summaryrefslogtreecommitdiffstats
path: root/src/librustdoc/formats/cache.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/librustdoc/formats/cache.rs')
-rw-r--r--src/librustdoc/formats/cache.rs569
1 files changed, 569 insertions, 0 deletions
diff --git a/src/librustdoc/formats/cache.rs b/src/librustdoc/formats/cache.rs
new file mode 100644
index 000000000..2b2691e53
--- /dev/null
+++ b/src/librustdoc/formats/cache.rs
@@ -0,0 +1,569 @@
+use std::mem;
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_hir::def_id::{CrateNum, DefId};
+use rustc_middle::middle::privacy::AccessLevels;
+use rustc_middle::ty::{self, TyCtxt};
+use rustc_span::{sym, Symbol};
+
+use crate::clean::{self, types::ExternalLocation, ExternalCrate, ItemId, PrimitiveType};
+use crate::core::DocContext;
+use crate::fold::DocFolder;
+use crate::formats::item_type::ItemType;
+use crate::formats::Impl;
+use crate::html::format::join_with_double_colon;
+use crate::html::markdown::short_markdown_summary;
+use crate::html::render::search_index::get_function_type_for_search;
+use crate::html::render::IndexItem;
+
+/// This cache is used to store information about the [`clean::Crate`] being
+/// rendered in order to provide more useful documentation. This contains
+/// information like all implementors of a trait, all traits a type implements,
+/// documentation for all known traits, etc.
+///
+/// This structure purposefully does not implement `Clone` because it's intended
+/// to be a fairly large and expensive structure to clone. Instead this adheres
+/// to `Send` so it may be stored in an `Arc` instance and shared among the various
+/// rendering threads.
+#[derive(Default)]
+pub(crate) struct Cache {
+ /// Maps a type ID to all known implementations for that type. This is only
+ /// recognized for intra-crate [`clean::Type::Path`]s, and is used to print
+ /// out extra documentation on the page of an enum/struct.
+ ///
+ /// The values of the map are a list of implementations and documentation
+ /// found on that implementation.
+ pub(crate) impls: FxHashMap<DefId, Vec<Impl>>,
+
+ /// Maintains a mapping of local crate `DefId`s to the fully qualified name
+ /// and "short type description" of that node. This is used when generating
+ /// URLs when a type is being linked to. External paths are not located in
+ /// this map because the `External` type itself has all the information
+ /// necessary.
+ pub(crate) paths: FxHashMap<DefId, (Vec<Symbol>, ItemType)>,
+
+ /// Similar to `paths`, but only holds external paths. This is only used for
+ /// generating explicit hyperlinks to other crates.
+ pub(crate) external_paths: FxHashMap<DefId, (Vec<Symbol>, ItemType)>,
+
+ /// Maps local `DefId`s of exported types to fully qualified paths.
+ /// Unlike 'paths', this mapping ignores any renames that occur
+ /// due to 'use' statements.
+ ///
+ /// This map is used when writing out the special 'implementors'
+ /// javascript file. By using the exact path that the type
+ /// is declared with, we ensure that each path will be identical
+ /// to the path used if the corresponding type is inlined. By
+ /// doing this, we can detect duplicate impls on a trait page, and only display
+ /// the impl for the inlined type.
+ pub(crate) exact_paths: FxHashMap<DefId, Vec<Symbol>>,
+
+ /// This map contains information about all known traits of this crate.
+ /// Implementations of a crate should inherit the documentation of the
+ /// parent trait if no extra documentation is specified, and default methods
+ /// should show up in documentation about trait implementations.
+ pub(crate) traits: FxHashMap<DefId, clean::TraitWithExtraInfo>,
+
+ /// When rendering traits, it's often useful to be able to list all
+ /// implementors of the trait, and this mapping is exactly, that: a mapping
+ /// of trait ids to the list of known implementors of the trait
+ pub(crate) implementors: FxHashMap<DefId, Vec<Impl>>,
+
+ /// Cache of where external crate documentation can be found.
