summaryrefslogtreecommitdiffstats
path: root/src/librustdoc/clean/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/librustdoc/clean/mod.rs')
-rw-r--r--src/librustdoc/clean/mod.rs2242
1 files changed, 2242 insertions, 0 deletions
diff --git a/src/librustdoc/clean/mod.rs b/src/librustdoc/clean/mod.rs
new file mode 100644
index 000000000..929f5f89b
--- /dev/null
+++ b/src/librustdoc/clean/mod.rs
@@ -0,0 +1,2242 @@
+//! This module contains the "cleaned" pieces of the AST, and the functions
+//! that clean them.
+
+mod auto_trait;
+mod blanket_impl;
+pub(crate) mod cfg;
+pub(crate) mod inline;
+mod render_macro_matchers;
+mod simplify;
+pub(crate) mod types;
+pub(crate) mod utils;
+
+use rustc_ast as ast;
+use rustc_attr as attr;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorKind, DefKind, Res};
+use rustc_hir::def_id::{DefId, LOCAL_CRATE};
+use rustc_hir::PredicateOrigin;
+use rustc_infer::infer::region_constraints::{Constraint, RegionConstraintData};
+use rustc_middle::middle::resolve_lifetime as rl;
+use rustc_middle::ty::fold::TypeFolder;
+use rustc_middle::ty::subst::{InternalSubsts, Subst};
+use rustc_middle::ty::{self, AdtKind, DefIdTree, EarlyBinder, Lift, Ty, TyCtxt};
+use rustc_middle::{bug, span_bug};
+use rustc_span::hygiene::{AstPass, MacroKind};
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::{self, ExpnKind};
+use rustc_typeck::hir_ty_to_ty;
+
+use std::assert_matches::assert_matches;
+use std::collections::hash_map::Entry;
+use std::collections::BTreeMap;
+use std::default::Default;
+use std::hash::Hash;
+use std::{mem, vec};
+
+use crate::core::{self, DocContext, ImplTraitParam};
+use crate::formats::item_type::ItemType;
+use crate::visit_ast::Module as DocModule;
+
+use utils::*;
+
+pub(crate) use self::types::*;
+pub(crate) use self::utils::{get_auto_trait_and_blanket_impls, krate, register_res};
+
+pub(crate) trait Clean<'tcx, T> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> T;
+}
+
+impl<'tcx> Clean<'tcx, Item> for DocModule<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Item {
+ let mut items: Vec<Item> = vec![];
+ let mut inserted = FxHashSet::default();
+ items.extend(self.foreigns.iter().map(|(item, renamed)| {
+ let item = clean_maybe_renamed_foreign_item(cx, item, *renamed);
+ if let Some(name) = item.name {
+ inserted.insert((item.type_(), name));
+ }
+ item
+ }));
+ items.extend(self.mods.iter().map(|x| {
+ inserted.insert((ItemType::Module, x.name));
+ x.clean(cx)
+ }));
+
+ // Split up imports from all other items.
+ //
+ // This covers the case where somebody does an import which should pull in an item,
+ // but there's already an item with the same namespace and same name. Rust gives
+ // priority to the not-imported one, so we should, too.
+ items.extend(self.items.iter().flat_map(|(item, renamed)| {
+ // First, lower everything other than imports.
+ if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
+ return Vec::new();
+ }
+ let v = clean_maybe_renamed_item(cx, item, *renamed);
+ for item in &v {
+ if let Some(name) = item.name {
+ inserted.insert((item.type_(), name));
+ }
+ }
+ v
+ }));
+ items.extend(self.items.iter().flat_map(|(item, renamed)| {
+ // Now we actually lower the imports, skipping everything else.
+ if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
+ let name = renamed.unwrap_or_else(|| cx.tcx.hir().name(item.hir_id()));
+ clean_use_statement(item, name, path, hir::UseKind::Glob, cx, &mut inserted)
+ } else {
+ // skip everything else
+ Vec::new()
+ }
+ }));
+
+ // determine if we should display the inner contents or
+ // the outer `mod` item for the source code.
+
+ let span = Span::new({
+ let where_outer = self.where_outer(cx.tcx);
+ let sm = cx.sess().source_map();
+ let outer = sm.lookup_char_pos(where_outer.lo());
+ let inner = sm.lookup_char_pos(self.where_inner.lo());
+ if outer.file.start_pos == inner.file.start_pos {
+ // mod foo { ... }
+ where_outer
+ } else {
+ // mod foo; (and a separate SourceFile for the contents)
+ self.where_inner
+ }
+ });
+
+ Item::from_hir_id_and_parts(
+ self.id,
+ Some(self.name),
+ ModuleItem(Module { items, span }),
+ cx,
+ )
+ }
+}
+
+impl<'tcx> Clean<'tcx, Option<GenericBound>> for hir::GenericBound<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Option<GenericBound> {
+ Some(match *self {
+ hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
+ hir::GenericBound::LangItemTrait(lang_item, span, _, generic_args) => {
+ let def_id = cx.tcx.require_lang_item(lang_item, Some(span));
+
+ let trait_ref = ty::TraitRef::identity(cx.tcx, def_id).skip_binder();
+
+ let generic_args = generic_args.clean(cx);
+ let GenericArgs::AngleBracketed { bindings, .. } = generic_args
+ else {
+ bug!("clean: parenthesized `GenericBound::LangItemTrait`");
+ };
+
+ let trait_ = clean_trait_ref_with_bindings(cx, trait_ref, &bindings);
+ GenericBound::TraitBound(
+ PolyTrait { trait_, generic_params: vec![] },
+ hir::TraitBoundModifier::None,
+ )
+ }
+ hir::GenericBound::Trait(ref t, modifier) => {
+ // `T: ~const Destruct` is hidden because `T: Destruct` is a no-op.
+ if modifier == hir::TraitBoundModifier::MaybeConst
+ && cx.tcx.lang_items().destruct_trait()
+ == Some(t.trait_ref.trait_def_id().unwrap())
+ {
+ return None;
+ }
+
+ GenericBound::TraitBound(t.clean(cx), modifier)
+ }
+ })
+ }
+}
+
+pub(crate) fn clean_trait_ref_with_bindings<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ trait_ref: ty::TraitRef<'tcx>,
+ bindings: &[TypeBinding],
+) -> Path {
+ let kind = cx.tcx.def_kind(trait_ref.def_id).into();
+ if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
+ span_bug!(cx.tcx.def_span(trait_ref.def_id), "`TraitRef` had unexpected kind {:?}", kind);
+ }
+ inline::record_extern_fqn(cx, trait_ref.def_id, kind);
+ let path = external_path(cx, trait_ref.def_id, true, bindings.to_vec(), trait_ref.substs);
+
+ debug!("ty::TraitRef\n subst: {:?}\n", trait_ref.substs);
+
+ path
+}
+
+fn clean_poly_trait_ref_with_bindings<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ bindings: &[TypeBinding],
+) -> GenericBound {
+ let poly_trait_ref = poly_trait_ref.lift_to_tcx(cx.tcx).unwrap();
+
+ // collect any late bound regions
+ let late_bound_regions: Vec<_> = cx
+ .tcx
+ .collect_referenced_late_bound_regions(&poly_trait_ref)
+ .into_iter()
+ .filter_map(|br| match br {
+ ty::BrNamed(_, name) if name != kw::UnderscoreLifetime => Some(GenericParamDef {
+ name,
+ kind: GenericParamDefKind::Lifetime { outlives: vec![] },
+ }),
+ _ => None,
+ })
+ .collect();
+
+ let trait_ = clean_trait_ref_with_bindings(cx, poly_trait_ref.skip_binder(), bindings);
+ GenericBound::TraitBound(
+ PolyTrait { trait_, generic_params: late_bound_regions },
+ hir::TraitBoundModifier::None,
+ )
+}
+
+impl<'tcx> Clean<'tcx, GenericBound> for ty::PolyTraitRef<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> GenericBound {
+ clean_poly_trait_ref_with_bindings(cx, *self, &[])
+ }
+}
+
+fn clean_lifetime<'tcx>(lifetime: hir::Lifetime, cx: &mut DocContext<'tcx>) -> Lifetime {
+ let def = cx.tcx.named_region(lifetime.hir_id);
+ if let Some(
+ rl::Region::EarlyBound(_, node_id)
+ | rl::Region::LateBound(_, _, node_id)
+ | rl::Region::Free(_, node_id),
+ ) = def
+ {
+ if let Some(lt) = cx.substs.get(&node_id).and_then(|p| p.as_lt()).cloned() {
+ return lt;
+ }
+ }
+ Lifetime(lifetime.name.ident().name)
+}
+
+pub(crate) fn clean_const<'tcx>(constant: &hir::ConstArg, cx: &mut DocContext<'tcx>) -> Constant {
+ let def_id = cx.tcx.hir().body_owner_def_id(constant.value.body).to_def_id();
+ Constant {
+ type_: clean_middle_ty(cx.tcx.type_of(def_id), cx, Some(def_id)),
+ kind: ConstantKind::Anonymous { body: constant.value.body },
+ }
+}
+
+pub(crate) fn clean_middle_const<'tcx>(
+ constant: ty::Const<'tcx>,
+ cx: &mut DocContext<'tcx>,
+) -> Constant {
+ // FIXME: instead of storing the stringified expression, store `self` directly instead.
+ Constant {
+ type_: clean_middle_ty(constant.ty(), cx, None),
+ kind: ConstantKind::TyConst { expr: constant.to_string() },
+ }
+}
+
+pub(crate) fn clean_middle_region<'tcx>(region: ty::Region<'tcx>) -> Option<Lifetime> {
+ match *region {
+ ty::ReStatic => Some(Lifetime::statik()),
+ ty::ReLateBound(_, ty::BoundRegion { kind: ty::BrNamed(_, name), .. }) => {
+ if name != kw::UnderscoreLifetime { Some(Lifetime(name)) } else { None }
+ }
+ ty::ReEarlyBound(ref data) => {
+ if data.name != kw::UnderscoreLifetime {
+ Some(Lifetime(data.name))
+ } else {
+ None
+ }
+ }
+ ty::ReLateBound(..)
+ | ty::ReFree(..)
+ | ty::ReVar(..)
+ | ty::RePlaceholder(..)
