summaryrefslogtreecommitdiffstats
path: root/src/tools/rust-analyzer/bench_data/glorious_old_parser
diff options
context:
space:
mode:
Diffstat (limited to 'src/tools/rust-analyzer/bench_data/glorious_old_parser')
-rw-r--r--src/tools/rust-analyzer/bench_data/glorious_old_parser8562
1 files changed, 8562 insertions, 0 deletions
diff --git a/src/tools/rust-analyzer/bench_data/glorious_old_parser b/src/tools/rust-analyzer/bench_data/glorious_old_parser
new file mode 100644
index 000000000..7e900dfeb
--- /dev/null
+++ b/src/tools/rust-analyzer/bench_data/glorious_old_parser
@@ -0,0 +1,8562 @@
+use crate::ast::{AngleBracketedArgs, ParenthesizedArgs, AttrStyle, BareFnTy};
+use crate::ast::{GenericBound, TraitBoundModifier};
+use crate::ast::Unsafety;
+use crate::ast::{Mod, AnonConst, Arg, Arm, Guard, Attribute, BindingMode, TraitItemKind};
+use crate::ast::Block;
+use crate::ast::{BlockCheckMode, CaptureBy, Movability};
+use crate::ast::{Constness, Crate};
+use crate::ast::Defaultness;
+use crate::ast::EnumDef;
+use crate::ast::{Expr, ExprKind, RangeLimits};
+use crate::ast::{Field, FnDecl, FnHeader};
+use crate::ast::{ForeignItem, ForeignItemKind, FunctionRetTy};
+use crate::ast::{GenericParam, GenericParamKind};
+use crate::ast::GenericArg;
+use crate::ast::{Ident, ImplItem, IsAsync, IsAuto, Item, ItemKind};
+use crate::ast::{Label, Lifetime, Lit, LitKind};
+use crate::ast::Local;
+use crate::ast::MacStmtStyle;
+use crate::ast::{Mac, Mac_, MacDelimiter};
+use crate::ast::{MutTy, Mutability};
+use crate::ast::{Pat, PatKind, PathSegment};
+use crate::ast::{PolyTraitRef, QSelf};
+use crate::ast::{Stmt, StmtKind};
+use crate::ast::{VariantData, StructField};
+use crate::ast::StrStyle;
+use crate::ast::SelfKind;
+use crate::ast::{TraitItem, TraitRef, TraitObjectSyntax};
+use crate::ast::{Ty, TyKind, TypeBinding, GenericBounds};
+use crate::ast::{Visibility, VisibilityKind, WhereClause, CrateSugar};
+use crate::ast::{UseTree, UseTreeKind};
+use crate::ast::{BinOpKind, UnOp};
+use crate::ast::{RangeEnd, RangeSyntax};
+use crate::{ast, attr};
+use crate::ext::base::DummyResult;
+use crate::source_map::{self, SourceMap, Spanned, respan};
+use crate::parse::{self, SeqSep, classify, token};
+use crate::parse::lexer::{TokenAndSpan, UnmatchedBrace};
+use crate::parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration};
+use crate::parse::token::DelimToken;
+use crate::parse::{new_sub_parser_from_file, ParseSess, Directory, DirectoryOwnership};
+use crate::util::parser::{AssocOp, Fixity};
+use crate::print::pprust;
+use crate::ptr::P;
+use crate::parse::PResult;
+use crate::ThinVec;
+use crate::tokenstream::{self, DelimSpan, TokenTree, TokenStream, TreeAndJoint};
+use crate::symbol::{Symbol, keywords};
+
+use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
+use rustc_target::spec::abi::{self, Abi};
+use syntax_pos::{Span, MultiSpan, BytePos, FileName};
+use log::{debug, trace};
+
+use std::borrow::Cow;
+use std::cmp;
+use std::mem;
+use std::path::{self, Path, PathBuf};
+use std::slice;
+
+#[derive(Debug)]
+/// Whether the type alias or associated type is a concrete type or an existential type
+pub enum AliasKind {
+ /// Just a new name for the same type
+ Weak(P<Ty>),
+ /// Only trait impls of the type will be usable, not the actual type itself
+ Existential(GenericBounds),
+}
+
+bitflags::bitflags! {
+ struct Restrictions: u8 {
+ const STMT_EXPR = 1 << 0;
+ const NO_STRUCT_LITERAL = 1 << 1;
+ }
+}
+
+type ItemInfo = (Ident, ItemKind, Option<Vec<Attribute>>);
+
+/// Specifies how to parse a path.
+#[derive(Copy, Clone, PartialEq)]
+pub enum PathStyle {
+ /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
+ /// with something else. For example, in expressions `segment < ....` can be interpreted
+ /// as a comparison and `segment ( ....` can be interpreted as a function call.
+ /// In all such contexts the non-path interpretation is preferred by default for practical
+ /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
+ /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
+ Expr,
+ /// In other contexts, notably in types, no ambiguity exists and paths can be written
+ /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
+ /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
+ Type,
+ /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
+ /// visibilities or attributes.
+ /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
+ /// (paths in "mod" contexts have to be checked later for absence of generic arguments
+ /// anyway, due to macros), but it is used to avoid weird suggestions about expected
+ /// tokens when something goes wrong.
+ Mod,
+}
+
+#[derive(Clone, Copy, PartialEq, Debug)]
+enum SemiColonMode {
+ Break,
+ Ignore,
+ Comma,
+}
+
+#[derive(Clone, Copy, PartialEq, Debug)]
+enum BlockMode {
+ Break,
+ Ignore,
+}
+
+/// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
+/// dropped into the token stream, which happens while parsing the result of
+/// macro expansion). Placement of these is not as complex as I feared it would
+/// be. The important thing is to make sure that lookahead doesn't balk at
+/// `token::Interpolated` tokens.
+macro_rules! maybe_whole_expr {
+ ($p:expr) => {
+ if let token::Interpolated(nt) = $p.token.clone() {
+ match *nt {
+ token::NtExpr(ref e) | token::NtLiteral(ref e) => {
+ $p.bump();
+ return Ok((*e).clone());
+ }
+ token::NtPath(ref path) => {
+ $p.bump();
+ let span = $p.span;
+ let kind = ExprKind::Path(None, (*path).clone());
+ return Ok($p.mk_expr(span, kind, ThinVec::new()));
+ }
+ token::NtBlock(ref block) => {
+ $p.bump();
+ let span = $p.span;
+ let kind = ExprKind::Block((*block).clone(), None);
+ return Ok($p.mk_expr(span, kind, ThinVec::new()));
+ }
+ _ => {},
+ };
+ }
+ }
+}
+
+/// As maybe_whole_expr, but for things other than expressions
+macro_rules! maybe_whole {
+ ($p:expr, $constructor:ident, |$x:ident| $e:expr) => {
+ if let token::Interpolated(nt) = $p.token.clone() {
+ if let token::$constructor($x) = (*nt).clone() {
+ $p.bump();
+ return Ok($e);
+ }
+ }
+ };
+}
+
+fn maybe_append(mut lhs: Vec<Attribute>, mut rhs: Option<Vec<Attribute>>) -> Vec<Attribute> {
+ if let Some(ref mut rhs) = rhs {
+ lhs.append(rhs);
+ }
+ lhs
+}
+
+#[derive(Debug, Clone, Copy, PartialEq)]
+enum PrevTokenKind {
+ DocComment,
+ Comma,
+ Plus,
+ Interpolated,
+ Eof,
+ Ident,
+ Other,
+}
+
+trait RecoverQPath: Sized {
+ const PATH_STYLE: PathStyle = PathStyle::Expr;
+ fn to_ty(&self) -> Option<P<Ty>>;
+ fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self;
+ fn to_string(&self) -> String;
+}
+
+impl RecoverQPath for Ty {
+ const PATH_STYLE: PathStyle = PathStyle::Type;
+ fn to_ty(&self) -> Option<P<Ty>> {
+ Some(P(self.clone()))
+ }
+ fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self {
+ Self { span: path.span, node: TyKind::Path(qself, path), id: self.id }
+ }
+ fn to_string(&self) -> String {
+ pprust::ty_to_string(self)
+ }
+}
+
+impl RecoverQPath for Pat {
+ fn to_ty(&self) -> Option<P<Ty>> {
+ self.to_ty()
+ }
+ fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self {
+ Self { span: path.span, node: PatKind::Path(qself, path), id: self.id }
+ }
+ fn to_string(&self) -> String {
+ pprust::pat_to_string(self)
+ }
+}
+
+impl RecoverQPath for Expr {
+ fn to_ty(&self) -> Option<P<Ty>> {
+ self.to_ty()
+ }
+ fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self {
+ Self { span: path.span, node: ExprKind::Path(qself, path),
+ id: self.id, attrs: self.attrs.clone() }
+ }
+ fn to_string(&self) -> String {
+ pprust::expr_to_string(self)
+ }
+}
+
+/* ident is handled by common.rs */
+
+#[derive(Clone)]
+pub struct Parser<'a> {
+ pub sess: &'a ParseSess,
+ /// the current token:
+ pub token: token::Token,
+ /// the span of the current token:
+ pub span: Span,
+ /// the span of the previous token:
+ meta_var_span: Option<Span>,
+ pub prev_span: Span,
+ /// the previous token kind
+ prev_token_kind: PrevTokenKind,
+ restrictions: Restrictions,
+ /// Used to determine the path to externally loaded source files
+ crate directory: Directory<'a>,
+ /// Whether to parse sub-modules in other files.
+ pub recurse_into_file_modules: bool,
+ /// Name of the root module this parser originated from. If `None`, then the
+ /// name is not known. This does not change while the parser is descending
+ /// into modules, and sub-parsers have new values for this name.
+ pub root_module_name: Option<String>,
+ crate expected_tokens: Vec<TokenType>,
+ token_cursor: TokenCursor,
+ desugar_doc_comments: bool,
+ /// Whether we should configure out of line modules as we parse.
+ pub cfg_mods: bool,
+ /// This field is used to keep track of how many left angle brackets we have seen. This is
+ /// required in order to detect extra leading left angle brackets (`<` characters) and error
+ /// appropriately.
+ ///
+ /// See the comments in the `parse_path_segment` function for more details.
+ crate unmatched_angle_bracket_count: u32,
+ crate max_angle_bracket_count: u32,
+ /// List of all unclosed delimiters found by the lexer. If an entry is used for error recovery
+ /// it gets removed from here. Every entry left at the end gets emitted as an independent
+ /// error.
+ crate unclosed_delims: Vec<UnmatchedBrace>,
+}
+
+
+#[derive(Clone)]
+struct TokenCursor {
+ frame: TokenCursorFrame,
+ stack: Vec<TokenCursorFrame>,
+}
+
+#[derive(Clone)]
+struct TokenCursorFrame {
+ delim: token::DelimToken,
+ span: DelimSpan,
+ open_delim: bool,
+ tree_cursor: tokenstream::Cursor,
+ close_delim: bool,
+ last_token: LastToken,
+}
+
+/// This is used in `TokenCursorFrame` above to track tokens that are consumed
+/// by the parser, and then that's transitively used to record the tokens that
+/// each parse AST item is created with.
+///
+/// Right now this has two states, either collecting tokens or not collecting
+/// tokens. If we're collecting tokens we just save everything off into a local
+/// `Vec`. This should eventually though likely save tokens from the original
+/// token stream and just use slicing of token streams to avoid creation of a
+/// whole new vector.
+///
+/// The second state is where we're passively not recording tokens, but the last
+/// token is still tracked for when we want to start recording tokens. This
+/// "last token" means that when we start recording tokens we'll want to ensure
+/// that this, the first token, is included in the output.
+///
+/// You can find some more example usage of this in the `collect_tokens` method
+/// on the parser.
+#[derive(Clone)]
+enum LastToken {
+ Collecting(Vec<TreeAndJoint>),
+ Was(Option<TreeAndJoint>),
+}
+
+impl TokenCursorFrame {
+ fn new(sp: DelimSpan, delim: DelimToken, tts: &TokenStream) -> Self {
+ TokenCursorFrame {
+ delim: delim,
+ span: sp,
+ open_delim: delim == token::NoDelim,
+ tree_cursor: tts.clone().into_trees(),
+ close_delim: delim == token::NoDelim,
+ last_token: LastToken::Was(None),
+ }
+ }
+}
+
+impl TokenCursor {
+ fn next(&mut self) -> TokenAndSpan {
+ loop {
+ let tree = if !self.frame.open_delim {
+ self.frame.open_delim = true;
+ TokenTree::open_tt(self.frame.span.open, self.frame.delim)
+ } else if let Some(tree) = self.frame.tree_cursor.next() {
+ tree
+ } else if !self.frame.close_delim {
+ self.frame.close_delim = true;
+ TokenTree::close_tt(self.frame.span.close, self.frame.delim)
+ } else if let Some(frame) = self.stack.pop() {
+ self.frame = frame;
+ continue
+ } else {
+ return TokenAndSpan { tok: token::Eof, sp: syntax_pos::DUMMY_SP }
+ };
+
+ match self.frame.last_token {
+ LastToken::Collecting(ref mut v) => v.push(tree.clone().into()),
+ LastToken::Was(ref mut t) => *t = Some(tree.clone().into()),
+ }
+
+ match tree {
+ TokenTree::Token(sp, tok) => return TokenAndSpan { tok: tok, sp: sp },
+ TokenTree::Delimited(sp, delim, tts) => {
+ let frame = TokenCursorFrame::new(sp, delim, &tts);
+ self.stack.push(mem::replace(&mut self.frame, frame));
+ }
+ }
+ }
+ }
+
+ fn next_desugared(&mut self) -> TokenAndSpan {
+ let (sp, name) = match self.next() {
+ TokenAndSpan { sp, tok: token::DocComment(name) } => (sp, name),
+ tok => return tok,
+ };
+
+ let stripped = strip_doc_comment_decoration(&name.as_str());
+
+ // Searches for the occurrences of `"#*` and returns the minimum number of `#`s
+ // required to wrap the text.
+ let mut num_of_hashes = 0;
+ let mut count = 0;
+ for ch in stripped.chars() {
+ count = match ch {
+ '"' => 1,
+ '#' if count > 0 => count + 1,
+ _ => 0,
+ };
+ num_of_hashes = cmp::max(num_of_hashes, count);
+ }
+
+ let delim_span = DelimSpan::from_single(sp);
+ let body = TokenTree::Delimited(
+ delim_span,
+ token::Bracket,
+ [TokenTree::Token(sp, token::Ident(ast::Ident::from_str("doc"), false)),
+ TokenTree::Token(sp, token::Eq),
+ TokenTree::Token(sp, token::Literal(
+ token::StrRaw(Symbol::intern(&stripped), num_of_hashes), None))
+ ]
+ .iter().cloned().collect::<TokenStream>().into(),
+ );
+
+ self.stack.push(mem::replace(&mut self.frame, TokenCursorFrame::new(
+ delim_span,
+ token::NoDelim,
+ &if doc_comment_style(&name.as_str()) == AttrStyle::Inner {
+ [TokenTree::Token(sp, token::Pound), TokenTree::Token(sp, token::Not), body]
+ .iter().cloned().collect::<TokenStream>().into()
+ } else {
+ [TokenTree::Token(sp, token::Pound), body]
+ .iter().cloned().collect::<TokenStream>().into()
+ },
+ )));
+
+ self.next()
+ }
+}
+
+#[derive(Clone, PartialEq)]
+crate enum TokenType {
+ Token(token::Token),
+ Keyword(keywords::Keyword),
+ Operator,
+ Lifetime,
+ Ident,
+ Path,
+ Type,
+ Const,
+}
+
+impl TokenType {
+ fn to_string(&self) -> String {
+ match *self {
+ TokenType::Token(ref t) => format!("`{}`", pprust::token_to_string(t)),
+ TokenType::Keyword(kw) => format!("`{}`", kw.name()),
+ TokenType::Operator => "an operator".to_string(),
+ TokenType::Lifetime => "lifetime".to_string(),
+ TokenType::Ident => "identifier".to_string(),
+ TokenType::Path => "path".to_string(),
+ TokenType::Type => "type".to_string(),
+ TokenType::Const => "const".to_string(),
+ }
+ }
+}
+
+/// Returns `true` if `IDENT t` can start a type -- `IDENT::a::b`, `IDENT<u8, u8>`,
+/// `IDENT<<u8 as Trait>::AssocTy>`.
+///
+/// Types can also be of the form `IDENT(u8, u8) -> u8`, however this assumes
+/// that `IDENT` is not the ident of a fn trait.
+fn can_continue_type_after_non_fn_ident(t: &token::Token) -> bool {
+ t == &token::ModSep || t == &token::Lt ||
+ t == &token::BinOp(token::Shl)
+}
+
+/// Information about the path to a module.
+pub struct ModulePath {
+ name: String,
+ path_exists: bool,
+ pub result: Result<ModulePathSuccess, Error>,
+}
+
+pub struct ModulePathSuccess {
+ pub path: PathBuf,
+ pub directory_ownership: DirectoryOwnership,
+ warn: bool,
+}
+
+pub enum Error {
+ FileNotFoundForModule {
+ mod_name: String,
+ default_path: String,
+ secondary_path: String,
+ dir_path: String,
+ },
+ DuplicatePaths {
+ mod_name: String,
+ default_path: String,
+ secondary_path: String,
+ },
+ UselessDocComment,
+ InclusiveRangeWithNoEnd,
+}
+
+impl Error {
+ fn span_err<S: Into<MultiSpan>>(self,
+ sp: S,
+ handler: &errors::Handler) -> DiagnosticBuilder<'_> {
+ match self {
+ Error::FileNotFoundForModule { ref mod_name,
+ ref default_path,
+ ref secondary_path,
+ ref dir_path } => {
+ let mut err = struct_span_err!(handler, sp, E0583,
+ "file not found for module `{}`", mod_name);
+ err.help(&format!("name the file either {} or {} inside the directory \"{}\"",
+ default_path,
+ secondary_path,
+ dir_path));
+ err
+ }
+ Error::DuplicatePaths { ref mod_name, ref default_path, ref secondary_path } => {
+ let mut err = struct_span_err!(handler, sp, E0584,
+ "file for module `{}` found at both {} and {}",
+ mod_name,
+ default_path,
+ secondary_path);
+ err.help("delete or rename one of them to remove the ambiguity");
+ err
+ }
+ Error::UselessDocComment => {
+ let mut err = struct_span_err!(handler, sp, E0585,
+ "found a documentation comment that doesn't document anything");
+ err.help("doc comments must come before what they document, maybe a comment was \
+ intended with `//`?");
+ err
+ }
+ Error::InclusiveRangeWithNoEnd => {
+ let mut err = struct_span_err!(handler, sp, E0586,
+ "inclusive range with no end");
+ err.help("inclusive ranges must be bounded at the end (`..=b` or `a..=b`)");
+ err
+ }
+ }
+ }
+}
+
+#[derive(Debug)]
+enum LhsExpr {
+ NotYetParsed,
+ AttributesParsed(ThinVec<Attribute>),
+ AlreadyParsed(P<Expr>),
+}
+
+impl From<Option<ThinVec<Attribute>>> for LhsExpr {
+ fn from(o: Option<ThinVec<Attribute>>) -> Self {
+ if let Some(attrs) = o {
+ LhsExpr::AttributesParsed(attrs)
+ } else {
+ LhsExpr::NotYetParsed
+ }
+ }
+}
+
+impl From<P<Expr>> for LhsExpr {
+ fn from(expr: P<Expr>) -> Self {
+ LhsExpr::AlreadyParsed(expr)
+ }
+}
+
+/// Creates a placeholder argument.
+fn dummy_arg(span: Span) -> Arg {
+ let ident = Ident::new(keywords::Invalid.name(), span);
+ let pat = P(Pat {
+ id: ast::DUMMY_NODE_ID,
+ node: PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), ident, None),
+ span,
+ });
+ let ty = Ty {
+ node: TyKind::Err,
+ span,
+ id: ast::DUMMY_NODE_ID
+ };
+ Arg { ty: P(ty), pat: pat, id: ast::DUMMY_NODE_ID }
+}
+
+#[derive(Copy, Clone, Debug)]
+enum TokenExpectType {
+ Expect,
+ NoExpect,
+}
+
+impl<'a> Parser<'a> {
+ pub fn new(sess: &'a ParseSess,
+ tokens: TokenStream,
+ directory: Option<Directory<'a>>,
+ recurse_into_file_modules: bool,
+ desugar_doc_comments: bool)
+ -> Self {
+ let mut parser = Parser {
+ sess,
+ token: token::Whitespace,
+ span: syntax_pos::DUMMY_SP,
+ prev_span: syntax_pos::DUMMY_SP,
+ meta_var_span: None,
+ prev_token_kind: PrevTokenKind::Other,
+ restrictions: Restrictions::empty(),
+ recurse_into_file_modules,
+ directory: Directory {
+ path: Cow::from(PathBuf::new()),
+ ownership: DirectoryOwnership::Owned { relative: None }
+ },
+ root_module_name: None,
+ expected_tokens: Vec::new(),
+ token_cursor: TokenCursor {
+ frame: TokenCursorFrame::new(
+ DelimSpan::dummy(),
+ token::NoDelim,
+ &tokens.into(),
+ ),
+ stack: Vec::new(),
+ },
+ desugar_doc_comments,
+ cfg_mods: true,
+ unmatched_angle_bracket_count: 0,
+ max_angle_bracket_count: 0,
+ unclosed_delims: Vec::new(),
+ };
+
+ let tok = parser.next_tok();
+ parser.token = tok.tok;
+ parser.span = tok.sp;
+
+ if let Some(directory) = directory {
+ parser.directory = directory;
+ } else if !parser.span.is_dummy() {
+ if let FileName::Real(mut path) = sess.source_map().span_to_unmapped_path(parser.span) {
+ path.pop();
+ parser.directory.path = Cow::from(path);
+ }
+ }
+
+ parser.process_potential_macro_variable();
+ parser
+ }
+
+ fn next_tok(&mut self) -> TokenAndSpan {
+ let mut next = if self.desugar_doc_comments {
+ self.token_cursor.next_desugared()
+ } else {
+ self.token_cursor.next()
+ };
+ if next.sp.is_dummy() {
+ // Tweak the location for better diagnostics, but keep syntactic context intact.
+ next.sp = self.prev_span.with_ctxt(next.sp.ctxt());
+ }
+ next
+ }
+
+ /// Converts the current token to a string using `self`'s reader.
+ pub fn this_token_to_string(&self) -> String {
+ pprust::token_to_string(&self.token)
+ }
+
+ fn token_descr(&self) -> Option<&'static str> {
+ Some(match &self.token {
+ t if t.is_special_ident() => "reserved identifier",
+ t if t.is_used_keyword() => "keyword",
+ t if t.is_unused_keyword() => "reserved keyword",
+ token::DocComment(..) => "doc comment",
+ _ => return None,
+ })
+ }
+
+ fn this_token_descr(&self) -> String {
+ if let Some(prefix) = self.token_descr() {
+ format!("{} `{}`", prefix, self.this_token_to_string())
+ } else {
+ format!("`{}`", self.this_token_to_string())
+ }
+ }
+
+ fn unexpected_last<T>(&self, t: &token::Token) -> PResult<'a, T> {
+ let token_str = pprust::token_to_string(t);
+ Err(self.span_fatal(self.prev_span, &format!("unexpected token: `{}`", token_str)))
+ }
+
+ crate fn unexpected<T>(&mut self) -> PResult<'a, T> {
+ match self.expect_one_of(&[], &[]) {
+ Err(e) => Err(e),
+ Ok(_) => unreachable!(),
+ }
+ }
+
+ /// Expects and consumes the token `t`. Signals an error if the next token is not `t`.
+ pub fn expect(&mut self, t: &token::Token) -> PResult<'a, bool /* recovered */> {
+ if self.expected_tokens.is_empty() {
+ if self.token == *t {
+ self.bump();
+ Ok(false)
+ } else {
+ let token_str = pprust::token_to_string(t);
+ let this_token_str = self.this_token_descr();
+ let mut err = self.fatal(&format!("expected `{}`, found {}",
+ token_str,
+ this_token_str));
+
+ let sp = if self.token == token::Token::Eof {
+ // EOF, don't want to point at the following char, but rather the last token
+ self.prev_span
+ } else {
+ self.sess.source_map().next_point(self.prev_span)
+ };
+ let label_exp = format!("expected `{}`", token_str);
+ match self.recover_closing_delimiter(&[t.clone()], err) {
+ Err(e) => err = e,
+ Ok(recovered) => {
+ return Ok(recovered);
+ }
+ }
+ let cm = self.sess.source_map();
+ match (cm.lookup_line(self.span.lo()), cm.lookup_line(sp.lo())) {
+ (Ok(ref a), Ok(ref b)) if a.line == b.line => {
+ // When the spans are in the same line, it means that the only content
+ // between them is whitespace, point only at the found token.
+ err.span_label(self.span, label_exp);
+ }
+ _ => {
+ err.span_label(sp, label_exp);
+ err.span_label(self.span, "unexpected token");
+ }
+ }
+ Err(err)
+ }
+ } else {
+ self.expect_one_of(slice::from_ref(t), &[])
+ }
+ }
+
+ fn recover_closing_delimiter(
+ &mut self,
+ tokens: &[token::Token],
+ mut err: DiagnosticBuilder<'a>,
+ ) -> PResult<'a, bool> {
+ let mut pos = None;
+ // we want to use the last closing delim that would apply
+ for (i, unmatched) in self.unclosed_delims.iter().enumerate().rev() {
+ if tokens.contains(&token::CloseDelim(unmatched.expected_delim))
+ && Some(self.span) > unmatched.unclosed_span
+ {
+ pos = Some(i);
+ }
+ }
+ match pos {
+ Some(pos) => {
+ // Recover and assume that the detected unclosed delimiter was meant for
+ // this location. Emit the diagnostic and act as if the delimiter was
+ // present for the parser's sake.
+
+ // Don't attempt to recover from this unclosed delimiter more than once.
+ let unmatched = self.unclosed_delims.remove(pos);
+ let delim = TokenType::Token(token::CloseDelim(unmatched.expected_delim));
+
+ // We want to suggest the inclusion of the closing delimiter where it makes
+ // the most sense, which is immediately after the last token:
+ //
+ // {foo(bar {}}
+ // - ^
+ // | |
+ // | help: `)` may belong here (FIXME: #58270)
+ // |
+ // unclosed delimiter
+ if let Some(sp) = unmatched.unclosed_span {
+ err.span_label(sp, "unclosed delimiter");
+ }
+ err.span_suggestion_short(
+ self.sess.source_map().next_point(self.prev_span),
+ &format!("{} may belong here", delim.to_string()),
+ delim.to_string(),
+ Applicability::MaybeIncorrect,
+ );
+ err.emit();
+ self.expected_tokens.clear(); // reduce errors
+ Ok(true)
+ }
+ _ => Err(err),
+ }
+ }
+
+ /// Expect next token to be edible or inedible token. If edible,
+ /// then consume it; if inedible, then return without consuming
+ /// anything. Signal a fatal error if next token is unexpected.
+ pub fn expect_one_of(
+ &mut self,
+ edible: &[token::Token],
+ inedible: &[token::Token],
+ ) -> PResult<'a, bool /* recovered */> {
+ fn tokens_to_string(tokens: &[TokenType]) -> String {
+ let mut i = tokens.iter();
+ // This might be a sign we need a connect method on Iterator.
+ let b = i.next()
+ .map_or(String::new(), |t| t.to_string());
+ i.enumerate().fold(b, |mut b, (i, a)| {
+ if tokens.len() > 2 && i == tokens.len() - 2 {
+ b.push_str(", or ");
+ } else if tokens.len() == 2 && i == tokens.len() - 2 {
+ b.push_str(" or ");
+ } else {
+ b.push_str(", ");
+ }
+ b.push_str(&a.to_string());
+ b
+ })
+ }
+ if edible.contains(&self.token) {
+ self.bump();
+ Ok(false)
+ } else if inedible.contains(&self.token) {
+ // leave it in the input
+ Ok(false)
+ } else {
+ let mut expected = edible.iter()
+ .map(|x| TokenType::Token(x.clone()))
+ .chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
+ .chain(self.expected_tokens.iter().cloned())
+ .collect::<Vec<_>>();
+ expected.sort_by_cached_key(|x| x.to_string());
+ expected.dedup();
+ let expect = tokens_to_string(&expected[..]);
+ let actual = self.this_token_to_string();
+ let (msg_exp, (label_sp, label_exp)) = if expected.len() > 1 {
+ let short_expect = if expected.len() > 6 {
+ format!("{} possible tokens", expected.len())
+ } else {
+ expect.clone()
+ };
+ (format!("expected one of {}, found `{}`", expect, actual),
+ (self.sess.source_map().next_point(self.prev_span),
+ format!("expected one of {} here", short_expect)))
+ } else if expected.is_empty() {
+ (format!("unexpected token: `{}`", actual),
+ (self.prev_span, "unexpected token after this".to_string()))
+ } else {
+ (format!("expected {}, found `{}`", expect, actual),
+ (self.sess.source_map().next_point(self.prev_span),
+ format!("expected {} here", expect)))
+ };
+ let mut err = self.fatal(&msg_exp);
+ if self.token.is_ident_named("and") {
+ err.span_suggestion_short(
+ self.span,
+ "use `&&` instead of `and` for the boolean operator",
+ "&&".to_string(),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ if self.token.is_ident_named("or") {
+ err.span_suggestion_short(
+ self.span,
+ "use `||` instead of `or` for the boolean operator",
+ "||".to_string(),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ let sp = if self.token == token::Token::Eof {
+ // This is EOF, don't want to point at the following char, but rather the last token
+ self.prev_span
+ } else {
+ label_sp
+ };
+ match self.recover_closing_delimiter(&expected.iter().filter_map(|tt| match tt {
+ TokenType::Token(t) => Some(t.clone()),
+ _ => None,
+ }).collect::<Vec<_>>(), err) {
+ Err(e) => err = e,
+ Ok(recovered) => {
+ return Ok(recovered);
+ }
+ }
+
+ let cm = self.sess.source_map();
+ match (cm.lookup_line(self.span.lo()), cm.lookup_line(sp.lo())) {
+ (Ok(ref a), Ok(ref b)) if a.line == b.line => {
+ // When the spans are in the same line, it means that the only content between
+ // them is whitespace, point at the found token in that case:
+ //
+ // X | () => { syntax error };
+ // | ^^^^^ expected one of 8 possible tokens here
+ //
+ // instead of having:
+ //
+ // X | () => { syntax error };
+ // | -^^^^^ unexpected token
+ // | |
+ // | expected one of 8 possible tokens here
+ err.span_label(self.span, label_exp);
+ }
+ _ if self.prev_span == syntax_pos::DUMMY_SP => {
+ // Account for macro context where the previous span might not be
+ // available to avoid incorrect output (#54841).
+ err.span_label(self.span, "unexpected token");
+ }
+ _ => {
+ err.span_label(sp, label_exp);
+ err.span_label(self.span, "unexpected token");
+ }
+ }
+ Err(err)
+ }
+ }
+
+ /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
+ fn interpolated_or_expr_span(&self,
+ expr: PResult<'a, P<Expr>>)
+ -> PResult<'a, (Span, P<Expr>)> {
+ expr.map(|e| {
+ if self.prev_token_kind == PrevTokenKind::Interpolated {
+ (self.prev_span, e)
+ } else {
+ (e.span, e)
+ }
+ })
+ }
+
+ fn expected_ident_found(&self) -> DiagnosticBuilder<'a> {
+ let mut err = self.struct_span_err(self.span,
+ &format!("expected identifier, found {}",
+ self.this_token_descr()));
+ if let token::Ident(ident, false) = &self.token {
+ if ident.is_reserved() && !ident.is_path_segment_keyword() &&
+ ident.name != keywords::Underscore.name()
+ {
+ err.span_suggestion(
+ self.span,
+ "you can escape reserved keywords to use them as identifiers",
+ format!("r#{}", ident),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ if let Some(token_descr) = self.token_descr() {
+ err.span_label(self.span, format!("expected identifier, found {}", token_descr));
+ } else {
+ err.span_label(self.span, "expected identifier");
+ if self.token == token::Comma && self.look_ahead(1, |t| t.is_ident()) {
+ err.span_suggestion(
+ self.span,
+ "remove this comma",
+ String::new(),
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ err
+ }
+
+ pub fn parse_ident(&mut self) -> PResult<'a, ast::Ident> {
+ self.parse_ident_common(true)
+ }
+
+ fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, ast::Ident> {
+ match self.token {
+ token::Ident(ident, _) => {
+ if self.token.is_reserved_ident() {
+ let mut err = self.expected_ident_found();
+ if recover {
+ err.emit();
+ } else {
+ return Err(err);
+ }
+ }
+ let span = self.span;
+ self.bump();
+ Ok(Ident::new(ident.name, span))
+ }
+ _ => {
+ Err(if self.prev_token_kind == PrevTokenKind::DocComment {
+ self.span_fatal_err(self.prev_span, Error::UselessDocComment)
+ } else {
+ self.expected_ident_found()
+ })
+ }
+ }
+ }
+
+ /// Checks if the next token is `tok`, and returns `true` if so.
+ ///
+ /// This method will automatically add `tok` to `expected_tokens` if `tok` is not
+ /// encountered.
+ crate fn check(&mut self, tok: &token::Token) -> bool {
+ let is_present = self.token == *tok;
+ if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); }
+ is_present
+ }
+
+ /// Consumes a token 'tok' if it exists. Returns whether the given token was present.
+ pub fn eat(&mut self, tok: &token::Token) -> bool {
+ let is_present = self.check(tok);
+ if is_present { self.bump() }
+ is_present
+ }
+
+ fn check_keyword(&mut self, kw: keywords::Keyword) -> bool {
+ self.expected_tokens.push(TokenType::Keyword(kw));
+ self.token.is_keyword(kw)
+ }
+
+ /// If the next token is the given keyword, eats it and returns
+ /// `true`. Otherwise, returns `false`.
+ pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool {
+ if self.check_keyword(kw) {
+ self.bump();
+ true
+ } else {
+ false
+ }
+ }
+
+ fn eat_keyword_noexpect(&mut self, kw: keywords::Keyword) -> bool {
+ if self.token.is_keyword(kw) {
+ self.bump();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// If the given word is not a keyword, signals an error.
+ /// If the next token is not the given word, signals an error.
+ /// Otherwise, eats it.
+ fn expect_keyword(&mut self, kw: keywords::Keyword) -> PResult<'a, ()> {
+ if !self.eat_keyword(kw) {
+ self.unexpected()
+ } else {
+ Ok(())
+ }
+ }
+
+ fn check_ident(&mut self) -> bool {
+ if self.token.is_ident() {
+ true
+ } else {
+ self.expected_tokens.push(TokenType::Ident);
+ false
+ }
+ }
+
+ fn check_path(&mut self) -> bool {
+ if self.token.is_path_start() {
+ true
+ } else {
+ self.expected_tokens.push(TokenType::Path);
+ false
+ }
+ }
+
+ fn check_type(&mut self) -> bool {
+ if self.token.can_begin_type() {
+ true
+ } else {
+ self.expected_tokens.push(TokenType::Type);
+ false
+ }
+ }
+
+ fn check_const_arg(&mut self) -> bool {
+ if self.token.can_begin_const_arg() {
+ true
+ } else {
+ self.expected_tokens.push(TokenType::Const);
+ false
+ }
+ }
+
+ /// Expects and consumes a `+`. if `+=` is seen, replaces it with a `=`
+ /// and continues. If a `+` is not seen, returns `false`.
+ ///
+ /// This is used when token-splitting `+=` into `+`.
+ /// See issue #47856 for an example of when this may occur.
+ fn eat_plus(&mut self) -> bool {
+ self.expected_tokens.push(TokenType::Token(token::BinOp(token::Plus)));
+ match self.token {
+ token::BinOp(token::Plus) => {
+ self.bump();
+ true
+ }
+ token::BinOpEq(token::Plus) => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ self.bump_with(token::Eq, span);
+ true
+ }
+ _ => false,
+ }
+ }
+
+
+ /// Checks to see if the next token is either `+` or `+=`.
+ /// Otherwise returns `false`.
+ fn check_plus(&mut self) -> bool {
+ if self.token.is_like_plus() {
+ true
+ }
+ else {
+ self.expected_tokens.push(TokenType::Token(token::BinOp(token::Plus)));
+ false
+ }
+ }
+
+ /// Expects and consumes an `&`. If `&&` is seen, replaces it with a single
+ /// `&` and continues. If an `&` is not seen, signals an error.
