summaryrefslogtreecommitdiffstats
path: root/src/test/ui/drop/dropck_legal_cycles.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/test/ui/drop/dropck_legal_cycles.rs')
-rw-r--r--src/test/ui/drop/dropck_legal_cycles.rs1183
1 files changed, 0 insertions, 1183 deletions
diff --git a/src/test/ui/drop/dropck_legal_cycles.rs b/src/test/ui/drop/dropck_legal_cycles.rs
deleted file mode 100644
index 6a0fe7784..000000000
--- a/src/test/ui/drop/dropck_legal_cycles.rs
+++ /dev/null
@@ -1,1183 +0,0 @@
-// run-pass
-// This test exercises cases where cyclic structure is legal,
-// including when the cycles go through data-structures such
-// as `Vec` or `TypedArena`.
-//
-// The intent is to cover as many such cases as possible, ensuring
-// that if the compiler did not complain circa Rust 1.x (1.2 as of
-// this writing), then it will continue to not complain in the future.
-//
-// Note that while some of the tests are only exercising using the
-// given collection as a "backing store" for a set of nodes that hold
-// the actual cycle (and thus the cycle does not go through the
-// collection itself in such cases), in general we *do* want to make
-// sure to have at least one example exercising a cycle that goes
-// through the collection, for every collection type that supports
-// this.
-
-// HIGH LEVEL DESCRIPTION OF THE TEST ARCHITECTURE
-// -----------------------------------------------
-//
-// We pick a data structure and want to make a cyclic construction
-// from it. Each test of interest is labelled starting with "Cycle N:
-// { ... }" where N is the test number and the "..."`is filled in with
-// a graphviz-style description of the graph structure that the
-// author believes is being made. So "{ a -> b, b -> (c,d), (c,d) -> e }"
-// describes a line connected to a diamond:
-//
-// c
-// / \
-// a - b e
-// \ /
-// d
-//
-// (Note that the above directed graph is actually acyclic.)
-//
-// The different graph structures are often composed of different data
-// types. Some may be built atop `Vec`, others atop `HashMap`, etc.
-//
-// For each graph structure, we actually *confirm* that a cycle exists
-// (as a safe-guard against a test author accidentally leaving it out)
-// by traversing each graph and "proving" that a cycle exists within it.
-//
-// To do this, while trying to keep the code uniform (despite working
-// with different underlying collection and smart-pointer types), we
-// have a standard traversal API:
-//
-// 1. every node in the graph carries a `mark` (a u32, init'ed to 0).
-//
-// 2. every node provides a method to visit its children
-//
-// 3. a traversal attmepts to visit the nodes of the graph and prove that
-// it sees the same node twice. It does this by setting the mark of each
-// node to a fresh non-zero value, and if it sees the current mark, it
-// "knows" that it must have found a cycle, and stops attempting further
-// traversal.
-//
-// 4. each traversal is controlled by a bit-string that tells it which child
-// it visit when it can take different paths. As a simple example,
-// in a binary tree, 0 could mean "left" (and 1, "right"), so that
-// "00010" means "left, left, left, right, left". (In general it will
-// read as many bits as it needs to choose one child.)
-//
-// The graphs in this test are all meant to be very small, and thus
-// short bitstrings of less than 64 bits should always suffice.
-//
-// (An earlier version of this test infrastructure simply had any
-// given traversal visit all children it encountered, in a
-// depth-first manner; one problem with this approach is that an
-// acyclic graph can still have sharing, which would then be treated
-// as a repeat mark and reported as a detected cycle.)
-//
-// The travseral code is a little more complicated because it has been
-// programmed in a somewhat defensive manner. For example it also has
-// a max threshold for the number of nodes it will visit, to guard
-// against scenarios where the nodes are not correctly setting their
-// mark when asked. There are various other methods not discussed here
-// that are for aiding debugging the test when it runs, such as the
-// `name` method that all nodes provide.
-//
-// So each test:
-//
-// 1. allocates the nodes in the graph,
-//
-// 2. sets up the links in the graph,
-//
-// 3. clones the "ContextData"
-//
-// 4. chooses a new current mark value for this test
-//
-// 5. initiates a traversal, potentially from multiple starting points
-// (aka "roots"), with a given control-string (potentially a
-// different string for each root). if it does start from a
-// distinct root, then such a test should also increment the
-// current mark value, so that this traversal is considered
-// distinct from the prior one on this graph structure.
-//
-// Note that most of the tests work with the default control string
-// of all-zeroes.