+ | ty::ReEmpty(_)
+ | ty::ReErased => {
+ debug!("cannot clean region {:?}", region);
+ None
+ }
+ }
+}
+
+impl<'tcx> Clean<'tcx, Option<WherePredicate>> for hir::WherePredicate<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Option<WherePredicate> {
+ if !self.in_where_clause() {
+ return None;
+ }
+ Some(match *self {
+ hir::WherePredicate::BoundPredicate(ref wbp) => {
+ let bound_params = wbp
+ .bound_generic_params
+ .iter()
+ .map(|param| {
+ // Higher-ranked params must be lifetimes.
+ // Higher-ranked lifetimes can't have bounds.
+ assert_matches!(
+ param,
+ hir::GenericParam { kind: hir::GenericParamKind::Lifetime { .. }, .. }
+ );
+ Lifetime(param.name.ident().name)
+ })
+ .collect();
+ WherePredicate::BoundPredicate {
+ ty: clean_ty(wbp.bounded_ty, cx),
+ bounds: wbp.bounds.iter().filter_map(|x| x.clean(cx)).collect(),
+ bound_params,
+ }
+ }
+
+ hir::WherePredicate::RegionPredicate(ref wrp) => WherePredicate::RegionPredicate {
+ lifetime: clean_lifetime(wrp.lifetime, cx),
+ bounds: wrp.bounds.iter().filter_map(|x| x.clean(cx)).collect(),
+ },
+
+ hir::WherePredicate::EqPredicate(ref wrp) => WherePredicate::EqPredicate {
+ lhs: clean_ty(wrp.lhs_ty, cx),
+ rhs: clean_ty(wrp.rhs_ty, cx).into(),
+ },
+ })
+ }
+}
+
+impl<'tcx> Clean<'tcx, Option<WherePredicate>> for ty::Predicate<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Option<WherePredicate> {
+ let bound_predicate = self.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(pred) => {
+ clean_poly_trait_predicate(bound_predicate.rebind(pred), cx)
+ }
+ ty::PredicateKind::RegionOutlives(pred) => clean_region_outlives_predicate(pred),
+ ty::PredicateKind::TypeOutlives(pred) => clean_type_outlives_predicate(pred, cx),
+ ty::PredicateKind::Projection(pred) => Some(clean_projection_predicate(pred, cx)),
+ ty::PredicateKind::ConstEvaluatable(..) => None,
+ ty::PredicateKind::WellFormed(..) => None,
+
+ ty::PredicateKind::Subtype(..)
+ | ty::PredicateKind::Coerce(..)
+ | ty::PredicateKind::ObjectSafe(..)
+ | ty::PredicateKind::ClosureKind(..)
+ | ty::PredicateKind::ConstEquate(..)
+ | ty::PredicateKind::TypeWellFormedFromEnv(..) => panic!("not user writable"),
+ }
+ }
+}
+
+fn clean_poly_trait_predicate<'tcx>(
+ pred: ty::PolyTraitPredicate<'tcx>,
+ cx: &mut DocContext<'tcx>,
+) -> Option<WherePredicate> {
+ // `T: ~const Destruct` is hidden because `T: Destruct` is a no-op.
+ if pred.skip_binder().constness == ty::BoundConstness::ConstIfConst
+ && Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait()
+ {
+ return None;
+ }
+
+ let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
+ Some(WherePredicate::BoundPredicate {
+ ty: clean_middle_ty(poly_trait_ref.skip_binder().self_ty(), cx, None),
+ bounds: vec![poly_trait_ref.clean(cx)],
+ bound_params: Vec::new(),
+ })
+}
+
+fn clean_region_outlives_predicate<'tcx>(
+ pred: ty::OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>,
+) -> Option<WherePredicate> {
+ let ty::OutlivesPredicate(a, b) = pred;
+
+ if a.is_empty() && b.is_empty() {
+ return None;
+ }
+
+ Some(WherePredicate::RegionPredicate {
+ lifetime: clean_middle_region(a).expect("failed to clean lifetime"),
+ bounds: vec![GenericBound::Outlives(
+ clean_middle_region(b).expect("failed to clean bounds"),
+ )],
+ })
+}
+
+fn clean_type_outlives_predicate<'tcx>(
+ pred: ty::OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>,
+ cx: &mut DocContext<'tcx>,
+) -> Option<WherePredicate> {
+ let ty::OutlivesPredicate(ty, lt) = pred;
+
+ if lt.is_empty() {
+ return None;
+ }
+
+ Some(WherePredicate::BoundPredicate {
+ ty: clean_middle_ty(ty, cx, None),
+ bounds: vec![GenericBound::Outlives(
+ clean_middle_region(lt).expect("failed to clean lifetimes"),
+ )],
+ bound_params: Vec::new(),
+ })
+}
+
+fn clean_middle_term<'tcx>(term: ty::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
+ match term {
+ ty::Term::Ty(ty) => Term::Type(clean_middle_ty(ty, cx, None)),
+ ty::Term::Const(c) => Term::Constant(clean_middle_const(c, cx)),
+ }
+}
+
+fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
+ match term {
+ hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
+ hir::Term::Const(c) => {
+ let def_id = cx.tcx.hir().local_def_id(c.hir_id);
+ Term::Constant(clean_middle_const(ty::Const::from_anon_const(cx.tcx, def_id), cx))
+ }
+ }
+}
+
+fn clean_projection_predicate<'tcx>(
+ pred: ty::ProjectionPredicate<'tcx>,
+ cx: &mut DocContext<'tcx>,
+) -> WherePredicate {
+ let ty::ProjectionPredicate { projection_ty, term } = pred;
+ WherePredicate::EqPredicate {
+ lhs: clean_projection(projection_ty, cx, None),
+ rhs: clean_middle_term(term, cx),
+ }
+}
+
+fn clean_projection<'tcx>(
+ ty: ty::ProjectionTy<'tcx>,
+ cx: &mut DocContext<'tcx>,
+ def_id: Option<DefId>,
+) -> Type {
+ let lifted = ty.lift_to_tcx(cx.tcx).unwrap();
+ let trait_ = clean_trait_ref_with_bindings(cx, lifted.trait_ref(cx.tcx), &[]);
+ let self_type = clean_middle_ty(ty.self_ty(), cx, None);
+ let self_def_id = if let Some(def_id) = def_id {
+ cx.tcx.opt_parent(def_id).or(Some(def_id))
+ } else {
+ self_type.def_id(&cx.cache)
+ };
+ let should_show_cast = compute_should_show_cast(self_def_id, &trait_, &self_type);
+ Type::QPath {
+ assoc: Box::new(projection_to_path_segment(ty, cx)),
+ should_show_cast,
+ self_type: Box::new(self_type),
+ trait_,
+ }
+}
+
+fn compute_should_show_cast(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
+ !trait_.segments.is_empty()
+ && self_def_id
+ .zip(Some(trait_.def_id()))
+ .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
+}
+
+fn projection_to_path_segment<'tcx>(
+ ty: ty::ProjectionTy<'tcx>,
+ cx: &mut DocContext<'tcx>,
+) -> PathSegment {
+ let item = cx.tcx.associated_item(ty.item_def_id);
+ let generics = cx.tcx.generics_of(ty.item_def_id);
+ PathSegment {
+ name: item.name,
+ args: GenericArgs::AngleBracketed {
+ args: substs_to_args(cx, &ty.substs[generics.parent_count..], false).into(),
+ bindings: Default::default(),
+ },
+ }
+}
+
+fn clean_generic_param_def<'tcx>(
+ def: &ty::GenericParamDef,
+ cx: &mut DocContext<'tcx>,
+) -> GenericParamDef {
+ let (name, kind) = match def.kind {
+ ty::GenericParamDefKind::Lifetime => {
+ (def.name, GenericParamDefKind::Lifetime { outlives: vec![] })
+ }
+ ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
+ let default = if has_default {
+ Some(clean_middle_ty(cx.tcx.type_of(def.def_id), cx, Some(def.def_id)))
+ } else {
+ None
+ };
+ (
+ def.name,
+ GenericParamDefKind::Type {
+ did: def.def_id,
+ bounds: vec![], // These are filled in from the where-clauses.
+ default: default.map(Box::new),
+ synthetic,
+ },
+ )
+ }
+ ty::GenericParamDefKind::Const { has_default } => (
+ def.name,
+ GenericParamDefKind::Const {
+ did: def.def_id,
+ ty: Box::new(clean_middle_ty(cx.tcx.type_of(def.def_id), cx, Some(def.def_id))),
+ default: match has_default {
+ true => Some(Box::new(cx.tcx.const_param_default(def.def_id).to_string())),
+ false => None,
+ },
+ },
+ ),
+ };
+
+ GenericParamDef { name, kind }
+}
+
+fn clean_generic_param<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ generics: Option<&hir::Generics<'tcx>>,
+ param: &hir::GenericParam<'tcx>,
+) -> GenericParamDef {
+ let did = cx.tcx.hir().local_def_id(param.hir_id);
+ let (name, kind) = match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => {
+ let outlives = if let Some(generics) = generics {
+ generics
+ .outlives_for_param(did)
+ .filter(|bp| !bp.in_where_clause)
+ .flat_map(|bp| bp.bounds)
+ .map(|bound| match bound {
+ hir::GenericBound::Outlives(lt) => clean_lifetime(*lt, cx),
+ _ => panic!(),
+ })
+ .collect()
+ } else {
+ Vec::new()
+ };
+ (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
+ }
+ hir::GenericParamKind::Type { ref default, synthetic } => {
+ let bounds = if let Some(generics) = generics {
+ generics
+ .bounds_for_param(did)
+ .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
+ .flat_map(|bp| bp.bounds)
+ .filter_map(|x| x.clean(cx))
+ .collect()
+ } else {
+ Vec::new()
+ };
+ (
+ param.name.ident().name,
+ GenericParamDefKind::Type {
+ did: did.to_def_id(),
+ bounds,
+ default: default.map(|t| clean_ty(t, cx)).map(Box::new),
+ synthetic,
+ },
+ )
+ }
+ hir::GenericParamKind::Const { ty, default } => (
+ param.name.ident().name,
+ GenericParamDefKind::Const {
+ did: did.to_def_id(),
+ ty: Box::new(clean_ty(ty, cx)),
+ default: default.map(|ct| {
+ let def_id = cx.tcx.hir().local_def_id(ct.hir_id);
+ Box::new(ty::Const::from_anon_const(cx.tcx, def_id).to_string())
+ }),
+ },
+ ),
+ };
+
+ GenericParamDef { name, kind }
+}
+
+/// Synthetic type-parameters are inserted after normal ones.