+ fn expect_and(&mut self) -> PResult<'a, ()> {
+ self.expected_tokens.push(TokenType::Token(token::BinOp(token::And)));
+ match self.token {
+ token::BinOp(token::And) => {
+ self.bump();
+ Ok(())
+ }
+ token::AndAnd => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ Ok(self.bump_with(token::BinOp(token::And), span))
+ }
+ _ => self.unexpected()
+ }
+ }
+
+ /// Expects and consumes an `|`. If `||` is seen, replaces it with a single
+ /// `|` and continues. If an `|` is not seen, signals an error.
+ fn expect_or(&mut self) -> PResult<'a, ()> {
+ self.expected_tokens.push(TokenType::Token(token::BinOp(token::Or)));
+ match self.token {
+ token::BinOp(token::Or) => {
+ self.bump();
+ Ok(())
+ }
+ token::OrOr => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ Ok(self.bump_with(token::BinOp(token::Or), span))
+ }
+ _ => self.unexpected()
+ }
+ }
+
+ fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
+ match suffix {
+ None => {/* everything ok */}
+ Some(suf) => {
+ let text = suf.as_str();
+ if text.is_empty() {
+ self.span_bug(sp, "found empty literal suffix in Some")
+ }
+ let msg = format!("{} with a suffix is invalid", kind);
+ self.struct_span_err(sp, &msg)
+ .span_label(sp, msg)
+ .emit();
+ }
+ }
+ }
+
+ /// Attempts to consume a `<`. If `<<` is seen, replaces it with a single
+ /// `<` and continue. If `<-` is seen, replaces it with a single `<`
+ /// and continue. If a `<` is not seen, returns false.
+ ///
+ /// This is meant to be used when parsing generics on a path to get the
+ /// starting token.
+ fn eat_lt(&mut self) -> bool {
+ self.expected_tokens.push(TokenType::Token(token::Lt));
+ let ate = match self.token {
+ token::Lt => {
+ self.bump();
+ true
+ }
+ token::BinOp(token::Shl) => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ self.bump_with(token::Lt, span);
+ true
+ }
+ token::LArrow => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ self.bump_with(token::BinOp(token::Minus), span);
+ true
+ }
+ _ => false,
+ };
+
+ if ate {
+ // See doc comment for `unmatched_angle_bracket_count`.
+ self.unmatched_angle_bracket_count += 1;
+ self.max_angle_bracket_count += 1;
+ debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count);
+ }
+
+ ate
+ }
+
+ fn expect_lt(&mut self) -> PResult<'a, ()> {
+ if !self.eat_lt() {
+ self.unexpected()
+ } else {
+ Ok(())
+ }
+ }
+
+ /// Expects and consumes a single `>` token. if a `>>` is seen, replaces it
+ /// with a single `>` and continues. If a `>` is not seen, signals an error.
+ fn expect_gt(&mut self) -> PResult<'a, ()> {
+ self.expected_tokens.push(TokenType::Token(token::Gt));
+ let ate = match self.token {
+ token::Gt => {
+ self.bump();
+ Some(())
+ }
+ token::BinOp(token::Shr) => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ Some(self.bump_with(token::Gt, span))
+ }
+ token::BinOpEq(token::Shr) => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ Some(self.bump_with(token::Ge, span))
+ }
+ token::Ge => {
+ let span = self.span.with_lo(self.span.lo() + BytePos(1));
+ Some(self.bump_with(token::Eq, span))
+ }
+ _ => None,
+ };
+
+ match ate {
+ Some(_) => {
+ // See doc comment for `unmatched_angle_bracket_count`.
+ if self.unmatched_angle_bracket_count > 0 {
+ self.unmatched_angle_bracket_count -= 1;
+ debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count);
+ }
+
+ Ok(())
+ },
+ None => self.unexpected(),
+ }
+ }
+
+ /// Eats and discards tokens until one of `kets` is encountered. Respects token trees,
+ /// passes through any errors encountered. Used for error recovery.
+ fn eat_to_tokens(&mut self, kets: &[&token::Token]) {
+ let handler = self.diagnostic();
+
+ if let Err(ref mut err) = self.parse_seq_to_before_tokens(kets,
+ SeqSep::none(),
+ TokenExpectType::Expect,
+ |p| Ok(p.parse_token_tree())) {
+ handler.cancel(err);
+ }
+ }
+
+ /// Parses a sequence, including the closing delimiter. The function
+ /// `f` must consume tokens until reaching the next separator or
+ /// closing bracket.
+ pub fn parse_seq_to_end<T, F>(&mut self,
+ ket: &token::Token,
+ sep: SeqSep,
+ f: F)
+ -> PResult<'a, Vec<T>> where
+ F: FnMut(&mut Parser<'a>) -> PResult<'a, T>,
+ {
+ let (val, recovered) = self.parse_seq_to_before_end(ket, sep, f)?;
+ if !recovered {
+ self.bump();
+ }
+ Ok(val)
+ }
+
+ /// Parses a sequence, not including the closing delimiter. The function
+ /// `f` must consume tokens until reaching the next separator or
+ /// closing bracket.
+ pub fn parse_seq_to_before_end<T, F>(
+ &mut self,
+ ket: &token::Token,
+ sep: SeqSep,
+ f: F,
+ ) -> PResult<'a, (Vec<T>, bool)>
+ where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>
+ {
+ self.parse_seq_to_before_tokens(&[ket], sep, TokenExpectType::Expect, f)
+ }
+
+ fn parse_seq_to_before_tokens<T, F>(
+ &mut self,
+ kets: &[&token::Token],
+ sep: SeqSep,
+ expect: TokenExpectType,
+ mut f: F,
+ ) -> PResult<'a, (Vec<T>, bool /* recovered */)>
+ where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>
+ {
+ let mut first = true;
+ let mut recovered = false;
+ let mut v = vec![];
+ while !kets.iter().any(|k| {
+ match expect {
+ TokenExpectType::Expect => self.check(k),
+ TokenExpectType::NoExpect => self.token == **k,
+ }
+ }) {
+ match self.token {
+ token::CloseDelim(..) | token::Eof => break,
+ _ => {}
+ };
+ if let Some(ref t) = sep.sep {
+ if first {
+ first = false;
+ } else {
+ match self.expect(t) {
+ Ok(false) => {}
+ Ok(true) => {
+ recovered = true;
+ break;
+ }
+ Err(mut e) => {
+ // Attempt to keep parsing if it was a similar separator
+ if let Some(ref tokens) = t.similar_tokens() {
+ if tokens.contains(&self.token) {
+ self.bump();
+ }
+ }
+ e.emit();
+ // Attempt to keep parsing if it was an omitted separator
+ match f(self) {
+ Ok(t) => {
+ v.push(t);
+ continue;
+ },
+ Err(mut e) => {
+ e.cancel();
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ if sep.trailing_sep_allowed && kets.iter().any(|k| {
+ match expect {
+ TokenExpectType::Expect => self.check(k),
+ TokenExpectType::NoExpect => self.token == **k,
+ }
+ }) {
+ break;
+ }
+
+ let t = f(self)?;
+ v.push(t);
+ }
+
+ Ok((v, recovered))
+ }
+
+ /// Parses a sequence, including the closing delimiter. The function
+ /// `f` must consume tokens until reaching the next separator or
+ /// closing bracket.
+ fn parse_unspanned_seq<T, F>(
+ &mut self,
+ bra: &token::Token,
+ ket: &token::Token,
+ sep: SeqSep,
+ f: F,
+ ) -> PResult<'a, Vec<T>> where
+ F: FnMut(&mut Parser<'a>) -> PResult<'a, T>,
+ {
+ self.expect(bra)?;
+ let (result, recovered) = self.parse_seq_to_before_end(ket, sep, f)?;
+ if !recovered {
+ self.eat(ket);
+ }
+ Ok(result)
+ }
+
+ /// Advance the parser by one token
+ pub fn bump(&mut self) {
+ if self.prev_token_kind == PrevTokenKind::Eof {
+ // Bumping after EOF is a bad sign, usually an infinite loop.
+ self.bug("attempted to bump the parser past EOF (may be stuck in a loop)");
+ }
+
+ self.prev_span = self.meta_var_span.take().unwrap_or(self.span);
+
+ // Record last token kind for possible error recovery.
+ self.prev_token_kind = match self.token {
+ token::DocComment(..) => PrevTokenKind::DocComment,
+ token::Comma => PrevTokenKind::Comma,
+ token::BinOp(token::Plus) => PrevTokenKind::Plus,
+ token::Interpolated(..) => PrevTokenKind::Interpolated,
+ token::Eof => PrevTokenKind::Eof,
+ token::Ident(..) => PrevTokenKind::Ident,
+ _ => PrevTokenKind::Other,
+ };
+
+ let next = self.next_tok();
+ self.span = next.sp;
+ self.token = next.tok;
+ self.expected_tokens.clear();
+ // check after each token
+ self.process_potential_macro_variable();
+ }
+
+ /// Advance the parser using provided token as a next one. Use this when
+ /// consuming a part of a token. For example a single `<` from `<<`.
+ fn bump_with(&mut self, next: token::Token, span: Span) {
+ self.prev_span = self.span.with_hi(span.lo());
+ // It would be incorrect to record the kind of the current token, but
+ // fortunately for tokens currently using `bump_with`, the
+ // prev_token_kind will be of no use anyway.
+ self.prev_token_kind = PrevTokenKind::Other;
+ self.span = span;
+ self.token = next;
+ self.expected_tokens.clear();
+ }
+
+ pub fn look_ahead<R, F>(&self, dist: usize, f: F) -> R where
+ F: FnOnce(&token::Token) -> R,
+ {
+ if dist == 0 {
+ return f(&self.token)
+ }
+
+ f(&match self.token_cursor.frame.tree_cursor.look_ahead(dist - 1) {
+ Some(tree) => match tree {
+ TokenTree::Token(_, tok) => tok,
+ TokenTree::Delimited(_, delim, _) => token::OpenDelim(delim),
+ },
+ None => token::CloseDelim(self.token_cursor.frame.delim),
+ })
+ }
+
+ fn look_ahead_span(&self, dist: usize) -> Span {
+ if dist == 0 {
+ return self.span
+ }
+
+ match self.token_cursor.frame.tree_cursor.look_ahead(dist - 1) {
+ Some(TokenTree::Token(span, _)) => span,
+ Some(TokenTree::Delimited(span, ..)) => span.entire(),
+ None => self.look_ahead_span(dist - 1),
+ }
+ }
+ pub fn fatal(&self, m: &str) -> DiagnosticBuilder<'a> {
+ self.sess.span_diagnostic.struct_span_fatal(self.span, m)
+ }
+ pub fn span_fatal<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> {
+ self.sess.span_diagnostic.struct_span_fatal(sp, m)
+ }
+ fn span_fatal_err<S: Into<MultiSpan>>(&self, sp: S, err: Error) -> DiagnosticBuilder<'a> {
+ err.span_err(sp, self.diagnostic())
+ }
+ fn bug(&self, m: &str) -> ! {
+ self.sess.span_diagnostic.span_bug(self.span, m)
+ }
+ fn span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) {
+ self.sess.span_diagnostic.span_err(sp, m)
+ }
+ fn struct_span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> {
+ self.sess.span_diagnostic.struct_span_err(sp, m)
+ }
+ crate fn span_bug<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> ! {
+ self.sess.span_diagnostic.span_bug(sp, m)
+ }
+
+ fn cancel(&self, err: &mut DiagnosticBuilder<'_>) {
+ self.sess.span_diagnostic.cancel(err)
+ }
+
+ crate fn diagnostic(&self) -> &'a errors::Handler {
+ &self.sess.span_diagnostic
+ }
+
+ /// Is the current token one of the keywords that signals a bare function type?
+ fn token_is_bare_fn_keyword(&mut self) -> bool {
+ self.check_keyword(keywords::Fn) ||
+ self.check_keyword(keywords::Unsafe) ||
+ self.check_keyword(keywords::Extern)
+ }
+
+ /// Parses a `TyKind::BareFn` type.
+ fn parse_ty_bare_fn(&mut self, generic_params: Vec<GenericParam>) -> PResult<'a, TyKind> {
+ /*
+
+ [unsafe] [extern "ABI"] fn (S) -> T
+ ^~~~^ ^~~~^ ^~^ ^
+ | | | |
+ | | | Return type
+ | | Argument types
+ | |
+ | ABI
+ Function Style
+ */
+
+ let unsafety = self.parse_unsafety();
+ let abi = if self.eat_keyword(keywords::Extern) {
+ self.parse_opt_abi()?.unwrap_or(Abi::C)
+ } else {
+ Abi::Rust
+ };
+
+ self.expect_keyword(keywords::Fn)?;
+ let (inputs, variadic) = self.parse_fn_args(false, true)?;
+ let ret_ty = self.parse_ret_ty(false)?;
+ let decl = P(FnDecl {
+ inputs,
+ output: ret_ty,
+ variadic,
+ });
+ Ok(TyKind::BareFn(P(BareFnTy {
+ abi,
+ unsafety,
+ generic_params,
+ decl,
+ })))
+ }
+
+ /// Parses asyncness: `async` or nothing.
+ fn parse_asyncness(&mut self) -> IsAsync {
+ if self.eat_keyword(keywords::Async) {
+ IsAsync::Async {
+ closure_id: ast::DUMMY_NODE_ID,
+ return_impl_trait_id: ast::DUMMY_NODE_ID,
+ }
+ } else {
+ IsAsync::NotAsync
+ }
+ }
+
+ /// Parses unsafety: `unsafe` or nothing.
+ fn parse_unsafety(&mut self) -> Unsafety {
+ if self.eat_keyword(keywords::Unsafe) {
+ Unsafety::Unsafe
+ } else {
+ Unsafety::Normal
+ }
+ }
+
+ /// Parses the items in a trait declaration.
+ pub fn parse_trait_item(&mut self, at_end: &mut bool) -> PResult<'a, TraitItem> {
+ maybe_whole!(self, NtTraitItem, |x| x);
+ let attrs = self.parse_outer_attributes()?;
+ let (mut item, tokens) = self.collect_tokens(|this| {
+ this.parse_trait_item_(at_end, attrs)
+ })?;
+ // See `parse_item` for why this clause is here.
+ if !item.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) {
+ item.tokens = Some(tokens);
+ }
+ Ok(item)
+ }
+
+ fn parse_trait_item_(&mut self,
+ at_end: &mut bool,
+ mut attrs: Vec<Attribute>) -> PResult<'a, TraitItem> {
+ let lo = self.span;
+
+ let (name, node, generics) = if self.eat_keyword(keywords::Type) {
+ self.parse_trait_item_assoc_ty()?
+ } else if self.is_const_item() {
+ self.expect_keyword(keywords::Const)?;
+ let ident = self.parse_ident()?;
+ self.expect(&token::Colon)?;
+ let ty = self.parse_ty()?;
+ let default = if self.eat(&token::Eq) {
+ let expr = self.parse_expr()?;
+ self.expect(&token::Semi)?;
+ Some(expr)
+ } else {
+ self.expect(&token::Semi)?;
+ None
+ };
+ (ident, TraitItemKind::Const(ty, default), ast::Generics::default())
+ } else if let Some(mac) = self.parse_assoc_macro_invoc("trait", None, &mut false)? {
+ // trait item macro.
+ (keywords::Invalid.ident(), ast::TraitItemKind::Macro(mac), ast::Generics::default())
+ } else {
+ let (constness, unsafety, asyncness, abi) = self.parse_fn_front_matter()?;
+
+ let ident = self.parse_ident()?;
+ let mut generics = self.parse_generics()?;
+
+ let d = self.parse_fn_decl_with_self(|p: &mut Parser<'a>| {
+ // This is somewhat dubious; We don't want to allow
+ // argument names to be left off if there is a
+ // definition...
+
+ // We don't allow argument names to be left off in edition 2018.
+ p.parse_arg_general(p.span.rust_2018(), true)
+ })?;
+ generics.where_clause = self.parse_where_clause()?;
+
+ let sig = ast::MethodSig {
+ header: FnHeader {
+ unsafety,
+ constness,
+ abi,
+ asyncness,
+ },
+ decl: d,
+ };
+
+ let body = match self.token {
+ token::Semi => {
+ self.bump();
+ *at_end = true;
+ debug!("parse_trait_methods(): parsing required method");
+ None
+ }
+ token::OpenDelim(token::Brace) => {
+ debug!("parse_trait_methods(): parsing provided method");
+ *at_end = true;
+ let (inner_attrs, body) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(inner_attrs.iter().cloned());
+ Some(body)
+ }
+ token::Interpolated(ref nt) => {
+ match **nt {
+ token::NtBlock(..) => {
+ *at_end = true;
+ let (inner_attrs, body) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(inner_attrs.iter().cloned());
+ Some(body)
+ }
+ _ => {
+ let token_str = self.this_token_descr();
+ let mut err = self.fatal(&format!("expected `;` or `{{`, found {}",
+ token_str));
+ err.span_label(self.span, "expected `;` or `{`");
+ return Err(err);
+ }
+ }
+ }
+ _ => {
+ let token_str = self.this_token_descr();
+ let mut err = self.fatal(&format!("expected `;` or `{{`, found {}",
+ token_str));
+ err.span_label(self.span, "expected `;` or `{`");
+ return Err(err);
+ }
+ };
+ (ident, ast::TraitItemKind::Method(sig, body), generics)
+ };
+
+ Ok(TraitItem {
+ id: ast::DUMMY_NODE_ID,
+ ident: name,
+ attrs,
+ generics,
+ node,
+ span: lo.to(self.prev_span),
+ tokens: None,
+ })
+ }
+
+ /// Parses an optional return type `[ -> TY ]` in a function declaration.
+ fn parse_ret_ty(&mut self, allow_plus: bool) -> PResult<'a, FunctionRetTy> {
+ if self.eat(&token::RArrow) {
+ Ok(FunctionRetTy::Ty(self.parse_ty_common(allow_plus, true)?))
+ } else {
+ Ok(FunctionRetTy::Default(self.span.shrink_to_lo()))
+ }
+ }
+
+ /// Parses a type.
+ pub fn parse_ty(&mut self) -> PResult<'a, P<Ty>> {
+ self.parse_ty_common(true, true)
+ }
+
+ /// Parses a type in restricted contexts where `+` is not permitted.
+ ///
+ /// Example 1: `&'a TYPE`
+ /// `+` is prohibited to maintain operator priority (P(+) < P(&)).
+ /// Example 2: `value1 as TYPE + value2`
+ /// `+` is prohibited to avoid interactions with expression grammar.
+ fn parse_ty_no_plus(&mut self) -> PResult<'a, P<Ty>> {
+ self.parse_ty_common(false, true)
+ }
+
+ fn parse_ty_common(&mut self, allow_plus: bool, allow_qpath_recovery: bool)
+ -> PResult<'a, P<Ty>> {
+ maybe_whole!(self, NtTy, |x| x);
+
+ let lo = self.span;
+ let mut impl_dyn_multi = false;
+ let node = if self.eat(&token::OpenDelim(token::Paren)) {
+ // `(TYPE)` is a parenthesized type.
+ // `(TYPE,)` is a tuple with a single field of type TYPE.
+ let mut ts = vec![];
+ let mut last_comma = false;
+ while self.token != token::CloseDelim(token::Paren) {
+ ts.push(self.parse_ty()?);
+ if self.eat(&token::Comma) {
+ last_comma = true;
+ } else {
+ last_comma = false;
+ break;
+ }
+ }
+ let trailing_plus = self.prev_token_kind == PrevTokenKind::Plus;
+ self.expect(&token::CloseDelim(token::Paren))?;
+
+ if ts.len() == 1 && !last_comma {
+ let ty = ts.into_iter().nth(0).unwrap().into_inner();
+ let maybe_bounds = allow_plus && self.token.is_like_plus();
+ match ty.node {
+ // `(TY_BOUND_NOPAREN) + BOUND + ...`.
+ TyKind::Path(None, ref path) if maybe_bounds => {
+ self.parse_remaining_bounds(Vec::new(), path.clone(), lo, true)?
+ }
+ TyKind::TraitObject(ref bounds, TraitObjectSyntax::None)
+ if maybe_bounds && bounds.len() == 1 && !trailing_plus => {
+ let path = match bounds[0] {
+ GenericBound::Trait(ref pt, ..) => pt.trait_ref.path.clone(),
+ GenericBound::Outlives(..) => self.bug("unexpected lifetime bound"),
+ };
+ self.parse_remaining_bounds(Vec::new(), path, lo, true)?
+ }
+ // `(TYPE)`
+ _ => TyKind::Paren(P(ty))
+ }
+ } else {
+ TyKind::Tup(ts)
+ }
+ } else if self.eat(&token::Not) {
+ // Never type `!`
+ TyKind::Never
+ } else if self.eat(&token::BinOp(token::Star)) {
+ // Raw pointer
+ TyKind::Ptr(self.parse_ptr()?)
+ } else if self.eat(&token::OpenDelim(token::Bracket)) {
+ // Array or slice
+ let t = self.parse_ty()?;
+ // Parse optional `; EXPR` in `[TYPE; EXPR]`
+ let t = match self.maybe_parse_fixed_length_of_vec()? {
+ None => TyKind::Slice(t),
+ Some(length) => TyKind::Array(t, AnonConst {
+ id: ast::DUMMY_NODE_ID,
+ value: length,
+ }),
+ };
+ self.expect(&token::CloseDelim(token::Bracket))?;
+ t
+ } else if self.check(&token::BinOp(token::And)) || self.check(&token::AndAnd) {
+ // Reference
+ self.expect_and()?;
+ self.parse_borrowed_pointee()?
+ } else if self.eat_keyword_noexpect(keywords::Typeof) {
+ // `typeof(EXPR)`
+ // In order to not be ambiguous, the type must be surrounded by parens.
+ self.expect(&token::OpenDelim(token::Paren))?;
+ let e = AnonConst {
+ id: ast::DUMMY_NODE_ID,
+ value: self.parse_expr()?,
+ };
+ self.expect(&token::CloseDelim(token::Paren))?;
+ TyKind::Typeof(e)
+ } else if self.eat_keyword(keywords::Underscore) {
+ // A type to be inferred `_`
+ TyKind::Infer
+ } else if self.token_is_bare_fn_keyword() {
+ // Function pointer type
+ self.parse_ty_bare_fn(Vec::new())?
+ } else if self.check_keyword(keywords::For) {
+ // Function pointer type or bound list (trait object type) starting with a poly-trait.
+ // `for<'lt> [unsafe] [extern "ABI"] fn (&'lt S) -> T`
+ // `for<'lt> Trait1<'lt> + Trait2 + 'a`
+ let lo = self.span;
+ let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
+ if self.token_is_bare_fn_keyword() {
+ self.parse_ty_bare_fn(lifetime_defs)?
+ } else {
+ let path = self.parse_path(PathStyle::Type)?;
+ let parse_plus = allow_plus && self.check_plus();
+ self.parse_remaining_bounds(lifetime_defs, path, lo, parse_plus)?
+ }
+ } else if self.eat_keyword(keywords::Impl) {
+ // Always parse bounds greedily for better error recovery.
+ let bounds = self.parse_generic_bounds(None)?;
+ impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus;
+ TyKind::ImplTrait(ast::DUMMY_NODE_ID, bounds)
+ } else if self.check_keyword(keywords::Dyn) &&
+ (self.span.rust_2018() ||
+ self.look_ahead(1, |t| t.can_begin_bound() &&
+ !can_continue_type_after_non_fn_ident(t))) {
+ self.bump(); // `dyn`
+ // Always parse bounds greedily for better error recovery.
+ let bounds = self.parse_generic_bounds(None)?;
+ impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus;
+ TyKind::TraitObject(bounds, TraitObjectSyntax::Dyn)
+ } else if self.check(&token::Question) ||
+ self.check_lifetime() && self.look_ahead(1, |t| t.is_like_plus()) {
+ // Bound list (trait object type)
+ TyKind::TraitObject(self.parse_generic_bounds_common(allow_plus, None)?,
+ TraitObjectSyntax::None)
+ } else if self.eat_lt() {
+ // Qualified path
+ let (qself, path) = self.parse_qpath(PathStyle::Type)?;
+ TyKind::Path(Some(qself), path)
+ } else if self.token.is_path_start() {
+ // Simple path
+ let path = self.parse_path(PathStyle::Type)?;
+ if self.eat(&token::Not) {
+ // Macro invocation in type position
+ let (delim, tts) = self.expect_delimited_token_tree()?;
+ let node = Mac_ { path, tts, delim };
+ TyKind::Mac(respan(lo.to(self.prev_span), node))
+ } else {
+ // Just a type path or bound list (trait object type) starting with a trait.
+ // `Type`
+ // `Trait1 + Trait2 + 'a`
+ if allow_plus && self.check_plus() {
+ self.parse_remaining_bounds(Vec::new(), path, lo, true)?
+ } else {
+ TyKind::Path(None, path)
+ }
+ }
+ } else {
+ let msg = format!("expected type, found {}", self.this_token_descr());
+ return Err(self.fatal(&msg));
+ };
+
+ let span = lo.to(self.prev_span);
+ let ty = Ty { node, span, id: ast::DUMMY_NODE_ID };
+
+ // Try to recover from use of `+` with incorrect priority.
+ self.maybe_report_ambiguous_plus(allow_plus, impl_dyn_multi, &ty);
+ self.maybe_recover_from_bad_type_plus(allow_plus, &ty)?;
+ let ty = self.maybe_recover_from_bad_qpath(ty, allow_qpath_recovery)?;
+
+ Ok(P(ty))
+ }
+
+ fn parse_remaining_bounds(&mut self, generic_params: Vec<GenericParam>, path: ast::Path,
+ lo: Span, parse_plus: bool) -> PResult<'a, TyKind> {
+ let poly_trait_ref = PolyTraitRef::new(generic_params, path, lo.to(self.prev_span));
+ let mut bounds = vec![GenericBound::Trait(poly_trait_ref, TraitBoundModifier::None)];
+ if parse_plus {
+ self.eat_plus(); // `+`, or `+=` gets split and `+` is discarded
+ bounds.append(&mut self.parse_generic_bounds(None)?);
+ }
+ Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::None))
+ }
+
+ fn maybe_report_ambiguous_plus(&mut self, allow_plus: bool, impl_dyn_multi: bool, ty: &Ty) {
+ if !allow_plus && impl_dyn_multi {
+ let sum_with_parens = format!("({})", pprust::ty_to_string(&ty));
+ self.struct_span_err(ty.span, "ambiguous `+` in a type")
+ .span_suggestion(
+ ty.span,
+ "use parentheses to disambiguate",
+ sum_with_parens,
+ Applicability::MachineApplicable
+ ).emit();
+ }
+ }
+
+ fn maybe_recover_from_bad_type_plus(&mut self, allow_plus: bool, ty: &Ty) -> PResult<'a, ()> {
+ // Do not add `+` to expected tokens.
+ if !allow_plus || !self.token.is_like_plus() {
+ return Ok(())
+ }
+
+ self.bump(); // `+`
+ let bounds = self.parse_generic_bounds(None)?;
+ let sum_span = ty.span.to(self.prev_span);
+
+ let mut err = struct_span_err!(self.sess.span_diagnostic, sum_span, E0178,
+ "expected a path on the left-hand side of `+`, not `{}`", pprust::ty_to_string(ty));
+
+ match ty.node {
+ TyKind::Rptr(ref lifetime, ref mut_ty) => {
+ let sum_with_parens = pprust::to_string(|s| {
+ use crate::print::pprust::PrintState;
+
+ s.s.word("&")?;
+ s.print_opt_lifetime(lifetime)?;
+ s.print_mutability(mut_ty.mutbl)?;
+ s.popen()?;
+ s.print_type(&mut_ty.ty)?;
+ s.print_type_bounds(" +", &bounds)?;
+ s.pclose()
+ });
+ err.span_suggestion(
+ sum_span,
+ "try adding parentheses",
+ sum_with_parens,
+ Applicability::MachineApplicable
+ );
+ }
+ TyKind::Ptr(..) | TyKind::BareFn(..) => {
+ err.span_label(sum_span, "perhaps you forgot parentheses?");
+ }
+ _ => {
+ err.span_label(sum_span, "expected a path");
+ },
+ }
+ err.emit();
+ Ok(())
+ }
+
+ // Try to recover from associated item paths like `[T]::AssocItem`/`(T, U)::AssocItem`.
+ fn maybe_recover_from_bad_qpath<T: RecoverQPath>(&mut self, base: T, allow_recovery: bool)
+ -> PResult<'a, T> {
+ // Do not add `::` to expected tokens.
+ if !allow_recovery || self.token != token::ModSep {
+ return Ok(base);
+ }
+ let ty = match base.to_ty() {
+ Some(ty) => ty,
+ None => return Ok(base),
+ };
+
+ self.bump(); // `::`
+ let mut segments = Vec::new();
+ self.parse_path_segments(&mut segments, T::PATH_STYLE, true)?;
+
+ let span = ty.span.to(self.prev_span);
+ let path_span = span.to(span); // use an empty path since `position` == 0
+ let recovered = base.to_recovered(
+ Some(QSelf { ty, path_span, position: 0 }),
+ ast::Path { segments, span },
+ );
+
+ self.diagnostic()
+ .struct_span_err(span, "missing angle brackets in associated item path")
+ .span_suggestion( // this is a best-effort recovery
+ span, "try", recovered.to_string(), Applicability::MaybeIncorrect
+ ).emit();
+
+ Ok(recovered)
+ }
+
+ fn parse_borrowed_pointee(&mut self) -> PResult<'a, TyKind> {
+ let opt_lifetime = if self.check_lifetime() { Some(self.expect_lifetime()) } else { None };
+ let mutbl = self.parse_mutability();
+ let ty = self.parse_ty_no_plus()?;
+ return Ok(TyKind::Rptr(opt_lifetime, MutTy { ty: ty, mutbl: mutbl }));
+ }
+
+ fn parse_ptr(&mut self) -> PResult<'a, MutTy> {
+ let mutbl = if self.eat_keyword(keywords::Mut) {
+ Mutability::Mutable
+ } else if self.eat_keyword(keywords::Const) {
+ Mutability::Immutable
+ } else {
+ let span = self.prev_span;
+ let msg = "expected mut or const in raw pointer type";
+ self.struct_span_err(span, msg)
+ .span_label(span, msg)
+ .help("use `*mut T` or `*const T` as appropriate")
+ .emit();
+ Mutability::Immutable
+ };
+ let t = self.parse_ty_no_plus()?;
+ Ok(MutTy { ty: t, mutbl: mutbl })
+ }
+
+ fn is_named_argument(&mut self) -> bool {
+ let offset = match self.token {
+ token::Interpolated(ref nt) => match **nt {
+ token::NtPat(..) => return self.look_ahead(1, |t| t == &token::Colon),
+ _ => 0,
+ }
+ token::BinOp(token::And) | token::AndAnd => 1,
+ _ if self.token.is_keyword(keywords::Mut) => 1,
+ _ => 0,
+ };
+
+ self.look_ahead(offset, |t| t.is_ident()) &&
+ self.look_ahead(offset + 1, |t| t == &token::Colon)
+ }
+
+ /// Skips unexpected attributes and doc comments in this position and emits an appropriate
+ /// error.
+ fn eat_incorrect_doc_comment(&mut self, applied_to: &str) {
+ if let token::DocComment(_) = self.token {
+ let mut err = self.diagnostic().struct_span_err(
+ self.span,
+ &format!("documentation comments cannot be applied to {}", applied_to),
+ );
+ err.span_label(self.span, "doc comments are not allowed here");
+ err.emit();
+ self.bump();
+ } else if self.token == token::Pound && self.look_ahead(1, |t| {
+ *t == token::OpenDelim(token::Bracket)
+ }) {
+ let lo = self.span;
+ // Skip every token until next possible arg.
+ while self.token != token::CloseDelim(token::Bracket) {
+ self.bump();
+ }
+ let sp = lo.to(self.span);
+ self.bump();
+ let mut err = self.diagnostic().struct_span_err(
+ sp,
+ &format!("attributes cannot be applied to {}", applied_to),
+ );
+ err.span_label(sp, "attributes are not allowed here");
+ err.emit();
+ }
+ }
+
+ /// This version of parse arg doesn't necessarily require identifier names.
+ fn parse_arg_general(&mut self, require_name: bool, is_trait_item: bool) -> PResult<'a, Arg> {
+ maybe_whole!(self, NtArg, |x| x);
+
+ if let Ok(Some(_)) = self.parse_self_arg() {
+ let mut err = self.struct_span_err(self.prev_span,
+ "unexpected `self` argument in function");
+ err.span_label(self.prev_span,
+ "`self` is only valid as the first argument of an associated function");
+ return Err(err);
+ }
+
+ let (pat, ty) = if require_name || self.is_named_argument() {
+ debug!("parse_arg_general parse_pat (require_name:{})",
+ require_name);
+ self.eat_incorrect_doc_comment("method arguments");
+ let pat = self.parse_pat(Some("argument name"))?;
+
+ if let Err(mut err) = self.expect(&token::Colon) {
+ // If we find a pattern followed by an identifier, it could be an (incorrect)
+ // C-style parameter declaration.
+ if self.check_ident() && self.look_ahead(1, |t| {
+ *t == token::Comma || *t == token::CloseDelim(token::Paren)
+ }) {
+ let ident = self.parse_ident().unwrap();
+ let span = pat.span.with_hi(ident.span.hi());
+
+ err.span_suggestion(
+ span,
+ "declare the type after the parameter binding",
+ String::from("<identifier>: <type>"),
+ Applicability::HasPlaceholders,
+ );
+ } else if require_name && is_trait_item {
+ if let PatKind::Ident(_, ident, _) = pat.node {
+ err.span_suggestion(
+ pat.span,
+ "explicitly ignore parameter",
+ format!("_: {}", ident),
+ Applicability::MachineApplicable,
+ );
+ }
+
+ err.note("anonymous parameters are removed in the 2018 edition (see RFC 1685)");
+ }
+
+ return Err(err);
+ }
+
+ self.eat_incorrect_doc_comment("a method argument's type");
+ (pat, self.parse_ty()?)
+ } else {
+ debug!("parse_arg_general ident_to_pat");
+ let parser_snapshot_before_ty = self.clone();
+ self.eat_incorrect_doc_comment("a method argument's type");
+ let mut ty = self.parse_ty();
+ if ty.is_ok() && self.token != token::Comma &&
+ self.token != token::CloseDelim(token::Paren) {
+ // This wasn't actually a type, but a pattern looking like a type,
+ // so we are going to rollback and re-parse for recovery.
+ ty = self.unexpected();
+ }
+ match ty {
+ Ok(ty) => {
+ let ident = Ident::new(keywords::Invalid.name(), self.prev_span);
+ let pat = P(Pat {
+ id: ast::DUMMY_NODE_ID,
+ node: PatKind::Ident(
+ BindingMode::ByValue(Mutability::Immutable), ident, None),
+ span: ty.span,
+ });
+ (pat, ty)
+ }
+ Err(mut err) => {
+ // Recover from attempting to parse the argument as a type without pattern.
+ err.cancel();
+ mem::replace(self, parser_snapshot_before_ty);
+ let pat = self.parse_pat(Some("argument name"))?;
+ self.expect(&token::Colon)?;
+ let ty = self.parse_ty()?;
+
+ let mut err = self.diagnostic().struct_span_err_with_code(
+ pat.span,
+ "patterns aren't allowed in methods without bodies",
+ DiagnosticId::Error("E0642".into()),
+ );
+ err.span_suggestion_short(
+ pat.span,
+ "give this argument a name or use an underscore to ignore it",
+ "_".to_owned(),
+ Applicability::MachineApplicable,
+ );
+ err.emit();
+
+ // Pretend the pattern is `_`, to avoid duplicate errors from AST validation.
+ let pat = P(Pat {
+ node: PatKind::Wild,
+ span: pat.span,
+ id: ast::DUMMY_NODE_ID
+ });
+ (pat, ty)
+ }
+ }
+ };
+
+ Ok(Arg { ty, pat, id: ast::DUMMY_NODE_ID })
+ }
+
+ /// Parses a single function argument.
+ crate fn parse_arg(&mut self) -> PResult<'a, Arg> {
+ self.parse_arg_general(true, false)
+ }
+
+ /// Parses an argument in a lambda header (e.g., `|arg, arg|`).