+ pub(crate) extern_locations: FxHashMap<CrateNum, ExternalLocation>,
+
+ /// Cache of where documentation for primitives can be found.
+ pub(crate) primitive_locations: FxHashMap<clean::PrimitiveType, DefId>,
+
+ // Note that external items for which `doc(hidden)` applies to are shown as
+ // non-reachable while local items aren't. This is because we're reusing
+ // the access levels from the privacy check pass.
+ pub(crate) access_levels: AccessLevels<DefId>,
+
+ /// The version of the crate being documented, if given from the `--crate-version` flag.
+ pub(crate) crate_version: Option<String>,
+
+ /// Whether to document private items.
+ /// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions.
+ pub(crate) document_private: bool,
+
+ /// Crates marked with [`#[doc(masked)]`][doc_masked].
+ ///
+ /// [doc_masked]: https://doc.rust-lang.org/nightly/unstable-book/language-features/doc-masked.html
+ pub(crate) masked_crates: FxHashSet<CrateNum>,
+
+ // Private fields only used when initially crawling a crate to build a cache
+ stack: Vec<Symbol>,
+ parent_stack: Vec<ParentStackItem>,
+ stripped_mod: bool,
+
+ pub(crate) search_index: Vec<IndexItem>,
+
+ // In rare case where a structure is defined in one module but implemented
+ // in another, if the implementing module is parsed before defining module,
+ // then the fully qualified name of the structure isn't presented in `paths`
+ // yet when its implementation methods are being indexed. Caches such methods
+ // and their parent id here and indexes them at the end of crate parsing.
+ pub(crate) orphan_impl_items: Vec<OrphanImplItem>,
+
+ // Similarly to `orphan_impl_items`, sometimes trait impls are picked up
+ // even though the trait itself is not exported. This can happen if a trait
+ // was defined in function/expression scope, since the impl will be picked
+ // up by `collect-trait-impls` but the trait won't be scraped out in the HIR
+ // crawl. In order to prevent crashes when looking for notable traits or
+ // when gathering trait documentation on a type, hold impls here while
+ // folding and add them to the cache later on if we find the trait.
+ orphan_trait_impls: Vec<(DefId, FxHashSet<DefId>, Impl)>,
+
+ /// All intra-doc links resolved so far.
+ ///
+ /// Links are indexed by the DefId of the item they document.
+ pub(crate) intra_doc_links: FxHashMap<ItemId, Vec<clean::ItemLink>>,
+ /// Cfg that have been hidden via #![doc(cfg_hide(...))]
+ pub(crate) hidden_cfg: FxHashSet<clean::cfg::Cfg>,
+}
+
+/// This struct is used to wrap the `cache` and `tcx` in order to run `DocFolder`.
+struct CacheBuilder<'a, 'tcx> {
+ cache: &'a mut Cache,
+ /// This field is used to prevent duplicated impl blocks.
+ impl_ids: FxHashMap<DefId, FxHashSet<DefId>>,
+ tcx: TyCtxt<'tcx>,
+}
+
+impl Cache {
+ pub(crate) fn new(access_levels: AccessLevels<DefId>, document_private: bool) -> Self {
+ Cache { access_levels, document_private, ..Cache::default() }
+ }
+
+ /// Populates the `Cache` with more data. The returned `Crate` will be missing some data that was
+ /// in `krate` due to the data being moved into the `Cache`.