+/// In order for normal parameters to be able to refer to synthetic ones,
+/// scans them first.
+fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
+ match param.kind {
+ hir::GenericParamKind::Type { synthetic, .. } => synthetic,
+ _ => false,
+ }
+}
+
+/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
+///
+/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
+fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
+ matches!(param.kind, hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided })
+}
+
+impl<'tcx> Clean<'tcx, Generics> for hir::Generics<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Generics {
+ let impl_trait_params = self
+ .params
+ .iter()
+ .filter(|param| is_impl_trait(param))
+ .map(|param| {
+ let param = clean_generic_param(cx, Some(self), param);
+ match param.kind {
+ GenericParamDefKind::Lifetime { .. } => unreachable!(),
+ GenericParamDefKind::Type { did, ref bounds, .. } => {
+ cx.impl_trait_bounds.insert(did.into(), bounds.clone());
+ }
+ GenericParamDefKind::Const { .. } => unreachable!(),
+ }
+ param
+ })
+ .collect::<Vec<_>>();
+
+ let mut params = Vec::with_capacity(self.params.len());
+ for p in self.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
+ let p = clean_generic_param(cx, Some(self), p);
+ params.push(p);
+ }
+ params.extend(impl_trait_params);
+
+ let mut generics = Generics {
+ params,
+ where_predicates: self.predicates.iter().filter_map(|x| x.clean(cx)).collect(),
+ };
+
+ // Some duplicates are generated for ?Sized bounds between type params and where
+ // predicates. The point in here is to move the bounds definitions from type params
+ // to where predicates when such cases occur.
+ for where_pred in &mut generics.where_predicates {
+ match *where_pred {
+ WherePredicate::BoundPredicate {
+ ty: Generic(ref name), ref mut bounds, ..
+ } => {
+ if bounds.is_empty() {
+ for param in &mut generics.params {
+ match param.kind {
+ GenericParamDefKind::Lifetime { .. } => {}
+ GenericParamDefKind::Type { bounds: ref mut ty_bounds, .. } => {
+ if &param.name == name {
+ mem::swap(bounds, ty_bounds);
+ break;
+ }
+ }
+ GenericParamDefKind::Const { .. } => {}
+ }
+ }
+ }
+ }
+ _ => continue,
+ }
+ }
+ generics
+ }
+}
+
+fn clean_ty_generics<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ gens: &ty::Generics,
+ preds: ty::GenericPredicates<'tcx>,
+) -> Generics {
+ // Don't populate `cx.impl_trait_bounds` before `clean`ning `where` clauses,
+ // since `Clean for ty::Predicate` would consume them.
+ let mut impl_trait = BTreeMap::<ImplTraitParam, Vec<GenericBound>>::default();
+
+ // Bounds in the type_params and lifetimes fields are repeated in the
+ // predicates field (see rustc_typeck::collect::ty_generics), so remove
+ // them.
+ let stripped_params = gens
+ .params
+ .iter()
+ .filter_map(|param| match param.kind {
+ ty::GenericParamDefKind::Lifetime if param.name == kw::UnderscoreLifetime => None,
+ ty::GenericParamDefKind::Lifetime => Some(clean_generic_param_def(param, cx)),
+ ty::GenericParamDefKind::Type { synthetic, .. } => {
+ if param.name == kw::SelfUpper {
+ assert_eq!(param.index, 0);
+ return None;
+ }
+ if synthetic {
+ impl_trait.insert(param.index.into(), vec![]);
+ return None;
+ }
+ Some(clean_generic_param_def(param, cx))
+ }
+ ty::GenericParamDefKind::Const { .. } => Some(clean_generic_param_def(param, cx)),
+ })
+ .collect::<Vec<GenericParamDef>>();
+
+ // param index -> [(DefId of trait, associated type name and generics, type)]
+ let mut impl_trait_proj = FxHashMap::<u32, Vec<(DefId, PathSegment, Ty<'_>)>>::default();
+
+ let where_predicates = preds
+ .predicates
+ .iter()
+ .flat_map(|(p, _)| {
+ let mut projection = None;
+ let param_idx = (|| {
+ let bound_p = p.kind();
+ match bound_p.skip_binder() {
+ ty::PredicateKind::Trait(pred) => {
+ if let ty::Param(param) = pred.self_ty().kind() {
+ return Some(param.index);
+ }
+ }
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
+ if let ty::Param(param) = ty.kind() {
+ return Some(param.index);
+ }
+ }
+ ty::PredicateKind::Projection(p) => {
+ if let ty::Param(param) = p.projection_ty.self_ty().kind() {
+ projection = Some(bound_p.rebind(p));
+ return Some(param.index);
+ }
+ }
+ _ => (),
+ }
+
+ None
+ })();
+
+ if let Some(param_idx) = param_idx {
+ if let Some(b) = impl_trait.get_mut(&param_idx.into()) {
+ let p: WherePredicate = p.clean(cx)?;
+
+ b.extend(
+ p.get_bounds()
+ .into_iter()
+ .flatten()
+ .cloned()
+ .filter(|b| !b.is_sized_bound(cx)),
+ );
+
+ let proj = projection.map(|p| {
+ (
+ clean_projection(p.skip_binder().projection_ty, cx, None),
+ p.skip_binder().term,
+ )
+ });
+ if let Some(((_, trait_did, name), rhs)) = proj
+ .as_ref()
+ .and_then(|(lhs, rhs): &(Type, _)| Some((lhs.projection()?, rhs)))
+ {
+ // FIXME(...): Remove this unwrap()
+ impl_trait_proj.entry(param_idx).or_default().push((
+ trait_did,
+ name,
+ rhs.ty().unwrap(),
+ ));
+ }
+
+ return None;
+ }
+ }
+
+ Some(p)
+ })
+ .collect::<Vec<_>>();
+
+ for (param, mut bounds) in impl_trait {
+ // Move trait bounds to the front.
+ bounds.sort_by_key(|b| !matches!(b, GenericBound::TraitBound(..)));
+
+ if let crate::core::ImplTraitParam::ParamIndex(idx) = param {
+ if let Some(proj) = impl_trait_proj.remove(&idx) {
+ for (trait_did, name, rhs) in proj {
+ let rhs = clean_middle_ty(rhs, cx, None);
+ simplify::merge_bounds(cx, &mut bounds, trait_did, name, &Term::Type(rhs));
+ }
+ }
+ } else {
+ unreachable!();
+ }
+
+ cx.impl_trait_bounds.insert(param, bounds);
+ }
+
+ // Now that `cx.impl_trait_bounds` is populated, we can process
+ // remaining predicates which could contain `impl Trait`.
+ let mut where_predicates =
+ where_predicates.into_iter().flat_map(|p| p.clean(cx)).collect::<Vec<_>>();
+
+ // Type parameters have a Sized bound by default unless removed with
+ // ?Sized. Scan through the predicates and mark any type parameter with
+ // a Sized bound, removing the bounds as we find them.
+ //
+ // Note that associated types also have a sized bound by default, but we
+ // don't actually know the set of associated types right here so that's
+ // handled in cleaning associated types
+ let mut sized_params = FxHashSet::default();
+ where_predicates.retain(|pred| match *pred {
+ WherePredicate::BoundPredicate { ty: Generic(ref g), ref bounds, .. } => {
+ if bounds.iter().any(|b| b.is_sized_bound(cx)) {
+ sized_params.insert(*g);
+ false
+ } else {
+ true
+ }
+ }
+ _ => true,
+ });
+
+ // Run through the type parameters again and insert a ?Sized
+ // unbound for any we didn't find to be Sized.
+ for tp in &stripped_params {
+ if matches!(tp.kind, types::GenericParamDefKind::Type { .. })
+ && !sized_params.contains(&tp.name)
+ {
+ where_predicates.push(WherePredicate::BoundPredicate {
+ ty: Type::Generic(tp.name),
+ bounds: vec![GenericBound::maybe_sized(cx)],
+ bound_params: Vec::new(),
+ })
+ }
+ }
+
+ // It would be nice to collect all of the bounds on a type and recombine
+ // them if possible, to avoid e.g., `where T: Foo, T: Bar, T: Sized, T: 'a`
+ // and instead see `where T: Foo + Bar + Sized + 'a`
+
+ Generics {
+ params: stripped_params,
+ where_predicates: simplify::where_clauses(cx, where_predicates),
+ }
+}
+
+fn clean_fn_or_proc_macro<'tcx>(
+ item: &hir::Item<'tcx>,
+ sig: &hir::FnSig<'tcx>,
+ generics: &hir::Generics<'tcx>,
+ body_id: hir::BodyId,
+ name: &mut Symbol,
+ cx: &mut DocContext<'tcx>,
+) -> ItemKind {
+ let attrs = cx.tcx.hir().attrs(item.hir_id());
+ let macro_kind = attrs.iter().find_map(|a| {
+ if a.has_name(sym::proc_macro) {
+ Some(MacroKind::Bang)
+ } else if a.has_name(sym::proc_macro_derive) {
+ Some(MacroKind::Derive)
+ } else if a.has_name(sym::proc_macro_attribute) {
+ Some(MacroKind::Attr)
+ } else {
+ None
+ }
+ });
+ match macro_kind {
+ Some(kind) => {
+ if kind == MacroKind::Derive {
+ *name = attrs
+ .lists(sym::proc_macro_derive)
+ .find_map(|mi| mi.ident())
+ .expect("proc-macro derives require a name")
+ .name;
+ }
+
+ let mut helpers = Vec::new();
+ for mi in attrs.lists(sym::proc_macro_derive) {
+ if !mi.has_name(sym::attributes) {
+ continue;
+ }
+
+ if let Some(list) = mi.meta_item_list() {
+ for inner_mi in list {
+ if let Some(ident) = inner_mi.ident() {
+ helpers.push(ident.name);
+ }
+ }
+ }
+ }
+ ProcMacroItem(ProcMacro { kind, helpers })
+ }
+ None => {
+ let mut func = clean_function(cx, sig, generics, body_id);
+ clean_fn_decl_legacy_const_generics(&mut func, attrs);
+ FunctionItem(func)
+ }
+ }
+}
+
+/// This is needed to make it more "readable" when documenting functions using
+/// `rustc_legacy_const_generics`. More information in
+/// <https://github.com/rust-lang/rust/issues/83167>.
+fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[ast::Attribute]) {
+ for meta_item_list in attrs
+ .iter()
+ .filter(|a| a.has_name(sym::rustc_legacy_const_generics))
+ .filter_map(|a| a.meta_item_list())
+ {
+ for (pos, literal) in meta_item_list.iter().filter_map(|meta| meta.literal()).enumerate() {
+ match literal.kind {
+ ast::LitKind::Int(a, _) => {
+ let gen = func.generics.params.remove(0);
+ if let GenericParamDef { name, kind: GenericParamDefKind::Const { ty, .. } } =
+ gen
+ {
+ func.decl
+ .inputs
+ .values
+ .insert(a as _, Argument { name, type_: *ty, is_const: true });
+ } else {
+ panic!("unexpected non const in position {pos}");
+ }
+ }
+ _ => panic!("invalid arg index"),
+ }
+ }
+ }
+}
+
+fn clean_function<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ sig: &hir::FnSig<'tcx>,
+ generics: &hir::Generics<'tcx>,
+ body_id: hir::BodyId,
+) -> Box<Function> {
+ let (generics, decl) = enter_impl_trait(cx, |cx| {
+ // NOTE: generics must be cleaned before args
+ let generics = generics.clean(cx);
+ let args = clean_args_from_types_and_body_id(cx, sig.decl.inputs, body_id);
+ let decl = clean_fn_decl_with_args(cx, sig.decl, args);
+ (generics, decl)
+ });
+ Box::new(Function { decl, generics })
+}
+
+fn clean_args_from_types_and_names<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ types: &[hir::Ty<'tcx>],
+ names: &[Ident],
+) -> Arguments {
+ Arguments {
+ values: types
+ .iter()
+ .enumerate()
+ .map(|(i, ty)| {
+ let mut name = names.get(i).map_or(kw::Empty, |ident| ident.name);
+ if name.is_empty() {
+ name = kw::Underscore;
+ }
+ Argument { name, type_: clean_ty(ty, cx), is_const: false }
+ })
+ .collect(),
+ }
+}
+
+fn clean_args_from_types_and_body_id<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ types: &[hir::Ty<'tcx>],
+ body_id: hir::BodyId,
+) -> Arguments {
+ let body = cx.tcx.hir().body(body_id);
+
+ Arguments {
+ values: types
+ .iter()
+ .enumerate()
+ .map(|(i, ty)| Argument {
+ name: name_from_pat(body.params[i].pat),
+ type_: clean_ty(ty, cx),
+ is_const: false,
+ })
+ .collect(),
+ }
+}
+
+fn clean_fn_decl_with_args<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ decl: &hir::FnDecl<'tcx>,
+ args: Arguments,
+) -> FnDecl {
+ let output = match decl.output {
+ hir::FnRetTy::Return(typ) => Return(clean_ty(typ, cx)),
+ hir::FnRetTy::DefaultReturn(..) => DefaultReturn,
+ };
+ FnDecl { inputs: args, output, c_variadic: decl.c_variadic }
+}
+
+fn clean_fn_decl_from_did_and_sig<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ did: Option<DefId>,
+ sig: ty::PolyFnSig<'tcx>,
+) -> FnDecl {
+ let mut names = did.map_or(&[] as &[_], |did| cx.tcx.fn_arg_names(did)).iter();
+
+ // We assume all empty tuples are default return type. This theoretically can discard `-> ()`,
+ // but shouldn't change any code meaning.
+ let output = match clean_middle_ty(sig.skip_binder().output(), cx, None) {
+ Type::Tuple(inner) if inner.is_empty() => DefaultReturn,
+ ty => Return(ty),
+ };
+
+ FnDecl {
+ output,
+ c_variadic: sig.skip_binder().c_variadic,
+ inputs: Arguments {
+ values: sig
+ .skip_binder()
+ .inputs()
+ .iter()
+ .map(|t| Argument {
+ type_: clean_middle_ty(*t, cx, None),
+ name: names.next().map_or(kw::Empty, |i| i.name),
+ is_const: false,
+ })
+ .collect(),
+ },
+ }
+}
+
+fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
+ let path = clean_path(trait_ref.path, cx);
+ register_res(cx, path.res);
+ path
+}
+
+impl<'tcx> Clean<'tcx, PolyTrait> for hir::PolyTraitRef<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> PolyTrait {
+ PolyTrait {
+ trait_: clean_trait_ref(&self.trait_ref, cx),
+ generic_params: self
+ .bound_generic_params
+ .iter()
+ .filter(|p| !is_elided_lifetime(p))
+ .map(|x| clean_generic_param(cx, None, x))
+ .collect(),
+ }
+ }
+}
+
+impl<'tcx> Clean<'tcx, Item> for hir::TraitItem<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Item {
+ let local_did = self.def_id.to_def_id();
+ cx.with_param_env(local_did, |cx| {
+ let inner = match self.kind {
+ hir::TraitItemKind::Const(ty, Some(default)) => AssocConstItem(
+ clean_ty(ty, cx),
+ ConstantKind::Local { def_id: local_did, body: default },
+ ),
+ hir::TraitItemKind::Const(ty, None) => TyAssocConstItem(clean_ty(ty, cx)),
+ hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
+ let m = clean_function(cx, sig, self.generics, body);
+ MethodItem(m, None)
+ }
+ hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(names)) => {
+ let (generics, decl) = enter_impl_trait(cx, |cx| {
+ // NOTE: generics must be cleaned before args
+ let generics = self.generics.clean(cx);
+ let args = clean_args_from_types_and_names(cx, sig.decl.inputs, names);
+ let decl = clean_fn_decl_with_args(cx, sig.decl, args);
+ (generics, decl)
+ });
+ TyMethodItem(Box::new(Function { decl, generics }))
+ }
+ hir::TraitItemKind::Type(bounds, Some(default)) => {
+ let generics = enter_impl_trait(cx, |cx| self.generics.clean(cx));
+ let bounds = bounds.iter().filter_map(|x| x.clean(cx)).collect();
+ let item_type = clean_middle_ty(hir_ty_to_ty(cx.tcx, default), cx, None);
+ AssocTypeItem(
+ Box::new(Typedef {
+ type_: clean_ty(default, cx),
+ generics,
+ item_type: Some(item_type),
+ }),
+ bounds,
+ )
+ }
+ hir::TraitItemKind::Type(bounds, None) => {
+ let generics = enter_impl_trait(cx, |cx| self.generics.clean(cx));
+ let bounds = bounds.iter().filter_map(|x| x.clean(cx)).collect();
+ TyAssocTypeItem(Box::new(generics), bounds)
+ }
+ };
+ let what_rustc_thinks =
+ Item::from_def_id_and_parts(local_did, Some(self.ident.name), inner, cx);
+ // Trait items always inherit the trait's visibility -- we don't want to show `pub`.
+ Item { visibility: Inherited, ..what_rustc_thinks }
+ })
+ }
+}
+
+impl<'tcx> Clean<'tcx, Item> for hir::ImplItem<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Item {
+ let local_did = self.def_id.to_def_id();
+ cx.with_param_env(local_did, |cx| {
+ let inner = match self.kind {
+ hir::ImplItemKind::Const(ty, expr) => {
+ let default = ConstantKind::Local { def_id: local_did, body: expr };
+ AssocConstItem(clean_ty(ty, cx), default)
+ }
+ hir::ImplItemKind::Fn(ref sig, body) => {
+ let m = clean_function(cx, sig, self.generics, body);
+ let defaultness = cx.tcx.impl_defaultness(self.def_id);
+ MethodItem(m, Some(defaultness))
+ }
+ hir::ImplItemKind::TyAlias(hir_ty) => {
+ let type_ = clean_ty(hir_ty, cx);
+ let generics = self.generics.clean(cx);
+ let item_type = clean_middle_ty(hir_ty_to_ty(cx.tcx, hir_ty), cx, None);
+ AssocTypeItem(
+ Box::new(Typedef { type_, generics, item_type: Some(item_type) }),
+ Vec::new(),
+ )
+ }
+ };
+
+ let mut what_rustc_thinks =
+ Item::from_def_id_and_parts(local_did, Some(self.ident.name), inner, cx);
+
+ let impl_ref = cx.tcx.impl_trait_ref(cx.tcx.local_parent(self.def_id));
+
+ // Trait impl items always inherit the impl's visibility --
+ // we don't want to show `pub`.
+ if impl_ref.is_some() {
+ what_rustc_thinks.visibility = Inherited;
+ }
+
+ what_rustc_thinks
+ })
+ }
+}
+
+impl<'tcx> Clean<'tcx, Item> for ty::AssocItem {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Item {
+ let tcx = cx.tcx;
+ let kind = match self.kind {
+ ty::AssocKind::Const => {
+ let ty = clean_middle_ty(tcx.type_of(self.def_id), cx, Some(self.def_id));
+
+ let provided = match self.container {
+ ty::ImplContainer => true,
+ ty::TraitContainer => tcx.impl_defaultness(self.def_id).has_value(),
+ };
+ if provided {
+ AssocConstItem(ty, ConstantKind::Extern { def_id: self.def_id })
+ } else {
+ TyAssocConstItem(ty)
+ }
+ }
+ ty::AssocKind::Fn => {
+ let generics = clean_ty_generics(
+ cx,
+ tcx.generics_of(self.def_id),
+ tcx.explicit_predicates_of(self.def_id),
+ );
+ let sig = tcx.fn_sig(self.def_id);
+ let mut decl = clean_fn_decl_from_did_and_sig(cx, Some(self.def_id), sig);
+
+ if self.fn_has_self_parameter {
+ let self_ty = match self.container {
+ ty::ImplContainer => tcx.type_of(self.container_id(tcx)),
+ ty::TraitContainer => tcx.types.self_param,
+ };
+ let self_arg_ty = sig.input(0).skip_binder();
+ if self_arg_ty == self_ty {
+ decl.inputs.values[0].type_ = Generic(kw::SelfUpper);
+ } else if let ty::Ref(_, ty, _) = *self_arg_ty.kind() {
+ if ty == self_ty {
+ match decl.inputs.values[0].type_ {
+ BorrowedRef { ref mut type_, .. } => {
+ **type_ = Generic(kw::SelfUpper)
+ }
+ _ => unreachable!(),
+ }
+ }
+ }
+ }
+
+ let provided = match self.container {
+ ty::ImplContainer => true,
+ ty::TraitContainer => self.defaultness(tcx).has_value(),
+ };
+ if provided {
+ let defaultness = match self.container {
+ ty::ImplContainer => Some(self.defaultness(tcx)),
+ ty::TraitContainer => None,
+ };
+ MethodItem(Box::new(Function { generics, decl }), defaultness)
+ } else {
+ TyMethodItem(Box::new(Function { generics, decl }))
+ }
+ }
+ ty::AssocKind::Type => {
+ let my_name = self.name;
+
+ fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
+ match (&param.kind, arg) {
+ (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
+ if *ty == param.name =>
+ {
+ true
+ }
+ (
+ GenericParamDefKind::Lifetime { .. },
+ GenericArg::Lifetime(Lifetime(lt)),
+ ) if *lt == param.name => true,
+ (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => {
+ match &c.kind {
+ ConstantKind::TyConst { expr } => expr == param.name.as_str(),
+ _ => false,
+ }
+ }
+ _ => false,
+ }
+ }
+
+ if let ty::TraitContainer = self.container {
+ let bounds = tcx.explicit_item_bounds(self.def_id);
+ let predicates = ty::GenericPredicates { parent: None, predicates: bounds };
+ let mut generics =
+ clean_ty_generics(cx, tcx.generics_of(self.def_id), predicates);
+ // Filter out the bounds that are (likely?) directly attached to the associated type,
+ // as opposed to being located in the where clause.