+ fn parse_fn_block_arg(&mut self) -> PResult<'a, Arg> {
+ let pat = self.parse_pat(Some("argument name"))?;
+ let t = if self.eat(&token::Colon) {
+ self.parse_ty()?
+ } else {
+ P(Ty {
+ id: ast::DUMMY_NODE_ID,
+ node: TyKind::Infer,
+ span: self.prev_span,
+ })
+ };
+ Ok(Arg {
+ ty: t,
+ pat,
+ id: ast::DUMMY_NODE_ID
+ })
+ }
+
+ fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<'a, Option<P<ast::Expr>>> {
+ if self.eat(&token::Semi) {
+ Ok(Some(self.parse_expr()?))
+ } else {
+ Ok(None)
+ }
+ }
+
+ /// Matches `token_lit = LIT_INTEGER | ...`.
+ fn parse_lit_token(&mut self) -> PResult<'a, LitKind> {
+ let out = match self.token {
+ token::Interpolated(ref nt) => match **nt {
+ token::NtExpr(ref v) | token::NtLiteral(ref v) => match v.node {
+ ExprKind::Lit(ref lit) => { lit.node.clone() }
+ _ => { return self.unexpected_last(&self.token); }
+ },
+ _ => { return self.unexpected_last(&self.token); }
+ },
+ token::Literal(lit, suf) => {
+ let diag = Some((self.span, &self.sess.span_diagnostic));
+ let (suffix_illegal, result) = parse::lit_token(lit, suf, diag);
+
+ if suffix_illegal {
+ let sp = self.span;
+ self.expect_no_suffix(sp, lit.literal_name(), suf)
+ }
+
+ result.unwrap()
+ }
+ token::Dot if self.look_ahead(1, |t| match t {
+ token::Literal(parse::token::Lit::Integer(_) , _) => true,
+ _ => false,
+ }) => { // recover from `let x = .4;`
+ let lo = self.span;
+ self.bump();
+ if let token::Literal(
+ parse::token::Lit::Integer(val),
+ suffix,
+ ) = self.token {
+ let suffix = suffix.and_then(|s| {
+ let s = s.as_str().get();
+ if ["f32", "f64"].contains(&s) {
+ Some(s)
+ } else {
+ None
+ }
+ }).unwrap_or("");
+ self.bump();
+ let sp = lo.to(self.prev_span);
+ let mut err = self.diagnostic()
+ .struct_span_err(sp, "float literals must have an integer part");
+ err.span_suggestion(
+ sp,
+ "must have an integer part",
+ format!("0.{}{}", val, suffix),
+ Applicability::MachineApplicable,
+ );
+ err.emit();
+ return Ok(match suffix {
+ "f32" => ast::LitKind::Float(val, ast::FloatTy::F32),
+ "f64" => ast::LitKind::Float(val, ast::FloatTy::F64),
+ _ => ast::LitKind::FloatUnsuffixed(val),
+ });
+ } else {
+ unreachable!();
+ };
+ }
+ _ => { return self.unexpected_last(&self.token); }
+ };
+
+ self.bump();
+ Ok(out)
+ }
+
+ /// Matches `lit = true | false | token_lit`.
+ crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
+ let lo = self.span;
+ let lit = if self.eat_keyword(keywords::True) {
+ LitKind::Bool(true)
+ } else if self.eat_keyword(keywords::False) {
+ LitKind::Bool(false)
+ } else {
+ let lit = self.parse_lit_token()?;
+ lit
+ };
+ Ok(source_map::Spanned { node: lit, span: lo.to(self.prev_span) })
+ }
+
+ /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
+ crate fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
+ maybe_whole_expr!(self);
+
+ let minus_lo = self.span;
+ let minus_present = self.eat(&token::BinOp(token::Minus));
+ let lo = self.span;
+ let literal = self.parse_lit()?;
+ let hi = self.prev_span;
+ let expr = self.mk_expr(lo.to(hi), ExprKind::Lit(literal), ThinVec::new());
+
+ if minus_present {
+ let minus_hi = self.prev_span;
+ let unary = self.mk_unary(UnOp::Neg, expr);
+ Ok(self.mk_expr(minus_lo.to(minus_hi), unary, ThinVec::new()))
+ } else {
+ Ok(expr)
+ }
+ }
+
+ fn parse_path_segment_ident(&mut self) -> PResult<'a, ast::Ident> {
+ match self.token {
+ token::Ident(ident, _) if self.token.is_path_segment_keyword() => {
+ let span = self.span;
+ self.bump();
+ Ok(Ident::new(ident.name, span))
+ }
+ _ => self.parse_ident(),
+ }
+ }
+
+ fn parse_ident_or_underscore(&mut self) -> PResult<'a, ast::Ident> {
+ match self.token {
+ token::Ident(ident, false) if ident.name == keywords::Underscore.name() => {
+ let span = self.span;
+ self.bump();
+ Ok(Ident::new(ident.name, span))
+ }
+ _ => self.parse_ident(),
+ }
+ }
+
+ /// Parses a qualified path.
+ /// Assumes that the leading `<` has been parsed already.
+ ///
+ /// `qualified_path = <type [as trait_ref]>::path`
+ ///
+ /// # Examples
+ /// `<T>::default`
+ /// `<T as U>::a`
+ /// `<T as U>::F::a<S>` (without disambiguator)
+ /// `<T as U>::F::a::<S>` (with disambiguator)
+ fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, ast::Path)> {
+ let lo = self.prev_span;
+ let ty = self.parse_ty()?;
+
+ // `path` will contain the prefix of the path up to the `>`,
+ // if any (e.g., `U` in the `<T as U>::*` examples
+ // above). `path_span` has the span of that path, or an empty
+ // span in the case of something like `<T>::Bar`.
+ let (mut path, path_span);
+ if self.eat_keyword(keywords::As) {
+ let path_lo = self.span;
+ path = self.parse_path(PathStyle::Type)?;
+ path_span = path_lo.to(self.prev_span);
+ } else {
+ path = ast::Path { segments: Vec::new(), span: syntax_pos::DUMMY_SP };
+ path_span = self.span.to(self.span);
+ }
+
+ // See doc comment for `unmatched_angle_bracket_count`.
+ self.expect(&token::Gt)?;
+ if self.unmatched_angle_bracket_count > 0 {
+ self.unmatched_angle_bracket_count -= 1;
+ debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
+ }
+
+ self.expect(&token::ModSep)?;
+
+ let qself = QSelf { ty, path_span, position: path.segments.len() };
+ self.parse_path_segments(&mut path.segments, style, true)?;
+
+ Ok((qself, ast::Path { segments: path.segments, span: lo.to(self.prev_span) }))
+ }
+
+ /// Parses simple paths.
+ ///
+ /// `path = [::] segment+`
+ /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
+ ///
+ /// # Examples
+ /// `a::b::C<D>` (without disambiguator)
+ /// `a::b::C::<D>` (with disambiguator)
+ /// `Fn(Args)` (without disambiguator)
+ /// `Fn::(Args)` (with disambiguator)
+ pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, ast::Path> {
+ self.parse_path_common(style, true)
+ }
+
+ crate fn parse_path_common(&mut self, style: PathStyle, enable_warning: bool)
+ -> PResult<'a, ast::Path> {
+ maybe_whole!(self, NtPath, |path| {
+ if style == PathStyle::Mod &&
+ path.segments.iter().any(|segment| segment.args.is_some()) {
+ self.diagnostic().span_err(path.span, "unexpected generic arguments in path");
+ }
+ path
+ });
+
+ let lo = self.meta_var_span.unwrap_or(self.span);
+ let mut segments = Vec::new();
+ let mod_sep_ctxt = self.span.ctxt();
+ if self.eat(&token::ModSep) {
+ segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
+ }
+ self.parse_path_segments(&mut segments, style, enable_warning)?;
+
+ Ok(ast::Path { segments, span: lo.to(self.prev_span) })
+ }
+
+ /// Like `parse_path`, but also supports parsing `Word` meta items into paths for
+ /// backwards-compatibility. This is used when parsing derive macro paths in `#[derive]`
+ /// attributes.
+ pub fn parse_path_allowing_meta(&mut self, style: PathStyle) -> PResult<'a, ast::Path> {
+ let meta_ident = match self.token {
+ token::Interpolated(ref nt) => match **nt {
+ token::NtMeta(ref meta) => match meta.node {
+ ast::MetaItemKind::Word => Some(meta.ident.clone()),
+ _ => None,
+ },
+ _ => None,
+ },
+ _ => None,
+ };
+ if let Some(path) = meta_ident {
+ self.bump();
+ return Ok(path);
+ }
+ self.parse_path(style)
+ }
+
+ fn parse_path_segments(&mut self,
+ segments: &mut Vec<PathSegment>,
+ style: PathStyle,
+ enable_warning: bool)
+ -> PResult<'a, ()> {
+ loop {
+ let segment = self.parse_path_segment(style, enable_warning)?;
+ if style == PathStyle::Expr {
+ // In order to check for trailing angle brackets, we must have finished
+ // recursing (`parse_path_segment` can indirectly call this function),
+ // that is, the next token must be the highlighted part of the below example:
+ //
+ // `Foo::<Bar as Baz<T>>::Qux`
+ // ^ here
+ //
+ // As opposed to the below highlight (if we had only finished the first
+ // recursion):
+ //
+ // `Foo::<Bar as Baz<T>>::Qux`
+ // ^ here
+ //
+ // `PathStyle::Expr` is only provided at the root invocation and never in
+ // `parse_path_segment` to recurse and therefore can be checked to maintain
+ // this invariant.
+ self.check_trailing_angle_brackets(&segment, token::ModSep);
+ }
+ segments.push(segment);
+
+ if self.is_import_coupler() || !self.eat(&token::ModSep) {
+ return Ok(());
+ }
+ }
+ }
+
+ fn parse_path_segment(&mut self, style: PathStyle, enable_warning: bool)
+ -> PResult<'a, PathSegment> {
+ let ident = self.parse_path_segment_ident()?;
+
+ let is_args_start = |token: &token::Token| match *token {
+ token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren) => true,
+ _ => false,
+ };
+ let check_args_start = |this: &mut Self| {
+ this.expected_tokens.extend_from_slice(
+ &[TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren))]
+ );
+ is_args_start(&this.token)
+ };
+
+ Ok(if style == PathStyle::Type && check_args_start(self) ||
+ style != PathStyle::Mod && self.check(&token::ModSep)
+ && self.look_ahead(1, |t| is_args_start(t)) {
+ // Generic arguments are found - `<`, `(`, `::<` or `::(`.
+ if self.eat(&token::ModSep) && style == PathStyle::Type && enable_warning {
+ self.diagnostic().struct_span_warn(self.prev_span, "unnecessary path disambiguator")
+ .span_label(self.prev_span, "try removing `::`").emit();
+ }
+ let lo = self.span;
+
+ // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
+ // it isn't, then we reset the unmatched angle bracket count as we're about to start
+ // parsing a new path.
+ if style == PathStyle::Expr {
+ self.unmatched_angle_bracket_count = 0;
+ self.max_angle_bracket_count = 0;
+ }
+
+ let args = if self.eat_lt() {
+ // `<'a, T, A = U>`
+ let (args, bindings) =
+ self.parse_generic_args_with_leaning_angle_bracket_recovery(style, lo)?;
+ self.expect_gt()?;
+ let span = lo.to(self.prev_span);
+ AngleBracketedArgs { args, bindings, span }.into()
+ } else {
+ // `(T, U) -> R`
+ self.bump(); // `(`
+ let (inputs, recovered) = self.parse_seq_to_before_tokens(
+ &[&token::CloseDelim(token::Paren)],
+ SeqSep::trailing_allowed(token::Comma),
+ TokenExpectType::Expect,
+ |p| p.parse_ty())?;
+ if !recovered {
+ self.bump(); // `)`
+ }
+ let span = lo.to(self.prev_span);
+ let output = if self.eat(&token::RArrow) {
+ Some(self.parse_ty_common(false, false)?)
+ } else {
+ None
+ };
+ ParenthesizedArgs { inputs, output, span }.into()
+ };
+
+ PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
+ } else {
+ // Generic arguments are not found.
+ PathSegment::from_ident(ident)
+ })
+ }
+
+ crate fn check_lifetime(&mut self) -> bool {
+ self.expected_tokens.push(TokenType::Lifetime);
+ self.token.is_lifetime()
+ }
+
+ /// Parses a single lifetime `'a` or panics.
+ crate fn expect_lifetime(&mut self) -> Lifetime {
+ if let Some(ident) = self.token.lifetime() {
+ let span = self.span;
+ self.bump();
+ Lifetime { ident: Ident::new(ident.name, span), id: ast::DUMMY_NODE_ID }
+ } else {
+ self.span_bug(self.span, "not a lifetime")
+ }
+ }
+
+ fn eat_label(&mut self) -> Option<Label> {
+ if let Some(ident) = self.token.lifetime() {
+ let span = self.span;
+ self.bump();
+ Some(Label { ident: Ident::new(ident.name, span) })
+ } else {
+ None
+ }
+ }
+
+ /// Parses mutability (`mut` or nothing).
+ fn parse_mutability(&mut self) -> Mutability {
+ if self.eat_keyword(keywords::Mut) {
+ Mutability::Mutable
+ } else {
+ Mutability::Immutable
+ }
+ }
+
+ fn parse_field_name(&mut self) -> PResult<'a, Ident> {
+ if let token::Literal(token::Integer(name), None) = self.token {
+ self.bump();
+ Ok(Ident::new(name, self.prev_span))
+ } else {
+ self.parse_ident_common(false)
+ }
+ }
+
+ /// Parse ident (COLON expr)?
+ fn parse_field(&mut self) -> PResult<'a, Field> {
+ let attrs = self.parse_outer_attributes()?;
+ let lo = self.span;
+
+ // Check if a colon exists one ahead. This means we're parsing a fieldname.
+ let (fieldname, expr, is_shorthand) = if self.look_ahead(1, |t| {
+ t == &token::Colon || t == &token::Eq
+ }) {
+ let fieldname = self.parse_field_name()?;
+
+ // Check for an equals token. This means the source incorrectly attempts to
+ // initialize a field with an eq rather than a colon.
+ if self.token == token::Eq {
+ self.diagnostic()
+ .struct_span_err(self.span, "expected `:`, found `=`")
+ .span_suggestion(
+ fieldname.span.shrink_to_hi().to(self.span),
+ "replace equals symbol with a colon",
+ ":".to_string(),
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ }
+ self.bump(); // `:`
+ (fieldname, self.parse_expr()?, false)
+ } else {
+ let fieldname = self.parse_ident_common(false)?;
+
+ // Mimic `x: x` for the `x` field shorthand.
+ let path = ast::Path::from_ident(fieldname);
+ let expr = self.mk_expr(fieldname.span, ExprKind::Path(None, path), ThinVec::new());
+ (fieldname, expr, true)
+ };
+ Ok(ast::Field {
+ ident: fieldname,
+ span: lo.to(expr.span),
+ expr,
+ is_shorthand,
+ attrs: attrs.into(),
+ })
+ }
+
+ fn mk_expr(&mut self, span: Span, node: ExprKind, attrs: ThinVec<Attribute>) -> P<Expr> {
+ P(Expr { node, span, attrs, id: ast::DUMMY_NODE_ID })
+ }
+
+ fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::ExprKind {
+ ExprKind::Unary(unop, expr)
+ }
+
+ fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::ExprKind {
+ ExprKind::Binary(binop, lhs, rhs)
+ }
+
+ fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::ExprKind {
+ ExprKind::Call(f, args)
+ }
+
+ fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::ExprKind {
+ ExprKind::Index(expr, idx)
+ }
+
+ fn mk_range(&mut self,
+ start: Option<P<Expr>>,
+ end: Option<P<Expr>>,
+ limits: RangeLimits)
+ -> PResult<'a, ast::ExprKind> {
+ if end.is_none() && limits == RangeLimits::Closed {
+ Err(self.span_fatal_err(self.span, Error::InclusiveRangeWithNoEnd))
+ } else {
+ Ok(ExprKind::Range(start, end, limits))
+ }
+ }
+
+ fn mk_assign_op(&mut self, binop: ast::BinOp,
+ lhs: P<Expr>, rhs: P<Expr>) -> ast::ExprKind {
+ ExprKind::AssignOp(binop, lhs, rhs)
+ }
+
+ pub fn mk_mac_expr(&mut self, span: Span, m: Mac_, attrs: ThinVec<Attribute>) -> P<Expr> {
+ P(Expr {
+ id: ast::DUMMY_NODE_ID,
+ node: ExprKind::Mac(source_map::Spanned {node: m, span: span}),
+ span,
+ attrs,
+ })
+ }
+
+ fn expect_delimited_token_tree(&mut self) -> PResult<'a, (MacDelimiter, TokenStream)> {
+ let delim = match self.token {
+ token::OpenDelim(delim) => delim,
+ _ => {
+ let msg = "expected open delimiter";
+ let mut err = self.fatal(msg);
+ err.span_label(self.span, msg);
+ return Err(err)
+ }
+ };
+ let tts = match self.parse_token_tree() {
+ TokenTree::Delimited(_, _, tts) => tts,
+ _ => unreachable!(),
+ };
+ let delim = match delim {
+ token::Paren => MacDelimiter::Parenthesis,
+ token::Bracket => MacDelimiter::Bracket,
+ token::Brace => MacDelimiter::Brace,
+ token::NoDelim => self.bug("unexpected no delimiter"),
+ };
+ Ok((delim, tts.into()))
+ }
+
+ /// At the bottom (top?) of the precedence hierarchy,
+ /// Parses things like parenthesized exprs, macros, `return`, etc.
+ ///
+ /// N.B., this does not parse outer attributes, and is private because it only works
+ /// correctly if called from `parse_dot_or_call_expr()`.
+ fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
+ maybe_whole_expr!(self);
+
+ // Outer attributes are already parsed and will be
+ // added to the return value after the fact.
+ //
+ // Therefore, prevent sub-parser from parsing
+ // attributes by giving them a empty "already parsed" list.
+ let mut attrs = ThinVec::new();
+
+ let lo = self.span;
+ let mut hi = self.span;
+
+ let ex: ExprKind;
+
+ // Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr().
+ match self.token {
+ token::OpenDelim(token::Paren) => {
+ self.bump();
+
+ attrs.extend(self.parse_inner_attributes()?);
+
+ // (e) is parenthesized e
+ // (e,) is a tuple with only one field, e
+ let mut es = vec![];
+ let mut trailing_comma = false;
+ let mut recovered = false;
+ while self.token != token::CloseDelim(token::Paren) {
+ es.push(self.parse_expr()?);
+ recovered = self.expect_one_of(
+ &[],
+ &[token::Comma, token::CloseDelim(token::Paren)],
+ )?;
+ if self.eat(&token::Comma) {
+ trailing_comma = true;
+ } else {
+ trailing_comma = false;
+ break;
+ }
+ }
+ if !recovered {
+ self.bump();
+ }
+
+ hi = self.prev_span;
+ ex = if es.len() == 1 && !trailing_comma {
+ ExprKind::Paren(es.into_iter().nth(0).unwrap())
+ } else {
+ ExprKind::Tup(es)
+ };
+ }
+ token::OpenDelim(token::Brace) => {
+ return self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs);
+ }
+ token::BinOp(token::Or) | token::OrOr => {
+ return self.parse_lambda_expr(attrs);
+ }
+ token::OpenDelim(token::Bracket) => {
+ self.bump();
+
+ attrs.extend(self.parse_inner_attributes()?);
+
+ if self.eat(&token::CloseDelim(token::Bracket)) {
+ // Empty vector.
+ ex = ExprKind::Array(Vec::new());
+ } else {
+ // Nonempty vector.
+ let first_expr = self.parse_expr()?;
+ if self.eat(&token::Semi) {
+ // Repeating array syntax: [ 0; 512 ]
+ let count = AnonConst {
+ id: ast::DUMMY_NODE_ID,
+ value: self.parse_expr()?,
+ };
+ self.expect(&token::CloseDelim(token::Bracket))?;
+ ex = ExprKind::Repeat(first_expr, count);
+ } else if self.eat(&token::Comma) {
+ // Vector with two or more elements.
+ let remaining_exprs = self.parse_seq_to_end(
+ &token::CloseDelim(token::Bracket),
+ SeqSep::trailing_allowed(token::Comma),
+ |p| Ok(p.parse_expr()?)
+ )?;
+ let mut exprs = vec![first_expr];
+ exprs.extend(remaining_exprs);
+ ex = ExprKind::Array(exprs);
+ } else {
+ // Vector with one element.
+ self.expect(&token::CloseDelim(token::Bracket))?;
+ ex = ExprKind::Array(vec![first_expr]);
+ }
+ }
+ hi = self.prev_span;
+ }
+ _ => {
+ if self.eat_lt() {
+ let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
+ hi = path.span;
+ return Ok(self.mk_expr(lo.to(hi), ExprKind::Path(Some(qself), path), attrs));
+ }
+ if self.span.rust_2018() && self.check_keyword(keywords::Async)
+ {
+ if self.is_async_block() { // check for `async {` and `async move {`
+ return self.parse_async_block(attrs);
+ } else {
+ return self.parse_lambda_expr(attrs);
+ }
+ }
+ if self.check_keyword(keywords::Move) || self.check_keyword(keywords::Static) {
+ return self.parse_lambda_expr(attrs);
+ }
+ if self.eat_keyword(keywords::If) {
+ return self.parse_if_expr(attrs);
+ }
+ if self.eat_keyword(keywords::For) {
+ let lo = self.prev_span;
+ return self.parse_for_expr(None, lo, attrs);
+ }
+ if self.eat_keyword(keywords::While) {
+ let lo = self.prev_span;
+ return self.parse_while_expr(None, lo, attrs);
+ }
+ if let Some(label) = self.eat_label() {
+ let lo = label.ident.span;
+ self.expect(&token::Colon)?;
+ if self.eat_keyword(keywords::While) {
+ return self.parse_while_expr(Some(label), lo, attrs)
+ }
+ if self.eat_keyword(keywords::For) {
+ return self.parse_for_expr(Some(label), lo, attrs)
+ }
+ if self.eat_keyword(keywords::Loop) {
+ return self.parse_loop_expr(Some(label), lo, attrs)
+ }
+ if self.token == token::OpenDelim(token::Brace) {
+ return self.parse_block_expr(Some(label),
+ lo,
+ BlockCheckMode::Default,
+ attrs);
+ }
+ let msg = "expected `while`, `for`, `loop` or `{` after a label";
+ let mut err = self.fatal(msg);
+ err.span_label(self.span, msg);
+ return Err(err);
+ }
+ if self.eat_keyword(keywords::Loop) {
+ let lo = self.prev_span;
+ return self.parse_loop_expr(None, lo, attrs);
+ }
+ if self.eat_keyword(keywords::Continue) {
+ let label = self.eat_label();
+ let ex = ExprKind::Continue(label);
+ let hi = self.prev_span;
+ return Ok(self.mk_expr(lo.to(hi), ex, attrs));
+ }
+ if self.eat_keyword(keywords::Match) {
+ let match_sp = self.prev_span;
+ return self.parse_match_expr(attrs).map_err(|mut err| {
+ err.span_label(match_sp, "while parsing this match expression");
+ err
+ });
+ }
+ if self.eat_keyword(keywords::Unsafe) {
+ return self.parse_block_expr(
+ None,
+ lo,
+ BlockCheckMode::Unsafe(ast::UserProvided),
+ attrs);
+ }
+ if self.is_do_catch_block() {
+ let mut db = self.fatal("found removed `do catch` syntax");
+ db.help("Following RFC #2388, the new non-placeholder syntax is `try`");
+ return Err(db);
+ }
+ if self.is_try_block() {
+ let lo = self.span;
+ assert!(self.eat_keyword(keywords::Try));
+ return self.parse_try_block(lo, attrs);
+ }
+ if self.eat_keyword(keywords::Return) {
+ if self.token.can_begin_expr() {
+ let e = self.parse_expr()?;
+ hi = e.span;
+ ex = ExprKind::Ret(Some(e));
+ } else {
+ ex = ExprKind::Ret(None);
+ }
+ } else if self.eat_keyword(keywords::Break) {
+ let label = self.eat_label();
+ let e = if self.token.can_begin_expr()
+ && !(self.token == token::OpenDelim(token::Brace)
+ && self.restrictions.contains(
+ Restrictions::NO_STRUCT_LITERAL)) {
+ Some(self.parse_expr()?)
+ } else {
+ None
+ };
+ ex = ExprKind::Break(label, e);
+ hi = self.prev_span;
+ } else if self.eat_keyword(keywords::Yield) {
+ if self.token.can_begin_expr() {
+ let e = self.parse_expr()?;
+ hi = e.span;
+ ex = ExprKind::Yield(Some(e));
+ } else {
+ ex = ExprKind::Yield(None);
+ }
+ } else if self.token.is_keyword(keywords::Let) {
+ // Catch this syntax error here, instead of in `parse_ident`, so
+ // that we can explicitly mention that let is not to be used as an expression
+ let mut db = self.fatal("expected expression, found statement (`let`)");
+ db.span_label(self.span, "expected expression");
+ db.note("variable declaration using `let` is a statement");
+ return Err(db);
+ } else if self.token.is_path_start() {
+ let pth = self.parse_path(PathStyle::Expr)?;
+
+ // `!`, as an operator, is prefix, so we know this isn't that
+ if self.eat(&token::Not) {
+ // MACRO INVOCATION expression
+ let (delim, tts) = self.expect_delimited_token_tree()?;
+ let hi = self.prev_span;
+ let node = Mac_ { path: pth, tts, delim };
+ return Ok(self.mk_mac_expr(lo.to(hi), node, attrs))
+ }
+ if self.check(&token::OpenDelim(token::Brace)) {
+ // This is a struct literal, unless we're prohibited
+ // from parsing struct literals here.
+ let prohibited = self.restrictions.contains(
+ Restrictions::NO_STRUCT_LITERAL
+ );
+ if !prohibited {
+ return self.parse_struct_expr(lo, pth, attrs);
+ }
+ }
+
+ hi = pth.span;
+ ex = ExprKind::Path(None, pth);
+ } else {
+ if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
+ // Don't complain about bare semicolons after unclosed braces
+ // recovery in order to keep the error count down. Fixing the
+ // delimiters will possibly also fix the bare semicolon found in
+ // expression context. For example, silence the following error:
+ // ```
+ // error: expected expression, found `;`
+ // --> file.rs:2:13
+ // |
+ // 2 | foo(bar(;
+ // | ^ expected expression
+ // ```
+ self.bump();
+ return Ok(self.mk_expr(self.span, ExprKind::Err, ThinVec::new()));
+ }
+ match self.parse_literal_maybe_minus() {
+ Ok(expr) => {
+ hi = expr.span;
+ ex = expr.node.clone();
+ }
+ Err(mut err) => {
+ self.cancel(&mut err);
+ let msg = format!("expected expression, found {}",
+ self.this_token_descr());
+ let mut err = self.fatal(&msg);
+ err.span_label(self.span, "expected expression");
+ return Err(err);
+ }
+ }
+ }
+ }
+ }
+
+ let expr = Expr { node: ex, span: lo.to(hi), id: ast::DUMMY_NODE_ID, attrs };
+ let expr = self.maybe_recover_from_bad_qpath(expr, true)?;
+
+ return Ok(P(expr));
+ }
+
+ fn parse_struct_expr(&mut self, lo: Span, pth: ast::Path, mut attrs: ThinVec<Attribute>)
+ -> PResult<'a, P<Expr>> {
+ let struct_sp = lo.to(self.prev_span);
+ self.bump();
+ let mut fields = Vec::new();
+ let mut base = None;
+
+ attrs.extend(self.parse_inner_attributes()?);
+
+ while self.token != token::CloseDelim(token::Brace) {
+ if self.eat(&token::DotDot) {
+ let exp_span = self.prev_span;
+ match self.parse_expr() {
+ Ok(e) => {
+ base = Some(e);
+ }
+ Err(mut e) => {
+ e.emit();
+ self.recover_stmt();
+ }
+ }
+ if self.token == token::Comma {
+ let mut err = self.sess.span_diagnostic.mut_span_err(
+ exp_span.to(self.prev_span),
+ "cannot use a comma after the base struct",
+ );
+ err.span_suggestion_short(
+ self.span,
+ "remove this comma",
+ String::new(),
+ Applicability::MachineApplicable
+ );
+ err.note("the base struct must always be the last field");
+ err.emit();
+ self.recover_stmt();
+ }
+ break;
+ }
+
+ let mut recovery_field = None;
+ if let token::Ident(ident, _) = self.token {
+ if !self.token.is_reserved_ident() && self.look_ahead(1, |t| *t == token::Colon) {
+ // Use in case of error after field-looking code: `S { foo: () with a }`
+ let mut ident = ident.clone();
+ ident.span = self.span;
+ recovery_field = Some(ast::Field {
+ ident,
+ span: self.span,
+ expr: self.mk_expr(self.span, ExprKind::Err, ThinVec::new()),
+ is_shorthand: false,
+ attrs: ThinVec::new(),
+ });
+ }
+ }
+ let mut parsed_field = None;
+ match self.parse_field() {
+ Ok(f) => parsed_field = Some(f),
+ Err(mut e) => {
+ e.span_label(struct_sp, "while parsing this struct");
+ e.emit();
+
+ // If the next token is a comma, then try to parse
+ // what comes next as additional fields, rather than
+ // bailing out until next `}`.
+ if self.token != token::Comma {
+ self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
+ if self.token != token::Comma {
+ break;
+ }
+ }
+ }
+ }
+
+ match self.expect_one_of(&[token::Comma],
+ &[token::CloseDelim(token::Brace)]) {
+ Ok(_) => if let Some(f) = parsed_field.or(recovery_field) {
+ // only include the field if there's no parse error for the field name
+ fields.push(f);
+ }
+ Err(mut e) => {
+ if let Some(f) = recovery_field {
+ fields.push(f);
+ }
+ e.span_label(struct_sp, "while parsing this struct");
+ e.emit();
+ self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
+ self.eat(&token::Comma);
+ }
+ }
+ }
+
+ let span = lo.to(self.span);
+ self.expect(&token::CloseDelim(token::Brace))?;
+ return Ok(self.mk_expr(span, ExprKind::Struct(pth, fields, base), attrs));
+ }
+
+ fn parse_or_use_outer_attributes(&mut self,
+ already_parsed_attrs: Option<ThinVec<Attribute>>)
+ -> PResult<'a, ThinVec<Attribute>> {
+ if let Some(attrs) = already_parsed_attrs {
+ Ok(attrs)
+ } else {
+ self.parse_outer_attributes().map(|a| a.into())
+ }
+ }
+
+ /// Parses a block or unsafe block.
+ fn parse_block_expr(&mut self, opt_label: Option<Label>,
+ lo: Span, blk_mode: BlockCheckMode,
+ outer_attrs: ThinVec<Attribute>)
+ -> PResult<'a, P<Expr>> {
+ self.expect(&token::OpenDelim(token::Brace))?;
+
+ let mut attrs = outer_attrs;
+ attrs.extend(self.parse_inner_attributes()?);
+
+ let blk = self.parse_block_tail(lo, blk_mode)?;
+ return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs));
+ }
+
+ /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
+ fn parse_dot_or_call_expr(&mut self,
+ already_parsed_attrs: Option<ThinVec<Attribute>>)
+ -> PResult<'a, P<Expr>> {
+ let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
+
+ let b = self.parse_bottom_expr();
+ let (span, b) = self.interpolated_or_expr_span(b)?;
+ self.parse_dot_or_call_expr_with(b, span, attrs)
+ }
+
+ fn parse_dot_or_call_expr_with(&mut self,
+ e0: P<Expr>,
+ lo: Span,
+ mut attrs: ThinVec<Attribute>)
+ -> PResult<'a, P<Expr>> {
+ // Stitch the list of outer attributes onto the return value.
+ // A little bit ugly, but the best way given the current code
+ // structure
+ self.parse_dot_or_call_expr_with_(e0, lo)
+ .map(|expr|
+ expr.map(|mut expr| {
+ attrs.extend::<Vec<_>>(expr.attrs.into());
+ expr.attrs = attrs;
+ match expr.node {
+ ExprKind::If(..) | ExprKind::IfLet(..) => {
+ if !expr.attrs.is_empty() {
+ // Just point to the first attribute in there...
+ let span = expr.attrs[0].span;
+
+ self.span_err(span,
+ "attributes are not yet allowed on `if` \
+ expressions");
+ }
+ }
+ _ => {}
+ }
+ expr
+ })
+ )
+ }
+
+ // Assuming we have just parsed `.`, continue parsing into an expression.
+ fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+ let segment = self.parse_path_segment(PathStyle::Expr, true)?;
+ self.check_trailing_angle_brackets(&segment, token::OpenDelim(token::Paren));
+
+ Ok(match self.token {
+ token::OpenDelim(token::Paren) => {
+ // Method call `expr.f()`
+ let mut args = self.parse_unspanned_seq(
+ &token::OpenDelim(token::Paren),
+ &token::CloseDelim(token::Paren),
+ SeqSep::trailing_allowed(token::Comma),
+ |p| Ok(p.parse_expr()?)
+ )?;
+ args.insert(0, self_arg);
+
+ let span = lo.to(self.prev_span);
+ self.mk_expr(span, ExprKind::MethodCall(segment, args), ThinVec::new())
+ }
+ _ => {
+ // Field access `expr.f`
+ if let Some(args) = segment.args {
+ self.span_err(args.span(),
+ "field expressions may not have generic arguments");
+ }
+
+ let span = lo.to(self.prev_span);
+ self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), ThinVec::new())
+ }
+ })
+ }
+
+ /// This function checks if there are trailing angle brackets and produces
+ /// a diagnostic to suggest removing them.
+ ///
+ /// ```ignore (diagnostic)
+ /// let _ = vec![1, 2, 3].into_iter().collect::<Vec<usize>>>>();
+ /// ^^ help: remove extra angle brackets
+ /// ```
+ fn check_trailing_angle_brackets(&mut self, segment: &PathSegment, end: token::Token) {
+ // This function is intended to be invoked after parsing a path segment where there are two
+ // cases:
+ //
+ // 1. A specific token is expected after the path segment.
+ // eg. `x.foo(`, `x.foo::<u32>(` (parenthesis - method call),
+ // `Foo::`, or `Foo::<Bar>::` (mod sep - continued path).
+ // 2. No specific token is expected after the path segment.
+ // eg. `x.foo` (field access)
+ //
+ // This function is called after parsing `.foo` and before parsing the token `end` (if
+ // present). This includes any angle bracket arguments, such as `.foo::<u32>` or
+ // `Foo::<Bar>`.
+
+ // We only care about trailing angle brackets if we previously parsed angle bracket
+ // arguments. This helps stop us incorrectly suggesting that extra angle brackets be
+ // removed in this case:
+ //
+ // `x.foo >> (3)` (where `x.foo` is a `u32` for example)
+ //
+ // This case is particularly tricky as we won't notice it just looking at the tokens -
+ // it will appear the same (in terms of upcoming tokens) as below (since the `::<u32>` will
+ // have already been parsed):
+ //
+ // `x.foo::<u32>>>(3)`
+ let parsed_angle_bracket_args = segment.args
+ .as_ref()
+ .map(|args| args.is_angle_bracketed())
+ .unwrap_or(false);
+
+ debug!(
+ "check_trailing_angle_brackets: parsed_angle_bracket_args={:?}",
+ parsed_angle_bracket_args,
+ );
+ if !parsed_angle_bracket_args {
+ return;
+ }
+
+ // Keep the span at the start so we can highlight the sequence of `>` characters to be
+ // removed.
+ let lo = self.span;
+
+ // We need to look-ahead to see if we have `>` characters without moving the cursor forward
+ // (since we might have the field access case and the characters we're eating are
+ // actual operators and not trailing characters - ie `x.foo >> 3`).
+ let mut position = 0;
+
+ // We can encounter `>` or `>>` tokens in any order, so we need to keep track of how
+ // many of each (so we can correctly pluralize our error messages) and continue to
+ // advance.
+ let mut number_of_shr = 0;
+ let mut number_of_gt = 0;
+ while self.look_ahead(position, |t| {
+ trace!("check_trailing_angle_brackets: t={:?}", t);
+ if *t == token::BinOp(token::BinOpToken::Shr) {
+ number_of_shr += 1;
+ true
+ } else if *t == token::Gt {
+ number_of_gt += 1;
+ true
+ } else {
+ false
+ }
+ }) {
+ position += 1;
+ }
+
+ // If we didn't find any trailing `>` characters, then we have nothing to error about.