-//
-// 6. assert that the context confirms that it actually saw a cycle (since a traversal
-// might have terminated, e.g., on a tree structure that contained no cycles).
-
-use std::cell::{Cell, RefCell};
-use std::cmp::Ordering;
-use std::collections::BinaryHeap;
-use std::collections::HashMap;
-use std::collections::LinkedList;
-use std::collections::VecDeque;
-use std::collections::btree_map::BTreeMap;
-use std::collections::btree_set::BTreeSet;
-use std::hash::{Hash, Hasher};
-use std::rc::Rc;
-use std::sync::{Arc, RwLock, Mutex};
-
-const PRINT: bool = false;
-
-pub fn main() {
- let c_orig = ContextData {
- curr_depth: 0,
- max_depth: 3,
- visited: 0,
- max_visits: 1000,
- skipped: 0,
- curr_mark: 0,
- saw_prev_marked: false,
- control_bits: 0,
- };
-
- // SANITY CHECK FOR TEST SUITE (thus unnumbered)
- // Not a cycle: { v[0] -> (v[1], v[2]), v[1] -> v[3], v[2] -> v[3] };
- let v: Vec<S2> = vec![Named::new("s0"),
- Named::new("s1"),
- Named::new("s2"),
- Named::new("s3")];
- v[0].next.set((Some(&v[1]), Some(&v[2])));
- v[1].next.set((Some(&v[3]), None));
- v[2].next.set((Some(&v[3]), None));
- v[3].next.set((None, None));
-
- let mut c = c_orig.clone();
- c.curr_mark = 10;
- assert!(!c.saw_prev_marked);
- v[0].descend_into_self(&mut c);
- assert!(!c.saw_prev_marked); // <-- different from below, b/c acyclic above
-
- if PRINT { println!(); }
-
- // Cycle 1: { v[0] -> v[1], v[1] -> v[0] };
- // does not exercise `v` itself
- let v: Vec<S> = vec![Named::new("s0"),
- Named::new("s1")];
- v[0].next.set(Some(&v[1]));
- v[1].next.set(Some(&v[0]));
-
- let mut c = c_orig.clone();
- c.curr_mark = 10;
- assert!(!c.saw_prev_marked);
- v[0].descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // Cycle 2: { v[0] -> v, v[1] -> v }
- let v: V = Named::new("v");
- v.contents[0].set(Some(&v));
- v.contents[1].set(Some(&v));
-
- let mut c = c_orig.clone();
- c.curr_mark = 20;
- assert!(!c.saw_prev_marked);
- v.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // Cycle 3: { hk0 -> hv0, hv0 -> hk0, hk1 -> hv1, hv1 -> hk1 };
- // does not exercise `h` itself
-
- let mut h: HashMap<H,H> = HashMap::new();
- h.insert(Named::new("hk0"), Named::new("hv0"));
- h.insert(Named::new("hk1"), Named::new("hv1"));
- for (key, val) in h.iter() {
- val.next.set(Some(key));
- key.next.set(Some(val));
- }
-
- let mut c = c_orig.clone();
- c.curr_mark = 30;
- for (key, _) in h.iter() {
- c.curr_mark += 1;
- c.saw_prev_marked = false;
- key.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
- }
-
- if PRINT { println!(); }
-
- // Cycle 4: { h -> (hmk0,hmv0,hmk1,hmv1), {hmk0,hmv0,hmk1,hmv1} -> h }
-
- let mut h: HashMap<HM,HM> = HashMap::new();
- h.insert(Named::new("hmk0"), Named::new("hmv0"));
- h.insert(Named::new("hmk0"), Named::new("hmv0"));
- for (key, val) in h.iter() {
- val.contents.set(Some(&h));
- key.contents.set(Some(&h));
- }
-
- let mut c = c_orig.clone();
- c.max_depth = 2;
- c.curr_mark = 40;
- for (key, _) in h.iter() {
- c.curr_mark += 1;
- c.saw_prev_marked = false;
- key.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
- // break;
- }
-
- if PRINT { println!(); }
-
- // Cycle 5: { vd[0] -> vd[1], vd[1] -> vd[0] };
- // does not exercise vd itself
- let mut vd: VecDeque<S> = VecDeque::new();
- vd.push_back(Named::new("d0"));
- vd.push_back(Named::new("d1"));
- vd[0].next.set(Some(&vd[1]));
- vd[1].next.set(Some(&vd[0]));
-
- let mut c = c_orig.clone();
- c.curr_mark = 50;
- assert!(!c.saw_prev_marked);