+ pub(crate) fn populate(cx: &mut DocContext<'_>, mut krate: clean::Crate) -> clean::Crate {
+ let tcx = cx.tcx;
+
+ // Crawl the crate to build various caches used for the output
+ debug!(?cx.cache.crate_version);
+ cx.cache.traits = krate.external_traits.take();
+
+ // Cache where all our extern crates are located
+ // FIXME: this part is specific to HTML so it'd be nice to remove it from the common code
+ for &crate_num in cx.tcx.crates(()) {
+ let e = ExternalCrate { crate_num };
+
+ let name = e.name(tcx);
+ let render_options = &cx.render_options;
+ let extern_url = render_options.extern_html_root_urls.get(name.as_str()).map(|u| &**u);
+ let extern_url_takes_precedence = render_options.extern_html_root_takes_precedence;
+ let dst = &render_options.output;
+ let location = e.location(extern_url, extern_url_takes_precedence, dst, tcx);
+ cx.cache.extern_locations.insert(e.crate_num, location);
+ cx.cache.external_paths.insert(e.def_id(), (vec![name], ItemType::Module));
+ }
+
+ // FIXME: avoid this clone (requires implementing Default manually)
+ cx.cache.primitive_locations = PrimitiveType::primitive_locations(tcx).clone();
+ for (prim, &def_id) in &cx.cache.primitive_locations {
+ let crate_name = tcx.crate_name(def_id.krate);
+ // Recall that we only allow primitive modules to be at the root-level of the crate.
+ // If that restriction is ever lifted, this will have to include the relative paths instead.
+ cx.cache
+ .external_paths
+ .insert(def_id, (vec![crate_name, prim.as_sym()], ItemType::Primitive));
+ }
+
+ let (krate, mut impl_ids) = {
+ let mut cache_builder =
+ CacheBuilder { tcx, cache: &mut cx.cache, impl_ids: FxHashMap::default() };
+ krate = cache_builder.fold_crate(krate);
+ (krate, cache_builder.impl_ids)
+ };
+
+ for (trait_did, dids, impl_) in cx.cache.orphan_trait_impls.drain(..) {
+ if cx.cache.traits.contains_key(&trait_did) {
+ for did in dids {
+ if impl_ids.entry(did).or_default().insert(impl_.def_id()) {
+ cx.cache.impls.entry(did).or_default().push(impl_.clone());
+ }
+ }
+ }
+ }
+
+ krate
+ }
+}
+
+impl<'a, 'tcx> DocFolder for CacheBuilder<'a, 'tcx> {
+ fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
+ if item.item_id.is_local() {
+ debug!("folding {} \"{:?}\", id {:?}", item.type_(), item.name, item.item_id);
+ }
+
+ // If this is a stripped module,
+ // we don't want it or its children in the search index.
+ let orig_stripped_mod = match *item.kind {
+ clean::StrippedItem(box clean::ModuleItem(..)) => {
+ mem::replace(&mut self.cache.stripped_mod, true)
+ }
+ _ => self.cache.stripped_mod,
+ };
+
+ // If the impl is from a masked crate or references something from a
+ // masked crate then remove it completely.
+ if let clean::ImplItem(ref i) = *item.kind {
+ if self.cache.masked_crates.contains(&item.item_id.krate())
+ || i.trait_
+ .as_ref()
+ .map_or(false, |t| self.cache.masked_crates.contains(&t.def_id().krate))
+ || i.for_
+ .def_id(self.cache)
+ .map_or(false, |d| self.cache.masked_crates.contains(&d.krate))
+ {
+ return None;
+ }
+ }
+
+ // Propagate a trait method's documentation to all implementors of the
+ // trait.
+ if let clean::TraitItem(ref t) = *item.kind {
+ self.cache.traits.entry(item.item_id.expect_def_id()).or_insert_with(|| {
+ clean::TraitWithExtraInfo {
+ trait_: t.clone(),
+ is_notable: item.attrs.has_doc_flag(sym::notable_trait),
+ }
+ });
+ }
+
+ // Collect all the implementors of traits.
+ if let clean::ImplItem(ref i) = *item.kind {
+ if let Some(trait_) = &i.trait_ {
+ if !i.kind.is_blanket() {
+ self.cache
+ .implementors
+ .entry(trait_.def_id())
+ .or_default()
+ .push(Impl { impl_item: item.clone() });
+ }
+ }
+ }
+
+ // Index this method for searching later on.