+ debug!(
+ "check_trailing_angle_brackets: number_of_gt={:?} number_of_shr={:?}",
+ number_of_gt, number_of_shr,
+ );
+ if number_of_gt < 1 && number_of_shr < 1 {
+ return;
+ }
+
+ // Finally, double check that we have our end token as otherwise this is the
+ // second case.
+ if self.look_ahead(position, |t| {
+ trace!("check_trailing_angle_brackets: t={:?}", t);
+ *t == end
+ }) {
+ // Eat from where we started until the end token so that parsing can continue
+ // as if we didn't have those extra angle brackets.
+ self.eat_to_tokens(&[&end]);
+ let span = lo.until(self.span);
+
+ let plural = number_of_gt > 1 || number_of_shr >= 1;
+ self.diagnostic()
+ .struct_span_err(
+ span,
+ &format!("unmatched angle bracket{}", if plural { "s" } else { "" }),
+ )
+ .span_suggestion(
+ span,
+ &format!("remove extra angle bracket{}", if plural { "s" } else { "" }),
+ String::new(),
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ }
+ }
+
+ fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+ let mut e = e0;
+ let mut hi;
+ loop {
+ // expr?
+ while self.eat(&token::Question) {
+ let hi = self.prev_span;
+ e = self.mk_expr(lo.to(hi), ExprKind::Try(e), ThinVec::new());
+ }
+
+ // expr.f
+ if self.eat(&token::Dot) {
+ match self.token {
+ token::Ident(..) => {
+ e = self.parse_dot_suffix(e, lo)?;
+ }
+ token::Literal(token::Integer(name), _) => {
+ let span = self.span;
+ self.bump();
+ let field = ExprKind::Field(e, Ident::new(name, span));
+ e = self.mk_expr(lo.to(span), field, ThinVec::new());
+ }
+ token::Literal(token::Float(n), _suf) => {
+ self.bump();
+ let fstr = n.as_str();
+ let mut err = self.diagnostic()
+ .struct_span_err(self.prev_span, &format!("unexpected token: `{}`", n));
+ err.span_label(self.prev_span, "unexpected token");
+ if fstr.chars().all(|x| "0123456789.".contains(x)) {
+ let float = match fstr.parse::<f64>().ok() {
+ Some(f) => f,
+ None => continue,
+ };
+ let sugg = pprust::to_string(|s| {
+ use crate::print::pprust::PrintState;
+ s.popen()?;
+ s.print_expr(&e)?;
+ s.s.word( ".")?;
+ s.print_usize(float.trunc() as usize)?;
+ s.pclose()?;
+ s.s.word(".")?;
+ s.s.word(fstr.splitn(2, ".").last().unwrap().to_string())
+ });
+ err.span_suggestion(
+ lo.to(self.prev_span),
+ "try parenthesizing the first index",
+ sugg,
+ Applicability::MachineApplicable
+ );
+ }
+ return Err(err);
+
+ }
+ _ => {
+ // FIXME Could factor this out into non_fatal_unexpected or something.
+ let actual = self.this_token_to_string();
+ self.span_err(self.span, &format!("unexpected token: `{}`", actual));
+ }
+ }
+ continue;
+ }
+ if self.expr_is_complete(&e) { break; }
+ match self.token {
+ // expr(...)
+ token::OpenDelim(token::Paren) => {
+ let es = self.parse_unspanned_seq(
+ &token::OpenDelim(token::Paren),
+ &token::CloseDelim(token::Paren),
+ SeqSep::trailing_allowed(token::Comma),
+ |p| Ok(p.parse_expr()?)
+ )?;
+ hi = self.prev_span;
+
+ let nd = self.mk_call(e, es);
+ e = self.mk_expr(lo.to(hi), nd, ThinVec::new());
+ }
+
+ // expr[...]
+ // Could be either an index expression or a slicing expression.
+ token::OpenDelim(token::Bracket) => {
+ self.bump();
+ let ix = self.parse_expr()?;
+ hi = self.span;
+ self.expect(&token::CloseDelim(token::Bracket))?;
+ let index = self.mk_index(e, ix);
+ e = self.mk_expr(lo.to(hi), index, ThinVec::new())
+ }
+ _ => return Ok(e)
+ }
+ }
+ return Ok(e);
+ }
+
+ crate fn process_potential_macro_variable(&mut self) {
+ let (token, span) = match self.token {
+ token::Dollar if self.span.ctxt() != syntax_pos::hygiene::SyntaxContext::empty() &&
+ self.look_ahead(1, |t| t.is_ident()) => {
+ self.bump();
+ let name = match self.token {
+ token::Ident(ident, _) => ident,
+ _ => unreachable!()
+ };
+ let mut err = self.fatal(&format!("unknown macro variable `{}`", name));
+ err.span_label(self.span, "unknown macro variable");
+ err.emit();
+ self.bump();
+ return
+ }
+ token::Interpolated(ref nt) => {
+ self.meta_var_span = Some(self.span);
+ // Interpolated identifier and lifetime tokens are replaced with usual identifier
+ // and lifetime tokens, so the former are never encountered during normal parsing.
+ match **nt {
+ token::NtIdent(ident, is_raw) => (token::Ident(ident, is_raw), ident.span),
+ token::NtLifetime(ident) => (token::Lifetime(ident), ident.span),
+ _ => return,
+ }
+ }
+ _ => return,
+ };
+ self.token = token;
+ self.span = span;
+ }
+
+ /// Parses a single token tree from the input.
+ crate fn parse_token_tree(&mut self) -> TokenTree {
+ match self.token {
+ token::OpenDelim(..) => {
+ let frame = mem::replace(&mut self.token_cursor.frame,
+ self.token_cursor.stack.pop().unwrap());
+ self.span = frame.span.entire();
+ self.bump();
+ TokenTree::Delimited(
+ frame.span,
+ frame.delim,
+ frame.tree_cursor.stream.into(),
+ )
+ },
+ token::CloseDelim(_) | token::Eof => unreachable!(),
+ _ => {
+ let (token, span) = (mem::replace(&mut self.token, token::Whitespace), self.span);
+ self.bump();
+ TokenTree::Token(span, token)
+ }
+ }
+ }
+
+ // parse a stream of tokens into a list of TokenTree's,
+ // up to EOF.
+ pub fn parse_all_token_trees(&mut self) -> PResult<'a, Vec<TokenTree>> {
+ let mut tts = Vec::new();
+ while self.token != token::Eof {
+ tts.push(self.parse_token_tree());
+ }
+ Ok(tts)
+ }
+
+ pub fn parse_tokens(&mut self) -> TokenStream {
+ let mut result = Vec::new();
+ loop {
+ match self.token {
+ token::Eof | token::CloseDelim(..) => break,
+ _ => result.push(self.parse_token_tree().into()),
+ }
+ }
+ TokenStream::new(result)
+ }
+
+ /// Parse a prefix-unary-operator expr
+ fn parse_prefix_expr(&mut self,
+ already_parsed_attrs: Option<ThinVec<Attribute>>)
+ -> PResult<'a, P<Expr>> {
+ let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
+ let lo = self.span;
+ // Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr()
+ let (hi, ex) = match self.token {
+ token::Not => {
+ self.bump();
+ let e = self.parse_prefix_expr(None);
+ let (span, e) = self.interpolated_or_expr_span(e)?;
+ (lo.to(span), self.mk_unary(UnOp::Not, e))
+ }
+ // Suggest `!` for bitwise negation when encountering a `~`
+ token::Tilde => {
+ self.bump();
+ let e = self.parse_prefix_expr(None);
+ let (span, e) = self.interpolated_or_expr_span(e)?;
+ let span_of_tilde = lo;
+ let mut err = self.diagnostic()
+ .struct_span_err(span_of_tilde, "`~` cannot be used as a unary operator");
+ err.span_suggestion_short(
+ span_of_tilde,
+ "use `!` to perform bitwise negation",
+ "!".to_owned(),
+ Applicability::MachineApplicable
+ );
+ err.emit();
+ (lo.to(span), self.mk_unary(UnOp::Not, e))
+ }
+ token::BinOp(token::Minus) => {
+ self.bump();
+ let e = self.parse_prefix_expr(None);
+ let (span, e) = self.interpolated_or_expr_span(e)?;
+ (lo.to(span), self.mk_unary(UnOp::Neg, e))
+ }
+ token::BinOp(token::Star) => {
+ self.bump();
+ let e = self.parse_prefix_expr(None);
+ let (span, e) = self.interpolated_or_expr_span(e)?;
+ (lo.to(span), self.mk_unary(UnOp::Deref, e))
+ }
+ token::BinOp(token::And) | token::AndAnd => {
+ self.expect_and()?;
+ let m = self.parse_mutability();
+ let e = self.parse_prefix_expr(None);
+ let (span, e) = self.interpolated_or_expr_span(e)?;
+ (lo.to(span), ExprKind::AddrOf(m, e))
+ }
+ token::Ident(..) if self.token.is_keyword(keywords::In) => {
+ self.bump();
+ let place = self.parse_expr_res(
+ Restrictions::NO_STRUCT_LITERAL,
+ None,
+ )?;
+ let blk = self.parse_block()?;
+ let span = blk.span;
+ let blk_expr = self.mk_expr(span, ExprKind::Block(blk, None), ThinVec::new());
+ (lo.to(span), ExprKind::ObsoleteInPlace(place, blk_expr))
+ }
+ token::Ident(..) if self.token.is_keyword(keywords::Box) => {
+ self.bump();
+ let e = self.parse_prefix_expr(None);
+ let (span, e) = self.interpolated_or_expr_span(e)?;
+ (lo.to(span), ExprKind::Box(e))
+ }
+ token::Ident(..) if self.token.is_ident_named("not") => {
+ // `not` is just an ordinary identifier in Rust-the-language,
+ // but as `rustc`-the-compiler, we can issue clever diagnostics
+ // for confused users who really want to say `!`
+ let token_cannot_continue_expr = |t: &token::Token| match *t {
+ // These tokens can start an expression after `!`, but
+ // can't continue an expression after an ident
+ token::Ident(ident, is_raw) => token::ident_can_begin_expr(ident, is_raw),
+ token::Literal(..) | token::Pound => true,
+ token::Interpolated(ref nt) => match **nt {
+ token::NtIdent(..) | token::NtExpr(..) |
+ token::NtBlock(..) | token::NtPath(..) => true,
+ _ => false,
+ },
+ _ => false
+ };
+ let cannot_continue_expr = self.look_ahead(1, token_cannot_continue_expr);
+ if cannot_continue_expr {
+ self.bump();
+ // Emit the error ...
+ let mut err = self.diagnostic()
+ .struct_span_err(self.span,
+ &format!("unexpected {} after identifier",
+ self.this_token_descr()));
+ // span the `not` plus trailing whitespace to avoid
+ // trailing whitespace after the `!` in our suggestion
+ let to_replace = self.sess.source_map()
+ .span_until_non_whitespace(lo.to(self.span));
+ err.span_suggestion_short(
+ to_replace,
+ "use `!` to perform logical negation",
+ "!".to_owned(),
+ Applicability::MachineApplicable
+ );
+ err.emit();
+ // —and recover! (just as if we were in the block
+ // for the `token::Not` arm)
+ let e = self.parse_prefix_expr(None);
+ let (span, e) = self.interpolated_or_expr_span(e)?;
+ (lo.to(span), self.mk_unary(UnOp::Not, e))
+ } else {
+ return self.parse_dot_or_call_expr(Some(attrs));
+ }
+ }
+ _ => { return self.parse_dot_or_call_expr(Some(attrs)); }
+ };
+ return Ok(self.mk_expr(lo.to(hi), ex, attrs));
+ }
+
+ /// Parses an associative expression.
+ ///
+ /// This parses an expression accounting for associativity and precedence of the operators in
+ /// the expression.
+ #[inline]
+ fn parse_assoc_expr(&mut self,
+ already_parsed_attrs: Option<ThinVec<Attribute>>)
+ -> PResult<'a, P<Expr>> {
+ self.parse_assoc_expr_with(0, already_parsed_attrs.into())
+ }
+
+ /// Parses an associative expression with operators of at least `min_prec` precedence.
+ fn parse_assoc_expr_with(&mut self,
+ min_prec: usize,
+ lhs: LhsExpr)
+ -> PResult<'a, P<Expr>> {
+ let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
+ expr
+ } else {
+ let attrs = match lhs {
+ LhsExpr::AttributesParsed(attrs) => Some(attrs),
+ _ => None,
+ };
+ if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token) {
+ return self.parse_prefix_range_expr(attrs);
+ } else {
+ self.parse_prefix_expr(attrs)?
+ }
+ };
+
+ if self.expr_is_complete(&lhs) {
+ // Semi-statement forms are odd. See https://github.com/rust-lang/rust/issues/29071
+ return Ok(lhs);
+ }
+ self.expected_tokens.push(TokenType::Operator);
+ while let Some(op) = AssocOp::from_token(&self.token) {
+
+ // Adjust the span for interpolated LHS to point to the `$lhs` token and not to what
+ // it refers to. Interpolated identifiers are unwrapped early and never show up here
+ // as `PrevTokenKind::Interpolated` so if LHS is a single identifier we always process
+ // it as "interpolated", it doesn't change the answer for non-interpolated idents.
+ let lhs_span = match (self.prev_token_kind, &lhs.node) {
+ (PrevTokenKind::Interpolated, _) => self.prev_span,
+ (PrevTokenKind::Ident, &ExprKind::Path(None, ref path))
+ if path.segments.len() == 1 => self.prev_span,
+ _ => lhs.span,
+ };
+
+ let cur_op_span = self.span;
+ let restrictions = if op.is_assign_like() {
+ self.restrictions & Restrictions::NO_STRUCT_LITERAL
+ } else {
+ self.restrictions
+ };
+ if op.precedence() < min_prec {
+ break;
+ }
+ // Check for deprecated `...` syntax
+ if self.token == token::DotDotDot && op == AssocOp::DotDotEq {
+ self.err_dotdotdot_syntax(self.span);
+ }
+
+ self.bump();
+ if op.is_comparison() {
+ self.check_no_chained_comparison(&lhs, &op);
+ }
+ // Special cases:
+ if op == AssocOp::As {
+ lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
+ continue
+ } else if op == AssocOp::Colon {
+ lhs = match self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type) {
+ Ok(lhs) => lhs,
+ Err(mut err) => {
+ err.span_label(self.span,
+ "expecting a type here because of type ascription");
+ let cm = self.sess.source_map();
+ let cur_pos = cm.lookup_char_pos(self.span.lo());
+ let op_pos = cm.lookup_char_pos(cur_op_span.hi());
+ if cur_pos.line != op_pos.line {
+ err.span_suggestion(
+ cur_op_span,
+ "try using a semicolon",
+ ";".to_string(),
+ Applicability::MaybeIncorrect // speculative
+ );
+ }
+ return Err(err);
+ }
+ };
+ continue
+ } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
+ // If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
+ // generalise it to the Fixity::None code.
+ //
+ // We have 2 alternatives here: `x..y`/`x..=y` and `x..`/`x..=` The other
+ // two variants are handled with `parse_prefix_range_expr` call above.
+ let rhs = if self.is_at_start_of_range_notation_rhs() {
+ Some(self.parse_assoc_expr_with(op.precedence() + 1,
+ LhsExpr::NotYetParsed)?)
+ } else {
+ None
+ };
+ let (lhs_span, rhs_span) = (lhs.span, if let Some(ref x) = rhs {
+ x.span
+ } else {
+ cur_op_span
+ });
+ let limits = if op == AssocOp::DotDot {
+ RangeLimits::HalfOpen
+ } else {
+ RangeLimits::Closed
+ };
+
+ let r = self.mk_range(Some(lhs), rhs, limits)?;
+ lhs = self.mk_expr(lhs_span.to(rhs_span), r, ThinVec::new());
+ break
+ }
+
+ let rhs = match op.fixity() {
+ Fixity::Right => self.with_res(
+ restrictions - Restrictions::STMT_EXPR,
+ |this| {
+ this.parse_assoc_expr_with(op.precedence(),
+ LhsExpr::NotYetParsed)
+ }),
+ Fixity::Left => self.with_res(
+ restrictions - Restrictions::STMT_EXPR,
+ |this| {
+ this.parse_assoc_expr_with(op.precedence() + 1,
+ LhsExpr::NotYetParsed)
+ }),
+ // We currently have no non-associative operators that are not handled above by
+ // the special cases. The code is here only for future convenience.
+ Fixity::None => self.with_res(
+ restrictions - Restrictions::STMT_EXPR,
+ |this| {
+ this.parse_assoc_expr_with(op.precedence() + 1,
+ LhsExpr::NotYetParsed)
+ }),
+ }?;
+
+ // Make sure that the span of the parent node is larger than the span of lhs and rhs,
+ // including the attributes.
+ let lhs_span = lhs
+ .attrs
+ .iter()
+ .filter(|a| a.style == AttrStyle::Outer)
+ .next()
+ .map_or(lhs_span, |a| a.span);
+ let span = lhs_span.to(rhs.span);
+ lhs = match op {
+ AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide |
+ AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor |
+ AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight |
+ AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual |
+ AssocOp::Greater | AssocOp::GreaterEqual => {
+ let ast_op = op.to_ast_binop().unwrap();
+ let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
+ self.mk_expr(span, binary, ThinVec::new())
+ }
+ AssocOp::Assign =>
+ self.mk_expr(span, ExprKind::Assign(lhs, rhs), ThinVec::new()),
+ AssocOp::ObsoleteInPlace =>
+ self.mk_expr(span, ExprKind::ObsoleteInPlace(lhs, rhs), ThinVec::new()),
+ AssocOp::AssignOp(k) => {
+ let aop = match k {
+ token::Plus => BinOpKind::Add,
+ token::Minus => BinOpKind::Sub,
+ token::Star => BinOpKind::Mul,
+ token::Slash => BinOpKind::Div,
+ token::Percent => BinOpKind::Rem,
+ token::Caret => BinOpKind::BitXor,
+ token::And => BinOpKind::BitAnd,
+ token::Or => BinOpKind::BitOr,
+ token::Shl => BinOpKind::Shl,
+ token::Shr => BinOpKind::Shr,
+ };
+ let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
+ self.mk_expr(span, aopexpr, ThinVec::new())
+ }
+ AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
+ self.bug("AssocOp should have been handled by special case")
+ }
+ };
+
+ if op.fixity() == Fixity::None { break }
+ }
+ Ok(lhs)
+ }
+
+ fn parse_assoc_op_cast(&mut self, lhs: P<Expr>, lhs_span: Span,
+ expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind)
+ -> PResult<'a, P<Expr>> {
+ let mk_expr = |this: &mut Self, rhs: P<Ty>| {
+ this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), ThinVec::new())
+ };
+
+ // Save the state of the parser before parsing type normally, in case there is a
+ // LessThan comparison after this cast.
+ let parser_snapshot_before_type = self.clone();
+ match self.parse_ty_no_plus() {
+ Ok(rhs) => {
+ Ok(mk_expr(self, rhs))
+ }
+ Err(mut type_err) => {
+ // Rewind to before attempting to parse the type with generics, to recover
+ // from situations like `x as usize < y` in which we first tried to parse
+ // `usize < y` as a type with generic arguments.
+ let parser_snapshot_after_type = self.clone();
+ mem::replace(self, parser_snapshot_before_type);
+
+ match self.parse_path(PathStyle::Expr) {
+ Ok(path) => {
+ let (op_noun, op_verb) = match self.token {
+ token::Lt => ("comparison", "comparing"),
+ token::BinOp(token::Shl) => ("shift", "shifting"),
+ _ => {
+ // We can end up here even without `<` being the next token, for
+ // example because `parse_ty_no_plus` returns `Err` on keywords,
+ // but `parse_path` returns `Ok` on them due to error recovery.
+ // Return original error and parser state.
+ mem::replace(self, parser_snapshot_after_type);
+ return Err(type_err);
+ }
+ };
+
+ // Successfully parsed the type path leaving a `<` yet to parse.
+ type_err.cancel();
+
+ // Report non-fatal diagnostics, keep `x as usize` as an expression
+ // in AST and continue parsing.
+ let msg = format!("`<` is interpreted as a start of generic \
+ arguments for `{}`, not a {}", path, op_noun);
+ let mut err = self.sess.span_diagnostic.struct_span_err(self.span, &msg);
+ err.span_label(self.look_ahead_span(1).to(parser_snapshot_after_type.span),
+ "interpreted as generic arguments");
+ err.span_label(self.span, format!("not interpreted as {}", op_noun));
+
+ let expr = mk_expr(self, P(Ty {
+ span: path.span,
+ node: TyKind::Path(None, path),
+ id: ast::DUMMY_NODE_ID
+ }));
+
+ let expr_str = self.sess.source_map().span_to_snippet(expr.span)
+ .unwrap_or_else(|_| pprust::expr_to_string(&expr));
+ err.span_suggestion(
+ expr.span,
+ &format!("try {} the cast value", op_verb),
+ format!("({})", expr_str),
+ Applicability::MachineApplicable
+ );
+ err.emit();
+
+ Ok(expr)
+ }
+ Err(mut path_err) => {
+ // Couldn't parse as a path, return original error and parser state.
+ path_err.cancel();
+ mem::replace(self, parser_snapshot_after_type);
+ Err(type_err)
+ }
+ }
+ }
+ }
+ }
+
+ /// Produce an error if comparison operators are chained (RFC #558).
+ /// We only need to check lhs, not rhs, because all comparison ops
+ /// have same precedence and are left-associative
+ fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: &AssocOp) {
+ debug_assert!(outer_op.is_comparison(),
+ "check_no_chained_comparison: {:?} is not comparison",
+ outer_op);
+ match lhs.node {
+ ExprKind::Binary(op, _, _) if op.node.is_comparison() => {
+ // respan to include both operators
+ let op_span = op.span.to(self.span);
+ let mut err = self.diagnostic().struct_span_err(op_span,
+ "chained comparison operators require parentheses");
+ if op.node == BinOpKind::Lt &&
+ *outer_op == AssocOp::Less || // Include `<` to provide this recommendation
+ *outer_op == AssocOp::Greater // even in a case like the following:
+ { // Foo<Bar<Baz<Qux, ()>>>
+ err.help(
+ "use `::<...>` instead of `<...>` if you meant to specify type arguments");
+ err.help("or use `(...)` if you meant to specify fn arguments");
+ }
+ err.emit();
+ }
+ _ => {}
+ }
+ }
+
+ /// Parse prefix-forms of range notation: `..expr`, `..`, `..=expr`
+ fn parse_prefix_range_expr(&mut self,
+ already_parsed_attrs: Option<ThinVec<Attribute>>)
+ -> PResult<'a, P<Expr>> {
+ // Check for deprecated `...` syntax
+ if self.token == token::DotDotDot {
+ self.err_dotdotdot_syntax(self.span);
+ }
+
+ debug_assert!([token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token),
+ "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
+ self.token);
+ let tok = self.token.clone();
+ let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
+ let lo = self.span;
+ let mut hi = self.span;
+ self.bump();
+ let opt_end = if self.is_at_start_of_range_notation_rhs() {
+ // RHS must be parsed with more associativity than the dots.
+ let next_prec = AssocOp::from_token(&tok).unwrap().precedence() + 1;
+ Some(self.parse_assoc_expr_with(next_prec,
+ LhsExpr::NotYetParsed)
+ .map(|x|{
+ hi = x.span;
+ x
+ })?)
+ } else {
+ None
+ };
+ let limits = if tok == token::DotDot {
+ RangeLimits::HalfOpen
+ } else {
+ RangeLimits::Closed
+ };
+
+ let r = self.mk_range(None, opt_end, limits)?;
+ Ok(self.mk_expr(lo.to(hi), r, attrs))
+ }
+
+ fn is_at_start_of_range_notation_rhs(&self) -> bool {
+ if self.token.can_begin_expr() {
+ // parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
+ if self.token == token::OpenDelim(token::Brace) {
+ return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
+ }
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Parses an `if` or `if let` expression (`if` token already eaten).
+ fn parse_if_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+ if self.check_keyword(keywords::Let) {
+ return self.parse_if_let_expr(attrs);
+ }
+ let lo = self.prev_span;
+ let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+
+ // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
+ // verify that the last statement is either an implicit return (no `;`) or an explicit
+ // return. This won't catch blocks with an explicit `return`, but that would be caught by
+ // the dead code lint.
+ if self.eat_keyword(keywords::Else) || !cond.returns() {
+ let sp = self.sess.source_map().next_point(lo);
+ let mut err = self.diagnostic()
+ .struct_span_err(sp, "missing condition for `if` statemement");
+ err.span_label(sp, "expected if condition here");
+ return Err(err)
+ }
+ let not_block = self.token != token::OpenDelim(token::Brace);
+ let thn = self.parse_block().map_err(|mut err| {
+ if not_block {
+ err.span_label(lo, "this `if` statement has a condition, but no block");
+ }
+ err
+ })?;
+ let mut els: Option<P<Expr>> = None;
+ let mut hi = thn.span;
+ if self.eat_keyword(keywords::Else) {
+ let elexpr = self.parse_else_expr()?;
+ hi = elexpr.span;
+ els = Some(elexpr);
+ }
+ Ok(self.mk_expr(lo.to(hi), ExprKind::If(cond, thn, els), attrs))
+ }
+
+ /// Parses an `if let` expression (`if` token already eaten).
+ fn parse_if_let_expr(&mut self, attrs: ThinVec<Attribute>)
+ -> PResult<'a, P<Expr>> {
+ let lo = self.prev_span;
+ self.expect_keyword(keywords::Let)?;
+ let pats = self.parse_pats()?;
+ self.expect(&token::Eq)?;
+ let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+ let thn = self.parse_block()?;
+ let (hi, els) = if self.eat_keyword(keywords::Else) {
+ let expr = self.parse_else_expr()?;
+ (expr.span, Some(expr))
+ } else {
+ (thn.span, None)
+ };
+ Ok(self.mk_expr(lo.to(hi), ExprKind::IfLet(pats, expr, thn, els), attrs))
+ }
+
+ /// Parses `move |args| expr`.
+ fn parse_lambda_expr(&mut self,
+ attrs: ThinVec<Attribute>)
+ -> PResult<'a, P<Expr>>
+ {
+ let lo = self.span;
+ let movability = if self.eat_keyword(keywords::Static) {
+ Movability::Static
+ } else {
+ Movability::Movable
+ };
+ let asyncness = if self.span.rust_2018() {
+ self.parse_asyncness()
+ } else {
+ IsAsync::NotAsync
+ };
+ let capture_clause = if self.eat_keyword(keywords::Move) {
+ CaptureBy::Value
+ } else {
+ CaptureBy::Ref
+ };
+ let decl = self.parse_fn_block_decl()?;
+ let decl_hi = self.prev_span;
+ let body = match decl.output {
+ FunctionRetTy::Default(_) => {
+ let restrictions = self.restrictions - Restrictions::STMT_EXPR;
+ self.parse_expr_res(restrictions, None)?
+ },
+ _ => {
+ // If an explicit return type is given, require a
+ // block to appear (RFC 968).
+ let body_lo = self.span;
+ self.parse_block_expr(None, body_lo, BlockCheckMode::Default, ThinVec::new())?
+ }
+ };
+
+ Ok(self.mk_expr(
+ lo.to(body.span),
+ ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
+ attrs))
+ }
+
+ // `else` token already eaten
+ fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
+ if self.eat_keyword(keywords::If) {
+ return self.parse_if_expr(ThinVec::new());
+ } else {
+ let blk = self.parse_block()?;
+ return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None), ThinVec::new()));
+ }
+ }
+
+ /// Parse a 'for' .. 'in' expression ('for' token already eaten)
+ fn parse_for_expr(&mut self, opt_label: Option<Label>,
+ span_lo: Span,
+ mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+ // Parse: `for <src_pat> in <src_expr> <src_loop_block>`
+
+ let pat = self.parse_top_level_pat()?;
+ if !self.eat_keyword(keywords::In) {
+ let in_span = self.prev_span.between(self.span);
+ let mut err = self.sess.span_diagnostic
+ .struct_span_err(in_span, "missing `in` in `for` loop");
+ err.span_suggestion_short(
+ in_span, "try adding `in` here", " in ".into(),
+ // has been misleading, at least in the past (closed Issue #48492)
+ Applicability::MaybeIncorrect
+ );
+ err.emit();
+ }
+ let in_span = self.prev_span;
+ if self.eat_keyword(keywords::In) {
+ // a common typo: `for _ in in bar {}`
+ let mut err = self.sess.span_diagnostic.struct_span_err(
+ self.prev_span,
+ "expected iterable, found keyword `in`",
+ );
+ err.span_suggestion_short(
+ in_span.until(self.prev_span),
+ "remove the duplicated `in`",
+ String::new(),
+ Applicability::MachineApplicable,
+ );
+ err.note("if you meant to use emplacement syntax, it is obsolete (for now, anyway)");
+ err.note("for more information on the status of emplacement syntax, see <\
+ https://github.com/rust-lang/rust/issues/27779#issuecomment-378416911>");
+ err.emit();
+ }
+ let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+ let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(iattrs);
+
+ let hi = self.prev_span;
+ Ok(self.mk_expr(span_lo.to(hi), ExprKind::ForLoop(pat, expr, loop_block, opt_label), attrs))
+ }
+
+ /// Parses a `while` or `while let` expression (`while` token already eaten).
+ fn parse_while_expr(&mut self, opt_label: Option<Label>,
+ span_lo: Span,
+ mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+ if self.token.is_keyword(keywords::Let) {
+ return self.parse_while_let_expr(opt_label, span_lo, attrs);
+ }
+ let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+ let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(iattrs);
+ let span = span_lo.to(body.span);
+ return Ok(self.mk_expr(span, ExprKind::While(cond, body, opt_label), attrs));
+ }
+
+ /// Parses a `while let` expression (`while` token already eaten).
+ fn parse_while_let_expr(&mut self, opt_label: Option<Label>,
+ span_lo: Span,
+ mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+ self.expect_keyword(keywords::Let)?;
+ let pats = self.parse_pats()?;
+ self.expect(&token::Eq)?;
+ let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+ let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(iattrs);
+ let span = span_lo.to(body.span);
+ return Ok(self.mk_expr(span, ExprKind::WhileLet(pats, expr, body, opt_label), attrs));
+ }
+
+ // parse `loop {...}`, `loop` token already eaten
+ fn parse_loop_expr(&mut self, opt_label: Option<Label>,
+ span_lo: Span,
+ mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+ let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(iattrs);
+ let span = span_lo.to(body.span);
+ Ok(self.mk_expr(span, ExprKind::Loop(body, opt_label), attrs))
+ }
+
+ /// Parses an `async move {...}` expression.
+ pub fn parse_async_block(&mut self, mut attrs: ThinVec<Attribute>)
+ -> PResult<'a, P<Expr>>
+ {
+ let span_lo = self.span;
+ self.expect_keyword(keywords::Async)?;
+ let capture_clause = if self.eat_keyword(keywords::Move) {
+ CaptureBy::Value
+ } else {
+ CaptureBy::Ref
+ };
+ let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(iattrs);
+ Ok(self.mk_expr(
+ span_lo.to(body.span),
+ ExprKind::Async(capture_clause, ast::DUMMY_NODE_ID, body), attrs))
+ }
+
+ /// Parses a `try {...}` expression (`try` token already eaten).
+ fn parse_try_block(&mut self, span_lo: Span, mut attrs: ThinVec<Attribute>)
+ -> PResult<'a, P<Expr>>
+ {
+ let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+ attrs.extend(iattrs);
+ Ok(self.mk_expr(span_lo.to(body.span), ExprKind::TryBlock(body), attrs))
+ }
+
+ // `match` token already eaten
+ fn parse_match_expr(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
+ let match_span = self.prev_span;
+ let lo = self.prev_span;
+ let discriminant = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL,
+ None)?;
+ if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
+ if self.token == token::Token::Semi {
+ e.span_suggestion_short(
+ match_span,
+ "try removing this `match`",
+ String::new(),
+ Applicability::MaybeIncorrect // speculative
+ );
+ }
+ return Err(e)
+ }
+ attrs.extend(self.parse_inner_attributes()?);
+
+ let mut arms: Vec<Arm> = Vec::new();
+ while self.token != token::CloseDelim(token::Brace) {
+ match self.parse_arm() {
+ Ok(arm) => arms.push(arm),
+ Err(mut e) => {
+ // Recover by skipping to the end of the block.
+ e.emit();
+ self.recover_stmt();
+ let span = lo.to(self.span);
+ if self.token == token::CloseDelim(token::Brace) {
+ self.bump();
+ }
+ return Ok(self.mk_expr(span, ExprKind::Match(discriminant, arms), attrs));
+ }
+ }
+ }
+ let hi = self.span;
+ self.bump();
+ return Ok(self.mk_expr(lo.to(hi), ExprKind::Match(discriminant, arms), attrs));
+ }
+
+ crate fn parse_arm(&mut self) -> PResult<'a, Arm> {
+ maybe_whole!(self, NtArm, |x| x);
+
+ let attrs = self.parse_outer_attributes()?;
+ let pats = self.parse_pats()?;
+ let guard = if self.eat_keyword(keywords::If) {
+ Some(Guard::If(self.parse_expr()?))
+ } else {
+ None
+ };
+ let arrow_span = self.span;
+ self.expect(&token::FatArrow)?;
+ let arm_start_span = self.span;
+
+ let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None)
+ .map_err(|mut err| {
+ err.span_label(arrow_span, "while parsing the `match` arm starting here");
+ err
+ })?;
+
+ let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
+ && self.token != token::CloseDelim(token::Brace);
+
+ if require_comma {
+ let cm = self.sess.source_map();
+ self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)])
+ .map_err(|mut err| {
+ match (cm.span_to_lines(expr.span), cm.span_to_lines(arm_start_span)) {
+ (Ok(ref expr_lines), Ok(ref arm_start_lines))
+ if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
+ && expr_lines.lines.len() == 2
+ && self.token == token::FatArrow => {
+ // We check whether there's any trailing code in the parse span,
+ // if there isn't, we very likely have the following:
+ //
+ // X | &Y => "y"
+ // | -- - missing comma
+ // | |
+ // | arrow_span
+ // X | &X => "x"
+ // | - ^^ self.span
+ // | |
+ // | parsed until here as `"y" & X`
+ err.span_suggestion_short(
+ cm.next_point(arm_start_span),
+ "missing a comma here to end this `match` arm",
+ ",".to_owned(),
+ Applicability::MachineApplicable
+ );
+ }
+ _ => {
+ err.span_label(arrow_span,
+ "while parsing the `match` arm starting here");
+ }
+ }
+ err
+ })?;
+ } else {
+ self.eat(&token::Comma);
+ }
+
+ Ok(ast::Arm {
+ attrs,
+ pats,
+ guard,
+ body: expr,
+ })
+ }
+
+ /// Parses an expression.
+ #[inline]
+ pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
+ self.parse_expr_res(Restrictions::empty(), None)
+ }
+
+ /// Evaluates the closure with restrictions in place.
+ ///
+ /// Afters the closure is evaluated, restrictions are reset.
+ fn with_res<F, T>(&mut self, r: Restrictions, f: F) -> T
+ where F: FnOnce(&mut Self) -> T
+ {
+ let old = self.restrictions;
+ self.restrictions = r;
+ let r = f(self);
+ self.restrictions = old;
+ return r;
+
+ }
+
+ /// Parses an expression, subject to the given restrictions.
+ #[inline]
+ fn parse_expr_res(&mut self, r: Restrictions,
+ already_parsed_attrs: Option<ThinVec<Attribute>>)
+ -> PResult<'a, P<Expr>> {
+ self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
+ }
+
+ /// Parses the RHS of a local variable declaration (e.g., '= 14;').
+ fn parse_initializer(&mut self, skip_eq: bool) -> PResult<'a, Option<P<Expr>>> {
+ if self.eat(&token::Eq) {
+ Ok(Some(self.parse_expr()?))
+ } else if skip_eq {
+ Ok(Some(self.parse_expr()?))
+ } else {
+ Ok(None)
+ }
+ }
+
+ /// Parses patterns, separated by '|' s.