- vd[0].descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // Cycle 6: { vd -> (vd0, vd1), {vd0, vd1} -> vd }
- let mut vd: VecDeque<VD> = VecDeque::new();
- vd.push_back(Named::new("vd0"));
- vd.push_back(Named::new("vd1"));
- vd[0].contents.set(Some(&vd));
- vd[1].contents.set(Some(&vd));
-
- let mut c = c_orig.clone();
- c.curr_mark = 60;
- assert!(!c.saw_prev_marked);
- vd[0].descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // Cycle 7: { vm -> (vm0, vm1), {vm0, vm1} -> vm }
- let mut vm: HashMap<usize, VM> = HashMap::new();
- vm.insert(0, Named::new("vm0"));
- vm.insert(1, Named::new("vm1"));
- vm[&0].contents.set(Some(&vm));
- vm[&1].contents.set(Some(&vm));
-
- let mut c = c_orig.clone();
- c.curr_mark = 70;
- assert!(!c.saw_prev_marked);
- vm[&0].descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // Cycle 8: { ll -> (ll0, ll1), {ll0, ll1} -> ll }
- let mut ll: LinkedList<LL> = LinkedList::new();
- ll.push_back(Named::new("ll0"));
- ll.push_back(Named::new("ll1"));
- for e in &ll {
- e.contents.set(Some(&ll));
- }
-
- let mut c = c_orig.clone();
- c.curr_mark = 80;
- for e in &ll {
- c.curr_mark += 1;
- c.saw_prev_marked = false;
- e.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
- // break;
- }
-
- if PRINT { println!(); }
-
- // Cycle 9: { bh -> (bh0, bh1), {bh0, bh1} -> bh }
- let mut bh: BinaryHeap<BH> = BinaryHeap::new();
- bh.push(Named::new("bh0"));
- bh.push(Named::new("bh1"));
- for b in bh.iter() {
- b.contents.set(Some(&bh));
- }
-
- let mut c = c_orig.clone();
- c.curr_mark = 90;
- for b in &bh {
- c.curr_mark += 1;
- c.saw_prev_marked = false;
- b.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
- // break;
- }
-
- if PRINT { println!(); }
-
- // Cycle 10: { btm -> (btk0, btv1), {bt0, bt1} -> btm }
- let mut btm: BTreeMap<BTM, BTM> = BTreeMap::new();
- btm.insert(Named::new("btk0"), Named::new("btv0"));
- btm.insert(Named::new("btk1"), Named::new("btv1"));
- for (k, v) in btm.iter() {
- k.contents.set(Some(&btm));
- v.contents.set(Some(&btm));
- }
-
- let mut c = c_orig.clone();
- c.curr_mark = 100;
- for (k, _) in &btm {
- c.curr_mark += 1;
- c.saw_prev_marked = false;
- k.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
- // break;
- }
-
- if PRINT { println!(); }
-
- // Cycle 10: { bts -> (bts0, bts1), {bts0, bts1} -> btm }
- let mut bts: BTreeSet<BTS> = BTreeSet::new();
- bts.insert(Named::new("bts0"));
- bts.insert(Named::new("bts1"));
- for v in bts.iter() {
- v.contents.set(Some(&bts));
- }
-
- let mut c = c_orig.clone();
- c.curr_mark = 100;
- for b in &bts {
- c.curr_mark += 1;
- c.saw_prev_marked = false;
- b.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
- // break;
- }
-
- if PRINT { println!(); }
-
- // Cycle 11: { rc0 -> (rc1, rc2), rc1 -> (), rc2 -> rc0 }
- let (rc0, rc1, rc2): (RCRC, RCRC, RCRC);
- rc0 = RCRC::new("rcrc0");
- rc1 = RCRC::new("rcrc1");
- rc2 = RCRC::new("rcrc2");
- rc0.0.borrow_mut().children.0 = Some(&rc1);
- rc0.0.borrow_mut().children.1 = Some(&rc2);
- rc2.0.borrow_mut().children.0 = Some(&rc0);
-
- let mut c = c_orig.clone();
- c.control_bits = 0b1;
- c.curr_mark = 110;
- assert!(!c.saw_prev_marked);
- rc0.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // We want to take the previous Rc case and generalize it to Arc.
- //
- // We can use refcells if we're single-threaded (as this test is).
- // If one were to generalize these constructions to a
- // multi-threaded context, then it might seem like we could choose
- // between either an RwLock or a Mutex to hold the owned arcs on
- // each node.
