
+ median_abs_dev_pct: samples.median_abs_dev_pct(),
+ quartiles: samples.quartiles(),
+ iqr: samples.iqr(),
+ }
+ }
+}
+
+impl Stats for [f64] {
+ // FIXME #11059 handle NaN, inf and overflow
+ fn sum(&self) -> f64 {
+ let mut partials = vec![];
+
+ for &x in self {
+ let mut x = x;
+ let mut j = 0;
+ // This inner loop applies `hi`/`lo` summation to each
+ // partial so that the list of partial sums remains exact.
+ for i in 0..partials.len() {
+ let mut y: f64 = partials[i];
+ if x.abs() < y.abs() {
+ mem::swap(&mut x, &mut y);
+ }
+ // Rounded `x+y` is stored in `hi` with round-off stored in
+ // `lo`. Together `hi+lo` are exactly equal to `x+y`.
+ let hi = x + y;
+ let lo = y - (hi - x);
+ if lo != 0.0 {
+ partials[j] = lo;
+ j += 1;
+ }
+ x = hi;
+ }
+ if j >= partials.len() {
+ partials.push(x);
+ } else {
+ partials[j] = x;
+ partials.truncate(j + 1);
+ }
+ }
+ let zero: f64 = 0.0;
+ partials.iter().fold(zero, |p, q| p + *q)
+ }
+
+ fn min(&self) -> f64 {
+ assert!(!self.is_empty());
+ self.iter().fold(self[0], |p, q| p.min(*q))
+ }
+
+ fn max(&self) -> f64 {
+ assert!(!self.is_empty());
+ self.iter().fold(self[0], |p, q| p.max(*q))
+ }
+
+ fn mean(&self) -> f64 {
+ assert!(!self.is_empty());
+ self.sum() / (self.len() as f64)
+ }
+
+ fn median(&self) -> f64 {
+ self.percentile(50_f64)
+ }
+
+ fn var(&self) -> f64 {
+ if self.len() < 2 {
+ 0.0
+ } else {
+ let mean = self.mean();
+ let mut v: f64 = 0.0;
+ for s in self {
+ let x = *s - mean;
+ v += x * x;
+ }
+ // N.B., this is _supposed to be_ len-1, not len. If you
+ // change it back to len, you will be calculating a
+ // population variance, not a sample variance.
+ let denom = (self.len() - 1) as f64;
+ v / denom
+ }
+ }
+
+ fn std_dev(&self) -> f64 {
+ self.var().sqrt()
+ }
+
+ fn std_dev_pct(&self) -> f64 {
+ let hundred = 100_f64;
+ (self.std_dev() / self.mean()) * hundred
+ }
+
+ fn median_abs_dev(&self) -> f64 {
+ let med = self.median();
+ let abs_devs: Vec<f64> = self.iter().map(|&v| (med - v).abs()).collect();
+ // This constant is derived by smarter statistics brains than me, but it is
+ // consistent with how R and other packages treat the MAD.
+ let number = 1.4826;
+ abs_devs.median() * number
+ }
+
+ fn median_abs_dev_pct(&self) -> f64 {
+ let hundred = 100_f64;
+ (self.median_abs_dev() / self.median()) * hundred
+ }
+
+ fn percentile(&self, pct: f64) -> f64 {
+ let mut tmp = self.to_vec();
+ local_sort(&mut tmp);
+ percentile_of_sorted(&tmp, pct)
+ }
+
+ fn quartiles(&self) -> (f64, f64, f64) {
+ let mut tmp = self.to_vec();
+ local_sort(&mut tmp);
+ let first = 25_f64;
+ let a = percentile_of_sorted(&tmp, first);
+ let second = 50_f64;
+ let b = percentile_of_sorted(&tmp, second);
+ let third = 75_f64;
+ let c = percentile_of_sorted(&tmp, third);
+ (a, b, c)
+ }
+
+ fn iqr(&self) -> f64 {
+ let (a, _, c) = self.quartiles();
+ c - a
+ }
+}
+
+// Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using
+// linear interpolation. If samples are not sorted, return nonsensical value.
+fn percentile_of_sorted(sorted_samples: &[f64], pct: f64) -> f64 {
+ assert!(!sorted_samples.is_empty());
+ if sorted_samples.len() == 1 {
+ return sorted_samples[0];
+ }
+ let zero: f64 = 0.0;
+ assert!(zero <= pct);
+ let hundred = 100_f64;
+ assert!(pct <= hundred);
+ if pct == hundred {
+ return sorted_samples[sorted_samples.len() - 1];
+ }
+ let length = (sorted_samples.len() - 1) as f64;
+ let rank = (pct / hundred) * length;
+ let lrank = rank.floor();
+ let d = rank - lrank;
+ let n = lrank as usize;
+ let lo = sorted_samples[n];
+ let hi = sorted_samples[n + 1];
+ lo + (hi - lo) * d
+}
+
+/// Winsorize a set of samples, replacing values above the `100-pct` percentile
+/// and below the `pct` percentile with those percentiles themselves. This is a
+/// way of minimizing the effect of outliers, at the cost of biasing the sample.
+/// It differs from trimming in that it does not change the number of samples,
+/// just changes the values of those that are outliers.
+///
+/// See: <https://en.wikipedia.org/wiki/Winsorising>
+pub fn winsorize(samples: &mut [f64], pct: f64) {
+ let mut tmp = samples.to_vec();
+ local_sort(&mut tmp);
+ let lo = percentile_of_sorted(&tmp, pct);
+ let hundred = 100_f64;
+ let hi = percentile_of_sorted(&tmp, hundred - pct);
+ for samp in samples {
+ if *samp > hi {
+ *samp = hi
+ } else if *samp < lo {
+ *samp = lo
+ }
+ }
+}