+ if let Some(ref s) = item.name.or_else(|| {
+ if item.is_stripped() {
+ None
+ } else if let clean::ImportItem(ref i) = *item.kind &&
+ let clean::ImportKind::Simple(s) = i.kind {
+ Some(s)
+ } else {
+ None
+ }
+ }) {
+ let (parent, is_inherent_impl_item) = match *item.kind {
+ clean::StrippedItem(..) => ((None, None), false),
+ clean::AssocConstItem(..) | clean::AssocTypeItem(..)
+ if self
+ .cache
+ .parent_stack
+ .last()
+ .map_or(false, |parent| parent.is_trait_impl()) =>
+ {
+ // skip associated items in trait impls
+ ((None, None), false)
+ }
+ clean::TyMethodItem(..)
+ | clean::TyAssocConstItem(..)
+ | clean::TyAssocTypeItem(..)
+ | clean::StructFieldItem(..)
+ | clean::VariantItem(..) => (
+ (
+ Some(
+ self.cache
+ .parent_stack
+ .last()
+ .expect("parent_stack is empty")
+ .item_id()
+ .expect_def_id(),
+ ),
+ Some(&self.cache.stack[..self.cache.stack.len() - 1]),
+ ),
+ false,
+ ),
+ clean::MethodItem(..) | clean::AssocConstItem(..) | clean::AssocTypeItem(..) => {
+ if self.cache.parent_stack.is_empty() {
+ ((None, None), false)
+ } else {
+ let last = self.cache.parent_stack.last().expect("parent_stack is empty 2");
+ let did = match &*last {
+ ParentStackItem::Impl { for_, .. } => for_.def_id(&self.cache),
+ ParentStackItem::Type(item_id) => item_id.as_def_id(),
+ };
+ let path = match did.and_then(|did| self.cache.paths.get(&did)) {
+ // The current stack not necessarily has correlation
+ // for where the type was defined. On the other
+ // hand, `paths` always has the right
+ // information if present.
+ Some(&(ref fqp, _)) => Some(&fqp[..fqp.len() - 1]),
+ None => None,
+ };
+ ((did, path), true)
+ }
+ }
+ _ => ((None, Some(&*self.cache.stack)), false),
+ };
+
+ match parent {
+ (parent, Some(path)) if is_inherent_impl_item || !self.cache.stripped_mod => {
+ debug_assert!(!item.is_stripped());
+
+ // A crate has a module at its root, containing all items,
+ // which should not be indexed. The crate-item itself is
+ // inserted later on when serializing the search-index.
+ if item.item_id.as_def_id().map_or(false, |idx| !idx.is_crate_root()) {
+ let desc = item.doc_value().map_or_else(String::new, |x| {
+ short_markdown_summary(x.as_str(), &item.link_names(self.cache))
+ });
+ self.cache.search_index.push(IndexItem {
+ ty: item.type_(),
+ name: s.to_string(),
+ path: join_with_double_colon(path),
+ desc,
+ parent,
+ parent_idx: None,
+ search_type: get_function_type_for_search(
+ &item,
+ self.tcx,
+ clean_impl_generics(self.cache.parent_stack.last()).as_ref(),
+ self.cache,
+ ),
+ aliases: item.attrs.get_doc_aliases(),
+ });
+ }
+ }
+ (Some(parent), None) if is_inherent_impl_item => {
+ // We have a parent, but we don't know where they're
+ // defined yet. Wait for later to index this item.
+ let impl_generics = clean_impl_generics(self.cache.parent_stack.last());
+ self.cache.orphan_impl_items.push(OrphanImplItem {
+ parent,
+ item: item.clone(),
+ impl_generics,
+ });
+ }
+ _ => {}
+ }
+ }
+
+ // Keep track of the fully qualified path for this item.