- //
- // Part of the point of this test is to actually confirm that the
- // cycle exists by traversing it. We can do that just fine with an
- // RwLock (since we can grab the child pointers in read-only
- // mode), but we cannot lock a std::sync::Mutex to guard reading
- // from each node via the same pattern, since once you hit the
- // cycle, you'll be trying to acquiring the same lock twice.
- // (We deal with this by exiting the traversal early if try_lock fails.)
-
- // Cycle 12: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, refcells
- let (arc0, arc1, arc2): (ARCRC, ARCRC, ARCRC);
- arc0 = ARCRC::new("arcrc0");
- arc1 = ARCRC::new("arcrc1");
- arc2 = ARCRC::new("arcrc2");
- arc0.0.borrow_mut().children.0 = Some(&arc1);
- arc0.0.borrow_mut().children.1 = Some(&arc2);
- arc2.0.borrow_mut().children.0 = Some(&arc0);
-
- let mut c = c_orig.clone();
- c.control_bits = 0b1;
- c.curr_mark = 110;
- assert!(!c.saw_prev_marked);
- arc0.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // Cycle 13: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, rwlocks
- let (arc0, arc1, arc2): (ARCRW, ARCRW, ARCRW);
- arc0 = ARCRW::new("arcrw0");
- arc1 = ARCRW::new("arcrw1");
- arc2 = ARCRW::new("arcrw2");
- arc0.0.write().unwrap().children.0 = Some(&arc1);
- arc0.0.write().unwrap().children.1 = Some(&arc2);
- arc2.0.write().unwrap().children.0 = Some(&arc0);
-
- let mut c = c_orig.clone();
- c.control_bits = 0b1;
- c.curr_mark = 110;
- assert!(!c.saw_prev_marked);
- arc0.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-
- if PRINT { println!(); }
-
- // Cycle 14: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, mutexs
- let (arc0, arc1, arc2): (ARCM, ARCM, ARCM);
- arc0 = ARCM::new("arcm0");
- arc1 = ARCM::new("arcm1");
- arc2 = ARCM::new("arcm2");
- arc0.1.lock().unwrap().children.0 = Some(&arc1);
- arc0.1.lock().unwrap().children.1 = Some(&arc2);
- arc2.1.lock().unwrap().children.0 = Some(&arc0);
-
- let mut c = c_orig.clone();
- c.control_bits = 0b1;
- c.curr_mark = 110;
- assert!(!c.saw_prev_marked);
- arc0.descend_into_self(&mut c);
- assert!(c.saw_prev_marked);
-}
-
-trait Named {
- fn new(_: &'static str) -> Self;
- fn name(&self) -> &str;
-}
-
-trait Marked<M> {
- fn mark(&self) -> M;
- fn set_mark(&self, mark: M);
-}
-
-struct S<'a> {
- name: &'static str,
- mark: Cell<u32>,
- next: Cell<Option<&'a S<'a>>>,
-}
-
-impl<'a> Named for S<'a> {
- fn new(name: &'static str) -> S<'a> {
- S { name: name, mark: Cell::new(0), next: Cell::new(None) }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for S<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-struct S2<'a> {
- name: &'static str,
- mark: Cell<u32>,
- next: Cell<(Option<&'a S2<'a>>, Option<&'a S2<'a>>)>,
-}
-
-impl<'a> Named for S2<'a> {
- fn new(name: &'static str) -> S2<'a> {
- S2 { name: name, mark: Cell::new(0), next: Cell::new((None, None)) }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for S2<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) {
- self.mark.set(mark);
- }
-}
-
-struct V<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Vec<Cell<Option<&'a V<'a>>>>,
-}
-
-impl<'a> Named for V<'a> {
- fn new(name: &'static str) -> V<'a> {
- V { name: name,
- mark: Cell::new(0),
- contents: vec![Cell::new(None), Cell::new(None)]
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for V<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-#[derive(Eq)]
-struct H<'a> {
- name: &'static str,
- mark: Cell<u32>,
- next: Cell<Option<&'a H<'a>>>,
-}
-
-impl<'a> Named for H<'a> {
- fn new(name: &'static str) -> H<'a> {
- H { name: name, mark: Cell::new(0), next: Cell::new(None) }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for H<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-impl<'a> PartialEq for H<'a> {