+ fn parse_pats(&mut self) -> PResult<'a, Vec<P<Pat>>> {
+ // Allow a '|' before the pats (RFC 1925 + RFC 2530)
+ self.eat(&token::BinOp(token::Or));
+
+ let mut pats = Vec::new();
+ loop {
+ pats.push(self.parse_top_level_pat()?);
+
+ if self.token == token::OrOr {
+ let mut err = self.struct_span_err(self.span,
+ "unexpected token `||` after pattern");
+ err.span_suggestion(
+ self.span,
+ "use a single `|` to specify multiple patterns",
+ "|".to_owned(),
+ Applicability::MachineApplicable
+ );
+ err.emit();
+ self.bump();
+ } else if self.eat(&token::BinOp(token::Or)) {
+ // This is a No-op. Continue the loop to parse the next
+ // pattern.
+ } else {
+ return Ok(pats);
+ }
+ };
+ }
+
+ // Parses a parenthesized list of patterns like
+ // `()`, `(p)`, `(p,)`, `(p, q)`, or `(p, .., q)`. Returns:
+ // - a vector of the patterns that were parsed
+ // - an option indicating the index of the `..` element
+ // - a boolean indicating whether a trailing comma was present.
+ // Trailing commas are significant because (p) and (p,) are different patterns.
+ fn parse_parenthesized_pat_list(&mut self) -> PResult<'a, (Vec<P<Pat>>, Option<usize>, bool)> {
+ self.expect(&token::OpenDelim(token::Paren))?;
+ let result = self.parse_pat_list()?;
+ self.expect(&token::CloseDelim(token::Paren))?;
+ Ok(result)
+ }
+
+ fn parse_pat_list(&mut self) -> PResult<'a, (Vec<P<Pat>>, Option<usize>, bool)> {
+ let mut fields = Vec::new();
+ let mut ddpos = None;
+ let mut trailing_comma = false;
+ loop {
+ if self.eat(&token::DotDot) {
+ if ddpos.is_none() {
+ ddpos = Some(fields.len());
+ } else {
+ // Emit a friendly error, ignore `..` and continue parsing
+ self.struct_span_err(
+ self.prev_span,
+ "`..` can only be used once per tuple or tuple struct pattern",
+ )
+ .span_label(self.prev_span, "can only be used once per pattern")
+ .emit();
+ }
+ } else if !self.check(&token::CloseDelim(token::Paren)) {
+ fields.push(self.parse_pat(None)?);
+ } else {
+ break
+ }
+
+ trailing_comma = self.eat(&token::Comma);
+ if !trailing_comma {
+ break
+ }
+ }
+
+ if ddpos == Some(fields.len()) && trailing_comma {
+ // `..` needs to be followed by `)` or `, pat`, `..,)` is disallowed.
+ let msg = "trailing comma is not permitted after `..`";
+ self.struct_span_err(self.prev_span, msg)
+ .span_label(self.prev_span, msg)
+ .emit();
+ }
+
+ Ok((fields, ddpos, trailing_comma))
+ }
+
+ fn parse_pat_vec_elements(
+ &mut self,
+ ) -> PResult<'a, (Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>)> {
+ let mut before = Vec::new();
+ let mut slice = None;
+ let mut after = Vec::new();
+ let mut first = true;
+ let mut before_slice = true;
+
+ while self.token != token::CloseDelim(token::Bracket) {
+ if first {
+ first = false;
+ } else {
+ self.expect(&token::Comma)?;
+
+ if self.token == token::CloseDelim(token::Bracket)
+ && (before_slice || !after.is_empty()) {
+ break
+ }
+ }
+
+ if before_slice {
+ if self.eat(&token::DotDot) {
+
+ if self.check(&token::Comma) ||
+ self.check(&token::CloseDelim(token::Bracket)) {
+ slice = Some(P(Pat {
+ id: ast::DUMMY_NODE_ID,
+ node: PatKind::Wild,
+ span: self.prev_span,
+ }));
+ before_slice = false;
+ }
+ continue
+ }
+ }
+
+ let subpat = self.parse_pat(None)?;
+ if before_slice && self.eat(&token::DotDot) {
+ slice = Some(subpat);
+ before_slice = false;
+ } else if before_slice {
+ before.push(subpat);
+ } else {
+ after.push(subpat);
+ }
+ }
+
+ Ok((before, slice, after))
+ }
+
+ fn parse_pat_field(
+ &mut self,
+ lo: Span,
+ attrs: Vec<Attribute>
+ ) -> PResult<'a, source_map::Spanned<ast::FieldPat>> {
+ // Check if a colon exists one ahead. This means we're parsing a fieldname.
+ let hi;
+ let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) {
+ // Parsing a pattern of the form "fieldname: pat"
+ let fieldname = self.parse_field_name()?;
+ self.bump();
+ let pat = self.parse_pat(None)?;
+ hi = pat.span;
+ (pat, fieldname, false)
+ } else {
+ // Parsing a pattern of the form "(box) (ref) (mut) fieldname"
+ let is_box = self.eat_keyword(keywords::Box);
+ let boxed_span = self.span;
+ let is_ref = self.eat_keyword(keywords::Ref);
+ let is_mut = self.eat_keyword(keywords::Mut);
+ let fieldname = self.parse_ident()?;
+ hi = self.prev_span;
+
+ let bind_type = match (is_ref, is_mut) {
+ (true, true) => BindingMode::ByRef(Mutability::Mutable),
+ (true, false) => BindingMode::ByRef(Mutability::Immutable),
+ (false, true) => BindingMode::ByValue(Mutability::Mutable),
+ (false, false) => BindingMode::ByValue(Mutability::Immutable),
+ };
+ let fieldpat = P(Pat {
+ id: ast::DUMMY_NODE_ID,
+ node: PatKind::Ident(bind_type, fieldname, None),
+ span: boxed_span.to(hi),
+ });
+
+ let subpat = if is_box {
+ P(Pat {
+ id: ast::DUMMY_NODE_ID,
+ node: PatKind::Box(fieldpat),
+ span: lo.to(hi),
+ })
+ } else {
+ fieldpat
+ };
+ (subpat, fieldname, true)
+ };
+
+ Ok(source_map::Spanned {
+ span: lo.to(hi),
+ node: ast::FieldPat {
+ ident: fieldname,
+ pat: subpat,
+ is_shorthand,
+ attrs: attrs.into(),
+ }
+ })
+ }
+
+ /// Parses the fields of a struct-like pattern.
+ fn parse_pat_fields(&mut self) -> PResult<'a, (Vec<source_map::Spanned<ast::FieldPat>>, bool)> {
+ let mut fields = Vec::new();
+ let mut etc = false;
+ let mut ate_comma = true;
+ let mut delayed_err: Option<DiagnosticBuilder<'a>> = None;
+ let mut etc_span = None;
+
+ while self.token != token::CloseDelim(token::Brace) {
+ let attrs = self.parse_outer_attributes()?;
+ let lo = self.span;
+
+ // check that a comma comes after every field
+ if !ate_comma {
+ let err = self.struct_span_err(self.prev_span, "expected `,`");
+ if let Some(mut delayed) = delayed_err {
+ delayed.emit();
+ }
+ return Err(err);
+ }
+ ate_comma = false;
+
+ if self.check(&token::DotDot) || self.token == token::DotDotDot {
+ etc = true;
+ let mut etc_sp = self.span;
+
+ if self.token == token::DotDotDot { // Issue #46718
+ // Accept `...` as if it were `..` to avoid further errors
+ let mut err = self.struct_span_err(self.span,
+ "expected field pattern, found `...`");
+ err.span_suggestion(
+ self.span,
+ "to omit remaining fields, use one fewer `.`",
+ "..".to_owned(),
+ Applicability::MachineApplicable
+ );
+ err.emit();
+ }
+ self.bump(); // `..` || `...`
+
+ if self.token == token::CloseDelim(token::Brace) {
+ etc_span = Some(etc_sp);
+ break;
+ }
+ let token_str = self.this_token_descr();
+ let mut err = self.fatal(&format!("expected `}}`, found {}", token_str));
+
+ err.span_label(self.span, "expected `}`");
+ let mut comma_sp = None;
+ if self.token == token::Comma { // Issue #49257
+ etc_sp = etc_sp.to(self.sess.source_map().span_until_non_whitespace(self.span));
+ err.span_label(etc_sp,
+ "`..` must be at the end and cannot have a trailing comma");
+ comma_sp = Some(self.span);
+ self.bump();
+ ate_comma = true;
+ }
+
+ etc_span = Some(etc_sp.until(self.span));
+ if self.token == token::CloseDelim(token::Brace) {
+ // If the struct looks otherwise well formed, recover and continue.
+ if let Some(sp) = comma_sp {
+ err.span_suggestion_short(
+ sp,
+ "remove this comma",
+ String::new(),
+ Applicability::MachineApplicable,
+ );
+ }
+ err.emit();
+ break;
+ } else if self.token.is_ident() && ate_comma {
+ // Accept fields coming after `..,`.
+ // This way we avoid "pattern missing fields" errors afterwards.
+ // We delay this error until the end in order to have a span for a
+ // suggested fix.
+ if let Some(mut delayed_err) = delayed_err {
+ delayed_err.emit();
+ return Err(err);
+ } else {
+ delayed_err = Some(err);
+ }
+ } else {
+ if let Some(mut err) = delayed_err {
+ err.emit();
+ }
+ return Err(err);
+ }
+ }
+
+ fields.push(match self.parse_pat_field(lo, attrs) {
+ Ok(field) => field,
+ Err(err) => {
+ if let Some(mut delayed_err) = delayed_err {
+ delayed_err.emit();
+ }
+ return Err(err);
+ }
+ });
+ ate_comma = self.eat(&token::Comma);
+ }
+
+ if let Some(mut err) = delayed_err {
+ if let Some(etc_span) = etc_span {
+ err.multipart_suggestion(
+ "move the `..` to the end of the field list",
+ vec![
+ (etc_span, String::new()),
+ (self.span, format!("{}.. }}", if ate_comma { "" } else { ", " })),
+ ],
+ Applicability::MachineApplicable,
+ );
+ }
+ err.emit();
+ }
+ return Ok((fields, etc));
+ }
+
+ fn parse_pat_range_end(&mut self) -> PResult<'a, P<Expr>> {
+ if self.token.is_path_start() {
+ let lo = self.span;
+ let (qself, path) = if self.eat_lt() {
+ // Parse a qualified path
+ let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
+ (Some(qself), path)
+ } else {
+ // Parse an unqualified path
+ (None, self.parse_path(PathStyle::Expr)?)
+ };
+ let hi = self.prev_span;
+ Ok(self.mk_expr(lo.to(hi), ExprKind::Path(qself, path), ThinVec::new()))
+ } else {
+ self.parse_literal_maybe_minus()
+ }
+ }
+
+ // helper function to decide whether to parse as ident binding or to try to do
+ // something more complex like range patterns
+ fn parse_as_ident(&mut self) -> bool {
+ self.look_ahead(1, |t| match *t {
+ token::OpenDelim(token::Paren) | token::OpenDelim(token::Brace) |
+ token::DotDotDot | token::DotDotEq | token::ModSep | token::Not => Some(false),
+ // ensure slice patterns [a, b.., c] and [a, b, c..] don't go into the
+ // range pattern branch
+ token::DotDot => None,
+ _ => Some(true),
+ }).unwrap_or_else(|| self.look_ahead(2, |t| match *t {
+ token::Comma | token::CloseDelim(token::Bracket) => true,
+ _ => false,
+ }))
+ }
+
+ /// A wrapper around `parse_pat` with some special error handling for the
+ /// "top-level" patterns in a match arm, `for` loop, `let`, &c. (in contrast
+ /// to subpatterns within such).
+ fn parse_top_level_pat(&mut self) -> PResult<'a, P<Pat>> {
+ let pat = self.parse_pat(None)?;
+ if self.token == token::Comma {
+ // An unexpected comma after a top-level pattern is a clue that the
+ // user (perhaps more accustomed to some other language) forgot the
+ // parentheses in what should have been a tuple pattern; return a
+ // suggestion-enhanced error here rather than choking on the comma
+ // later.
+ let comma_span = self.span;
+ self.bump();
+ if let Err(mut err) = self.parse_pat_list() {
+ // We didn't expect this to work anyway; we just wanted
+ // to advance to the end of the comma-sequence so we know
+ // the span to suggest parenthesizing
+ err.cancel();
+ }
+ let seq_span = pat.span.to(self.prev_span);
+ let mut err = self.struct_span_err(comma_span,
+ "unexpected `,` in pattern");
+ if let Ok(seq_snippet) = self.sess.source_map().span_to_snippet(seq_span) {
+ err.span_suggestion(
+ seq_span,
+ "try adding parentheses to match on a tuple..",
+ format!("({})", seq_snippet),
+ Applicability::MachineApplicable
+ ).span_suggestion(
+ seq_span,
+ "..or a vertical bar to match on multiple alternatives",
+ format!("{}", seq_snippet.replace(",", " |")),
+ Applicability::MachineApplicable
+ );
+ }
+ return Err(err);
+ }
+ Ok(pat)
+ }
+
+ /// Parses a pattern.
+ pub fn parse_pat(&mut self, expected: Option<&'static str>) -> PResult<'a, P<Pat>> {
+ self.parse_pat_with_range_pat(true, expected)
+ }
+
+ /// Parses a pattern, with a setting whether modern range patterns (e.g., `a..=b`, `a..b` are
+ /// allowed).
+ fn parse_pat_with_range_pat(
+ &mut self,
+ allow_range_pat: bool,
+ expected: Option<&'static str>,
+ ) -> PResult<'a, P<Pat>> {
+ maybe_whole!(self, NtPat, |x| x);
+
+ let lo = self.span;
+ let pat;
+ match self.token {
+ token::BinOp(token::And) | token::AndAnd => {
+ // Parse &pat / &mut pat
+ self.expect_and()?;
+ let mutbl = self.parse_mutability();
+ if let token::Lifetime(ident) = self.token {
+ let mut err = self.fatal(&format!("unexpected lifetime `{}` in pattern",
+ ident));
+ err.span_label(self.span, "unexpected lifetime");
+ return Err(err);
+ }
+ let subpat = self.parse_pat_with_range_pat(false, expected)?;
+ pat = PatKind::Ref(subpat, mutbl);
+ }
+ token::OpenDelim(token::Paren) => {
+ // Parse (pat,pat,pat,...) as tuple pattern
+ let (fields, ddpos, trailing_comma) = self.parse_parenthesized_pat_list()?;
+ pat = if fields.len() == 1 && ddpos.is_none() && !trailing_comma {
+ PatKind::Paren(fields.into_iter().nth(0).unwrap())
+ } else {
+ PatKind::Tuple(fields, ddpos)
+ };
+ }
+ token::OpenDelim(token::Bracket) => {
+ // Parse [pat,pat,...] as slice pattern
+ self.bump();
+ let (before, slice, after) = self.parse_pat_vec_elements()?;
+ self.expect(&token::CloseDelim(token::Bracket))?;
+ pat = PatKind::Slice(before, slice, after);
+ }
+ // At this point, token != &, &&, (, [
+ _ => if self.eat_keyword(keywords::Underscore) {
+ // Parse _
+ pat = PatKind::Wild;
+ } else if self.eat_keyword(keywords::Mut) {
+ // Parse mut ident @ pat / mut ref ident @ pat
+ let mutref_span = self.prev_span.to(self.span);
+ let binding_mode = if self.eat_keyword(keywords::Ref) {
+ self.diagnostic()
+ .struct_span_err(mutref_span, "the order of `mut` and `ref` is incorrect")
+ .span_suggestion(
+ mutref_span,
+ "try switching the order",
+ "ref mut".into(),
+ Applicability::MachineApplicable
+ ).emit();
+ BindingMode::ByRef(Mutability::Mutable)
+ } else {
+ BindingMode::ByValue(Mutability::Mutable)
+ };
+ pat = self.parse_pat_ident(binding_mode)?;
+ } else if self.eat_keyword(keywords::Ref) {
+ // Parse ref ident @ pat / ref mut ident @ pat
+ let mutbl = self.parse_mutability();
+ pat = self.parse_pat_ident(BindingMode::ByRef(mutbl))?;
+ } else if self.eat_keyword(keywords::Box) {
+ // Parse box pat
+ let subpat = self.parse_pat_with_range_pat(false, None)?;
+ pat = PatKind::Box(subpat);
+ } else if self.token.is_ident() && !self.token.is_reserved_ident() &&
+ self.parse_as_ident() {
+ // Parse ident @ pat
+ // This can give false positives and parse nullary enums,
+ // they are dealt with later in resolve
+ let binding_mode = BindingMode::ByValue(Mutability::Immutable);
+ pat = self.parse_pat_ident(binding_mode)?;
+ } else if self.token.is_path_start() {
+ // Parse pattern starting with a path
+ let (qself, path) = if self.eat_lt() {
+ // Parse a qualified path
+ let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
+ (Some(qself), path)
+ } else {
+ // Parse an unqualified path
+ (None, self.parse_path(PathStyle::Expr)?)
+ };
+ match self.token {
+ token::Not if qself.is_none() => {
+ // Parse macro invocation
+ self.bump();
+ let (delim, tts) = self.expect_delimited_token_tree()?;
+ let mac = respan(lo.to(self.prev_span), Mac_ { path, tts, delim });
+ pat = PatKind::Mac(mac);
+ }
+ token::DotDotDot | token::DotDotEq | token::DotDot => {
+ let end_kind = match self.token {
+ token::DotDot => RangeEnd::Excluded,
+ token::DotDotDot => RangeEnd::Included(RangeSyntax::DotDotDot),
+ token::DotDotEq => RangeEnd::Included(RangeSyntax::DotDotEq),
+ _ => panic!("can only parse `..`/`...`/`..=` for ranges \
+ (checked above)"),
+ };
+ let op_span = self.span;
+ // Parse range
+ let span = lo.to(self.prev_span);
+ let begin = self.mk_expr(span, ExprKind::Path(qself, path), ThinVec::new());
+ self.bump();
+ let end = self.parse_pat_range_end()?;
+ let op = Spanned { span: op_span, node: end_kind };
+ pat = PatKind::Range(begin, end, op);
+ }
+ token::OpenDelim(token::Brace) => {
+ if qself.is_some() {
+ let msg = "unexpected `{` after qualified path";
+ let mut err = self.fatal(msg);
+ err.span_label(self.span, msg);
+ return Err(err);
+ }
+ // Parse struct pattern
+ self.bump();
+ let (fields, etc) = self.parse_pat_fields().unwrap_or_else(|mut e| {
+ e.emit();
+ self.recover_stmt();
+ (vec![], false)
+ });
+ self.bump();
+ pat = PatKind::Struct(path, fields, etc);
+ }
+ token::OpenDelim(token::Paren) => {
+ if qself.is_some() {
+ let msg = "unexpected `(` after qualified path";
+ let mut err = self.fatal(msg);
+ err.span_label(self.span, msg);
+ return Err(err);
+ }
+ // Parse tuple struct or enum pattern
+ let (fields, ddpos, _) = self.parse_parenthesized_pat_list()?;
+ pat = PatKind::TupleStruct(path, fields, ddpos)
+ }
+ _ => pat = PatKind::Path(qself, path),
+ }
+ } else {
+ // Try to parse everything else as literal with optional minus
+ match self.parse_literal_maybe_minus() {
+ Ok(begin) => {
+ let op_span = self.span;
+ if self.check(&token::DotDot) || self.check(&token::DotDotEq) ||
+ self.check(&token::DotDotDot) {
+ let end_kind = if self.eat(&token::DotDotDot) {
+ RangeEnd::Included(RangeSyntax::DotDotDot)
+ } else if self.eat(&token::DotDotEq) {
+ RangeEnd::Included(RangeSyntax::DotDotEq)
+ } else if self.eat(&token::DotDot) {
+ RangeEnd::Excluded
+ } else {
+ panic!("impossible case: we already matched \
+ on a range-operator token")
+ };
+ let end = self.parse_pat_range_end()?;
+ let op = Spanned { span: op_span, node: end_kind };
+ pat = PatKind::Range(begin, end, op);
+ } else {
+ pat = PatKind::Lit(begin);
+ }
+ }
+ Err(mut err) => {
+ self.cancel(&mut err);
+ let expected = expected.unwrap_or("pattern");
+ let msg = format!(
+ "expected {}, found {}",
+ expected,
+ self.this_token_descr(),
+ );
+ let mut err = self.fatal(&msg);
+ err.span_label(self.span, format!("expected {}", expected));
+ return Err(err);
+ }
+ }
+ }
+ }
+
+ let pat = Pat { node: pat, span: lo.to(self.prev_span), id: ast::DUMMY_NODE_ID };
+ let pat = self.maybe_recover_from_bad_qpath(pat, true)?;
+
+ if !allow_range_pat {
+ match pat.node {
+ PatKind::Range(
+ _, _, Spanned { node: RangeEnd::Included(RangeSyntax::DotDotDot), .. }
+ ) => {},
+ PatKind::Range(..) => {
+ let mut err = self.struct_span_err(
+ pat.span,
+ "the range pattern here has ambiguous interpretation",
+ );
+ err.span_suggestion(
+ pat.span,
+ "add parentheses to clarify the precedence",
+ format!("({})", pprust::pat_to_string(&pat)),
+ // "ambiguous interpretation" implies that we have to be guessing
+ Applicability::MaybeIncorrect
+ );
+ return Err(err);
+ }
+ _ => {}
+ }
+ }
+
+ Ok(P(pat))
+ }
+
+ /// Parses `ident` or `ident @ pat`.
+ /// used by the copy foo and ref foo patterns to give a good
+ /// error message when parsing mistakes like `ref foo(a, b)`.
+ fn parse_pat_ident(&mut self,
+ binding_mode: ast::BindingMode)
+ -> PResult<'a, PatKind> {
+ let ident = self.parse_ident()?;
+ let sub = if self.eat(&token::At) {
+ Some(self.parse_pat(Some("binding pattern"))?)
+ } else {
+ None
+ };
+
+ // just to be friendly, if they write something like
+ // ref Some(i)
+ // we end up here with ( as the current token. This shortly
+ // leads to a parse error. Note that if there is no explicit
+ // binding mode then we do not end up here, because the lookahead
+ // will direct us over to parse_enum_variant()
+ if self.token == token::OpenDelim(token::Paren) {
+ return Err(self.span_fatal(
+ self.prev_span,
+ "expected identifier, found enum pattern"))
+ }
+
+ Ok(PatKind::Ident(binding_mode, ident, sub))
+ }
+
+ /// Parses a local variable declaration.
+ fn parse_local(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Local>> {
+ let lo = self.prev_span;
+ let pat = self.parse_top_level_pat()?;
+
+ let (err, ty) = if self.eat(&token::Colon) {
+ // Save the state of the parser before parsing type normally, in case there is a `:`
+ // instead of an `=` typo.
+ let parser_snapshot_before_type = self.clone();
+ let colon_sp = self.prev_span;
+ match self.parse_ty() {
+ Ok(ty) => (None, Some(ty)),
+ Err(mut err) => {
+ // Rewind to before attempting to parse the type and continue parsing
+ let parser_snapshot_after_type = self.clone();
+ mem::replace(self, parser_snapshot_before_type);
+
+ let snippet = self.sess.source_map().span_to_snippet(pat.span).unwrap();
+ err.span_label(pat.span, format!("while parsing the type for `{}`", snippet));
+ (Some((parser_snapshot_after_type, colon_sp, err)), None)
+ }
+ }
+ } else {
+ (None, None)
+ };
+ let init = match (self.parse_initializer(err.is_some()), err) {
+ (Ok(init), None) => { // init parsed, ty parsed
+ init
+ }
+ (Ok(init), Some((_, colon_sp, mut err))) => { // init parsed, ty error
+ // Could parse the type as if it were the initializer, it is likely there was a
+ // typo in the code: `:` instead of `=`. Add suggestion and emit the error.
+ err.span_suggestion_short(
+ colon_sp,
+ "use `=` if you meant to assign",
+ "=".to_string(),
+ Applicability::MachineApplicable
+ );
+ err.emit();
+ // As this was parsed successfully, continue as if the code has been fixed for the
+ // rest of the file. It will still fail due to the emitted error, but we avoid
+ // extra noise.
+ init
+ }
+ (Err(mut init_err), Some((snapshot, _, ty_err))) => { // init error, ty error
+ init_err.cancel();
+ // Couldn't parse the type nor the initializer, only raise the type error and
+ // return to the parser state before parsing the type as the initializer.
+ // let x: <parse_error>;
+ mem::replace(self, snapshot);
+ return Err(ty_err);
+ }
+ (Err(err), None) => { // init error, ty parsed
+ // Couldn't parse the initializer and we're not attempting to recover a failed
+ // parse of the type, return the error.
+ return Err(err);
+ }
+ };
+ let hi = if self.token == token::Semi {
+ self.span
+ } else {
+ self.prev_span
+ };
+ Ok(P(ast::Local {
+ ty,
+ pat,
+ init,
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(hi),
+ attrs,
+ }))
+ }
+
+ /// Parses a structure field.
+ fn parse_name_and_ty(&mut self,
+ lo: Span,
+ vis: Visibility,
+ attrs: Vec<Attribute>)
+ -> PResult<'a, StructField> {
+ let name = self.parse_ident()?;
+ self.expect(&token::Colon)?;
+ let ty = self.parse_ty()?;
+ Ok(StructField {
+ span: lo.to(self.prev_span),
+ ident: Some(name),
+ vis,
+ id: ast::DUMMY_NODE_ID,
+ ty,
+ attrs,
+ })
+ }
+
+ /// Emits an expected-item-after-attributes error.
+ fn expected_item_err(&mut self, attrs: &[Attribute]) -> PResult<'a, ()> {
+ let message = match attrs.last() {
+ Some(&Attribute { is_sugared_doc: true, .. }) => "expected item after doc comment",
+ _ => "expected item after attributes",
+ };
+
+ let mut err = self.diagnostic().struct_span_err(self.prev_span, message);
+ if attrs.last().unwrap().is_sugared_doc {
+ err.span_label(self.prev_span, "this doc comment doesn't document anything");
+ }
+ Err(err)
+ }
+
+ /// Parse a statement. This stops just before trailing semicolons on everything but items.
+ /// e.g., a `StmtKind::Semi` parses to a `StmtKind::Expr`, leaving the trailing `;` unconsumed.
+ pub fn parse_stmt(&mut self) -> PResult<'a, Option<Stmt>> {
+ Ok(self.parse_stmt_(true))
+ }
+
+ // Eat tokens until we can be relatively sure we reached the end of the
+ // statement. This is something of a best-effort heuristic.
+ //
+ // We terminate when we find an unmatched `}` (without consuming it).
+ fn recover_stmt(&mut self) {
+ self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore)
+ }
+
+ // If `break_on_semi` is `Break`, then we will stop consuming tokens after
+ // finding (and consuming) a `;` outside of `{}` or `[]` (note that this is
+ // approximate - it can mean we break too early due to macros, but that
+ // should only lead to sub-optimal recovery, not inaccurate parsing).
+ //
+ // If `break_on_block` is `Break`, then we will stop consuming tokens
+ // after finding (and consuming) a brace-delimited block.
+ fn recover_stmt_(&mut self, break_on_semi: SemiColonMode, break_on_block: BlockMode) {
+ let mut brace_depth = 0;
+ let mut bracket_depth = 0;
+ let mut in_block = false;
+ debug!("recover_stmt_ enter loop (semi={:?}, block={:?})",
+ break_on_semi, break_on_block);
+ loop {
+ debug!("recover_stmt_ loop {:?}", self.token);
+ match self.token {
+ token::OpenDelim(token::DelimToken::Brace) => {
+ brace_depth += 1;
+ self.bump();
+ if break_on_block == BlockMode::Break &&
+ brace_depth == 1 &&
+ bracket_depth == 0 {
+ in_block = true;
+ }
+ }
+ token::OpenDelim(token::DelimToken::Bracket) => {
+ bracket_depth += 1;
+ self.bump();
+ }
+ token::CloseDelim(token::DelimToken::Brace) => {
+ if brace_depth == 0 {
+ debug!("recover_stmt_ return - close delim {:?}", self.token);
+ break;
+ }
+ brace_depth -= 1;
+ self.bump();
+ if in_block && bracket_depth == 0 && brace_depth == 0 {
+ debug!("recover_stmt_ return - block end {:?}", self.token);
+ break;
+ }
+ }
+ token::CloseDelim(token::DelimToken::Bracket) => {
+ bracket_depth -= 1;
+ if bracket_depth < 0 {
+ bracket_depth = 0;
+ }
+ self.bump();
+ }
+ token::Eof => {
+ debug!("recover_stmt_ return - Eof");
+ break;
+ }
+ token::Semi => {
+ self.bump();
+ if break_on_semi == SemiColonMode::Break &&
+ brace_depth == 0 &&
+ bracket_depth == 0 {
+ debug!("recover_stmt_ return - Semi");
+ break;
+ }
+ }
+ token::Comma => {
+ if break_on_semi == SemiColonMode::Comma &&
+ brace_depth == 0 &&
+ bracket_depth == 0 {
+ debug!("recover_stmt_ return - Semi");
+ break;
+ } else {
+ self.bump();
+ }
+ }
+ _ => {
+ self.bump()
+ }
+ }
+ }
+ }
+
+ fn parse_stmt_(&mut self, macro_legacy_warnings: bool) -> Option<Stmt> {
+ self.parse_stmt_without_recovery(macro_legacy_warnings).unwrap_or_else(|mut e| {
+ e.emit();
+ self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore);
+ None
+ })
+ }
+
+ fn is_async_block(&mut self) -> bool {
+ self.token.is_keyword(keywords::Async) &&
+ (
+ ( // `async move {`
+ self.look_ahead(1, |t| t.is_keyword(keywords::Move)) &&
+ self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
+ ) || ( // `async {`
+ self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
+ )
+ )
+ }
+
+ fn is_do_catch_block(&mut self) -> bool {
+ self.token.is_keyword(keywords::Do) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Catch)) &&
+ self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace)) &&
+ !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
+ }
+
+ fn is_try_block(&mut self) -> bool {
+ self.token.is_keyword(keywords::Try) &&
+ self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) &&
+ self.span.rust_2018() &&
+ // prevent `while try {} {}`, `if try {} {} else {}`, etc.
+ !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
+ }
+
+ fn is_union_item(&self) -> bool {
+ self.token.is_keyword(keywords::Union) &&
+ self.look_ahead(1, |t| t.is_ident() && !t.is_reserved_ident())
+ }
+
+ fn is_crate_vis(&self) -> bool {
+ self.token.is_keyword(keywords::Crate) && self.look_ahead(1, |t| t != &token::ModSep)
+ }
+
+ fn is_existential_type_decl(&self) -> bool {
+ self.token.is_keyword(keywords::Existential) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Type))
+ }
+
+ fn is_auto_trait_item(&mut self) -> bool {
+ // auto trait
+ (self.token.is_keyword(keywords::Auto)
+ && self.look_ahead(1, |t| t.is_keyword(keywords::Trait)))
+ || // unsafe auto trait
+ (self.token.is_keyword(keywords::Unsafe) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Auto)) &&
+ self.look_ahead(2, |t| t.is_keyword(keywords::Trait)))
+ }
+
+ fn eat_macro_def(&mut self, attrs: &[Attribute], vis: &Visibility, lo: Span)
+ -> PResult<'a, Option<P<Item>>> {
+ let token_lo = self.span;
+ let (ident, def) = match self.token {
+ token::Ident(ident, false) if ident.name == keywords::Macro.name() => {
+ self.bump();
+ let ident = self.parse_ident()?;
+ let tokens = if self.check(&token::OpenDelim(token::Brace)) {
+ match self.parse_token_tree() {
+ TokenTree::Delimited(_, _, tts) => tts,
+ _ => unreachable!(),
+ }
+ } else if self.check(&token::OpenDelim(token::Paren)) {
+ let args = self.parse_token_tree();
+ let body = if self.check(&token::OpenDelim(token::Brace)) {
+ self.parse_token_tree()
+ } else {
+ self.unexpected()?;
+ unreachable!()
+ };
+ TokenStream::new(vec![
+ args.into(),
+ TokenTree::Token(token_lo.to(self.prev_span), token::FatArrow).into(),
+ body.into(),
+ ])
+ } else {
+ self.unexpected()?;
+ unreachable!()
+ };
+
+ (ident, ast::MacroDef { tokens: tokens.into(), legacy: false })
+ }
+ token::Ident(ident, _) if ident.name == "macro_rules" &&
+ self.look_ahead(1, |t| *t == token::Not) => {
+ let prev_span = self.prev_span;
+ self.complain_if_pub_macro(&vis.node, prev_span);
+ self.bump();
+ self.bump();
+
+ let ident = self.parse_ident()?;
+ let (delim, tokens) = self.expect_delimited_token_tree()?;
+ if delim != MacDelimiter::Brace {
+ if !self.eat(&token::Semi) {
+ let msg = "macros that expand to items must either \
+ be surrounded with braces or followed by a semicolon";
+ self.span_err(self.prev_span, msg);
+ }
+ }
+
+ (ident, ast::MacroDef { tokens: tokens, legacy: true })
+ }
+ _ => return Ok(None),
+ };
+
+ let span = lo.to(self.prev_span);
+ Ok(Some(self.mk_item(span, ident, ItemKind::MacroDef(def), vis.clone(), attrs.to_vec())))
+ }
+
+ fn parse_stmt_without_recovery(&mut self,
+ macro_legacy_warnings: bool)
+ -> PResult<'a, Option<Stmt>> {
+ maybe_whole!(self, NtStmt, |x| Some(x));
+
+ let attrs = self.parse_outer_attributes()?;
+ let lo = self.span;
+
+ Ok(Some(if self.eat_keyword(keywords::Let) {
+ Stmt {
+ id: ast::DUMMY_NODE_ID,
+ node: StmtKind::Local(self.parse_local(attrs.into())?),
+ span: lo.to(self.prev_span),
+ }
+ } else if let Some(macro_def) = self.eat_macro_def(
+ &attrs,
+ &source_map::respan(lo, VisibilityKind::Inherited),
+ lo,
+ )? {
+ Stmt {
+ id: ast::DUMMY_NODE_ID,
+ node: StmtKind::Item(macro_def),
+ span: lo.to(self.prev_span),
+ }
+ // Starts like a simple path, being careful to avoid contextual keywords
+ // such as a union items, item with `crate` visibility or auto trait items.
+ // Our goal here is to parse an arbitrary path `a::b::c` but not something that starts
+ // like a path (1 token), but it fact not a path.
+ // `union::b::c` - path, `union U { ... }` - not a path.
+ // `crate::b::c` - path, `crate struct S;` - not a path.
+ } else if self.token.is_path_start() &&
+ !self.token.is_qpath_start() &&
+ !self.is_union_item() &&
+ !self.is_crate_vis() &&
+ !self.is_existential_type_decl() &&
+ !self.is_auto_trait_item() {
+ let pth = self.parse_path(PathStyle::Expr)?;
+
+ if !self.eat(&token::Not) {
+ let expr = if self.check(&token::OpenDelim(token::Brace)) {
+ self.parse_struct_expr(lo, pth, ThinVec::new())?
+ } else {
+ let hi = self.prev_span;
+ self.mk_expr(lo.to(hi), ExprKind::Path(None, pth), ThinVec::new())
+ };
+
+ let expr = self.with_res(Restrictions::STMT_EXPR, |this| {
+ let expr = this.parse_dot_or_call_expr_with(expr, lo, attrs.into())?;
+ this.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(expr))
+ })?;
+
+ return Ok(Some(Stmt {
+ id: ast::DUMMY_NODE_ID,
+ node: StmtKind::Expr(expr),
+ span: lo.to(self.prev_span),
+ }));
+ }
+
+ // it's a macro invocation
+ let id = match self.token {
+ token::OpenDelim(_) => keywords::Invalid.ident(), // no special identifier
+ _ => self.parse_ident()?,
+ };
+
+ // check that we're pointing at delimiters (need to check
+ // again after the `if`, because of `parse_ident`
+ // consuming more tokens).
+ match self.token {
+ token::OpenDelim(_) => {}
+ _ => {
+ // we only expect an ident if we didn't parse one
+ // above.
+ let ident_str = if id.name == keywords::Invalid.name() {
+ "identifier, "
+ } else {
+ ""
+ };
+ let tok_str = self.this_token_descr();
+ let mut err = self.fatal(&format!("expected {}`(` or `{{`, found {}",
+ ident_str,
+ tok_str));
+ err.span_label(self.span, format!("expected {}`(` or `{{`", ident_str));
+ return Err(err)
+ },
+ }
+
+ let (delim, tts) = self.expect_delimited_token_tree()?;
+ let hi = self.prev_span;
+
+ let style = if delim == MacDelimiter::Brace {
+ MacStmtStyle::Braces
+ } else {
+ MacStmtStyle::NoBraces
+ };
+
+ if id.name == keywords::Invalid.name() {
+ let mac = respan(lo.to(hi), Mac_ { path: pth, tts, delim });
+ let node = if delim == MacDelimiter::Brace ||
+ self.token == token::Semi || self.token == token::Eof {
+ StmtKind::Mac(P((mac, style, attrs.into())))
+ }
+ // We used to incorrectly stop parsing macro-expanded statements here.