+ let mut bounds = generics
+ .where_predicates
+ .drain_filter(|pred| match *pred {
+ WherePredicate::BoundPredicate {
+ ty: QPath { ref assoc, ref self_type, ref trait_, .. },
+ ..
+ } => {
+ if assoc.name != my_name {
+ return false;
+ }
+ if trait_.def_id() != self.container_id(tcx) {
+ return false;
+ }
+ match **self_type {
+ Generic(ref s) if *s == kw::SelfUpper => {}
+ _ => return false,
+ }
+ match &assoc.args {
+ GenericArgs::AngleBracketed { args, bindings } => {
+ if !bindings.is_empty()
+ || generics
+ .params
+ .iter()
+ .zip(args.iter())
+ .any(|(param, arg)| !param_eq_arg(param, arg))
+ {
+ return false;
+ }
+ }
+ GenericArgs::Parenthesized { .. } => {
+ // The only time this happens is if we're inside the rustdoc for Fn(),
+ // which only has one associated type, which is not a GAT, so whatever.
+ }
+ }
+ true
+ }
+ _ => false,
+ })
+ .flat_map(|pred| {
+ if let WherePredicate::BoundPredicate { bounds, .. } = pred {
+ bounds
+ } else {
+ unreachable!()
+ }
+ })
+ .collect::<Vec<_>>();
+ // Our Sized/?Sized bound didn't get handled when creating the generics
+ // because we didn't actually get our whole set of bounds until just now
+ // (some of them may have come from the trait). If we do have a sized
+ // bound, we remove it, and if we don't then we add the `?Sized` bound
+ // at the end.
+ match bounds.iter().position(|b| b.is_sized_bound(cx)) {
+ Some(i) => {
+ bounds.remove(i);
+ }
+ None => bounds.push(GenericBound::maybe_sized(cx)),
+ }
+
+ if tcx.impl_defaultness(self.def_id).has_value() {
+ AssocTypeItem(
+ Box::new(Typedef {
+ type_: clean_middle_ty(
+ tcx.type_of(self.def_id),
+ cx,
+ Some(self.def_id),
+ ),
+ generics,
+ // FIXME: should we obtain the Type from HIR and pass it on here?
+ item_type: None,
+ }),
+ bounds,
+ )
+ } else {
+ TyAssocTypeItem(Box::new(generics), bounds)
+ }
+ } else {
+ // FIXME: when could this happen? Associated items in inherent impls?
+ AssocTypeItem(
+ Box::new(Typedef {
+ type_: clean_middle_ty(tcx.type_of(self.def_id), cx, Some(self.def_id)),
+ generics: Generics { params: Vec::new(), where_predicates: Vec::new() },
+ item_type: None,
+ }),
+ Vec::new(),
+ )
+ }
+ }
+ };
+
+ let mut what_rustc_thinks =
+ Item::from_def_id_and_parts(self.def_id, Some(self.name), kind, cx);
+
+ let impl_ref = tcx.impl_trait_ref(tcx.parent(self.def_id));
+
+ // Trait impl items always inherit the impl's visibility --
+ // we don't want to show `pub`.
+ if impl_ref.is_some() {
+ what_rustc_thinks.visibility = Visibility::Inherited;
+ }
+
+ what_rustc_thinks
+ }
+}
+
+fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
+ let hir::Ty { hir_id: _, span, ref kind } = *hir_ty;
+ let hir::TyKind::Path(qpath) = kind else { unreachable!() };
+
+ match qpath {
+ hir::QPath::Resolved(None, path) => {
+ if let Res::Def(DefKind::TyParam, did) = path.res {
+ if let Some(new_ty) = cx.substs.get(&did).and_then(|p| p.as_ty()).cloned() {
+ return new_ty;
+ }
+ if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
+ return ImplTrait(bounds);
+ }
+ }
+
+ if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
+ expanded
+ } else {
+ let path = clean_path(path, cx);
+ resolve_type(cx, path)
+ }
+ }
+ hir::QPath::Resolved(Some(qself), p) => {
+ // Try to normalize `<X as Y>::T` to a type
+ let ty = hir_ty_to_ty(cx.tcx, hir_ty);
+ if let Some(normalized_value) = normalize(cx, ty) {
+ return clean_middle_ty(normalized_value, cx, None);
+ }
+
+ let trait_segments = &p.segments[..p.segments.len() - 1];
+ let trait_def = cx.tcx.associated_item(p.res.def_id()).container_id(cx.tcx);
+ let trait_ = self::Path {
+ res: Res::Def(DefKind::Trait, trait_def),
+ segments: trait_segments.iter().map(|x| x.clean(cx)).collect(),
+ };
+ register_res(cx, trait_.res);
+ let self_def_id = DefId::local(qself.hir_id.owner.local_def_index);
+ let self_type = clean_ty(qself, cx);
+ let should_show_cast = compute_should_show_cast(Some(self_def_id), &trait_, &self_type);
+ Type::QPath {
+ assoc: Box::new(p.segments.last().expect("segments were empty").clean(cx)),
+ should_show_cast,
+ self_type: Box::new(self_type),
+ trait_,
+ }
+ }
+ hir::QPath::TypeRelative(qself, segment) => {
+ let ty = hir_ty_to_ty(cx.tcx, hir_ty);
+ let res = match ty.kind() {
+ ty::Projection(proj) => Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id),
+ // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
+ ty::Error(_) => return Type::Infer,
+ _ => bug!("clean: expected associated type, found `{:?}`", ty),
+ };
+ let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
+ register_res(cx, trait_.res);
+ let self_def_id = res.opt_def_id();
+ let self_type = clean_ty(qself, cx);
+ let should_show_cast = compute_should_show_cast(self_def_id, &trait_, &self_type);
+ Type::QPath {
+ assoc: Box::new(segment.clean(cx)),
+ should_show_cast,
+ self_type: Box::new(self_type),
+ trait_,
+ }
+ }
+ hir::QPath::LangItem(..) => bug!("clean: requiring documentation of lang item"),
+ }
+}
+
+fn maybe_expand_private_type_alias<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ path: &hir::Path<'tcx>,
+) -> Option<Type> {
+ let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
+ // Substitute private type aliases
+ let def_id = def_id.as_local()?;
+ let alias = if !cx.cache.access_levels.is_exported(def_id.to_def_id()) {
+ &cx.tcx.hir().expect_item(def_id).kind
+ } else {
+ return None;
+ };
+ let hir::ItemKind::TyAlias(ty, generics) = alias else { return None };
+
+ let provided_params = &path.segments.last().expect("segments were empty");
+ let mut substs = FxHashMap::default();
+ let generic_args = provided_params.args();
+
+ let mut indices: hir::GenericParamCount = Default::default();
+ for param in generics.params.iter() {
+ match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => {
+ let mut j = 0;
+ let lifetime = generic_args.args.iter().find_map(|arg| match arg {
+ hir::GenericArg::Lifetime(lt) => {
+ if indices.lifetimes == j {
+ return Some(lt);
+ }
+ j += 1;
+ None
+ }
+ _ => None,
+ });
+ if let Some(lt) = lifetime.cloned() {
+ let lt_def_id = cx.tcx.hir().local_def_id(param.hir_id);
+ let cleaned =
+ if !lt.is_elided() { clean_lifetime(lt, cx) } else { Lifetime::elided() };
+ substs.insert(lt_def_id.to_def_id(), SubstParam::Lifetime(cleaned));
+ }
+ indices.lifetimes += 1;
+ }
+ hir::GenericParamKind::Type { ref default, .. } => {
+ let ty_param_def_id = cx.tcx.hir().local_def_id(param.hir_id);
+ let mut j = 0;
+ let type_ = generic_args.args.iter().find_map(|arg| match arg {
+ hir::GenericArg::Type(ty) => {
+ if indices.types == j {
+ return Some(ty);
+ }
+ j += 1;
+ None
+ }
+ _ => None,
+ });
+ if let Some(ty) = type_ {
+ substs.insert(ty_param_def_id.to_def_id(), SubstParam::Type(clean_ty(ty, cx)));
+ } else if let Some(default) = *default {
+ substs.insert(
+ ty_param_def_id.to_def_id(),
+ SubstParam::Type(clean_ty(default, cx)),
+ );
+ }
+ indices.types += 1;
+ }
+ hir::GenericParamKind::Const { .. } => {
+ let const_param_def_id = cx.tcx.hir().local_def_id(param.hir_id);
+ let mut j = 0;
+ let const_ = generic_args.args.iter().find_map(|arg| match arg {
+ hir::GenericArg::Const(ct) => {
+ if indices.consts == j {
+ return Some(ct);
+ }
+ j += 1;
+ None
+ }
+ _ => None,
+ });
+ if let Some(ct) = const_ {
+ substs.insert(
+ const_param_def_id.to_def_id(),
+ SubstParam::Constant(clean_const(ct, cx)),
+ );
+ }
+ // FIXME(const_generics_defaults)
+ indices.consts += 1;
+ }
+ }
+ }
+
+ Some(cx.enter_alias(substs, |cx| clean_ty(ty, cx)))
+}
+
+pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
+ use rustc_hir::*;
+
+ match ty.kind {
+ TyKind::Never => Primitive(PrimitiveType::Never),
+ TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
+ TyKind::Rptr(ref l, ref m) => {
+ // There are two times a `Fresh` lifetime can be created:
+ // 1. For `&'_ x`, written by the user. This corresponds to `lower_lifetime` in `rustc_ast_lowering`.