- fn eq(&self, rhs: &H<'a>) -> bool {
- self.name == rhs.name
- }
-}
-
-impl<'a> Hash for H<'a> {
- fn hash<H: Hasher>(&self, state: &mut H) {
- self.name.hash(state)
- }
-}
-
-#[derive(Eq)]
-struct HM<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Cell<Option<&'a HashMap<HM<'a>, HM<'a>>>>,
-}
-
-impl<'a> Named for HM<'a> {
- fn new(name: &'static str) -> HM<'a> {
- HM { name: name,
- mark: Cell::new(0),
- contents: Cell::new(None)
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for HM<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-impl<'a> PartialEq for HM<'a> {
- fn eq(&self, rhs: &HM<'a>) -> bool {
- self.name == rhs.name
- }
-}
-
-impl<'a> Hash for HM<'a> {
- fn hash<H: Hasher>(&self, state: &mut H) {
- self.name.hash(state)
- }
-}
-
-
-struct VD<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Cell<Option<&'a VecDeque<VD<'a>>>>,
-}
-
-impl<'a> Named for VD<'a> {
- fn new(name: &'static str) -> VD<'a> {
- VD { name: name,
- mark: Cell::new(0),
- contents: Cell::new(None)
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for VD<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-struct VM<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Cell<Option<&'a HashMap<usize, VM<'a>>>>,
-}
-
-impl<'a> Named for VM<'a> {
- fn new(name: &'static str) -> VM<'a> {
- VM { name: name,
- mark: Cell::new(0),
- contents: Cell::new(None)
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for VM<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-struct LL<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Cell<Option<&'a LinkedList<LL<'a>>>>,
-}
-
-impl<'a> Named for LL<'a> {
- fn new(name: &'static str) -> LL<'a> {
- LL { name: name,
- mark: Cell::new(0),
- contents: Cell::new(None)
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for LL<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-struct BH<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Cell<Option<&'a BinaryHeap<BH<'a>>>>,
-}
-
-impl<'a> Named for BH<'a> {
- fn new(name: &'static str) -> BH<'a> {
- BH { name: name,
- mark: Cell::new(0),
- contents: Cell::new(None)
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for BH<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-impl<'a> Eq for BH<'a> { }
-
-impl<'a> PartialEq for BH<'a> {
- fn eq(&self, rhs: &BH<'a>) -> bool {
- self.name == rhs.name
- }
-}
-
-impl<'a> PartialOrd for BH<'a> {
- fn partial_cmp(&self, rhs: &BH<'a>) -> Option<Ordering> {
- Some(self.cmp(rhs))
- }
-}
-
-impl<'a> Ord for BH<'a> {
- fn cmp(&self, rhs: &BH<'a>) -> Ordering {
- self.name.cmp(rhs.name)
- }
-}
-
-struct BTM<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Cell<Option<&'a BTreeMap<BTM<'a>, BTM<'a>>>>,
-}
-
-impl<'a> Named for BTM<'a> {
- fn new(name: &'static str) -> BTM<'a> {
- BTM { name: name,
- mark: Cell::new(0),
- contents: Cell::new(None)
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for BTM<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-impl<'a> Eq for BTM<'a> { }
-
-impl<'a> PartialEq for BTM<'a> {
- fn eq(&self, rhs: &BTM<'a>) -> bool {
- self.name == rhs.name
- }
-}
-
-impl<'a> PartialOrd for BTM<'a> {
- fn partial_cmp(&self, rhs: &BTM<'a>) -> Option<Ordering> {
- Some(self.cmp(rhs))
- }
-}
-
-impl<'a> Ord for BTM<'a> {
- fn cmp(&self, rhs: &BTM<'a>) -> Ordering {
- self.name.cmp(rhs.name)
- }
-}
-
-struct BTS<'a> {
- name: &'static str,
- mark: Cell<u32>,
- contents: Cell<Option<&'a BTreeSet<BTS<'a>>>>,
-}
-
-impl<'a> Named for BTS<'a> {
- fn new(name: &'static str) -> BTS<'a> {
- BTS { name: name,
- mark: Cell::new(0),
- contents: Cell::new(None)
- }
- }
- fn name(&self) -> &str { self.name }
-}
-
-impl<'a> Marked<u32> for BTS<'a> {
- fn mark(&self) -> u32 { self.mark.get() }
- fn set_mark(&self, mark: u32) { self.mark.set(mark); }
-}
-
-impl<'a> Eq for BTS<'a> { }
-