+ // If the next token will be an error anyway but could have parsed with the
+ // earlier behavior, stop parsing here and emit a warning to avoid breakage.
+ else if macro_legacy_warnings && self.token.can_begin_expr() && match self.token {
+ // These can continue an expression, so we can't stop parsing and warn.
+ token::OpenDelim(token::Paren) | token::OpenDelim(token::Bracket) |
+ token::BinOp(token::Minus) | token::BinOp(token::Star) |
+ token::BinOp(token::And) | token::BinOp(token::Or) |
+ token::AndAnd | token::OrOr |
+ token::DotDot | token::DotDotDot | token::DotDotEq => false,
+ _ => true,
+ } {
+ self.warn_missing_semicolon();
+ StmtKind::Mac(P((mac, style, attrs.into())))
+ } else {
+ let e = self.mk_mac_expr(lo.to(hi), mac.node, ThinVec::new());
+ let e = self.parse_dot_or_call_expr_with(e, lo, attrs.into())?;
+ let e = self.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(e))?;
+ StmtKind::Expr(e)
+ };
+ Stmt {
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(hi),
+ node,
+ }
+ } else {
+ // if it has a special ident, it's definitely an item
+ //
+ // Require a semicolon or braces.
+ if style != MacStmtStyle::Braces {
+ if !self.eat(&token::Semi) {
+ self.span_err(self.prev_span,
+ "macros that expand to items must \
+ either be surrounded with braces or \
+ followed by a semicolon");
+ }
+ }
+ let span = lo.to(hi);
+ Stmt {
+ id: ast::DUMMY_NODE_ID,
+ span,
+ node: StmtKind::Item({
+ self.mk_item(
+ span, id /*id is good here*/,
+ ItemKind::Mac(respan(span, Mac_ { path: pth, tts, delim })),
+ respan(lo, VisibilityKind::Inherited),
+ attrs)
+ }),
+ }
+ }
+ } else {
+ // FIXME: Bad copy of attrs
+ let old_directory_ownership =
+ mem::replace(&mut self.directory.ownership, DirectoryOwnership::UnownedViaBlock);
+ let item = self.parse_item_(attrs.clone(), false, true)?;
+ self.directory.ownership = old_directory_ownership;
+
+ match item {
+ Some(i) => Stmt {
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(i.span),
+ node: StmtKind::Item(i),
+ },
+ None => {
+ let unused_attrs = |attrs: &[Attribute], s: &mut Self| {
+ if !attrs.is_empty() {
+ if s.prev_token_kind == PrevTokenKind::DocComment {
+ s.span_fatal_err(s.prev_span, Error::UselessDocComment).emit();
+ } else if attrs.iter().any(|a| a.style == AttrStyle::Outer) {
+ s.span_err(s.span, "expected statement after outer attribute");
+ }
+ }
+ };
+
+ // Do not attempt to parse an expression if we're done here.
+ if self.token == token::Semi {
+ unused_attrs(&attrs, self);
+ self.bump();
+ return Ok(None);
+ }
+
+ if self.token == token::CloseDelim(token::Brace) {
+ unused_attrs(&attrs, self);
+ return Ok(None);
+ }
+
+ // Remainder are line-expr stmts.
+ let e = self.parse_expr_res(
+ Restrictions::STMT_EXPR, Some(attrs.into()))?;
+ Stmt {
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(e.span),
+ node: StmtKind::Expr(e),
+ }
+ }
+ }
+ }))
+ }
+
+ /// Checks if this expression is a successfully parsed statement.
+ fn expr_is_complete(&mut self, e: &Expr) -> bool {
+ self.restrictions.contains(Restrictions::STMT_EXPR) &&
+ !classify::expr_requires_semi_to_be_stmt(e)
+ }
+
+ /// Parses a block. No inner attributes are allowed.
+ pub fn parse_block(&mut self) -> PResult<'a, P<Block>> {
+ maybe_whole!(self, NtBlock, |x| x);
+
+ let lo = self.span;
+
+ if !self.eat(&token::OpenDelim(token::Brace)) {
+ let sp = self.span;
+ let tok = self.this_token_descr();
+ let mut e = self.span_fatal(sp, &format!("expected `{{`, found {}", tok));
+ let do_not_suggest_help =
+ self.token.is_keyword(keywords::In) || self.token == token::Colon;
+
+ if self.token.is_ident_named("and") {
+ e.span_suggestion_short(
+ self.span,
+ "use `&&` instead of `and` for the boolean operator",
+ "&&".to_string(),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ if self.token.is_ident_named("or") {
+ e.span_suggestion_short(
+ self.span,
+ "use `||` instead of `or` for the boolean operator",
+ "||".to_string(),
+ Applicability::MaybeIncorrect,
+ );
+ }
+
+ // Check to see if the user has written something like
+ //
+ // if (cond)
+ // bar;
+ //
+ // Which is valid in other languages, but not Rust.
+ match self.parse_stmt_without_recovery(false) {
+ Ok(Some(stmt)) => {
+ if self.look_ahead(1, |t| t == &token::OpenDelim(token::Brace))
+ || do_not_suggest_help {
+ // if the next token is an open brace (e.g., `if a b {`), the place-
+ // inside-a-block suggestion would be more likely wrong than right
+ e.span_label(sp, "expected `{`");
+ return Err(e);
+ }
+ let mut stmt_span = stmt.span;
+ // expand the span to include the semicolon, if it exists
+ if self.eat(&token::Semi) {
+ stmt_span = stmt_span.with_hi(self.prev_span.hi());
+ }
+ let sugg = pprust::to_string(|s| {
+ use crate::print::pprust::{PrintState, INDENT_UNIT};
+ s.ibox(INDENT_UNIT)?;
+ s.bopen()?;
+ s.print_stmt(&stmt)?;
+ s.bclose_maybe_open(stmt.span, INDENT_UNIT, false)
+ });
+ e.span_suggestion(
+ stmt_span,
+ "try placing this code inside a block",
+ sugg,
+ // speculative, has been misleading in the past (closed Issue #46836)
+ Applicability::MaybeIncorrect
+ );
+ }
+ Err(mut e) => {
+ self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore);
+ self.cancel(&mut e);
+ }
+ _ => ()
+ }
+ e.span_label(sp, "expected `{`");
+ return Err(e);
+ }
+
+ self.parse_block_tail(lo, BlockCheckMode::Default)
+ }
+
+ /// Parses a block. Inner attributes are allowed.
+ fn parse_inner_attrs_and_block(&mut self) -> PResult<'a, (Vec<Attribute>, P<Block>)> {
+ maybe_whole!(self, NtBlock, |x| (Vec::new(), x));
+
+ let lo = self.span;
+ self.expect(&token::OpenDelim(token::Brace))?;
+ Ok((self.parse_inner_attributes()?,
+ self.parse_block_tail(lo, BlockCheckMode::Default)?))
+ }
+
+ /// Parses the rest of a block expression or function body.
+ /// Precondition: already parsed the '{'.
+ fn parse_block_tail(&mut self, lo: Span, s: BlockCheckMode) -> PResult<'a, P<Block>> {
+ let mut stmts = vec![];
+ while !self.eat(&token::CloseDelim(token::Brace)) {
+ let stmt = match self.parse_full_stmt(false) {
+ Err(mut err) => {
+ err.emit();
+ self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore);
+ Some(Stmt {
+ id: ast::DUMMY_NODE_ID,
+ node: StmtKind::Expr(DummyResult::raw_expr(self.span, true)),
+ span: self.span,
+ })
+ }
+ Ok(stmt) => stmt,
+ };
+ if let Some(stmt) = stmt {
+ stmts.push(stmt);
+ } else if self.token == token::Eof {
+ break;
+ } else {
+ // Found only `;` or `}`.
+ continue;
+ };
+ }
+ Ok(P(ast::Block {
+ stmts,
+ id: ast::DUMMY_NODE_ID,
+ rules: s,
+ span: lo.to(self.prev_span),
+ }))
+ }
+
+ /// Parses a statement, including the trailing semicolon.
+ crate fn parse_full_stmt(&mut self, macro_legacy_warnings: bool) -> PResult<'a, Option<Stmt>> {
+ // skip looking for a trailing semicolon when we have an interpolated statement
+ maybe_whole!(self, NtStmt, |x| Some(x));
+
+ let mut stmt = match self.parse_stmt_without_recovery(macro_legacy_warnings)? {
+ Some(stmt) => stmt,
+ None => return Ok(None),
+ };
+
+ match stmt.node {
+ StmtKind::Expr(ref expr) if self.token != token::Eof => {
+ // expression without semicolon
+ if classify::expr_requires_semi_to_be_stmt(expr) {
+ // Just check for errors and recover; do not eat semicolon yet.
+ if let Err(mut e) =
+ self.expect_one_of(&[], &[token::Semi, token::CloseDelim(token::Brace)])
+ {
+ e.emit();
+ self.recover_stmt();
+ }
+ }
+ }
+ StmtKind::Local(..) => {
+ // We used to incorrectly allow a macro-expanded let statement to lack a semicolon.
+ if macro_legacy_warnings && self.token != token::Semi {
+ self.warn_missing_semicolon();
+ } else {
+ self.expect_one_of(&[], &[token::Semi])?;
+ }
+ }
+ _ => {}
+ }
+
+ if self.eat(&token::Semi) {
+ stmt = stmt.add_trailing_semicolon();
+ }
+
+ stmt.span = stmt.span.with_hi(self.prev_span.hi());
+ Ok(Some(stmt))
+ }
+
+ fn warn_missing_semicolon(&self) {
+ self.diagnostic().struct_span_warn(self.span, {
+ &format!("expected `;`, found {}", self.this_token_descr())
+ }).note({
+ "This was erroneously allowed and will become a hard error in a future release"
+ }).emit();
+ }
+
+ fn err_dotdotdot_syntax(&self, span: Span) {
+ self.diagnostic().struct_span_err(span, {
+ "unexpected token: `...`"
+ }).span_suggestion(
+ span, "use `..` for an exclusive range", "..".to_owned(),
+ Applicability::MaybeIncorrect
+ ).span_suggestion(
+ span, "or `..=` for an inclusive range", "..=".to_owned(),
+ Applicability::MaybeIncorrect
+ ).emit();
+ }
+
+ /// Parses bounds of a type parameter `BOUND + BOUND + ...`, possibly with trailing `+`.
+ ///
+ /// ```
+ /// BOUND = TY_BOUND | LT_BOUND
+ /// LT_BOUND = LIFETIME (e.g., `'a`)
+ /// TY_BOUND = TY_BOUND_NOPAREN | (TY_BOUND_NOPAREN)
+ /// TY_BOUND_NOPAREN = [?] [for<LT_PARAM_DEFS>] SIMPLE_PATH (e.g., `?for<'a: 'b> m::Trait<'a>`)
+ /// ```
+ fn parse_generic_bounds_common(&mut self,
+ allow_plus: bool,
+ colon_span: Option<Span>) -> PResult<'a, GenericBounds> {
+ let mut bounds = Vec::new();
+ let mut negative_bounds = Vec::new();
+ let mut last_plus_span = None;
+ loop {
+ // This needs to be synchronized with `Token::can_begin_bound`.
+ let is_bound_start = self.check_path() || self.check_lifetime() ||
+ self.check(&token::Not) || // used for error reporting only
+ self.check(&token::Question) ||
+ self.check_keyword(keywords::For) ||
+ self.check(&token::OpenDelim(token::Paren));
+ if is_bound_start {
+ let lo = self.span;
+ let has_parens = self.eat(&token::OpenDelim(token::Paren));
+ let inner_lo = self.span;
+ let is_negative = self.eat(&token::Not);
+ let question = if self.eat(&token::Question) { Some(self.prev_span) } else { None };
+ if self.token.is_lifetime() {
+ if let Some(question_span) = question {
+ self.span_err(question_span,
+ "`?` may only modify trait bounds, not lifetime bounds");
+ }
+ bounds.push(GenericBound::Outlives(self.expect_lifetime()));
+ if has_parens {
+ let inner_span = inner_lo.to(self.prev_span);
+ self.expect(&token::CloseDelim(token::Paren))?;
+ let mut err = self.struct_span_err(
+ lo.to(self.prev_span),
+ "parenthesized lifetime bounds are not supported"
+ );
+ if let Ok(snippet) = self.sess.source_map().span_to_snippet(inner_span) {
+ err.span_suggestion_short(
+ lo.to(self.prev_span),
+ "remove the parentheses",
+ snippet.to_owned(),
+ Applicability::MachineApplicable
+ );
+ }
+ err.emit();
+ }
+ } else {
+ let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
+ let path = self.parse_path(PathStyle::Type)?;
+ if has_parens {
+ self.expect(&token::CloseDelim(token::Paren))?;
+ }
+ let poly_span = lo.to(self.prev_span);
+ if is_negative {
+ negative_bounds.push(
+ last_plus_span.or(colon_span).unwrap()
+ .to(poly_span));
+ } else {
+ let poly_trait = PolyTraitRef::new(lifetime_defs, path, poly_span);
+ let modifier = if question.is_some() {
+ TraitBoundModifier::Maybe
+ } else {
+ TraitBoundModifier::None
+ };
+ bounds.push(GenericBound::Trait(poly_trait, modifier));
+ }
+ }
+ } else {
+ break
+ }
+
+ if !allow_plus || !self.eat_plus() {
+ break
+ } else {
+ last_plus_span = Some(self.prev_span);
+ }
+ }
+
+ if !negative_bounds.is_empty() {
+ let plural = negative_bounds.len() > 1;
+ let mut err = self.struct_span_err(negative_bounds,
+ "negative trait bounds are not supported");
+ let bound_list = colon_span.unwrap().to(self.prev_span);
+ let mut new_bound_list = String::new();
+ if !bounds.is_empty() {
+ let mut snippets = bounds.iter().map(|bound| bound.span())
+ .map(|span| self.sess.source_map().span_to_snippet(span));
+ while let Some(Ok(snippet)) = snippets.next() {
+ new_bound_list.push_str(" + ");
+ new_bound_list.push_str(&snippet);
+ }
+ new_bound_list = new_bound_list.replacen(" +", ":", 1);
+ }
+ err.span_suggestion_short(bound_list,
+ &format!("remove the trait bound{}",
+ if plural { "s" } else { "" }),
+ new_bound_list,
+ Applicability::MachineApplicable);
+ err.emit();
+ }
+
+ return Ok(bounds);
+ }
+
+ fn parse_generic_bounds(&mut self, colon_span: Option<Span>) -> PResult<'a, GenericBounds> {
+ self.parse_generic_bounds_common(true, colon_span)
+ }
+
+ /// Parses bounds of a lifetime parameter `BOUND + BOUND + BOUND`, possibly with trailing `+`.
+ ///
+ /// ```
+ /// BOUND = LT_BOUND (e.g., `'a`)
+ /// ```
+ fn parse_lt_param_bounds(&mut self) -> GenericBounds {
+ let mut lifetimes = Vec::new();
+ while self.check_lifetime() {
+ lifetimes.push(ast::GenericBound::Outlives(self.expect_lifetime()));
+
+ if !self.eat_plus() {
+ break
+ }
+ }
+ lifetimes
+ }
+
+ /// Matches `typaram = IDENT (`?` unbound)? optbounds ( EQ ty )?`.
+ fn parse_ty_param(&mut self,
+ preceding_attrs: Vec<Attribute>)
+ -> PResult<'a, GenericParam> {
+ let ident = self.parse_ident()?;
+
+ // Parse optional colon and param bounds.
+ let bounds = if self.eat(&token::Colon) {
+ self.parse_generic_bounds(None)?
+ } else {
+ Vec::new()
+ };
+
+ let default = if self.eat(&token::Eq) {
+ Some(self.parse_ty()?)
+ } else {
+ None
+ };
+
+ Ok(GenericParam {
+ ident,
+ id: ast::DUMMY_NODE_ID,
+ attrs: preceding_attrs.into(),
+ bounds,
+ kind: GenericParamKind::Type {
+ default,
+ }
+ })
+ }
+
+ /// Parses the following grammar:
+ ///
+ /// TraitItemAssocTy = Ident ["<"...">"] [":" [GenericBounds]] ["where" ...] ["=" Ty]
+ fn parse_trait_item_assoc_ty(&mut self)
+ -> PResult<'a, (Ident, TraitItemKind, ast::Generics)> {
+ let ident = self.parse_ident()?;
+ let mut generics = self.parse_generics()?;
+
+ // Parse optional colon and param bounds.
+ let bounds = if self.eat(&token::Colon) {
+ self.parse_generic_bounds(None)?
+ } else {
+ Vec::new()
+ };
+ generics.where_clause = self.parse_where_clause()?;
+
+ let default = if self.eat(&token::Eq) {
+ Some(self.parse_ty()?)
+ } else {
+ None
+ };
+ self.expect(&token::Semi)?;
+
+ Ok((ident, TraitItemKind::Type(bounds, default), generics))
+ }
+
+ fn parse_const_param(&mut self, preceding_attrs: Vec<Attribute>) -> PResult<'a, GenericParam> {
+ self.expect_keyword(keywords::Const)?;
+ let ident = self.parse_ident()?;
+ self.expect(&token::Colon)?;
+ let ty = self.parse_ty()?;
+
+ Ok(GenericParam {
+ ident,
+ id: ast::DUMMY_NODE_ID,
+ attrs: preceding_attrs.into(),
+ bounds: Vec::new(),
+ kind: GenericParamKind::Const {
+ ty,
+ }
+ })
+ }
+
+ /// Parses a (possibly empty) list of lifetime and type parameters, possibly including
+ /// a trailing comma and erroneous trailing attributes.
+ crate fn parse_generic_params(&mut self) -> PResult<'a, Vec<ast::GenericParam>> {
+ let mut params = Vec::new();
+ loop {
+ let attrs = self.parse_outer_attributes()?;
+ if self.check_lifetime() {
+ let lifetime = self.expect_lifetime();
+ // Parse lifetime parameter.
+ let bounds = if self.eat(&token::Colon) {
+ self.parse_lt_param_bounds()
+ } else {
+ Vec::new()
+ };
+ params.push(ast::GenericParam {
+ ident: lifetime.ident,
+ id: lifetime.id,
+ attrs: attrs.into(),
+ bounds,
+ kind: ast::GenericParamKind::Lifetime,
+ });
+ } else if self.check_keyword(keywords::Const) {
+ // Parse const parameter.
+ params.push(self.parse_const_param(attrs)?);
+ } else if self.check_ident() {
+ // Parse type parameter.
+ params.push(self.parse_ty_param(attrs)?);
+ } else {
+ // Check for trailing attributes and stop parsing.
+ if !attrs.is_empty() {
+ if !params.is_empty() {
+ self.struct_span_err(
+ attrs[0].span,
+ &format!("trailing attribute after generic parameter"),
+ )
+ .span_label(attrs[0].span, "attributes must go before parameters")
+ .emit();
+ } else {
+ self.struct_span_err(
+ attrs[0].span,
+ &format!("attribute without generic parameters"),
+ )
+ .span_label(
+ attrs[0].span,
+ "attributes are only permitted when preceding parameters",
+ )
+ .emit();
+ }
+ }
+ break
+ }
+
+ if !self.eat(&token::Comma) {
+ break
+ }
+ }
+ Ok(params)
+ }
+
+ /// Parses a set of optional generic type parameter declarations. Where
+ /// clauses are not parsed here, and must be added later via
+ /// `parse_where_clause()`.
+ ///
+ /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
+ /// | ( < lifetimes , typaramseq ( , )? > )
+ /// where typaramseq = ( typaram ) | ( typaram , typaramseq )
+ fn parse_generics(&mut self) -> PResult<'a, ast::Generics> {
+ maybe_whole!(self, NtGenerics, |x| x);
+
+ let span_lo = self.span;
+ if self.eat_lt() {
+ let params = self.parse_generic_params()?;
+ self.expect_gt()?;
+ Ok(ast::Generics {
+ params,
+ where_clause: WhereClause {
+ id: ast::DUMMY_NODE_ID,
+ predicates: Vec::new(),
+ span: syntax_pos::DUMMY_SP,
+ },
+ span: span_lo.to(self.prev_span),
+ })
+ } else {
+ Ok(ast::Generics::default())
+ }
+ }
+
+ /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
+ /// For the purposes of understanding the parsing logic of generic arguments, this function
+ /// can be thought of being the same as just calling `self.parse_generic_args()` if the source
+ /// had the correct amount of leading angle brackets.
+ ///
+ /// ```ignore (diagnostics)
+ /// bar::<<<<T as Foo>::Output>();
+ /// ^^ help: remove extra angle brackets
+ /// ```
+ fn parse_generic_args_with_leaning_angle_bracket_recovery(
+ &mut self,
+ style: PathStyle,
+ lo: Span,
+ ) -> PResult<'a, (Vec<GenericArg>, Vec<TypeBinding>)> {
+ // We need to detect whether there are extra leading left angle brackets and produce an
+ // appropriate error and suggestion. This cannot be implemented by looking ahead at
+ // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
+ // then there won't be matching `>` tokens to find.
+ //
+ // To explain how this detection works, consider the following example:
+ //
+ // ```ignore (diagnostics)
+ // bar::<<<<T as Foo>::Output>();
+ // ^^ help: remove extra angle brackets
+ // ```
+ //
+ // Parsing of the left angle brackets starts in this function. We start by parsing the
+ // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
+ // `eat_lt`):
+ //
+ // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
+ // *Unmatched count:* 1
+ // *`parse_path_segment` calls deep:* 0
+ //
+ // This has the effect of recursing as this function is called if a `<` character
+ // is found within the expected generic arguments:
+ //
+ // *Upcoming tokens:* `<<<T as Foo>::Output>;`
+ // *Unmatched count:* 2
+ // *`parse_path_segment` calls deep:* 1
+ //
+ // Eventually we will have recursed until having consumed all of the `<` tokens and
+ // this will be reflected in the count:
+ //
+ // *Upcoming tokens:* `T as Foo>::Output>;`
+ // *Unmatched count:* 4
+ // `parse_path_segment` calls deep:* 3
+ //
+ // The parser will continue until reaching the first `>` - this will decrement the
+ // unmatched angle bracket count and return to the parent invocation of this function
+ // having succeeded in parsing:
+ //
+ // *Upcoming tokens:* `::Output>;`
+ // *Unmatched count:* 3
+ // *`parse_path_segment` calls deep:* 2
+ //
+ // This will continue until the next `>` character which will also return successfully
+ // to the parent invocation of this function and decrement the count:
+ //
+ // *Upcoming tokens:* `;`
+ // *Unmatched count:* 2
+ // *`parse_path_segment` calls deep:* 1
+ //
+ // At this point, this function will expect to find another matching `>` character but
+ // won't be able to and will return an error. This will continue all the way up the
+ // call stack until the first invocation:
+ //
+ // *Upcoming tokens:* `;`
+ // *Unmatched count:* 2
+ // *`parse_path_segment` calls deep:* 0
+ //
+ // In doing this, we have managed to work out how many unmatched leading left angle
+ // brackets there are, but we cannot recover as the unmatched angle brackets have
+ // already been consumed. To remedy this, we keep a snapshot of the parser state
+ // before we do the above. We can then inspect whether we ended up with a parsing error
+ // and unmatched left angle brackets and if so, restore the parser state before we
+ // consumed any `<` characters to emit an error and consume the erroneous tokens to
+ // recover by attempting to parse again.
+ //
+ // In practice, the recursion of this function is indirect and there will be other
+ // locations that consume some `<` characters - as long as we update the count when
+ // this happens, it isn't an issue.
+
+ let is_first_invocation = style == PathStyle::Expr;
+ // Take a snapshot before attempting to parse - we can restore this later.
+ let snapshot = if is_first_invocation {
+ Some(self.clone())
+ } else {
+ None
+ };
+
+ debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
+ match self.parse_generic_args() {
+ Ok(value) => Ok(value),
+ Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
+ // Cancel error from being unable to find `>`. We know the error
+ // must have been this due to a non-zero unmatched angle bracket
+ // count.
+ e.cancel();
+
+ // Swap `self` with our backup of the parser state before attempting to parse
+ // generic arguments.
+ let snapshot = mem::replace(self, snapshot.unwrap());
+
+ debug!(
+ "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
+ snapshot.count={:?}",
+ snapshot.unmatched_angle_bracket_count,
+ );
+
+ // Eat the unmatched angle brackets.
+ for _ in 0..snapshot.unmatched_angle_bracket_count {
+ self.eat_lt();
+ }
+
+ // Make a span over ${unmatched angle bracket count} characters.
+ let span = lo.with_hi(
+ lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count)
+ );
+ let plural = snapshot.unmatched_angle_bracket_count > 1;
+ self.diagnostic()
+ .struct_span_err(
+ span,
+ &format!(
+ "unmatched angle bracket{}",
+ if plural { "s" } else { "" }
+ ),
+ )
+ .span_suggestion(
+ span,
+ &format!(
+ "remove extra angle bracket{}",
+ if plural { "s" } else { "" }
+ ),
+ String::new(),
+ Applicability::MachineApplicable,
+ )
+ .emit();
+
+ // Try again without unmatched angle bracket characters.
+ self.parse_generic_args()
+ },
+ Err(e) => Err(e),
+ }
+ }
+
+ /// Parses (possibly empty) list of lifetime and type arguments and associated type bindings,
+ /// possibly including trailing comma.
+ fn parse_generic_args(&mut self) -> PResult<'a, (Vec<GenericArg>, Vec<TypeBinding>)> {
+ let mut args = Vec::new();
+ let mut bindings = Vec::new();
+ let mut misplaced_assoc_ty_bindings: Vec<Span> = Vec::new();
+ let mut assoc_ty_bindings: Vec<Span> = Vec::new();
+
+ let args_lo = self.span;
+
+ loop {
+ if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
+ // Parse lifetime argument.
+ args.push(GenericArg::Lifetime(self.expect_lifetime()));
+ misplaced_assoc_ty_bindings.append(&mut assoc_ty_bindings);
+ } else if self.check_ident() && self.look_ahead(1, |t| t == &token::Eq) {
+ // Parse associated type binding.
+ let lo = self.span;
+ let ident = self.parse_ident()?;
+ self.bump();
+ let ty = self.parse_ty()?;
+ let span = lo.to(self.prev_span);
+ bindings.push(TypeBinding {
+ id: ast::DUMMY_NODE_ID,
+ ident,
+ ty,
+ span,
+ });
+ assoc_ty_bindings.push(span);
+ } else if self.check_const_arg() {
+ // FIXME(const_generics): to distinguish between idents for types and consts,
+ // we should introduce a GenericArg::Ident in the AST and distinguish when
+ // lowering to the HIR. For now, idents for const args are not permitted.
+
+ // Parse const argument.
+ let expr = if let token::OpenDelim(token::Brace) = self.token {
+ self.parse_block_expr(None, self.span, BlockCheckMode::Default, ThinVec::new())?
+ } else if self.token.is_ident() {
+ // FIXME(const_generics): to distinguish between idents for types and consts,
+ // we should introduce a GenericArg::Ident in the AST and distinguish when
+ // lowering to the HIR. For now, idents for const args are not permitted.
+ return Err(
+ self.fatal("identifiers may currently not be used for const generics")
+ );
+ } else {
+ // FIXME(const_generics): this currently conflicts with emplacement syntax
+ // with negative integer literals.
+ self.parse_literal_maybe_minus()?
+ };
+ let value = AnonConst {
+ id: ast::DUMMY_NODE_ID,
+ value: expr,
+ };
+ args.push(GenericArg::Const(value));
+ misplaced_assoc_ty_bindings.append(&mut assoc_ty_bindings);
+ } else if self.check_type() {
+ // Parse type argument.
+ args.push(GenericArg::Type(self.parse_ty()?));
+ misplaced_assoc_ty_bindings.append(&mut assoc_ty_bindings);
+ } else {
+ break
+ }
+
+ if !self.eat(&token::Comma) {
+ break
+ }
+ }
+
+ // FIXME: we would like to report this in ast_validation instead, but we currently do not
+ // preserve ordering of generic parameters with respect to associated type binding, so we
+ // lose that information after parsing.
+ if misplaced_assoc_ty_bindings.len() > 0 {
+ let mut err = self.struct_span_err(
+ args_lo.to(self.prev_span),
+ "associated type bindings must be declared after generic parameters",
+ );
+ for span in misplaced_assoc_ty_bindings {
+ err.span_label(
+ span,
+ "this associated type binding should be moved after the generic parameters",
+ );
+ }
+ err.emit();
+ }
+
+ Ok((args, bindings))
+ }
+
+ /// Parses an optional where-clause and places it in `generics`.
+ ///
+ /// ```ignore (only-for-syntax-highlight)
+ /// where T : Trait<U, V> + 'b, 'a : 'b
+ /// ```
+ fn parse_where_clause(&mut self) -> PResult<'a, WhereClause> {
+ maybe_whole!(self, NtWhereClause, |x| x);
+
+ let mut where_clause = WhereClause {
+ id: ast::DUMMY_NODE_ID,
+ predicates: Vec::new(),
+ span: syntax_pos::DUMMY_SP,
+ };
+
+ if !self.eat_keyword(keywords::Where) {
+ return Ok(where_clause);
+ }
+ let lo = self.prev_span;
+
+ // We are considering adding generics to the `where` keyword as an alternative higher-rank
+ // parameter syntax (as in `where<'a>` or `where<T>`. To avoid that being a breaking
+ // change we parse those generics now, but report an error.
+ if self.choose_generics_over_qpath() {
+ let generics = self.parse_generics()?;
+ self.struct_span_err(
+ generics.span,
+ "generic parameters on `where` clauses are reserved for future use",
+ )
+ .span_label(generics.span, "currently unsupported")
+ .emit();
+ }
+
+ loop {
+ let lo = self.span;
+ if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
+ let lifetime = self.expect_lifetime();
+ // Bounds starting with a colon are mandatory, but possibly empty.
+ self.expect(&token::Colon)?;
+ let bounds = self.parse_lt_param_bounds();
+ where_clause.predicates.push(ast::WherePredicate::RegionPredicate(
+ ast::WhereRegionPredicate {
+ span: lo.to(self.prev_span),
+ lifetime,
+ bounds,
+ }
+ ));
+ } else if self.check_type() {
+ // Parse optional `for<'a, 'b>`.
+ // This `for` is parsed greedily and applies to the whole predicate,
+ // the bounded type can have its own `for` applying only to it.
+ // Example 1: for<'a> Trait1<'a>: Trait2<'a /*ok*/>
+ // Example 2: (for<'a> Trait1<'a>): Trait2<'a /*not ok*/>
+ // Example 3: for<'a> for<'b> Trait1<'a, 'b>: Trait2<'a /*ok*/, 'b /*not ok*/>
+ let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
+
+ // Parse type with mandatory colon and (possibly empty) bounds,
+ // or with mandatory equality sign and the second type.
+ let ty = self.parse_ty()?;
+ if self.eat(&token::Colon) {
+ let bounds = self.parse_generic_bounds(None)?;
+ where_clause.predicates.push(ast::WherePredicate::BoundPredicate(
+ ast::WhereBoundPredicate {
+ span: lo.to(self.prev_span),
+ bound_generic_params: lifetime_defs,
+ bounded_ty: ty,
+ bounds,
+ }
+ ));
+ // FIXME: Decide what should be used here, `=` or `==`.
+ // FIXME: We are just dropping the binders in lifetime_defs on the floor here.
+ } else if self.eat(&token::Eq) || self.eat(&token::EqEq) {
+ let rhs_ty = self.parse_ty()?;
+ where_clause.predicates.push(ast::WherePredicate::EqPredicate(
+ ast::WhereEqPredicate {
+ span: lo.to(self.prev_span),
+ lhs_ty: ty,
+ rhs_ty,
+ id: ast::DUMMY_NODE_ID,
+ }
+ ));
+ } else {
+ return self.unexpected();
+ }
+ } else {
+ break
+ }
+
+ if !self.eat(&token::Comma) {
+ break
+ }
+ }
+
+ where_clause.span = lo.to(self.prev_span);
+ Ok(where_clause)
+ }
+
+ fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool)
+ -> PResult<'a, (Vec<Arg> , bool)> {
+ self.expect(&token::OpenDelim(token::Paren))?;
+
+ let sp = self.span;
+ let mut variadic = false;
+ let (args, recovered): (Vec<Option<Arg>>, bool) =
+ self.parse_seq_to_before_end(
+ &token::CloseDelim(token::Paren),
+ SeqSep::trailing_allowed(token::Comma),
+ |p| {
+ if p.token == token::DotDotDot {
+ p.bump();
+ variadic = true;
+ if allow_variadic {
+ if p.token != token::CloseDelim(token::Paren) {
+ let span = p.span;
+ p.span_err(span,
+ "`...` must be last in argument list for variadic function");
+ }
+ Ok(None)
+ } else {
+ let span = p.prev_span;
+ if p.token == token::CloseDelim(token::Paren) {
+ // continue parsing to present any further errors
+ p.struct_span_err(
+ span,
+ "only foreign functions are allowed to be variadic"
+ ).emit();
+ Ok(Some(dummy_arg(span)))
+ } else {
+ // this function definition looks beyond recovery, stop parsing
+ p.span_err(span,
+ "only foreign functions are allowed to be variadic");
+ Ok(None)
+ }
+ }
+ } else {
+ match p.parse_arg_general(named_args, false) {
+ Ok(arg) => Ok(Some(arg)),
+ Err(mut e) => {
+ e.emit();
+ let lo = p.prev_span;
+ // Skip every token until next possible arg or end.
+ p.eat_to_tokens(&[&token::Comma, &token::CloseDelim(token::Paren)]);
+ // Create a placeholder argument for proper arg count (#34264).
+ let span = lo.to(p.prev_span);
+ Ok(Some(dummy_arg(span)))
+ }
+ }
+ }
+ }
+ )?;
+
+ if !recovered {
+ self.eat(&token::CloseDelim(token::Paren));
+ }
+
+ let args: Vec<_> = args.into_iter().filter_map(|x| x).collect();
+
+ if variadic && args.is_empty() {
+ self.span_err(sp,
+ "variadic function must be declared with at least one named argument");
+ }
+
+ Ok((args, variadic))
+ }
+
+ /// Parses the argument list and result type of a function declaration.
+ fn parse_fn_decl(&mut self, allow_variadic: bool) -> PResult<'a, P<FnDecl>> {
+
+ let (args, variadic) = self.parse_fn_args(true, allow_variadic)?;
+ let ret_ty = self.parse_ret_ty(true)?;
+
+ Ok(P(FnDecl {
+ inputs: args,
+ output: ret_ty,
+ variadic,
+ }))
+ }
+
+ /// Returns the parsed optional self argument and whether a self shortcut was used.
+ fn parse_self_arg(&mut self) -> PResult<'a, Option<Arg>> {
+ let expect_ident = |this: &mut Self| match this.token {
+ // Preserve hygienic context.
+ token::Ident(ident, _) =>
+ { let span = this.span; this.bump(); Ident::new(ident.name, span) }
+ _ => unreachable!()
+ };
+ let isolated_self = |this: &mut Self, n| {
+ this.look_ahead(n, |t| t.is_keyword(keywords::SelfLower)) &&
+ this.look_ahead(n + 1, |t| t != &token::ModSep)
+ };
+
+ // Parse optional self parameter of a method.
+ // Only a limited set of initial token sequences is considered self parameters, anything
+ // else is parsed as a normal function parameter list, so some lookahead is required.