+ // 2. For `&x` as a parameter to an `async fn`. This corresponds to `elided_ref_lifetime in `rustc_ast_lowering`.
+ // See #59286 for more information.
+ // Ideally we would only hide the `'_` for case 2., but I don't know a way to distinguish it.
+ // Turning `fn f(&'_ self)` into `fn f(&self)` isn't the worst thing in the world, though;
+ // there's no case where it could cause the function to fail to compile.
+ let elided =
+ l.is_elided() || matches!(l.name, LifetimeName::Param(_, ParamName::Fresh));
+ let lifetime = if elided { None } else { Some(clean_lifetime(*l, cx)) };
+ BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
+ }
+ TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
+ TyKind::Array(ty, ref length) => {
+ let length = match length {
+ hir::ArrayLen::Infer(_, _) => "_".to_string(),
+ hir::ArrayLen::Body(anon_const) => {
+ let def_id = cx.tcx.hir().local_def_id(anon_const.hir_id);
+ // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
+ // as we currently do not supply the parent generics to anonymous constants
+ // but do allow `ConstKind::Param`.
+ //
+ // `const_eval_poly` tries to to first substitute generic parameters which
+ // results in an ICE while manually constructing the constant and using `eval`
+ // does nothing for `ConstKind::Param`.
+ let ct = ty::Const::from_anon_const(cx.tcx, def_id);
+ let param_env = cx.tcx.param_env(def_id);
+ print_const(cx, ct.eval(cx.tcx, param_env))
+ }
+ };
+
+ Array(Box::new(clean_ty(ty, cx)), length)
+ }
+ TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
+ TyKind::OpaqueDef(item_id, _) => {
+ let item = cx.tcx.hir().item(item_id);
+ if let hir::ItemKind::OpaqueTy(ref ty) = item.kind {
+ ImplTrait(ty.bounds.iter().filter_map(|x| x.clean(cx)).collect())
+ } else {
+ unreachable!()
+ }
+ }
+ TyKind::Path(_) => clean_qpath(ty, cx),
+ TyKind::TraitObject(bounds, ref lifetime, _) => {
+ let bounds = bounds.iter().map(|bound| bound.clean(cx)).collect();
+ let lifetime =
+ if !lifetime.is_elided() { Some(clean_lifetime(*lifetime, cx)) } else { None };
+ DynTrait(bounds, lifetime)
+ }
+ TyKind::BareFn(barefn) => BareFunction(Box::new(barefn.clean(cx))),
+ // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
+ TyKind::Infer | TyKind::Err => Infer,
+ TyKind::Typeof(..) => panic!("unimplemented type {:?}", ty.kind),
+ }
+}
+
+/// Returns `None` if the type could not be normalized
+fn normalize<'tcx>(cx: &mut DocContext<'tcx>, ty: Ty<'_>) -> Option<Ty<'tcx>> {
+ // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
+ if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
+ return None;
+ }
+
+ use crate::rustc_trait_selection::infer::TyCtxtInferExt;
+ use crate::rustc_trait_selection::traits::query::normalize::AtExt;
+ use rustc_middle::traits::ObligationCause;
+
+ // Try to normalize `<X as Y>::T` to a type
+ let lifted = ty.lift_to_tcx(cx.tcx).unwrap();
+ let normalized = cx.tcx.infer_ctxt().enter(|infcx| {
+ infcx
+ .at(&ObligationCause::dummy(), cx.param_env)
+ .normalize(lifted)
+ .map(|resolved| infcx.resolve_vars_if_possible(resolved.value))
+ });
+ match normalized {
+ Ok(normalized_value) => {
+ debug!("normalized {:?} to {:?}", ty, normalized_value);
+ Some(normalized_value)
+ }
+ Err(err) => {
+ debug!("failed to normalize {:?}: {:?}", ty, err);
+ None
+ }
+ }
+}
+
+pub(crate) fn clean_middle_ty<'tcx>(
+ this: Ty<'tcx>,
+ cx: &mut DocContext<'tcx>,
+ def_id: Option<DefId>,
+) -> Type {
+ trace!("cleaning type: {:?}", this);
+ let ty = normalize(cx, this).unwrap_or(this);
+ match *ty.kind() {
+ ty::Never => Primitive(PrimitiveType::Never),
+ ty::Bool => Primitive(PrimitiveType::Bool),
+ ty::Char => Primitive(PrimitiveType::Char),
+ ty::Int(int_ty) => Primitive(int_ty.into()),
+ ty::Uint(uint_ty) => Primitive(uint_ty.into()),
+ ty::Float(float_ty) => Primitive(float_ty.into()),
+ ty::Str => Primitive(PrimitiveType::Str),
+ ty::Slice(ty) => Slice(Box::new(clean_middle_ty(ty, cx, None))),
+ ty::Array(ty, n) => {
+ let mut n = cx.tcx.lift(n).expect("array lift failed");
+ n = n.eval(cx.tcx, ty::ParamEnv::reveal_all());
+ let n = print_const(cx, n);
+ Array(Box::new(clean_middle_ty(ty, cx, None)), n)
+ }
+ ty::RawPtr(mt) => RawPointer(mt.mutbl, Box::new(clean_middle_ty(mt.ty, cx, None))),
+ ty::Ref(r, ty, mutbl) => BorrowedRef {
+ lifetime: clean_middle_region(r),
+ mutability: mutbl,
+ type_: Box::new(clean_middle_ty(ty, cx, None)),
+ },
+ ty::FnDef(..) | ty::FnPtr(_) => {
+ let ty = cx.tcx.lift(this).expect("FnPtr lift failed");
+ let sig = ty.fn_sig(cx.tcx);
+ let decl = clean_fn_decl_from_did_and_sig(cx, None, sig);
+ BareFunction(Box::new(BareFunctionDecl {
+ unsafety: sig.unsafety(),
+ generic_params: Vec::new(),
+ decl,
+ abi: sig.abi(),
+ }))
+ }
+ ty::Adt(def, substs) => {
+ let did = def.did();
+ let kind = match def.adt_kind() {
+ AdtKind::Struct => ItemType::Struct,
+ AdtKind::Union => ItemType::Union,
+ AdtKind::Enum => ItemType::Enum,
+ };
+ inline::record_extern_fqn(cx, did, kind);
+ let path = external_path(cx, did, false, vec![], substs);
+ Type::Path { path }
+ }
+ ty::Foreign(did) => {
+ inline::record_extern_fqn(cx, did, ItemType::ForeignType);
+ let path = external_path(cx, did, false, vec![], InternalSubsts::empty());
+ Type::Path { path }
+ }
+ ty::Dynamic(obj, ref reg) => {
+ // HACK: pick the first `did` as the `did` of the trait object. Someone
+ // might want to implement "native" support for marker-trait-only
+ // trait objects.
+ let mut dids = obj.principal_def_id().into_iter().chain(obj.auto_traits());
+ let did = dids
+ .next()
+ .unwrap_or_else(|| panic!("found trait object `{:?}` with no traits?", this));
+ let substs = match obj.principal() {
+ Some(principal) => principal.skip_binder().substs,
+ // marker traits have no substs.
+ _ => cx.tcx.intern_substs(&[]),
+ };
+
+ inline::record_extern_fqn(cx, did, ItemType::Trait);
+
+ let lifetime = clean_middle_region(*reg);
+ let mut bounds = vec![];
+
+ for did in dids {
+ let empty = cx.tcx.intern_substs(&[]);
+ let path = external_path(cx, did, false, vec![], empty);
+ inline::record_extern_fqn(cx, did, ItemType::Trait);
+ let bound = PolyTrait { trait_: path, generic_params: Vec::new() };
+ bounds.push(bound);
+ }
+
+ let mut bindings = vec![];
+ for pb in obj.projection_bounds() {
+ bindings.push(TypeBinding {
+ assoc: projection_to_path_segment(
+ pb.skip_binder()
+ .lift_to_tcx(cx.tcx)
+ .unwrap()
+ // HACK(compiler-errors): Doesn't actually matter what self
+ // type we put here, because we're only using the GAT's substs.
+ .with_self_ty(cx.tcx, cx.tcx.types.self_param)
+ .projection_ty,
+ cx,
+ ),
+ kind: TypeBindingKind::Equality {
+ term: clean_middle_term(pb.skip_binder().term, cx),
+ },
+ });
+ }
+
+ let path = external_path(cx, did, false, bindings, substs);
+ bounds.insert(0, PolyTrait { trait_: path, generic_params: Vec::new() });
+
+ DynTrait(bounds, lifetime)
+ }
+ ty::Tuple(t) => Tuple(t.iter().map(|t| clean_middle_ty(t, cx, None)).collect()),
+
+ ty::Projection(ref data) => clean_projection(*data, cx, def_id),
+
+ ty::Param(ref p) => {
+ if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
+ ImplTrait(bounds)
+ } else {
+ Generic(p.name)
+ }
+ }
+
+ ty::Opaque(def_id, substs) => {
+ // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
+ // by looking up the bounds associated with the def_id.