-impl<'a> PartialEq for BTS<'a> {
- fn eq(&self, rhs: &BTS<'a>) -> bool {
- self.name == rhs.name
- }
-}
-
-impl<'a> PartialOrd for BTS<'a> {
- fn partial_cmp(&self, rhs: &BTS<'a>) -> Option<Ordering> {
- Some(self.cmp(rhs))
- }
-}
-
-impl<'a> Ord for BTS<'a> {
- fn cmp(&self, rhs: &BTS<'a>) -> Ordering {
- self.name.cmp(rhs.name)
- }
-}
-
-#[derive(Clone)]
-struct RCRCData<'a> {
- name: &'static str,
- mark: Cell<u32>,
- children: (Option<&'a RCRC<'a>>, Option<&'a RCRC<'a>>),
-}
-#[derive(Clone)]
-struct RCRC<'a>(Rc<RefCell<RCRCData<'a>>>);
-
-impl<'a> Named for RCRC<'a> {
- fn new(name: &'static str) -> Self {
- RCRC(Rc::new(RefCell::new(RCRCData {
- name: name, mark: Cell::new(0), children: (None, None), })))
- }
- fn name(&self) -> &str { self.0.borrow().name }
-}
-
-impl<'a> Marked<u32> for RCRC<'a> {
- fn mark(&self) -> u32 { self.0.borrow().mark.get() }
- fn set_mark(&self, mark: u32) { self.0.borrow().mark.set(mark); }
-}
-
-impl<'a> Children<'a> for RCRC<'a> {
- fn count_children(&self) -> usize { 2 }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- let children = &self.0.borrow().children;
- let child = match index {
- 0 => if let Some(child) = children.0 { child } else { return; },
- 1 => if let Some(child) = children.1 { child } else { return; },
- _ => panic!("bad children"),
- };
- // println!("S2 {} descending into child {} at index {}", self.name, child.name, index);
- child.descend_into_self(context);
- }
-}
-#[derive(Clone)]
-struct ARCRCData<'a> {
- name: &'static str,
- mark: Cell<u32>,
- children: (Option<&'a ARCRC<'a>>, Option<&'a ARCRC<'a>>),
-}
-#[derive(Clone)]
-struct ARCRC<'a>(Arc<RefCell<ARCRCData<'a>>>);
-
-impl<'a> Named for ARCRC<'a> {
- fn new(name: &'static str) -> Self {
- ARCRC(Arc::new(RefCell::new(ARCRCData {
- name: name, mark: Cell::new(0), children: (None, None), })))
- }
- fn name(&self) -> &str { self.0.borrow().name }
-}
-
-impl<'a> Marked<u32> for ARCRC<'a> {
- fn mark(&self) -> u32 { self.0.borrow().mark.get() }
- fn set_mark(&self, mark: u32) { self.0.borrow().mark.set(mark); }
-}
-
-impl<'a> Children<'a> for ARCRC<'a> {
- fn count_children(&self) -> usize { 2 }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- let children = &self.0.borrow().children;
- match index {
- 0 => if let Some(ref child) = children.0 {
- child.descend_into_self(context);
- },
- 1 => if let Some(ref child) = children.1 {
- child.descend_into_self(context);
- },
- _ => panic!("bad children!"),
- }
- }
-}
-
-#[derive(Clone)]
-struct ARCMData<'a> {
- mark: Cell<u32>,
- children: (Option<&'a ARCM<'a>>, Option<&'a ARCM<'a>>),
-}
-
-#[derive(Clone)]
-struct ARCM<'a>(&'static str, Arc<Mutex<ARCMData<'a>>>);
-
-impl<'a> Named for ARCM<'a> {
- fn new(name: &'static str) -> Self {
- ARCM(name, Arc::new(Mutex::new(ARCMData {
- mark: Cell::new(0), children: (None, None), })))
- }
- fn name(&self) -> &str { self.0 }
-}
-
-impl<'a> Marked<u32> for ARCM<'a> {
- fn mark(&self) -> u32 { self.1.lock().unwrap().mark.get() }
- fn set_mark(&self, mark: u32) { self.1.lock().unwrap().mark.set(mark); }
-}
-
-impl<'a> Children<'a> for ARCM<'a> {
- fn count_children(&self) -> usize { 2 }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- let ref children = if let Ok(data) = self.1.try_lock() {
- data.children
- } else { return; };
- match index {
- 0 => if let Some(ref child) = children.0 {
- child.descend_into_self(context);
- },
- 1 => if let Some(ref child) = children.1 {
- child.descend_into_self(context);
- },
- _ => panic!("bad children!"),
- }
- }
-}
-
-#[derive(Clone)]
-struct ARCRWData<'a> {
- name: &'static str,
- mark: Cell<u32>,
- children: (Option<&'a ARCRW<'a>>, Option<&'a ARCRW<'a>>),
-}
-
-#[derive(Clone)]
-struct ARCRW<'a>(Arc<RwLock<ARCRWData<'a>>>);
-
-impl<'a> Named for ARCRW<'a> {
- fn new(name: &'static str) -> Self {