+ let eself_lo = self.span;
+ let (eself, eself_ident, eself_hi) = match self.token {
+ token::BinOp(token::And) => {
+ // &self
+ // &mut self
+ // &'lt self
+ // &'lt mut self
+ // &not_self
+ (if isolated_self(self, 1) {
+ self.bump();
+ SelfKind::Region(None, Mutability::Immutable)
+ } else if self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) &&
+ isolated_self(self, 2) {
+ self.bump();
+ self.bump();
+ SelfKind::Region(None, Mutability::Mutable)
+ } else if self.look_ahead(1, |t| t.is_lifetime()) &&
+ isolated_self(self, 2) {
+ self.bump();
+ let lt = self.expect_lifetime();
+ SelfKind::Region(Some(lt), Mutability::Immutable)
+ } else if self.look_ahead(1, |t| t.is_lifetime()) &&
+ self.look_ahead(2, |t| t.is_keyword(keywords::Mut)) &&
+ isolated_self(self, 3) {
+ self.bump();
+ let lt = self.expect_lifetime();
+ self.bump();
+ SelfKind::Region(Some(lt), Mutability::Mutable)
+ } else {
+ return Ok(None);
+ }, expect_ident(self), self.prev_span)
+ }
+ token::BinOp(token::Star) => {
+ // *self
+ // *const self
+ // *mut self
+ // *not_self
+ // Emit special error for `self` cases.
+ let msg = "cannot pass `self` by raw pointer";
+ (if isolated_self(self, 1) {
+ self.bump();
+ self.struct_span_err(self.span, msg)
+ .span_label(self.span, msg)
+ .emit();
+ SelfKind::Value(Mutability::Immutable)
+ } else if self.look_ahead(1, |t| t.is_mutability()) &&
+ isolated_self(self, 2) {
+ self.bump();
+ self.bump();
+ self.struct_span_err(self.span, msg)
+ .span_label(self.span, msg)
+ .emit();
+ SelfKind::Value(Mutability::Immutable)
+ } else {
+ return Ok(None);
+ }, expect_ident(self), self.prev_span)
+ }
+ token::Ident(..) => {
+ if isolated_self(self, 0) {
+ // self
+ // self: TYPE
+ let eself_ident = expect_ident(self);
+ let eself_hi = self.prev_span;
+ (if self.eat(&token::Colon) {
+ let ty = self.parse_ty()?;
+ SelfKind::Explicit(ty, Mutability::Immutable)
+ } else {
+ SelfKind::Value(Mutability::Immutable)
+ }, eself_ident, eself_hi)
+ } else if self.token.is_keyword(keywords::Mut) &&
+ isolated_self(self, 1) {
+ // mut self
+ // mut self: TYPE
+ self.bump();
+ let eself_ident = expect_ident(self);
+ let eself_hi = self.prev_span;
+ (if self.eat(&token::Colon) {
+ let ty = self.parse_ty()?;
+ SelfKind::Explicit(ty, Mutability::Mutable)
+ } else {
+ SelfKind::Value(Mutability::Mutable)
+ }, eself_ident, eself_hi)
+ } else {
+ return Ok(None);
+ }
+ }
+ _ => return Ok(None),
+ };
+
+ let eself = source_map::respan(eself_lo.to(eself_hi), eself);
+ Ok(Some(Arg::from_self(eself, eself_ident)))
+ }
+
+ /// Parses the parameter list and result type of a function that may have a `self` parameter.
+ fn parse_fn_decl_with_self<F>(&mut self, parse_arg_fn: F) -> PResult<'a, P<FnDecl>>
+ where F: FnMut(&mut Parser<'a>) -> PResult<'a, Arg>,
+ {
+ self.expect(&token::OpenDelim(token::Paren))?;
+
+ // Parse optional self argument
+ let self_arg = self.parse_self_arg()?;
+
+ // Parse the rest of the function parameter list.
+ let sep = SeqSep::trailing_allowed(token::Comma);
+ let (fn_inputs, recovered) = if let Some(self_arg) = self_arg {
+ if self.check(&token::CloseDelim(token::Paren)) {
+ (vec![self_arg], false)
+ } else if self.eat(&token::Comma) {
+ let mut fn_inputs = vec![self_arg];
+ let (mut input, recovered) = self.parse_seq_to_before_end(
+ &token::CloseDelim(token::Paren), sep, parse_arg_fn)?;
+ fn_inputs.append(&mut input);
+ (fn_inputs, recovered)
+ } else {
+ return self.unexpected();
+ }
+ } else {
+ self.parse_seq_to_before_end(&token::CloseDelim(token::Paren), sep, parse_arg_fn)?
+ };
+
+ if !recovered {
+ // Parse closing paren and return type.
+ self.expect(&token::CloseDelim(token::Paren))?;
+ }
+ Ok(P(FnDecl {
+ inputs: fn_inputs,
+ output: self.parse_ret_ty(true)?,
+ variadic: false
+ }))
+ }
+
+ /// Parses the `|arg, arg|` header of a closure.
+ fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
+ let inputs_captures = {
+ if self.eat(&token::OrOr) {
+ Vec::new()
+ } else {
+ self.expect(&token::BinOp(token::Or))?;
+ let args = self.parse_seq_to_before_tokens(
+ &[&token::BinOp(token::Or), &token::OrOr],
+ SeqSep::trailing_allowed(token::Comma),
+ TokenExpectType::NoExpect,
+ |p| p.parse_fn_block_arg()
+ )?.0;
+ self.expect_or()?;
+ args
+ }
+ };
+ let output = self.parse_ret_ty(true)?;
+
+ Ok(P(FnDecl {
+ inputs: inputs_captures,
+ output,
+ variadic: false
+ }))
+ }
+
+ /// Parses the name and optional generic types of a function header.
+ fn parse_fn_header(&mut self) -> PResult<'a, (Ident, ast::Generics)> {
+ let id = self.parse_ident()?;
+ let generics = self.parse_generics()?;
+ Ok((id, generics))
+ }
+
+ fn mk_item(&mut self, span: Span, ident: Ident, node: ItemKind, vis: Visibility,
+ attrs: Vec<Attribute>) -> P<Item> {
+ P(Item {
+ ident,
+ attrs,
+ id: ast::DUMMY_NODE_ID,
+ node,
+ vis,
+ span,
+ tokens: None,
+ })
+ }
+
+ /// Parses an item-position function declaration.
+ fn parse_item_fn(&mut self,
+ unsafety: Unsafety,
+ asyncness: IsAsync,
+ constness: Spanned<Constness>,
+ abi: Abi)
+ -> PResult<'a, ItemInfo> {
+ let (ident, mut generics) = self.parse_fn_header()?;
+ let decl = self.parse_fn_decl(false)?;
+ generics.where_clause = self.parse_where_clause()?;
+ let (inner_attrs, body) = self.parse_inner_attrs_and_block()?;
+ let header = FnHeader { unsafety, asyncness, constness, abi };
+ Ok((ident, ItemKind::Fn(decl, header, generics, body), Some(inner_attrs)))
+ }
+
+ /// Returns `true` if we are looking at `const ID`
+ /// (returns `false` for things like `const fn`, etc.).
+ fn is_const_item(&mut self) -> bool {
+ self.token.is_keyword(keywords::Const) &&
+ !self.look_ahead(1, |t| t.is_keyword(keywords::Fn)) &&
+ !self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe))
+ }
+
+ /// Parses all the "front matter" for a `fn` declaration, up to
+ /// and including the `fn` keyword:
+ ///
+ /// - `const fn`
+ /// - `unsafe fn`
+ /// - `const unsafe fn`
+ /// - `extern fn`
+ /// - etc.
+ fn parse_fn_front_matter(&mut self)
+ -> PResult<'a, (
+ Spanned<Constness>,
+ Unsafety,
+ IsAsync,
+ Abi
+ )>
+ {
+ let is_const_fn = self.eat_keyword(keywords::Const);
+ let const_span = self.prev_span;
+ let unsafety = self.parse_unsafety();
+ let asyncness = self.parse_asyncness();
+ let (constness, unsafety, abi) = if is_const_fn {
+ (respan(const_span, Constness::Const), unsafety, Abi::Rust)
+ } else {
+ let abi = if self.eat_keyword(keywords::Extern) {
+ self.parse_opt_abi()?.unwrap_or(Abi::C)
+ } else {
+ Abi::Rust
+ };
+ (respan(self.prev_span, Constness::NotConst), unsafety, abi)
+ };
+ self.expect_keyword(keywords::Fn)?;
+ Ok((constness, unsafety, asyncness, abi))
+ }
+
+ /// Parses an impl item.
+ pub fn parse_impl_item(&mut self, at_end: &mut bool) -> PResult<'a, ImplItem> {
+ maybe_whole!(self, NtImplItem, |x| x);
+ let attrs = self.parse_outer_attributes()?;
+ let (mut item, tokens) = self.collect_tokens(|this| {
+ this.parse_impl_item_(at_end, attrs)
+ })?;
+
+ // See `parse_item` for why this clause is here.
+ if !item.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) {
+ item.tokens = Some(tokens);
+ }
+ Ok(item)
+ }
+
+ fn parse_impl_item_(&mut self,
+ at_end: &mut bool,
+ mut attrs: Vec<Attribute>) -> PResult<'a, ImplItem> {
+ let lo = self.span;
+ let vis = self.parse_visibility(false)?;
+ let defaultness = self.parse_defaultness();
+ let (name, node, generics) = if let Some(type_) = self.eat_type() {
+ let (name, alias, generics) = type_?;
+ let kind = match alias {
+ AliasKind::Weak(typ) => ast::ImplItemKind::Type(typ),
+ AliasKind::Existential(bounds) => ast::ImplItemKind::Existential(bounds),
+ };
+ (name, kind, generics)
+ } else if self.is_const_item() {
+ // This parses the grammar:
+ // ImplItemConst = "const" Ident ":" Ty "=" Expr ";"
+ self.expect_keyword(keywords::Const)?;
+ let name = self.parse_ident()?;
+ self.expect(&token::Colon)?;
+ let typ = self.parse_ty()?;
+ self.expect(&token::Eq)?;
+ let expr = self.parse_expr()?;
+ self.expect(&token::Semi)?;
+ (name, ast::ImplItemKind::Const(typ, expr), ast::Generics::default())
+ } else {
+ let (name, inner_attrs, generics, node) = self.parse_impl_method(&vis, at_end)?;
+ attrs.extend(inner_attrs);
+ (name, node, generics)
+ };
+
+ Ok(ImplItem {
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(self.prev_span),
+ ident: name,
+ vis,
+ defaultness,
+ attrs,
+ generics,
+ node,
+ tokens: None,
+ })
+ }
+
+ fn complain_if_pub_macro(&mut self, vis: &VisibilityKind, sp: Span) {
+ match *vis {
+ VisibilityKind::Inherited => {}
+ _ => {
+ let is_macro_rules: bool = match self.token {
+ token::Ident(sid, _) => sid.name == Symbol::intern("macro_rules"),
+ _ => false,
+ };
+ let mut err = if is_macro_rules {
+ let mut err = self.diagnostic()
+ .struct_span_err(sp, "can't qualify macro_rules invocation with `pub`");
+ err.span_suggestion(
+ sp,
+ "try exporting the macro",
+ "#[macro_export]".to_owned(),
+ Applicability::MaybeIncorrect // speculative
+ );
+ err
+ } else {
+ let mut err = self.diagnostic()
+ .struct_span_err(sp, "can't qualify macro invocation with `pub`");
+ err.help("try adjusting the macro to put `pub` inside the invocation");
+ err
+ };
+ err.emit();
+ }
+ }
+ }
+
+ fn missing_assoc_item_kind_err(&mut self, item_type: &str, prev_span: Span)
+ -> DiagnosticBuilder<'a>
+ {
+ let expected_kinds = if item_type == "extern" {
+ "missing `fn`, `type`, or `static`"
+ } else {
+ "missing `fn`, `type`, or `const`"
+ };
+
+ // Given this code `path(`, it seems like this is not
+ // setting the visibility of a macro invocation, but rather
+ // a mistyped method declaration.
+ // Create a diagnostic pointing out that `fn` is missing.
+ //
+ // x | pub path(&self) {
+ // | ^ missing `fn`, `type`, or `const`
+ // pub path(
+ // ^^ `sp` below will point to this
+ let sp = prev_span.between(self.prev_span);
+ let mut err = self.diagnostic().struct_span_err(
+ sp,
+ &format!("{} for {}-item declaration",
+ expected_kinds, item_type));
+ err.span_label(sp, expected_kinds);
+ err
+ }
+
+ /// Parse a method or a macro invocation in a trait impl.
+ fn parse_impl_method(&mut self, vis: &Visibility, at_end: &mut bool)
+ -> PResult<'a, (Ident, Vec<Attribute>, ast::Generics,
+ ast::ImplItemKind)> {
+ // code copied from parse_macro_use_or_failure... abstraction!
+ if let Some(mac) = self.parse_assoc_macro_invoc("impl", Some(vis), at_end)? {
+ // method macro
+ Ok((keywords::Invalid.ident(), vec![], ast::Generics::default(),
+ ast::ImplItemKind::Macro(mac)))
+ } else {
+ let (constness, unsafety, asyncness, abi) = self.parse_fn_front_matter()?;
+ let ident = self.parse_ident()?;
+ let mut generics = self.parse_generics()?;
+ let decl = self.parse_fn_decl_with_self(|p| p.parse_arg())?;
+ generics.where_clause = self.parse_where_clause()?;
+ *at_end = true;
+ let (inner_attrs, body) = self.parse_inner_attrs_and_block()?;
+ let header = ast::FnHeader { abi, unsafety, constness, asyncness };
+ Ok((ident, inner_attrs, generics, ast::ImplItemKind::Method(
+ ast::MethodSig { header, decl },
+ body
+ )))
+ }
+ }
+
+ /// Parses `trait Foo { ... }` or `trait Foo = Bar;`.
+ fn parse_item_trait(&mut self, is_auto: IsAuto, unsafety: Unsafety) -> PResult<'a, ItemInfo> {
+ let ident = self.parse_ident()?;
+ let mut tps = self.parse_generics()?;
+
+ // Parse optional colon and supertrait bounds.
+ let bounds = if self.eat(&token::Colon) {
+ self.parse_generic_bounds(Some(self.prev_span))?
+ } else {
+ Vec::new()
+ };
+
+ if self.eat(&token::Eq) {
+ // it's a trait alias
+ let bounds = self.parse_generic_bounds(None)?;
+ tps.where_clause = self.parse_where_clause()?;
+ self.expect(&token::Semi)?;
+ if is_auto == IsAuto::Yes {
+ let msg = "trait aliases cannot be `auto`";
+ self.struct_span_err(self.prev_span, msg)
+ .span_label(self.prev_span, msg)
+ .emit();
+ }
+ if unsafety != Unsafety::Normal {
+ let msg = "trait aliases cannot be `unsafe`";
+ self.struct_span_err(self.prev_span, msg)
+ .span_label(self.prev_span, msg)
+ .emit();
+ }
+ Ok((ident, ItemKind::TraitAlias(tps, bounds), None))
+ } else {
+ // it's a normal trait
+ tps.where_clause = self.parse_where_clause()?;
+ self.expect(&token::OpenDelim(token::Brace))?;
+ let mut trait_items = vec![];
+ while !self.eat(&token::CloseDelim(token::Brace)) {
+ let mut at_end = false;
+ match self.parse_trait_item(&mut at_end) {
+ Ok(item) => trait_items.push(item),
+ Err(mut e) => {
+ e.emit();
+ if !at_end {
+ self.recover_stmt_(SemiColonMode::Break, BlockMode::Break);
+ }
+ }
+ }
+ }
+ Ok((ident, ItemKind::Trait(is_auto, unsafety, tps, bounds, trait_items), None))
+ }
+ }
+
+ fn choose_generics_over_qpath(&self) -> bool {
+ // There's an ambiguity between generic parameters and qualified paths in impls.
+ // If we see `<` it may start both, so we have to inspect some following tokens.
+ // The following combinations can only start generics,
+ // but not qualified paths (with one exception):
+ // `<` `>` - empty generic parameters
+ // `<` `#` - generic parameters with attributes
+ // `<` (LIFETIME|IDENT) `>` - single generic parameter
+ // `<` (LIFETIME|IDENT) `,` - first generic parameter in a list
+ // `<` (LIFETIME|IDENT) `:` - generic parameter with bounds
+ // `<` (LIFETIME|IDENT) `=` - generic parameter with a default
+ // `<` const - generic const parameter
+ // The only truly ambiguous case is
+ // `<` IDENT `>` `::` IDENT ...
+ // we disambiguate it in favor of generics (`impl<T> ::absolute::Path<T> { ... }`)
+ // because this is what almost always expected in practice, qualified paths in impls
+ // (`impl <Type>::AssocTy { ... }`) aren't even allowed by type checker at the moment.
+ self.token == token::Lt &&
+ (self.look_ahead(1, |t| t == &token::Pound || t == &token::Gt) ||
+ self.look_ahead(1, |t| t.is_lifetime() || t.is_ident()) &&
+ self.look_ahead(2, |t| t == &token::Gt || t == &token::Comma ||
+ t == &token::Colon || t == &token::Eq) ||
+ self.look_ahead(1, |t| t.is_keyword(keywords::Const)))
+ }
+
+ fn parse_impl_body(&mut self) -> PResult<'a, (Vec<ImplItem>, Vec<Attribute>)> {
+ self.expect(&token::OpenDelim(token::Brace))?;
+ let attrs = self.parse_inner_attributes()?;
+
+ let mut impl_items = Vec::new();
+ while !self.eat(&token::CloseDelim(token::Brace)) {
+ let mut at_end = false;
+ match self.parse_impl_item(&mut at_end) {
+ Ok(impl_item) => impl_items.push(impl_item),
+ Err(mut err) => {
+ err.emit();
+ if !at_end {
+ self.recover_stmt_(SemiColonMode::Break, BlockMode::Break);
+ }
+ }
+ }
+ }
+ Ok((impl_items, attrs))
+ }
+
+ /// Parses an implementation item, `impl` keyword is already parsed.
+ ///
+ /// impl<'a, T> TYPE { /* impl items */ }
+ /// impl<'a, T> TRAIT for TYPE { /* impl items */ }
+ /// impl<'a, T> !TRAIT for TYPE { /* impl items */ }
+ ///
+ /// We actually parse slightly more relaxed grammar for better error reporting and recovery.
+ /// `impl` GENERICS `!`? TYPE `for`? (TYPE | `..`) (`where` PREDICATES)? `{` BODY `}`
+ /// `impl` GENERICS `!`? TYPE (`where` PREDICATES)? `{` BODY `}`
+ fn parse_item_impl(&mut self, unsafety: Unsafety, defaultness: Defaultness)
+ -> PResult<'a, ItemInfo> {
+ // First, parse generic parameters if necessary.
+ let mut generics = if self.choose_generics_over_qpath() {
+ self.parse_generics()?
+ } else {
+ ast::Generics::default()
+ };
+
+ // Disambiguate `impl !Trait for Type { ... }` and `impl ! { ... }` for the never type.
+ let polarity = if self.check(&token::Not) && self.look_ahead(1, |t| t.can_begin_type()) {
+ self.bump(); // `!`
+ ast::ImplPolarity::Negative
+ } else {
+ ast::ImplPolarity::Positive
+ };
+
+ // Parse both types and traits as a type, then reinterpret if necessary.
+ let ty_first = self.parse_ty()?;
+
+ // If `for` is missing we try to recover.
+ let has_for = self.eat_keyword(keywords::For);
+ let missing_for_span = self.prev_span.between(self.span);
+
+ let ty_second = if self.token == token::DotDot {
+ // We need to report this error after `cfg` expansion for compatibility reasons
+ self.bump(); // `..`, do not add it to expected tokens
+ Some(P(Ty { node: TyKind::Err, span: self.prev_span, id: ast::DUMMY_NODE_ID }))
+ } else if has_for || self.token.can_begin_type() {
+ Some(self.parse_ty()?)
+ } else {
+ None
+ };
+
+ generics.where_clause = self.parse_where_clause()?;
+
+ let (impl_items, attrs) = self.parse_impl_body()?;
+
+ let item_kind = match ty_second {
+ Some(ty_second) => {
+ // impl Trait for Type
+ if !has_for {
+ self.struct_span_err(missing_for_span, "missing `for` in a trait impl")
+ .span_suggestion_short(
+ missing_for_span,
+ "add `for` here",
+ " for ".to_string(),
+ Applicability::MachineApplicable,
+ ).emit();
+ }
+
+ let ty_first = ty_first.into_inner();
+ let path = match ty_first.node {
+ // This notably includes paths passed through `ty` macro fragments (#46438).
+ TyKind::Path(None, path) => path,
+ _ => {
+ self.span_err(ty_first.span, "expected a trait, found type");
+ ast::Path::from_ident(Ident::new(keywords::Invalid.name(), ty_first.span))
+ }
+ };
+ let trait_ref = TraitRef { path, ref_id: ty_first.id };
+
+ ItemKind::Impl(unsafety, polarity, defaultness,
+ generics, Some(trait_ref), ty_second, impl_items)
+ }
+ None => {
+ // impl Type
+ ItemKind::Impl(unsafety, polarity, defaultness,
+ generics, None, ty_first, impl_items)
+ }
+ };
+
+ Ok((keywords::Invalid.ident(), item_kind, Some(attrs)))
+ }
+
+ fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec<GenericParam>> {
+ if self.eat_keyword(keywords::For) {
+ self.expect_lt()?;
+ let params = self.parse_generic_params()?;
+ self.expect_gt()?;
+ // We rely on AST validation to rule out invalid cases: There must not be type
+ // parameters, and the lifetime parameters must not have bounds.
+ Ok(params)
+ } else {
+ Ok(Vec::new())
+ }
+ }
+
+ /// Parses `struct Foo { ... }`.
+ fn parse_item_struct(&mut self) -> PResult<'a, ItemInfo> {
+ let class_name = self.parse_ident()?;
+
+ let mut generics = self.parse_generics()?;
+
+ // There is a special case worth noting here, as reported in issue #17904.
+ // If we are parsing a tuple struct it is the case that the where clause
+ // should follow the field list. Like so:
+ //
+ // struct Foo<T>(T) where T: Copy;
+ //
+ // If we are parsing a normal record-style struct it is the case
+ // that the where clause comes before the body, and after the generics.
+ // So if we look ahead and see a brace or a where-clause we begin
+ // parsing a record style struct.
+ //
+ // Otherwise if we look ahead and see a paren we parse a tuple-style
+ // struct.
+
+ let vdata = if self.token.is_keyword(keywords::Where) {
+ generics.where_clause = self.parse_where_clause()?;
+ if self.eat(&token::Semi) {
+ // If we see a: `struct Foo<T> where T: Copy;` style decl.
+ VariantData::Unit(ast::DUMMY_NODE_ID)
+ } else {
+ // If we see: `struct Foo<T> where T: Copy { ... }`
+ VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID)
+ }
+ // No `where` so: `struct Foo<T>;`
+ } else if self.eat(&token::Semi) {
+ VariantData::Unit(ast::DUMMY_NODE_ID)
+ // Record-style struct definition
+ } else if self.token == token::OpenDelim(token::Brace) {
+ VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID)
+ // Tuple-style struct definition with optional where-clause.
+ } else if self.token == token::OpenDelim(token::Paren) {
+ let body = VariantData::Tuple(self.parse_tuple_struct_body()?, ast::DUMMY_NODE_ID);
+ generics.where_clause = self.parse_where_clause()?;
+ self.expect(&token::Semi)?;
+ body
+ } else {
+ let token_str = self.this_token_descr();
+ let mut err = self.fatal(&format!(
+ "expected `where`, `{{`, `(`, or `;` after struct name, found {}",
+ token_str
+ ));
+ err.span_label(self.span, "expected `where`, `{`, `(`, or `;` after struct name");
+ return Err(err);
+ };
+
+ Ok((class_name, ItemKind::Struct(vdata, generics), None))
+ }
+
+ /// Parses `union Foo { ... }`.
+ fn parse_item_union(&mut self) -> PResult<'a, ItemInfo> {
+ let class_name = self.parse_ident()?;
+
+ let mut generics = self.parse_generics()?;
+
+ let vdata = if self.token.is_keyword(keywords::Where) {
+ generics.where_clause = self.parse_where_clause()?;
+ VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID)
+ } else if self.token == token::OpenDelim(token::Brace) {
+ VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID)
+ } else {
+ let token_str = self.this_token_descr();
+ let mut err = self.fatal(&format!(
+ "expected `where` or `{{` after union name, found {}", token_str));
+ err.span_label(self.span, "expected `where` or `{` after union name");
+ return Err(err);
+ };
+
+ Ok((class_name, ItemKind::Union(vdata, generics), None))
+ }
+
+ fn consume_block(&mut self, delim: token::DelimToken) {
+ let mut brace_depth = 0;
+ loop {
+ if self.eat(&token::OpenDelim(delim)) {
+ brace_depth += 1;
+ } else if self.eat(&token::CloseDelim(delim)) {
+ if brace_depth == 0 {
+ return;
+ } else {
+ brace_depth -= 1;
+ continue;
+ }
+ } else if self.token == token::Eof || self.eat(&token::CloseDelim(token::NoDelim)) {
+ return;
+ } else {
+ self.bump();
+ }
+ }
+ }
+
+ fn parse_record_struct_body(&mut self) -> PResult<'a, Vec<StructField>> {
+ let mut fields = Vec::new();
+ if self.eat(&token::OpenDelim(token::Brace)) {
+ while self.token != token::CloseDelim(token::Brace) {
+ let field = self.parse_struct_decl_field().map_err(|e| {
+ self.recover_stmt();
+ e
+ });
+ match field {
+ Ok(field) => fields.push(field),
+ Err(mut err) => {
+ err.emit();
+ }
+ }
+ }
+ self.eat(&token::CloseDelim(token::Brace));
+ } else {
+ let token_str = self.this_token_descr();
+ let mut err = self.fatal(&format!(
+ "expected `where`, or `{{` after struct name, found {}", token_str));
+ err.span_label(self.span, "expected `where`, or `{` after struct name");
+ return Err(err);
+ }
+
+ Ok(fields)
+ }
+
+ fn parse_tuple_struct_body(&mut self) -> PResult<'a, Vec<StructField>> {
+ // This is the case where we find `struct Foo<T>(T) where T: Copy;`
+ // Unit like structs are handled in parse_item_struct function
+ let fields = self.parse_unspanned_seq(
+ &token::OpenDelim(token::Paren),
+ &token::CloseDelim(token::Paren),
+ SeqSep::trailing_allowed(token::Comma),
+ |p| {
+ let attrs = p.parse_outer_attributes()?;
+ let lo = p.span;
+ let vis = p.parse_visibility(true)?;
+ let ty = p.parse_ty()?;
+ Ok(StructField {
+ span: lo.to(ty.span),
+ vis,
+ ident: None,
+ id: ast::DUMMY_NODE_ID,
+ ty,
+ attrs,
+ })
+ })?;
+
+ Ok(fields)
+ }
+
+ /// Parses a structure field declaration.
+ fn parse_single_struct_field(&mut self,
+ lo: Span,
+ vis: Visibility,
+ attrs: Vec<Attribute> )
+ -> PResult<'a, StructField> {
+ let mut seen_comma: bool = false;
+ let a_var = self.parse_name_and_ty(lo, vis, attrs)?;
+ if self.token == token::Comma {
+ seen_comma = true;
+ }
+ match self.token {
+ token::Comma => {
+ self.bump();
+ }
+ token::CloseDelim(token::Brace) => {}
+ token::DocComment(_) => {
+ let previous_span = self.prev_span;
+ let mut err = self.span_fatal_err(self.span, Error::UselessDocComment);
+ self.bump(); // consume the doc comment
+ let comma_after_doc_seen = self.eat(&token::Comma);
+ // `seen_comma` is always false, because we are inside doc block
+ // condition is here to make code more readable
+ if seen_comma == false && comma_after_doc_seen == true {
+ seen_comma = true;
+ }
+ if comma_after_doc_seen || self.token == token::CloseDelim(token::Brace) {
+ err.emit();
+ } else {
+ if seen_comma == false {
+ let sp = self.sess.source_map().next_point(previous_span);
+ err.span_suggestion(
+ sp,
+ "missing comma here",
+ ",".into(),
+ Applicability::MachineApplicable
+ );
+ }
+ return Err(err);
+ }
+ }
+ _ => {
+ let sp = self.sess.source_map().next_point(self.prev_span);
+ let mut err = self.struct_span_err(sp, &format!("expected `,`, or `}}`, found {}",
+ self.this_token_descr()));
+ if self.token.is_ident() {
+ // This is likely another field; emit the diagnostic and keep going
+ err.span_suggestion(
+ sp,
+ "try adding a comma",
+ ",".into(),
+ Applicability::MachineApplicable,
+ );
+ err.emit();
+ } else {
+ return Err(err)
+ }
+ }
+ }
+ Ok(a_var)
+ }
+
+ /// Parses an element of a struct declaration.
+ fn parse_struct_decl_field(&mut self) -> PResult<'a, StructField> {
+ let attrs = self.parse_outer_attributes()?;
+ let lo = self.span;
+ let vis = self.parse_visibility(false)?;
+ self.parse_single_struct_field(lo, vis, attrs)
+ }
+
+ /// Parses `pub`, `pub(crate)` and `pub(in path)` plus shortcuts `crate` for `pub(crate)`,
+ /// `pub(self)` for `pub(in self)` and `pub(super)` for `pub(in super)`.
+ /// If the following element can't be a tuple (i.e., it's a function definition), then
+ /// it's not a tuple struct field), and the contents within the parentheses isn't valid,
+ /// so emit a proper diagnostic.
+ pub fn parse_visibility(&mut self, can_take_tuple: bool) -> PResult<'a, Visibility> {
+ maybe_whole!(self, NtVis, |x| x);
+
+ self.expected_tokens.push(TokenType::Keyword(keywords::Crate));
+ if self.is_crate_vis() {
+ self.bump(); // `crate`
+ return Ok(respan(self.prev_span, VisibilityKind::Crate(CrateSugar::JustCrate)));
+ }
+
+ if !self.eat_keyword(keywords::Pub) {
+ // We need a span for our `Spanned<VisibilityKind>`, but there's inherently no
+ // keyword to grab a span from for inherited visibility; an empty span at the
+ // beginning of the current token would seem to be the "Schelling span".
+ return Ok(respan(self.span.shrink_to_lo(), VisibilityKind::Inherited))
+ }
+ let lo = self.prev_span;
+
+ if self.check(&token::OpenDelim(token::Paren)) {
+ // We don't `self.bump()` the `(` yet because this might be a struct definition where
+ // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`.
+ // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so
+ // by the following tokens.
+ if self.look_ahead(1, |t| t.is_keyword(keywords::Crate)) {
+ // `pub(crate)`
+ self.bump(); // `(`
+ self.bump(); // `crate`
+ self.expect(&token::CloseDelim(token::Paren))?; // `)`
+ let vis = respan(
+ lo.to(self.prev_span),
+ VisibilityKind::Crate(CrateSugar::PubCrate),
+ );
+ return Ok(vis)
+ } else if self.look_ahead(1, |t| t.is_keyword(keywords::In)) {
+ // `pub(in path)`
+ self.bump(); // `(`
+ self.bump(); // `in`
+ let path = self.parse_path(PathStyle::Mod)?; // `path`
+ self.expect(&token::CloseDelim(token::Paren))?; // `)`
+ let vis = respan(lo.to(self.prev_span), VisibilityKind::Restricted {
+ path: P(path),
+ id: ast::DUMMY_NODE_ID,
+ });
+ return Ok(vis)
+ } else if self.look_ahead(2, |t| t == &token::CloseDelim(token::Paren)) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Super) ||
+ t.is_keyword(keywords::SelfLower))
+ {
+ // `pub(self)` or `pub(super)`
+ self.bump(); // `(`
+ let path = self.parse_path(PathStyle::Mod)?; // `super`/`self`
+ self.expect(&token::CloseDelim(token::Paren))?; // `)`
+ let vis = respan(lo.to(self.prev_span), VisibilityKind::Restricted {
+ path: P(path),
+ id: ast::DUMMY_NODE_ID,
+ });
+ return Ok(vis)
+ } else if !can_take_tuple { // Provide this diagnostic if this is not a tuple struct
+ // `pub(something) fn ...` or `struct X { pub(something) y: Z }`
+ self.bump(); // `(`
+ let msg = "incorrect visibility restriction";
+ let suggestion = r##"some possible visibility restrictions are:
+`pub(crate)`: visible only on the current crate
+`pub(super)`: visible only in the current module's parent
+`pub(in path::to::module)`: visible only on the specified path"##;
+ let path = self.parse_path(PathStyle::Mod)?;
+ let sp = self.prev_span;
+ let help_msg = format!("make this visible only to module `{}` with `in`", path);
+ self.expect(&token::CloseDelim(token::Paren))?; // `)`
+ let mut err = struct_span_err!(self.sess.span_diagnostic, sp, E0704, "{}", msg);
+ err.help(suggestion);
+ err.span_suggestion(
+ sp, &help_msg, format!("in {}", path), Applicability::MachineApplicable
+ );
+ err.emit(); // emit diagnostic, but continue with public visibility
+ }
+ }
+
+ Ok(respan(lo, VisibilityKind::Public))
+ }
+
+ /// Parses defaultness (i.e., `default` or nothing).
+ fn parse_defaultness(&mut self) -> Defaultness {
+ // `pub` is included for better error messages
+ if self.check_keyword(keywords::Default) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Impl) ||
+ t.is_keyword(keywords::Const) ||
+ t.is_keyword(keywords::Fn) ||
+ t.is_keyword(keywords::Unsafe) ||
+ t.is_keyword(keywords::Extern) ||
+ t.is_keyword(keywords::Type) ||
+ t.is_keyword(keywords::Pub)) {
+ self.bump(); // `default`
+ Defaultness::Default
+ } else {
+ Defaultness::Final
+ }
+ }
+
+ fn maybe_consume_incorrect_semicolon(&mut self, items: &[P<Item>]) -> bool {
+ if self.eat(&token::Semi) {
+ let mut err = self.struct_span_err(self.prev_span, "expected item, found `;`");
+ err.span_suggestion_short(
+ self.prev_span,
+ "remove this semicolon",
+ String::new(),
+ Applicability::MachineApplicable,
+ );
+ if !items.is_empty() {
+ let previous_item = &items[items.len()-1];
+ let previous_item_kind_name = match previous_item.node {
+ // say "braced struct" because tuple-structs and
+ // braceless-empty-struct declarations do take a semicolon
+ ItemKind::Struct(..) => Some("braced struct"),
+ ItemKind::Enum(..) => Some("enum"),
+ ItemKind::Trait(..) => Some("trait"),
+ ItemKind::Union(..) => Some("union"),
+ _ => None,
+ };
+ if let Some(name) = previous_item_kind_name {
+ err.help(&format!("{} declarations are not followed by a semicolon", name));
+ }
+ }
+ err.emit();
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Given a termination token, parses all of the items in a module.
+ fn parse_mod_items(&mut self, term: &token::Token, inner_lo: Span) -> PResult<'a, Mod> {
+ let mut items = vec![];
+ while let Some(item) = self.parse_item()? {
+ items.push(item);
+ self.maybe_consume_incorrect_semicolon(&items);
+ }
+
+ if !self.eat(term) {
+ let token_str = self.this_token_descr();
+ if !self.maybe_consume_incorrect_semicolon(&items) {
+ let mut err = self.fatal(&format!("expected item, found {}", token_str));
+ err.span_label(self.span, "expected item");
+ return Err(err);
+ }
+ }
+
+ let hi = if self.span.is_dummy() {
+ inner_lo
+ } else {
+ self.prev_span
+ };
+
+ Ok(ast::Mod {
+ inner: inner_lo.to(hi),
+ items,
+ inline: true
+ })
+ }
+
+ fn parse_item_const(&mut self, m: Option<Mutability>) -> PResult<'a, ItemInfo> {
+ let id = if m.is_none() { self.parse_ident_or_underscore() } else { self.parse_ident() }?;
+ self.expect(&token::Colon)?;
+ let ty = self.parse_ty()?;
+ self.expect(&token::Eq)?;
+ let e = self.parse_expr()?;
+ self.expect(&token::Semi)?;
+ let item = match m {
+ Some(m) => ItemKind::Static(ty, m, e),
+ None => ItemKind::Const(ty, e),
+ };
+ Ok((id, item, None))
+ }
+
+ /// Parse a `mod <foo> { ... }` or `mod <foo>;` item
+ fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> PResult<'a, ItemInfo> {
+ let (in_cfg, outer_attrs) = {
+ let mut strip_unconfigured = crate::config::StripUnconfigured {
+ sess: self.sess,
+ features: None, // don't perform gated feature checking
+ };
+ let mut outer_attrs = outer_attrs.to_owned();
+ strip_unconfigured.process_cfg_attrs(&mut outer_attrs);
+ (!self.cfg_mods || strip_unconfigured.in_cfg(&outer_attrs), outer_attrs)
+ };
+
+ let id_span = self.span;
+ let id = self.parse_ident()?;
+ if self.eat(&token::Semi) {
+ if in_cfg && self.recurse_into_file_modules {
+ // This mod is in an external file. Let's go get it!