+ let pushed = match item.name {
+ Some(n) if !n.is_empty() => {
+ self.cache.stack.push(n);
+ true
+ }
+ _ => false,
+ };
+
+ match *item.kind {
+ clean::StructItem(..)
+ | clean::EnumItem(..)
+ | clean::TypedefItem(..)
+ | clean::TraitItem(..)
+ | clean::TraitAliasItem(..)
+ | clean::FunctionItem(..)
+ | clean::ModuleItem(..)
+ | clean::ForeignFunctionItem(..)
+ | clean::ForeignStaticItem(..)
+ | clean::ConstantItem(..)
+ | clean::StaticItem(..)
+ | clean::UnionItem(..)
+ | clean::ForeignTypeItem
+ | clean::MacroItem(..)
+ | clean::ProcMacroItem(..)
+ | clean::VariantItem(..) => {
+ if !self.cache.stripped_mod {
+ // Re-exported items mean that the same id can show up twice
+ // in the rustdoc ast that we're looking at. We know,
+ // however, that a re-exported item doesn't show up in the
+ // `public_items` map, so we can skip inserting into the
+ // paths map if there was already an entry present and we're
+ // not a public item.
+ if !self.cache.paths.contains_key(&item.item_id.expect_def_id())
+ || self.cache.access_levels.is_public(item.item_id.expect_def_id())
+ {
+ self.cache.paths.insert(
+ item.item_id.expect_def_id(),
+ (self.cache.stack.clone(), item.type_()),
+ );
+ }
+ }
+ }
+ clean::PrimitiveItem(..) => {
+ self.cache
+ .paths
+ .insert(item.item_id.expect_def_id(), (self.cache.stack.clone(), item.type_()));
+ }
+
+ clean::ExternCrateItem { .. }
+ | clean::ImportItem(..)
+ | clean::OpaqueTyItem(..)
+ | clean::ImplItem(..)
+ | clean::TyMethodItem(..)
+ | clean::MethodItem(..)
+ | clean::StructFieldItem(..)
+ | clean::TyAssocConstItem(..)
+ | clean::AssocConstItem(..)
+ | clean::TyAssocTypeItem(..)
+ | clean::AssocTypeItem(..)
+ | clean::StrippedItem(..)
+ | clean::KeywordItem => {
+ // FIXME: Do these need handling?
+ // The person writing this comment doesn't know.
+ // So would rather leave them to an expert,
+ // as at least the list is better than `_ => {}`.
+ }
+ }
+
+ // Maintain the parent stack.
+ let (item, parent_pushed) = match *item.kind {
+ clean::TraitItem(..)
+ | clean::EnumItem(..)
+ | clean::ForeignTypeItem
+ | clean::StructItem(..)
+ | clean::UnionItem(..)
+ | clean::VariantItem(..)
+ | clean::ImplItem(..) => {
+ self.cache.parent_stack.push(ParentStackItem::new(&item));
+ (self.fold_item_recur(item), true)
+ }
+ _ => (self.fold_item_recur(item), false),
+ };
+
+ // Once we've recursively found all the generics, hoard off all the
+ // implementations elsewhere.
+ let ret = if let clean::Item { kind: box clean::ImplItem(ref i), .. } = item {
+ // Figure out the id of this impl. This may map to a
+ // primitive rather than always to a struct/enum.
+ // Note: matching twice to restrict the lifetime of the `i` borrow.