- ARCRW(Arc::new(RwLock::new(ARCRWData {
- name: name, mark: Cell::new(0), children: (None, None), })))
- }
- fn name(&self) -> &str { self.0.read().unwrap().name }
-}
-
-impl<'a> Marked<u32> for ARCRW<'a> {
- fn mark(&self) -> u32 { self.0.read().unwrap().mark.get() }
- fn set_mark(&self, mark: u32) { self.0.read().unwrap().mark.set(mark); }
-}
-
-impl<'a> Children<'a> for ARCRW<'a> {
- fn count_children(&self) -> usize { 2 }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- let children = &self.0.read().unwrap().children;
- match index {
- 0 => if let Some(ref child) = children.0 {
- child.descend_into_self(context);
- },
- 1 => if let Some(ref child) = children.1 {
- child.descend_into_self(context);
- },
- _ => panic!("bad children!"),
- }
- }
-}
-
-trait Context {
- fn next_index(&mut self, len: usize) -> usize;
- fn should_act(&self) -> bool;
- fn increase_visited(&mut self);
- fn increase_skipped(&mut self);
- fn increase_depth(&mut self);
- fn decrease_depth(&mut self);
-}
-
-trait PrePost<T> {
- fn pre(&mut self, _: &T);
- fn post(&mut self, _: &T);
- fn hit_limit(&mut self, _: &T);
-}
-
-trait Children<'a> {
- fn count_children(&self) -> usize;
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized;
-
- fn next_child<C>(&self, context: &mut C)
- where C: Context + PrePost<Self>, Self: Sized
- {
- let index = context.next_index(self.count_children());
- self.descend_one_child(context, index);
- }
-
- fn descend_into_self<C>(&self, context: &mut C)
- where C: Context + PrePost<Self>, Self: Sized
- {
- context.pre(self);
- if context.should_act() {
- context.increase_visited();
- context.increase_depth();
- self.next_child(context);
- context.decrease_depth();
- } else {
- context.hit_limit(self);
- context.increase_skipped();
- }
- context.post(self);
- }
-
- fn descend<'b, C>(&self, c: &Cell<Option<&'b Self>>, context: &mut C)
- where C: Context + PrePost<Self>, Self: Sized
- {
- if let Some(r) = c.get() {
- r.descend_into_self(context);
- }
- }
-}
-
-impl<'a> Children<'a> for S<'a> {
- fn count_children(&self) -> usize { 1 }
- fn descend_one_child<C>(&self, context: &mut C, _: usize)
- where C: Context + PrePost<Self>, Self: Sized {
- self.descend(&self.next, context);
- }
-}
-
-impl<'a> Children<'a> for S2<'a> {
- fn count_children(&self) -> usize { 2 }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- let children = self.next.get();
- let child = match index {
- 0 => if let Some(child) = children.0 { child } else { return; },
- 1 => if let Some(child) = children.1 { child } else { return; },
- _ => panic!("bad children"),
- };
- // println!("S2 {} descending into child {} at index {}", self.name, child.name, index);
- child.descend_into_self(context);
- }
-}
-
-impl<'a> Children<'a> for V<'a> {
- fn count_children(&self) -> usize { self.contents.len() }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- if let Some(child) = self.contents[index].get() {
- child.descend_into_self(context);
- }
- }
-}
-
-impl<'a> Children<'a> for H<'a> {
- fn count_children(&self) -> usize { 1 }
- fn descend_one_child<C>(&self, context: &mut C, _: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- self.descend(&self.next, context);
- }
-}
-
-impl<'a> Children<'a> for HM<'a> {
- fn count_children(&self) -> usize {
- if let Some(m) = self.contents.get() { 2 * m.iter().count() } else { 0 }
- }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- if let Some(ref hm) = self.contents.get() {
- if let Some((k, v)) = hm.iter().nth(index / 2) {
- [k, v][index % 2].descend_into_self(context);
- }
- }
- }
-}
-
-impl<'a> Children<'a> for VD<'a> {
- fn count_children(&self) -> usize {
- if let Some(d) = self.contents.get() { d.iter().count() } else { 0 }
- }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<Self>, Self: Sized