+ let substs = cx.tcx.lift(substs).expect("Opaque lift failed");
+ let bounds = cx
+ .tcx
+ .explicit_item_bounds(def_id)
+ .iter()
+ .map(|(bound, _)| EarlyBinder(*bound).subst(cx.tcx, substs))
+ .collect::<Vec<_>>();
+ let mut regions = vec![];
+ let mut has_sized = false;
+ let mut bounds = bounds
+ .iter()
+ .filter_map(|bound| {
+ let bound_predicate = bound.kind();
+ let trait_ref = match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
+ if let Some(r) = clean_middle_region(reg) {
+ regions.push(GenericBound::Outlives(r));
+ }
+ return None;
+ }
+ _ => return None,
+ };
+
+ if let Some(sized) = cx.tcx.lang_items().sized_trait() {
+ if trait_ref.def_id() == sized {
+ has_sized = true;
+ return None;
+ }
+ }
+
+ let bindings: Vec<_> = bounds
+ .iter()
+ .filter_map(|bound| {
+ if let ty::PredicateKind::Projection(proj) = bound.kind().skip_binder()
+ {
+ if proj.projection_ty.trait_ref(cx.tcx) == trait_ref.skip_binder() {
+ Some(TypeBinding {
+ assoc: projection_to_path_segment(proj.projection_ty, cx),
+ kind: TypeBindingKind::Equality {
+ term: clean_middle_term(proj.term, cx),
+ },
+ })
+ } else {
+ None
+ }
+ } else {
+ None
+ }
+ })
+ .collect();
+
+ Some(clean_poly_trait_ref_with_bindings(cx, trait_ref, &bindings))
+ })
+ .collect::<Vec<_>>();
+ bounds.extend(regions);
+ if !has_sized && !bounds.is_empty() {
+ bounds.insert(0, GenericBound::maybe_sized(cx));
+ }
+ ImplTrait(bounds)
+ }
+
+ ty::Closure(..) => panic!("Closure"),
+ ty::Generator(..) => panic!("Generator"),
+ ty::Bound(..) => panic!("Bound"),
+ ty::Placeholder(..) => panic!("Placeholder"),
+ ty::GeneratorWitness(..) => panic!("GeneratorWitness"),
+ ty::Infer(..) => panic!("Infer"),
+ ty::Error(_) => panic!("Error"),
+ }
+}
+
+pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
+ let def_id = cx.tcx.hir().local_def_id(field.hir_id).to_def_id();
+ clean_field_with_def_id(def_id, field.ident.name, clean_ty(field.ty, cx), cx)
+}
+
+pub(crate) fn clean_middle_field<'tcx>(field: &ty::FieldDef, cx: &mut DocContext<'tcx>) -> Item {
+ clean_field_with_def_id(
+ field.did,
+ field.name,
+ clean_middle_ty(cx.tcx.type_of(field.did), cx, Some(field.did)),
+ cx,
+ )
+}
+
+pub(crate) fn clean_field_with_def_id(
+ def_id: DefId,
+ name: Symbol,
+ ty: Type,
+ cx: &mut DocContext<'_>,
+) -> Item {
+ let what_rustc_thinks =
+ Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx);
+ if is_field_vis_inherited(cx.tcx, def_id) {
+ // Variant fields inherit their enum's visibility.
+ Item { visibility: Visibility::Inherited, ..what_rustc_thinks }
+ } else {
+ what_rustc_thinks
+ }
+}
+
+fn is_field_vis_inherited(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ let parent = tcx.parent(def_id);
+ match tcx.def_kind(parent) {
+ DefKind::Struct | DefKind::Union => false,
+ DefKind::Variant => true,
+ parent_kind => panic!("unexpected parent kind: {:?}", parent_kind),
+ }
+}
+
+pub(crate) fn clean_visibility(vis: ty::Visibility) -> Visibility {
+ match vis {
+ ty::Visibility::Public => Visibility::Public,
+ // NOTE: this is not quite right: `ty` uses `Invisible` to mean 'private',
+ // while rustdoc really does mean inherited. That means that for enum variants, such as
+ // `pub enum E { V }`, `V` will be marked as `Public` by `ty`, but as `Inherited` by rustdoc.
+ // Various parts of clean override `tcx.visibility` explicitly to make sure this distinction is captured.
+ ty::Visibility::Invisible => Visibility::Inherited,
+ ty::Visibility::Restricted(module) => Visibility::Restricted(module),
+ }
+}
+
+pub(crate) fn clean_variant_def<'tcx>(variant: &ty::VariantDef, cx: &mut DocContext<'tcx>) -> Item {
+ let kind = match variant.ctor_kind {
+ CtorKind::Const => Variant::CLike,
+ CtorKind::Fn => Variant::Tuple(
+ variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
+ ),
+ CtorKind::Fictive => Variant::Struct(VariantStruct {
+ struct_type: CtorKind::Fictive,
+ fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
+ }),
+ };
+ let what_rustc_thinks =
+ Item::from_def_id_and_parts(variant.def_id, Some(variant.name), VariantItem(kind), cx);
+ // don't show `pub` for variants, which always inherit visibility
+ Item { visibility: Inherited, ..what_rustc_thinks }
+}
+
+fn clean_variant_data<'tcx>(
+ variant: &hir::VariantData<'tcx>,
+ cx: &mut DocContext<'tcx>,
+) -> Variant {
+ match variant {
+ hir::VariantData::Struct(..) => Variant::Struct(VariantStruct {
+ struct_type: CtorKind::from_hir(variant),
+ fields: variant.fields().iter().map(|x| clean_field(x, cx)).collect(),
+ }),
+ hir::VariantData::Tuple(..) => {
+ Variant::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
+ }
+ hir::VariantData::Unit(..) => Variant::CLike,
+ }
+}
+
+fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
+ Path { res: path.res, segments: path.segments.iter().map(|x| x.clean(cx)).collect() }
+}
+
+impl<'tcx> Clean<'tcx, GenericArgs> for hir::GenericArgs<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> GenericArgs {
+ if self.parenthesized {
+ let output = clean_ty(self.bindings[0].ty(), cx);
+ let output =
+ if output != Type::Tuple(Vec::new()) { Some(Box::new(output)) } else { None };
+ let inputs = self.inputs().iter().map(|x| clean_ty(x, cx)).collect::<Vec<_>>().into();
+ GenericArgs::Parenthesized { inputs, output }
+ } else {
+ let args = self
+ .args
+ .iter()
+ .map(|arg| match arg {
+ hir::GenericArg::Lifetime(lt) if !lt.is_elided() => {
+ GenericArg::Lifetime(clean_lifetime(*lt, cx))
+ }
+ hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
+ hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty, cx)),
+ hir::GenericArg::Const(ct) => GenericArg::Const(Box::new(clean_const(ct, cx))),
+ hir::GenericArg::Infer(_inf) => GenericArg::Infer,
+ })
+ .collect::<Vec<_>>()
+ .into();
+ let bindings =
+ self.bindings.iter().map(|x| clean_type_binding(x, cx)).collect::<Vec<_>>().into();
+ GenericArgs::AngleBracketed { args, bindings }
+ }
+ }
+}
+
+impl<'tcx> Clean<'tcx, PathSegment> for hir::PathSegment<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> PathSegment {
+ PathSegment { name: self.ident.name, args: self.args().clean(cx) }
+ }
+}
+
+impl<'tcx> Clean<'tcx, BareFunctionDecl> for hir::BareFnTy<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> BareFunctionDecl {
+ let (generic_params, decl) = enter_impl_trait(cx, |cx| {
+ // NOTE: generics must be cleaned before args
+ let generic_params = self
+ .generic_params
+ .iter()
+ .filter(|p| !is_elided_lifetime(p))
+ .map(|x| clean_generic_param(cx, None, x))
+ .collect();
+ let args = clean_args_from_types_and_names(cx, self.decl.inputs, self.param_names);
+ let decl = clean_fn_decl_with_args(cx, self.decl, args);
+ (generic_params, decl)
+ });
+ BareFunctionDecl { unsafety: self.unsafety, abi: self.abi, decl, generic_params }
+ }
+}
+
+fn clean_maybe_renamed_item<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ item: &hir::Item<'tcx>,
+ renamed: Option<Symbol>,
+) -> Vec<Item> {
+ use hir::ItemKind;
+
+ let def_id = item.def_id.to_def_id();
+ let mut name = renamed.unwrap_or_else(|| cx.tcx.hir().name(item.hir_id()));
+ cx.with_param_env(def_id, |cx| {
+ let kind = match item.kind {
+ ItemKind::Static(ty, mutability, body_id) => {
+ StaticItem(Static { type_: clean_ty(ty, cx), mutability, expr: Some(body_id) })
+ }
+ ItemKind::Const(ty, body_id) => ConstantItem(Constant {
+ type_: clean_ty(ty, cx),
+ kind: ConstantKind::Local { body: body_id, def_id },
+ }),
+ ItemKind::OpaqueTy(ref ty) => OpaqueTyItem(OpaqueTy {
+ bounds: ty.bounds.iter().filter_map(|x| x.clean(cx)).collect(),
+ generics: ty.generics.clean(cx),
+ }),
+ ItemKind::TyAlias(hir_ty, generics) => {
+ let rustdoc_ty = clean_ty(hir_ty, cx);
+ let ty = clean_middle_ty(hir_ty_to_ty(cx.tcx, hir_ty), cx, None);
+ TypedefItem(Box::new(Typedef {
+ type_: rustdoc_ty,
+ generics: generics.clean(cx),
+ item_type: Some(ty),
+ }))
+ }
+ ItemKind::Enum(ref def, generics) => EnumItem(Enum {
+ variants: def.variants.iter().map(|v| v.clean(cx)).collect(),
+ generics: generics.clean(cx),
+ }),
+ ItemKind::TraitAlias(generics, bounds) => TraitAliasItem(TraitAlias {
+ generics: generics.clean(cx),
+ bounds: bounds.iter().filter_map(|x| x.clean(cx)).collect(),
+ }),
+ ItemKind::Union(ref variant_data, generics) => UnionItem(Union {
+ generics: generics.clean(cx),
+ fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
+ }),
+ ItemKind::Struct(ref variant_data, generics) => StructItem(Struct {
+ struct_type: CtorKind::from_hir(variant_data),
+ generics: generics.clean(cx),
+ fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
+ }),
+ ItemKind::Impl(impl_) => return clean_impl(impl_, item.hir_id(), cx),
+ // proc macros can have a name set by attributes
+ ItemKind::Fn(ref sig, generics, body_id) => {
+ clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
+ }
+ ItemKind::Macro(ref macro_def, _) => {
+ let ty_vis = clean_visibility(cx.tcx.visibility(def_id));
+ MacroItem(Macro {
+ source: display_macro_source(cx, name, macro_def, def_id, ty_vis),
+ })
+ }
+ ItemKind::Trait(_, _, generics, bounds, item_ids) => {
+ let items =
+ item_ids.iter().map(|ti| cx.tcx.hir().trait_item(ti.id).clean(cx)).collect();
+
+ TraitItem(Trait {
+ def_id,
+ items,
+ generics: generics.clean(cx),
+ bounds: bounds.iter().filter_map(|x| x.clean(cx)).collect(),
+ })
+ }
+ ItemKind::ExternCrate(orig_name) => {
+ return clean_extern_crate(item, name, orig_name, cx);
+ }
+ ItemKind::Use(path, kind) => {
+ return clean_use_statement(item, name, path, kind, cx, &mut FxHashSet::default());
+ }
+ _ => unreachable!("not yet converted"),
+ };
+
+ vec![Item::from_def_id_and_parts(def_id, Some(name), kind, cx)]
+ })
+}
+
+impl<'tcx> Clean<'tcx, Item> for hir::Variant<'tcx> {
+ fn clean(&self, cx: &mut DocContext<'tcx>) -> Item {
+ let kind = VariantItem(clean_variant_data(&self.data, cx));
+ let what_rustc_thinks =
+ Item::from_hir_id_and_parts(self.id, Some(self.ident.name), kind, cx);
+ // don't show `pub` for variants, which are always public
+ Item { visibility: Inherited, ..what_rustc_thinks }
+ }
+}
+
+fn clean_impl<'tcx>(
+ impl_: &hir::Impl<'tcx>,
+ hir_id: hir::HirId,
+ cx: &mut DocContext<'tcx>,
+) -> Vec<Item> {
+ let tcx = cx.tcx;
+ let mut ret = Vec::new();
+ let trait_ = impl_.of_trait.as_ref().map(|t| clean_trait_ref(t, cx));
+ let items =
+ impl_.items.iter().map(|ii| tcx.hir().impl_item(ii.id).clean(cx)).collect::<Vec<_>>();
+ let def_id = tcx.hir().local_def_id(hir_id);
+
+ // If this impl block is an implementation of the Deref trait, then we
+ // need to try inlining the target's inherent impl blocks as well.