+ let mut dids = FxHashSet::default();
+ match i.for_ {
+ clean::Type::Path { ref path }
+ | clean::BorrowedRef { type_: box clean::Type::Path { ref path }, .. } => {
+ dids.insert(path.def_id());
+ if let Some(generics) = path.generics() &&
+ let ty::Adt(adt, _) = self.tcx.type_of(path.def_id()).kind() &&
+ adt.is_fundamental() {
+ for ty in generics {
+ if let Some(did) = ty.def_id(self.cache) {
+ dids.insert(did);
+ }
+ }
+ }
+ }
+ clean::DynTrait(ref bounds, _)
+ | clean::BorrowedRef { type_: box clean::DynTrait(ref bounds, _), .. } => {
+ dids.insert(bounds[0].trait_.def_id());
+ }
+ ref t => {
+ let did = t
+ .primitive_type()
+ .and_then(|t| self.cache.primitive_locations.get(&t).cloned());
+
+ if let Some(did) = did {
+ dids.insert(did);
+ }
+ }
+ }
+
+ if let Some(generics) = i.trait_.as_ref().and_then(|t| t.generics()) {
+ for bound in generics {
+ if let Some(did) = bound.def_id(self.cache) {
+ dids.insert(did);
+ }
+ }
+ }
+ let impl_item = Impl { impl_item: item };
+ if impl_item.trait_did().map_or(true, |d| self.cache.traits.contains_key(&d)) {
+ for did in dids {
+ if self.impl_ids.entry(did).or_default().insert(impl_item.def_id()) {
+ self.cache
+ .impls
+ .entry(did)
+ .or_insert_with(Vec::new)
+ .push(impl_item.clone());
+ }
+ }
+ } else {
+ let trait_did = impl_item.trait_did().expect("no trait did");
+ self.cache.orphan_trait_impls.push((trait_did, dids, impl_item));
+ }
+ None
+ } else {
+ Some(item)
+ };
+
+ if pushed {
+ self.cache.stack.pop().expect("stack already empty");
+ }
+ if parent_pushed {
+ self.cache.parent_stack.pop().expect("parent stack already empty");
+ }
+ self.cache.stripped_mod = orig_stripped_mod;
+ ret
+ }
+}
+
+pub(crate) struct OrphanImplItem {
+ pub(crate) parent: DefId,
+ pub(crate) item: clean::Item,
+ pub(crate) impl_generics: Option<(clean::Type, clean::Generics)>,
+}
+
+/// Information about trait and type parents is tracked while traversing the item tree to build
+/// the cache.
+///
+/// We don't just store `Item` in there, because `Item` contains the list of children being
+/// traversed and it would be wasteful to clone all that. We also need the item id, so just
+/// storing `ItemKind` won't work, either.
+enum ParentStackItem {
+ Impl {
+ for_: clean::Type,
+ trait_: Option<clean::Path>,
+ generics: clean::Generics,
+ kind: clean::ImplKind,
+ item_id: ItemId,
+ },
+ Type(ItemId),
+}
+
+impl ParentStackItem {
+ fn new(item: &clean::Item) -> Self {
+ match &*item.kind {
+ clean::ItemKind::ImplItem(box clean::Impl { for_, trait_, generics, kind, .. }) => {
+ ParentStackItem::Impl {
+ for_: for_.clone(),
+ trait_: trait_.clone(),
+ generics: generics.clone(),
+ kind: kind.clone(),
+ item_id: item.item_id,
+ }
+ }
+ _ => ParentStackItem::Type(item.item_id),
+ }
+ }
+ fn is_trait_impl(&self) -> bool {
+ matches!(self, ParentStackItem::Impl { trait_: Some(..), .. })
+ }
+ fn item_id(&self) -> ItemId {
+ match self {
+ ParentStackItem::Impl { item_id, .. } => *item_id,
+ ParentStackItem::Type(item_id) => *item_id,
+ }
+ }
+}
+
+fn clean_impl_generics(item: Option<&ParentStackItem>) -> Option<(clean::Type, clean::Generics)> {
+ if let Some(ParentStackItem::Impl { for_, generics, kind: clean::ImplKind::Normal, .. }) = item
+ {
+ Some((for_.clone(), generics.clone()))
+ } else {
+ None
+ }
+}