- {
- if let Some(ref vd) = self.contents.get() {
- if let Some(r) = vd.iter().nth(index) {
- r.descend_into_self(context);
- }
- }
- }
-}
-
-impl<'a> Children<'a> for VM<'a> {
- fn count_children(&self) -> usize {
- if let Some(m) = self.contents.get() { m.iter().count() } else { 0 }
- }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<VM<'a>>
- {
- if let Some(ref vd) = self.contents.get() {
- if let Some((_idx, r)) = vd.iter().nth(index) {
- r.descend_into_self(context);
- }
- }
- }
-}
-
-impl<'a> Children<'a> for LL<'a> {
- fn count_children(&self) -> usize {
- if let Some(l) = self.contents.get() { l.iter().count() } else { 0 }
- }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<LL<'a>>
- {
- if let Some(ref ll) = self.contents.get() {
- if let Some(r) = ll.iter().nth(index) {
- r.descend_into_self(context);
- }
- }
- }
-}
-
-impl<'a> Children<'a> for BH<'a> {
- fn count_children(&self) -> usize {
- if let Some(h) = self.contents.get() { h.iter().count() } else { 0 }
- }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<BH<'a>>
- {
- if let Some(ref bh) = self.contents.get() {
- if let Some(r) = bh.iter().nth(index) {
- r.descend_into_self(context);
- }
- }
- }
-}
-
-impl<'a> Children<'a> for BTM<'a> {
- fn count_children(&self) -> usize {
- if let Some(m) = self.contents.get() { 2 * m.iter().count() } else { 0 }
- }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<BTM<'a>>
- {
- if let Some(ref bh) = self.contents.get() {
- if let Some((k, v)) = bh.iter().nth(index / 2) {
- [k, v][index % 2].descend_into_self(context);
- }
- }
- }
-}
-
-impl<'a> Children<'a> for BTS<'a> {
- fn count_children(&self) -> usize {
- if let Some(s) = self.contents.get() { s.iter().count() } else { 0 }
- }
- fn descend_one_child<C>(&self, context: &mut C, index: usize)
- where C: Context + PrePost<BTS<'a>>
- {
- if let Some(ref bh) = self.contents.get() {
- if let Some(r) = bh.iter().nth(index) {
- r.descend_into_self(context);
- }
- }
- }
-}
-
-#[derive(Copy, Clone)]
-struct ContextData {
- curr_depth: usize,
- max_depth: usize,
- visited: usize,
- max_visits: usize,
- skipped: usize,
- curr_mark: u32,
- saw_prev_marked: bool,
- control_bits: u64,
-}
-
-impl Context for ContextData {
- fn next_index(&mut self, len: usize) -> usize {
- if len < 2 { return 0; }
- let mut pow2 = len.next_power_of_two();
- let _pow2_orig = pow2;
- let mut idx = 0;
- let mut bits = self.control_bits;
- while pow2 > 1 {
- idx = (idx << 1) | (bits & 1) as usize;
- bits = bits >> 1;
- pow2 = pow2 >> 1;
- }
- idx = idx % len;
- // println!("next_index({} [{:b}]) says {}, pre(bits): {:b} post(bits): {:b}",
- // len, _pow2_orig, idx, self.control_bits, bits);
- self.control_bits = bits;
- return idx;
- }
- fn should_act(&self) -> bool {
- self.curr_depth < self.max_depth && self.visited < self.max_visits
- }
- fn increase_visited(&mut self) { self.visited += 1; }
- fn increase_skipped(&mut self) { self.skipped += 1; }
- fn increase_depth(&mut self) { self.curr_depth += 1; }
- fn decrease_depth(&mut self) { self.curr_depth -= 1; }
-}
-
-impl<T:Named+Marked<u32>> PrePost<T> for ContextData {
- fn pre(&mut self, t: &T) {
- for _ in 0..self.curr_depth {
- if PRINT { print!(" "); }
- }
- if PRINT { println!("prev {}", t.name()); }
- if t.mark() == self.curr_mark {
- for _ in 0..self.curr_depth {
- if PRINT { print!(" "); }
- }
- if PRINT { println!("(probably previously marked)"); }
- self.saw_prev_marked = true;
- }
- t.set_mark(self.curr_mark);
- }
- fn post(&mut self, t: &T) {
- for _ in 0..self.curr_depth {
- if PRINT { print!(" "); }
- }
- if PRINT { println!("post {}", t.name()); }
- }
- fn hit_limit(&mut self, t: &T) {
- for _ in 0..self.curr_depth {
- if PRINT { print!(" "); }
- }
- if PRINT { println!("LIMIT {}", t.name()); }
- }
-}