+ if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
+ build_deref_target_impls(cx, &items, &mut ret);
+ }
+
+ let for_ = clean_ty(impl_.self_ty, cx);
+ let type_alias = for_.def_id(&cx.cache).and_then(|did| match tcx.def_kind(did) {
+ DefKind::TyAlias => Some(clean_middle_ty(tcx.type_of(did), cx, Some(did))),
+ _ => None,
+ });
+ let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
+ let kind = ImplItem(Box::new(Impl {
+ unsafety: impl_.unsafety,
+ generics: impl_.generics.clean(cx),
+ trait_,
+ for_,
+ items,
+ polarity: tcx.impl_polarity(def_id),
+ kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), sym::fake_variadic) {
+ ImplKind::FakeVaradic
+ } else {
+ ImplKind::Normal
+ },
+ }));
+ Item::from_hir_id_and_parts(hir_id, None, kind, cx)
+ };
+ if let Some(type_alias) = type_alias {
+ ret.push(make_item(trait_.clone(), type_alias, items.clone()));
+ }
+ ret.push(make_item(trait_, for_, items));
+ ret
+}
+
+fn clean_extern_crate<'tcx>(
+ krate: &hir::Item<'tcx>,
+ name: Symbol,
+ orig_name: Option<Symbol>,
+ cx: &mut DocContext<'tcx>,
+) -> Vec<Item> {
+ // this is the ID of the `extern crate` statement
+ let cnum = cx.tcx.extern_mod_stmt_cnum(krate.def_id).unwrap_or(LOCAL_CRATE);
+ // this is the ID of the crate itself
+ let crate_def_id = cnum.as_def_id();
+ let attrs = cx.tcx.hir().attrs(krate.hir_id());
+ let ty_vis = cx.tcx.visibility(krate.def_id);
+ let please_inline = ty_vis.is_public()
+ && attrs.iter().any(|a| {
+ a.has_name(sym::doc)
+ && match a.meta_item_list() {
+ Some(l) => attr::list_contains_name(&l, sym::inline),
+ None => false,
+ }
+ });
+
+ if please_inline {
+ let mut visited = FxHashSet::default();
+
+ let res = Res::Def(DefKind::Mod, crate_def_id);
+
+ if let Some(items) = inline::try_inline(
+ cx,
+ cx.tcx.parent_module(krate.hir_id()).to_def_id(),
+ Some(krate.def_id.to_def_id()),
+ res,
+ name,
+ Some(attrs),
+ &mut visited,
+ ) {
+ return items;
+ }
+ }
+
+ // FIXME: using `from_def_id_and_kind` breaks `rustdoc/masked` for some reason
+ vec![Item {
+ name: Some(name),
+ attrs: Box::new(Attributes::from_ast(attrs)),
+ item_id: crate_def_id.into(),
+ visibility: clean_visibility(ty_vis),
+ kind: Box::new(ExternCrateItem { src: orig_name }),
+ cfg: attrs.cfg(cx.tcx, &cx.cache.hidden_cfg),
+ }]
+}
+
+fn clean_use_statement<'tcx>(
+ import: &hir::Item<'tcx>,
+ name: Symbol,
+ path: &hir::Path<'tcx>,
+ kind: hir::UseKind,
+ cx: &mut DocContext<'tcx>,
+ inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
+) -> Vec<Item> {
+ // We need this comparison because some imports (for std types for example)
+ // are "inserted" as well but directly by the compiler and they should not be
+ // taken into account.
+ if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
+ return Vec::new();
+ }
+
+ let visibility = cx.tcx.visibility(import.def_id);
+ let attrs = cx.tcx.hir().attrs(import.hir_id());
+ let inline_attr = attrs.lists(sym::doc).get_word_attr(sym::inline);
+ let pub_underscore = visibility.is_public() && name == kw::Underscore;
+ let current_mod = cx.tcx.parent_module_from_def_id(import.def_id);
+
+ // The parent of the module in which this import resides. This
+ // is the same as `current_mod` if that's already the top
+ // level module.
+ let parent_mod = cx.tcx.parent_module_from_def_id(current_mod);
+
+ // This checks if the import can be seen from a higher level module.
+ // In other words, it checks if the visibility is the equivalent of
+ // `pub(super)` or higher. If the current module is the top level
+ // module, there isn't really a parent module, which makes the results
+ // meaningless. In this case, we make sure the answer is `false`.
+ let is_visible_from_parent_mod = visibility.is_accessible_from(parent_mod.to_def_id(), cx.tcx)
+ && !current_mod.is_top_level_module();
+
+ if pub_underscore {
+ if let Some(ref inline) = inline_attr {
+ rustc_errors::struct_span_err!(
+ cx.tcx.sess,
+ inline.span(),
+ E0780,
+ "anonymous imports cannot be inlined"
+ )
+ .span_label(import.span, "anonymous import")
+ .emit();
+ }
+ }
+
+ // We consider inlining the documentation of `pub use` statements, but we
+ // forcefully don't inline if this is not public or if the
+ // #[doc(no_inline)] attribute is present.
+ // Don't inline doc(hidden) imports so they can be stripped at a later stage.
+ let mut denied = cx.output_format.is_json()
+ || !(visibility.is_public()
+ || (cx.render_options.document_private && is_visible_from_parent_mod))
+ || pub_underscore
+ || attrs.iter().any(|a| {
+ a.has_name(sym::doc)
+ && match a.meta_item_list() {
+ Some(l) => {
+ attr::list_contains_name(&l, sym::no_inline)
+ || attr::list_contains_name(&l, sym::hidden)
+ }
+ None => false,
+ }
+ });
+
+ // Also check whether imports were asked to be inlined, in case we're trying to re-export a
+ // crate in Rust 2018+
+ let path = clean_path(path, cx);
+ let inner = if kind == hir::UseKind::Glob {
+ if !denied {
+ let mut visited = FxHashSet::default();
+ if let Some(items) = inline::try_inline_glob(cx, path.res, &mut visited, inlined_names)
+ {
+ return items;
+ }
+ }
+ Import::new_glob(resolve_use_source(cx, path), true)
+ } else {
+ if inline_attr.is_none() {
+ if let Res::Def(DefKind::Mod, did) = path.res {
+ if !did.is_local() && did.is_crate_root() {
+ // if we're `pub use`ing an extern crate root, don't inline it unless we
+ // were specifically asked for it
+ denied = true;
+ }
+ }
+ }
+ if !denied {
+ let mut visited = FxHashSet::default();
+ let import_def_id = import.def_id.to_def_id();
+
+ if let Some(mut items) = inline::try_inline(
+ cx,
+ cx.tcx.parent_module(import.hir_id()).to_def_id(),
+ Some(import_def_id),
+ path.res,
+ name,
+ Some(attrs),
+ &mut visited,
+ ) {
+ items.push(Item::from_def_id_and_parts(
+ import_def_id,
+ None,
+ ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
+ cx,
+ ));
+ return items;
+ }
+ }
+ Import::new_simple(name, resolve_use_source(cx, path), true)
+ };
+
+ vec![Item::from_def_id_and_parts(import.def_id.to_def_id(), None, ImportItem(inner), cx)]
+}
+
+fn clean_maybe_renamed_foreign_item<'tcx>(
+ cx: &mut DocContext<'tcx>,
+ item: &hir::ForeignItem<'tcx>,
+ renamed: Option<Symbol>,
+) -> Item {
+ let def_id = item.def_id.to_def_id();
+ cx.with_param_env(def_id, |cx| {
+ let kind = match item.kind {
+ hir::ForeignItemKind::Fn(decl, names, generics) => {
+ let (generics, decl) = enter_impl_trait(cx, |cx| {
+ // NOTE: generics must be cleaned before args
+ let generics = generics.clean(cx);
+ let args = clean_args_from_types_and_names(cx, decl.inputs, names);
+ let decl = clean_fn_decl_with_args(cx, decl, args);
+ (generics, decl)
+ });
+ ForeignFunctionItem(Box::new(Function { decl, generics }))
+ }
+ hir::ForeignItemKind::Static(ty, mutability) => {
+ ForeignStaticItem(Static { type_: clean_ty(ty, cx), mutability, expr: None })
+ }
+ hir::ForeignItemKind::Type => ForeignTypeItem,
+ };
+
+ Item::from_hir_id_and_parts(
+ item.hir_id(),
+ Some(renamed.unwrap_or(item.ident.name)),
+ kind,
+ cx,
+ )
+ })
+}
+
+fn clean_type_binding<'tcx>(
+ type_binding: &hir::TypeBinding<'tcx>,
+ cx: &mut DocContext<'tcx>,
+) -> TypeBinding {
+ TypeBinding {
+ assoc: PathSegment { name: type_binding.ident.name, args: type_binding.gen_args.clean(cx) },
+ kind: match type_binding.kind {
+ hir::TypeBindingKind::Equality { ref term } => {
+ TypeBindingKind::Equality { term: clean_hir_term(term, cx) }
+ }
+ hir::TypeBindingKind::Constraint { bounds } => TypeBindingKind::Constraint {
+ bounds: bounds.iter().filter_map(|b| b.clean(cx)).collect(),
+ },
+ },
+ }
+}