+ let ModulePathSuccess { path, directory_ownership, warn } =
+ self.submod_path(id, &outer_attrs, id_span)?;
+ let (module, mut attrs) =
+ self.eval_src_mod(path, directory_ownership, id.to_string(), id_span)?;
+ // Record that we fetched the mod from an external file
+ if warn {
+ let attr = Attribute {
+ id: attr::mk_attr_id(),
+ style: ast::AttrStyle::Outer,
+ path: ast::Path::from_ident(Ident::from_str("warn_directory_ownership")),
+ tokens: TokenStream::empty(),
+ is_sugared_doc: false,
+ span: syntax_pos::DUMMY_SP,
+ };
+ attr::mark_known(&attr);
+ attrs.push(attr);
+ }
+ Ok((id, ItemKind::Mod(module), Some(attrs)))
+ } else {
+ let placeholder = ast::Mod {
+ inner: syntax_pos::DUMMY_SP,
+ items: Vec::new(),
+ inline: false
+ };
+ Ok((id, ItemKind::Mod(placeholder), None))
+ }
+ } else {
+ let old_directory = self.directory.clone();
+ self.push_directory(id, &outer_attrs);
+
+ self.expect(&token::OpenDelim(token::Brace))?;
+ let mod_inner_lo = self.span;
+ let attrs = self.parse_inner_attributes()?;
+ let module = self.parse_mod_items(&token::CloseDelim(token::Brace), mod_inner_lo)?;
+
+ self.directory = old_directory;
+ Ok((id, ItemKind::Mod(module), Some(attrs)))
+ }
+ }
+
+ fn push_directory(&mut self, id: Ident, attrs: &[Attribute]) {
+ if let Some(path) = attr::first_attr_value_str_by_name(attrs, "path") {
+ self.directory.path.to_mut().push(&path.as_str());
+ self.directory.ownership = DirectoryOwnership::Owned { relative: None };
+ } else {
+ // We have to push on the current module name in the case of relative
+ // paths in order to ensure that any additional module paths from inline
+ // `mod x { ... }` come after the relative extension.
+ //
+ // For example, a `mod z { ... }` inside `x/y.rs` should set the current
+ // directory path to `/x/y/z`, not `/x/z` with a relative offset of `y`.
+ if let DirectoryOwnership::Owned { relative } = &mut self.directory.ownership {
+ if let Some(ident) = relative.take() { // remove the relative offset
+ self.directory.path.to_mut().push(ident.as_str());
+ }
+ }
+ self.directory.path.to_mut().push(&id.as_str());
+ }
+ }
+
+ pub fn submod_path_from_attr(attrs: &[Attribute], dir_path: &Path) -> Option<PathBuf> {
+ if let Some(s) = attr::first_attr_value_str_by_name(attrs, "path") {
+ let s = s.as_str();
+
+ // On windows, the base path might have the form
+ // `\\?\foo\bar` in which case it does not tolerate
+ // mixed `/` and `\` separators, so canonicalize
+ // `/` to `\`.
+ #[cfg(windows)]
+ let s = s.replace("/", "\\");
+ Some(dir_path.join(s))
+ } else {
+ None
+ }
+ }
+
+ /// Returns a path to a module.
+ pub fn default_submod_path(
+ id: ast::Ident,
+ relative: Option<ast::Ident>,
+ dir_path: &Path,
+ source_map: &SourceMap) -> ModulePath
+ {
+ // If we're in a foo.rs file instead of a mod.rs file,
+ // we need to look for submodules in
+ // `./foo/<id>.rs` and `./foo/<id>/mod.rs` rather than
+ // `./<id>.rs` and `./<id>/mod.rs`.
+ let relative_prefix_string;
+ let relative_prefix = if let Some(ident) = relative {
+ relative_prefix_string = format!("{}{}", ident.as_str(), path::MAIN_SEPARATOR);
+ &relative_prefix_string
+ } else {
+ ""
+ };
+
+ let mod_name = id.to_string();
+ let default_path_str = format!("{}{}.rs", relative_prefix, mod_name);
+ let secondary_path_str = format!("{}{}{}mod.rs",
+ relative_prefix, mod_name, path::MAIN_SEPARATOR);
+ let default_path = dir_path.join(&default_path_str);
+ let secondary_path = dir_path.join(&secondary_path_str);
+ let default_exists = source_map.file_exists(&default_path);
+ let secondary_exists = source_map.file_exists(&secondary_path);
+
+ let result = match (default_exists, secondary_exists) {
+ (true, false) => Ok(ModulePathSuccess {
+ path: default_path,
+ directory_ownership: DirectoryOwnership::Owned {
+ relative: Some(id),
+ },
+ warn: false,
+ }),
+ (false, true) => Ok(ModulePathSuccess {
+ path: secondary_path,
+ directory_ownership: DirectoryOwnership::Owned {
+ relative: None,
+ },
+ warn: false,
+ }),
+ (false, false) => Err(Error::FileNotFoundForModule {
+ mod_name: mod_name.clone(),
+ default_path: default_path_str,
+ secondary_path: secondary_path_str,
+ dir_path: dir_path.display().to_string(),
+ }),
+ (true, true) => Err(Error::DuplicatePaths {
+ mod_name: mod_name.clone(),
+ default_path: default_path_str,
+ secondary_path: secondary_path_str,
+ }),
+ };
+
+ ModulePath {
+ name: mod_name,
+ path_exists: default_exists || secondary_exists,
+ result,
+ }
+ }
+
+ fn submod_path(&mut self,
+ id: ast::Ident,
+ outer_attrs: &[Attribute],
+ id_sp: Span)
+ -> PResult<'a, ModulePathSuccess> {
+ if let Some(path) = Parser::submod_path_from_attr(outer_attrs, &self.directory.path) {
+ return Ok(ModulePathSuccess {
+ directory_ownership: match path.file_name().and_then(|s| s.to_str()) {
+ // All `#[path]` files are treated as though they are a `mod.rs` file.
+ // This means that `mod foo;` declarations inside `#[path]`-included
+ // files are siblings,
+ //
+ // Note that this will produce weirdness when a file named `foo.rs` is
+ // `#[path]` included and contains a `mod foo;` declaration.
+ // If you encounter this, it's your own darn fault :P
+ Some(_) => DirectoryOwnership::Owned { relative: None },
+ _ => DirectoryOwnership::UnownedViaMod(true),
+ },
+ path,
+ warn: false,
+ });
+ }
+
+ let relative = match self.directory.ownership {
+ DirectoryOwnership::Owned { relative } => relative,
+ DirectoryOwnership::UnownedViaBlock |
+ DirectoryOwnership::UnownedViaMod(_) => None,
+ };
+ let paths = Parser::default_submod_path(
+ id, relative, &self.directory.path, self.sess.source_map());
+
+ match self.directory.ownership {
+ DirectoryOwnership::Owned { .. } => {
+ paths.result.map_err(|err| self.span_fatal_err(id_sp, err))
+ },
+ DirectoryOwnership::UnownedViaBlock => {
+ let msg =
+ "Cannot declare a non-inline module inside a block \
+ unless it has a path attribute";
+ let mut err = self.diagnostic().struct_span_err(id_sp, msg);
+ if paths.path_exists {
+ let msg = format!("Maybe `use` the module `{}` instead of redeclaring it",
+ paths.name);
+ err.span_note(id_sp, &msg);
+ }
+ Err(err)
+ }
+ DirectoryOwnership::UnownedViaMod(warn) => {
+ if warn {
+ if let Ok(result) = paths.result {
+ return Ok(ModulePathSuccess { warn: true, ..result });
+ }
+ }
+ let mut err = self.diagnostic().struct_span_err(id_sp,
+ "cannot declare a new module at this location");
+ if !id_sp.is_dummy() {
+ let src_path = self.sess.source_map().span_to_filename(id_sp);
+ if let FileName::Real(src_path) = src_path {
+ if let Some(stem) = src_path.file_stem() {
+ let mut dest_path = src_path.clone();
+ dest_path.set_file_name(stem);
+ dest_path.push("mod.rs");
+ err.span_note(id_sp,
+ &format!("maybe move this module `{}` to its own \
+ directory via `{}`", src_path.display(),
+ dest_path.display()));
+ }
+ }
+ }
+ if paths.path_exists {
+ err.span_note(id_sp,
+ &format!("... or maybe `use` the module `{}` instead \
+ of possibly redeclaring it",
+ paths.name));
+ }
+ Err(err)
+ }
+ }
+ }
+
+ /// Reads a module from a source file.
+ fn eval_src_mod(&mut self,
+ path: PathBuf,
+ directory_ownership: DirectoryOwnership,
+ name: String,
+ id_sp: Span)
+ -> PResult<'a, (ast::Mod, Vec<Attribute> )> {
+ let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut();
+ if let Some(i) = included_mod_stack.iter().position(|p| *p == path) {
+ let mut err = String::from("circular modules: ");
+ let len = included_mod_stack.len();
+ for p in &included_mod_stack[i.. len] {
+ err.push_str(&p.to_string_lossy());
+ err.push_str(" -> ");
+ }
+ err.push_str(&path.to_string_lossy());
+ return Err(self.span_fatal(id_sp, &err[..]));
+ }
+ included_mod_stack.push(path.clone());
+ drop(included_mod_stack);
+
+ let mut p0 =
+ new_sub_parser_from_file(self.sess, &path, directory_ownership, Some(name), id_sp);
+ p0.cfg_mods = self.cfg_mods;
+ let mod_inner_lo = p0.span;
+ let mod_attrs = p0.parse_inner_attributes()?;
+ let mut m0 = p0.parse_mod_items(&token::Eof, mod_inner_lo)?;
+ m0.inline = false;
+ self.sess.included_mod_stack.borrow_mut().pop();
+ Ok((m0, mod_attrs))
+ }
+
+ /// Parses a function declaration from a foreign module.
+ fn parse_item_foreign_fn(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec<Attribute>)
+ -> PResult<'a, ForeignItem> {
+ self.expect_keyword(keywords::Fn)?;
+
+ let (ident, mut generics) = self.parse_fn_header()?;
+ let decl = self.parse_fn_decl(true)?;
+ generics.where_clause = self.parse_where_clause()?;
+ let hi = self.span;
+ self.expect(&token::Semi)?;
+ Ok(ast::ForeignItem {
+ ident,
+ attrs,
+ node: ForeignItemKind::Fn(decl, generics),
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(hi),
+ vis,
+ })
+ }
+
+ /// Parses a static item from a foreign module.
+ /// Assumes that the `static` keyword is already parsed.
+ fn parse_item_foreign_static(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec<Attribute>)
+ -> PResult<'a, ForeignItem> {
+ let mutbl = self.eat_keyword(keywords::Mut);
+ let ident = self.parse_ident()?;
+ self.expect(&token::Colon)?;
+ let ty = self.parse_ty()?;
+ let hi = self.span;
+ self.expect(&token::Semi)?;
+ Ok(ForeignItem {
+ ident,
+ attrs,
+ node: ForeignItemKind::Static(ty, mutbl),
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(hi),
+ vis,
+ })
+ }
+
+ /// Parses a type from a foreign module.
+ fn parse_item_foreign_type(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec<Attribute>)
+ -> PResult<'a, ForeignItem> {
+ self.expect_keyword(keywords::Type)?;
+
+ let ident = self.parse_ident()?;
+ let hi = self.span;
+ self.expect(&token::Semi)?;
+ Ok(ast::ForeignItem {
+ ident: ident,
+ attrs: attrs,
+ node: ForeignItemKind::Ty,
+ id: ast::DUMMY_NODE_ID,
+ span: lo.to(hi),
+ vis: vis
+ })
+ }
+
+ fn parse_crate_name_with_dashes(&mut self) -> PResult<'a, ast::Ident> {
+ let error_msg = "crate name using dashes are not valid in `extern crate` statements";
+ let suggestion_msg = "if the original crate name uses dashes you need to use underscores \
+ in the code";
+ let mut ident = if self.token.is_keyword(keywords::SelfLower) {
+ self.parse_path_segment_ident()
+ } else {
+ self.parse_ident()
+ }?;
+ let mut idents = vec![];
+ let mut replacement = vec![];
+ let mut fixed_crate_name = false;
+ // Accept `extern crate name-like-this` for better diagnostics
+ let dash = token::Token::BinOp(token::BinOpToken::Minus);
+ if self.token == dash { // Do not include `-` as part of the expected tokens list
+ while self.eat(&dash) {
+ fixed_crate_name = true;
+ replacement.push((self.prev_span, "_".to_string()));
+ idents.push(self.parse_ident()?);
+ }
+ }
+ if fixed_crate_name {
+ let fixed_name_sp = ident.span.to(idents.last().unwrap().span);
+ let mut fixed_name = format!("{}", ident.name);
+ for part in idents {
+ fixed_name.push_str(&format!("_{}", part.name));
+ }
+ ident = Ident::from_str(&fixed_name).with_span_pos(fixed_name_sp);
+
+ let mut err = self.struct_span_err(fixed_name_sp, error_msg);
+ err.span_label(fixed_name_sp, "dash-separated idents are not valid");
+ err.multipart_suggestion(
+ suggestion_msg,
+ replacement,
+ Applicability::MachineApplicable,
+ );
+ err.emit();
+ }
+ Ok(ident)
+ }
+
+ /// Parses `extern crate` links.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// extern crate foo;
+ /// extern crate bar as foo;
+ /// ```
+ fn parse_item_extern_crate(&mut self,
+ lo: Span,
+ visibility: Visibility,
+ attrs: Vec<Attribute>)
+ -> PResult<'a, P<Item>> {
+ // Accept `extern crate name-like-this` for better diagnostics
+ let orig_name = self.parse_crate_name_with_dashes()?;
+ let (item_name, orig_name) = if let Some(rename) = self.parse_rename()? {
+ (rename, Some(orig_name.name))
+ } else {
+ (orig_name, None)
+ };
+ self.expect(&token::Semi)?;
+
+ let span = lo.to(self.prev_span);
+ Ok(self.mk_item(span, item_name, ItemKind::ExternCrate(orig_name), visibility, attrs))
+ }
+
+ /// Parses `extern` for foreign ABIs modules.
+ ///
+ /// `extern` is expected to have been
+ /// consumed before calling this method.
+ ///
+ /// # Examples
+ ///
+ /// ```ignore (only-for-syntax-highlight)
+ /// extern "C" {}
+ /// extern {}
+ /// ```
+ fn parse_item_foreign_mod(&mut self,
+ lo: Span,
+ opt_abi: Option<Abi>,
+ visibility: Visibility,
+ mut attrs: Vec<Attribute>)
+ -> PResult<'a, P<Item>> {
+ self.expect(&token::OpenDelim(token::Brace))?;
+
+ let abi = opt_abi.unwrap_or(Abi::C);
+
+ attrs.extend(self.parse_inner_attributes()?);
+
+ let mut foreign_items = vec![];
+ while !self.eat(&token::CloseDelim(token::Brace)) {
+ foreign_items.push(self.parse_foreign_item()?);
+ }
+
+ let prev_span = self.prev_span;
+ let m = ast::ForeignMod {
+ abi,
+ items: foreign_items
+ };
+ let invalid = keywords::Invalid.ident();
+ Ok(self.mk_item(lo.to(prev_span), invalid, ItemKind::ForeignMod(m), visibility, attrs))
+ }
+
+ /// Parses `type Foo = Bar;`
+ /// or
+ /// `existential type Foo: Bar;`
+ /// or
+ /// `return `None``
+ /// without modifying the parser state.
+ fn eat_type(&mut self) -> Option<PResult<'a, (Ident, AliasKind, ast::Generics)>> {
+ // This parses the grammar:
+ // Ident ["<"...">"] ["where" ...] ("=" | ":") Ty ";"
+ if self.check_keyword(keywords::Type) ||
+ self.check_keyword(keywords::Existential) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Type)) {
+ let existential = self.eat_keyword(keywords::Existential);
+ assert!(self.eat_keyword(keywords::Type));
+ Some(self.parse_existential_or_alias(existential))
+ } else {
+ None
+ }
+ }
+
+ /// Parses a type alias or existential type.
+ fn parse_existential_or_alias(
+ &mut self,
+ existential: bool,
+ ) -> PResult<'a, (Ident, AliasKind, ast::Generics)> {
+ let ident = self.parse_ident()?;
+ let mut tps = self.parse_generics()?;
+ tps.where_clause = self.parse_where_clause()?;
+ let alias = if existential {
+ self.expect(&token::Colon)?;
+ let bounds = self.parse_generic_bounds(None)?;
+ AliasKind::Existential(bounds)
+ } else {
+ self.expect(&token::Eq)?;
+ let ty = self.parse_ty()?;
+ AliasKind::Weak(ty)
+ };
+ self.expect(&token::Semi)?;
+ Ok((ident, alias, tps))
+ }
+
+ /// Parses the part of an enum declaration following the `{`.
+ fn parse_enum_def(&mut self, _generics: &ast::Generics) -> PResult<'a, EnumDef> {
+ let mut variants = Vec::new();
+ let mut all_nullary = true;
+ let mut any_disr = vec![];
+ while self.token != token::CloseDelim(token::Brace) {
+ let variant_attrs = self.parse_outer_attributes()?;
+ let vlo = self.span;
+
+ let struct_def;
+ let mut disr_expr = None;
+ let ident = self.parse_ident()?;
+ if self.check(&token::OpenDelim(token::Brace)) {
+ // Parse a struct variant.
+ all_nullary = false;
+ struct_def = VariantData::Struct(self.parse_record_struct_body()?,
+ ast::DUMMY_NODE_ID);
+ } else if self.check(&token::OpenDelim(token::Paren)) {
+ all_nullary = false;
+ struct_def = VariantData::Tuple(self.parse_tuple_struct_body()?,
+ ast::DUMMY_NODE_ID);
+ } else if self.eat(&token::Eq) {
+ disr_expr = Some(AnonConst {
+ id: ast::DUMMY_NODE_ID,
+ value: self.parse_expr()?,
+ });
+ if let Some(sp) = disr_expr.as_ref().map(|c| c.value.span) {
+ any_disr.push(sp);
+ }
+ struct_def = VariantData::Unit(ast::DUMMY_NODE_ID);
+ } else {
+ struct_def = VariantData::Unit(ast::DUMMY_NODE_ID);
+ }
+
+ let vr = ast::Variant_ {
+ ident,
+ attrs: variant_attrs,
+ data: struct_def,
+ disr_expr,
+ };
+ variants.push(respan(vlo.to(self.prev_span), vr));
+
+ if !self.eat(&token::Comma) { break; }
+ }
+ self.expect(&token::CloseDelim(token::Brace))?;
+ if !any_disr.is_empty() && !all_nullary {
+ let mut err =self.struct_span_err(
+ any_disr.clone(),
+ "discriminator values can only be used with a field-less enum",
+ );
+ for sp in any_disr {
+ err.span_label(sp, "only valid in field-less enums");
+ }
+ err.emit();
+ }
+
+ Ok(ast::EnumDef { variants })
+ }
+
+ /// Parses an enum declaration.
+ fn parse_item_enum(&mut self) -> PResult<'a, ItemInfo> {
+ let id = self.parse_ident()?;
+ let mut generics = self.parse_generics()?;
+ generics.where_clause = self.parse_where_clause()?;
+ self.expect(&token::OpenDelim(token::Brace))?;
+
+ let enum_definition = self.parse_enum_def(&generics).map_err(|e| {
+ self.recover_stmt();
+ self.eat(&token::CloseDelim(token::Brace));
+ e
+ })?;
+ Ok((id, ItemKind::Enum(enum_definition, generics), None))
+ }
+
+ /// Parses a string as an ABI spec on an extern type or module. Consumes
+ /// the `extern` keyword, if one is found.
+ fn parse_opt_abi(&mut self) -> PResult<'a, Option<Abi>> {
+ match self.token {
+ token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => {
+ let sp = self.span;
+ self.expect_no_suffix(sp, "ABI spec", suf);
+ self.bump();
+ match abi::lookup(&s.as_str()) {
+ Some(abi) => Ok(Some(abi)),
+ None => {
+ let prev_span = self.prev_span;
+ let mut err = struct_span_err!(
+ self.sess.span_diagnostic,
+ prev_span,
+ E0703,
+ "invalid ABI: found `{}`",
+ s);
+ err.span_label(prev_span, "invalid ABI");
+ err.help(&format!("valid ABIs: {}", abi::all_names().join(", ")));
+ err.emit();
+ Ok(None)
+ }
+ }
+ }
+
+ _ => Ok(None),
+ }
+ }
+
+ fn is_static_global(&mut self) -> bool {
+ if self.check_keyword(keywords::Static) {
+ // Check if this could be a closure
+ !self.look_ahead(1, |token| {
+ if token.is_keyword(keywords::Move) {
+ return true;
+ }
+ match *token {
+ token::BinOp(token::Or) | token::OrOr => true,
+ _ => false,
+ }
+ })
+ } else {
+ false
+ }
+ }
+
+ fn parse_item_(
+ &mut self,
+ attrs: Vec<Attribute>,
+ macros_allowed: bool,
+ attributes_allowed: bool,
+ ) -> PResult<'a, Option<P<Item>>> {
+ let (ret, tokens) = self.collect_tokens(|this| {
+ this.parse_item_implementation(attrs, macros_allowed, attributes_allowed)
+ })?;
+
+ // Once we've parsed an item and recorded the tokens we got while
+ // parsing we may want to store `tokens` into the item we're about to
+ // return. Note, though, that we specifically didn't capture tokens
+ // related to outer attributes. The `tokens` field here may later be
+ // used with procedural macros to convert this item back into a token
+ // stream, but during expansion we may be removing attributes as we go
+ // along.
+ //
+ // If we've got inner attributes then the `tokens` we've got above holds
+ // these inner attributes. If an inner attribute is expanded we won't
+ // actually remove it from the token stream, so we'll just keep yielding
+ // it (bad!). To work around this case for now we just avoid recording
+ // `tokens` if we detect any inner attributes. This should help keep
+ // expansion correct, but we should fix this bug one day!
+ Ok(ret.map(|item| {
+ item.map(|mut i| {
+ if !i.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) {
+ i.tokens = Some(tokens);
+ }
+ i
+ })
+ }))
+ }
+
+ /// Parses one of the items allowed by the flags.
+ fn parse_item_implementation(
+ &mut self,
+ attrs: Vec<Attribute>,
+ macros_allowed: bool,
+ attributes_allowed: bool,
+ ) -> PResult<'a, Option<P<Item>>> {
+ maybe_whole!(self, NtItem, |item| {
+ let mut item = item.into_inner();
+ let mut attrs = attrs;
+ mem::swap(&mut item.attrs, &mut attrs);
+ item.attrs.extend(attrs);
+ Some(P(item))
+ });
+
+ let lo = self.span;
+
+ let visibility = self.parse_visibility(false)?;
+
+ if self.eat_keyword(keywords::Use) {
+ // USE ITEM
+ let item_ = ItemKind::Use(P(self.parse_use_tree()?));
+ self.expect(&token::Semi)?;
+
+ let span = lo.to(self.prev_span);
+ let item = self.mk_item(span, keywords::Invalid.ident(), item_, visibility, attrs);
+ return Ok(Some(item));
+ }
+
+ if self.eat_keyword(keywords::Extern) {
+ if self.eat_keyword(keywords::Crate) {
+ return Ok(Some(self.parse_item_extern_crate(lo, visibility, attrs)?));
+ }
+
+ let opt_abi = self.parse_opt_abi()?;
+
+ if self.eat_keyword(keywords::Fn) {
+ // EXTERN FUNCTION ITEM
+ let fn_span = self.prev_span;
+ let abi = opt_abi.unwrap_or(Abi::C);
+ let (ident, item_, extra_attrs) =
+ self.parse_item_fn(Unsafety::Normal,
+ IsAsync::NotAsync,
+ respan(fn_span, Constness::NotConst),
+ abi)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ } else if self.check(&token::OpenDelim(token::Brace)) {
+ return Ok(Some(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs)?));
+ }
+
+ self.unexpected()?;
+ }
+
+ if self.is_static_global() {
+ self.bump();
+ // STATIC ITEM
+ let m = if self.eat_keyword(keywords::Mut) {
+ Mutability::Mutable
+ } else {
+ Mutability::Immutable
+ };
+ let (ident, item_, extra_attrs) = self.parse_item_const(Some(m))?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.eat_keyword(keywords::Const) {
+ let const_span = self.prev_span;
+ if self.check_keyword(keywords::Fn)
+ || (self.check_keyword(keywords::Unsafe)
+ && self.look_ahead(1, |t| t.is_keyword(keywords::Fn))) {
+ // CONST FUNCTION ITEM
+ let unsafety = self.parse_unsafety();
+ self.bump();
+ let (ident, item_, extra_attrs) =
+ self.parse_item_fn(unsafety,
+ IsAsync::NotAsync,
+ respan(const_span, Constness::Const),
+ Abi::Rust)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+
+ // CONST ITEM
+ if self.eat_keyword(keywords::Mut) {
+ let prev_span = self.prev_span;
+ let mut err = self.diagnostic()
+ .struct_span_err(prev_span, "const globals cannot be mutable");
+ err.span_label(prev_span, "cannot be mutable");
+ err.span_suggestion(
+ const_span,
+ "you might want to declare a static instead",
+ "static".to_owned(),
+ Applicability::MaybeIncorrect,
+ );
+ err.emit();
+ }
+ let (ident, item_, extra_attrs) = self.parse_item_const(None)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+
+ // `unsafe async fn` or `async fn`
+ if (
+ self.check_keyword(keywords::Unsafe) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Async))
+ ) || (
+ self.check_keyword(keywords::Async) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Fn))
+ )
+ {
+ // ASYNC FUNCTION ITEM
+ let unsafety = self.parse_unsafety();
+ self.expect_keyword(keywords::Async)?;
+ self.expect_keyword(keywords::Fn)?;
+ let fn_span = self.prev_span;
+ let (ident, item_, extra_attrs) =
+ self.parse_item_fn(unsafety,
+ IsAsync::Async {
+ closure_id: ast::DUMMY_NODE_ID,
+ return_impl_trait_id: ast::DUMMY_NODE_ID,
+ },
+ respan(fn_span, Constness::NotConst),
+ Abi::Rust)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.check_keyword(keywords::Unsafe) &&
+ (self.look_ahead(1, |t| t.is_keyword(keywords::Trait)) ||
+ self.look_ahead(1, |t| t.is_keyword(keywords::Auto)))
+ {
+ // UNSAFE TRAIT ITEM
+ self.bump(); // `unsafe`
+ let is_auto = if self.eat_keyword(keywords::Trait) {
+ IsAuto::No
+ } else {
+ self.expect_keyword(keywords::Auto)?;
+ self.expect_keyword(keywords::Trait)?;
+ IsAuto::Yes
+ };
+ let (ident, item_, extra_attrs) =
+ self.parse_item_trait(is_auto, Unsafety::Unsafe)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.check_keyword(keywords::Impl) ||
+ self.check_keyword(keywords::Unsafe) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Impl)) ||
+ self.check_keyword(keywords::Default) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Impl)) ||
+ self.check_keyword(keywords::Default) &&
+ self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe)) {
+ // IMPL ITEM
+ let defaultness = self.parse_defaultness();
+ let unsafety = self.parse_unsafety();
+ self.expect_keyword(keywords::Impl)?;
+ let (ident, item, extra_attrs) = self.parse_item_impl(unsafety, defaultness)?;
+ let span = lo.to(self.prev_span);
+ return Ok(Some(self.mk_item(span, ident, item, visibility,
+ maybe_append(attrs, extra_attrs))));
+ }
+ if self.check_keyword(keywords::Fn) {
+ // FUNCTION ITEM
+ self.bump();
+ let fn_span = self.prev_span;
+ let (ident, item_, extra_attrs) =
+ self.parse_item_fn(Unsafety::Normal,
+ IsAsync::NotAsync,
+ respan(fn_span, Constness::NotConst),
+ Abi::Rust)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.check_keyword(keywords::Unsafe)
+ && self.look_ahead(1, |t| *t != token::OpenDelim(token::Brace)) {
+ // UNSAFE FUNCTION ITEM
+ self.bump(); // `unsafe`
+ // `{` is also expected after `unsafe`, in case of error, include it in the diagnostic
+ self.check(&token::OpenDelim(token::Brace));
+ let abi = if self.eat_keyword(keywords::Extern) {
+ self.parse_opt_abi()?.unwrap_or(Abi::C)
+ } else {
+ Abi::Rust
+ };
+ self.expect_keyword(keywords::Fn)?;
+ let fn_span = self.prev_span;
+ let (ident, item_, extra_attrs) =
+ self.parse_item_fn(Unsafety::Unsafe,
+ IsAsync::NotAsync,
+ respan(fn_span, Constness::NotConst),
+ abi)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.eat_keyword(keywords::Mod) {
+ // MODULE ITEM
+ let (ident, item_, extra_attrs) =
+ self.parse_item_mod(&attrs[..])?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if let Some(type_) = self.eat_type() {
+ let (ident, alias, generics) = type_?;
+ // TYPE ITEM
+ let item_ = match alias {
+ AliasKind::Weak(ty) => ItemKind::Ty(ty, generics),
+ AliasKind::Existential(bounds) => ItemKind::Existential(bounds, generics),
+ };
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ attrs);
+ return Ok(Some(item));
+ }
+ if self.eat_keyword(keywords::Enum) {
+ // ENUM ITEM
+ let (ident, item_, extra_attrs) = self.parse_item_enum()?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.check_keyword(keywords::Trait)
+ || (self.check_keyword(keywords::Auto)
+ && self.look_ahead(1, |t| t.is_keyword(keywords::Trait)))
+ {
+ let is_auto = if self.eat_keyword(keywords::Trait) {
+ IsAuto::No
+ } else {
+ self.expect_keyword(keywords::Auto)?;
+ self.expect_keyword(keywords::Trait)?;
+ IsAuto::Yes
+ };
+ // TRAIT ITEM
+ let (ident, item_, extra_attrs) =
+ self.parse_item_trait(is_auto, Unsafety::Normal)?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.eat_keyword(keywords::Struct) {
+ // STRUCT ITEM
+ let (ident, item_, extra_attrs) = self.parse_item_struct()?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if self.is_union_item() {
+ // UNION ITEM
+ self.bump();
+ let (ident, item_, extra_attrs) = self.parse_item_union()?;
+ let prev_span = self.prev_span;
+ let item = self.mk_item(lo.to(prev_span),
+ ident,
+ item_,
+ visibility,
+ maybe_append(attrs, extra_attrs));
+ return Ok(Some(item));
+ }
+ if let Some(macro_def) = self.eat_macro_def(&attrs, &visibility, lo)? {
+ return Ok(Some(macro_def));
+ }
+
+ // Verify whether we have encountered a struct or method definition where the user forgot to
+ // add the `struct` or `fn` keyword after writing `pub`: `pub S {}`
+ if visibility.node.is_pub() &&
+ self.check_ident() &&
+ self.look_ahead(1, |t| *t != token::Not)
+ {
+ // Space between `pub` keyword and the identifier
+ //
+ // pub S {}
+ // ^^^ `sp` points here
+ let sp = self.prev_span.between(self.span);
+ let full_sp = self.prev_span.to(self.span);
+ let ident_sp = self.span;
+ if self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) {
+ // possible public struct definition where `struct` was forgotten
+ let ident = self.parse_ident().unwrap();
+ let msg = format!("add `struct` here to parse `{}` as a public struct",
+ ident);
+ let mut err = self.diagnostic()
+ .struct_span_err(sp, "missing `struct` for struct definition");
+ err.span_suggestion_short(
+ sp, &msg, " struct ".into(), Applicability::MaybeIncorrect // speculative
+ );
+ return Err(err);
+ } else if self.look_ahead(1, |t| *t == token::OpenDelim(token::Paren)) {
+ let ident = self.parse_ident().unwrap();
+ self.bump(); // `(`
+ let kw_name = if let Ok(Some(_)) = self.parse_self_arg() {
+ "method"
+ } else {
+ "function"
+ };
+ self.consume_block(token::Paren);
+ let (kw, kw_name, ambiguous) = if self.check(&token::RArrow) {
+ self.eat_to_tokens(&[&token::OpenDelim(token::Brace)]);
+ self.bump(); // `{`
+ ("fn", kw_name, false)
+ } else if self.check(&token::OpenDelim(token::Brace)) {
+ self.bump(); // `{`
+ ("fn", kw_name, false)
+ } else if self.check(&token::Colon) {
+ let kw = "struct";
+ (kw, kw, false)
+ } else {
+ ("fn` or `struct", "function or struct", true)
+ };
+ self.consume_block(token::Brace);
+
+ let msg = format!("missing `{}` for {} definition", kw, kw_name);
+ let mut err = self.diagnostic().struct_span_err(sp, &msg);
+ if !ambiguous {
+ let suggestion = format!("add `{}` here to parse `{}` as a public {}",
+ kw,
+ ident,
+ kw_name);
+ err.span_suggestion_short(
+ sp, &suggestion, format!(" {} ", kw), Applicability::MachineApplicable
+ );
+ } else {
+ if let Ok(snippet) = self.sess.source_map().span_to_snippet(ident_sp) {
+ err.span_suggestion(
+ full_sp,
+ "if you meant to call a macro, try",
+ format!("{}!", snippet),
+ // this is the `ambiguous` conditional branch
+ Applicability::MaybeIncorrect
+ );
+ } else {
+ err.help("if you meant to call a macro, remove the `pub` \
+ and add a trailing `!` after the identifier");
+ }
+ }
+ return Err(err);
+ } else if self.look_ahead(1, |t| *t == token::Lt) {
+ let ident = self.parse_ident().unwrap();
+ self.eat_to_tokens(&[&token::Gt]);
+ self.bump(); // `>`
+ let (kw, kw_name, ambiguous) = if self.eat(&token::OpenDelim(token::Paren)) {
+ if let Ok(Some(_)) = self.parse_self_arg() {
+ ("fn", "method", false)
+ } else {
+ ("fn", "function", false)
+ }
+ } else if self.check(&token::OpenDelim(token::Brace)) {
+ ("struct", "struct", false)
+ } else {
+ ("fn` or `struct", "function or struct", true)
+ };
+ let msg = format!("missing `{}` for {} definition", kw, kw_name);
+ let mut err = self.diagnostic().struct_span_err(sp, &msg);
+ if !ambiguous {
+ err.span_suggestion_short(
+ sp,
+ &format!("add `{}` here to parse `{}` as a public {}", kw, ident, kw_name),
+ format!(" {} ", kw),
+ Applicability::MachineApplicable,
+ );
+ }
+ return Err(err);
+ }
+ }
+ self.parse_macro_use_or_failure(attrs, macros_allowed, attributes_allowed, lo, visibility)
+ }
+
+ /// Parses a foreign item.
+ crate fn parse_foreign_item(&mut self) -> PResult<'a, ForeignItem> {
+ maybe_whole!(self, NtForeignItem, |ni| ni);
+
+ let attrs = self.parse_outer_attributes()?;
+ let lo = self.span;
+ let visibility = self.parse_visibility(false)?;
+
+ // FOREIGN STATIC ITEM
+ // Treat `const` as `static` for error recovery, but don't add it to expected tokens.
+ if self.check_keyword(keywords::Static) || self.token.is_keyword(keywords::Const) {
+ if self.token.is_keyword(keywords::Const) {
+ self.diagnostic()
+ .struct_span_err(self.span, "extern items cannot be `const`")
+ .span_suggestion(
+ self.span,
+ "try using a static value",
+ "static".to_owned(),
+ Applicability::MachineApplicable
+ ).emit();
+ }
+ self.bump(); // `static` or `const`
+ return Ok(self.parse_item_foreign_static(visibility, lo, attrs)?);
+ }
+ // FOREIGN FUNCTION ITEM
+ if self.check_keyword(keywords::Fn) {
+ return Ok(self.parse_item_foreign_fn(visibility, lo, attrs)?);
+ }
+ // FOREIGN TYPE ITEM
+ if self.check_keyword(keywords::Type) {
+ return Ok(self.parse_item_foreign_type(visibility, lo, attrs)?);
+ }
+
+ match self.parse_assoc_macro_invoc("extern", Some(&visibility), &mut false)? {
+ Some(mac) => {
+ Ok(
+ ForeignItem {
+ ident: keywords::Invalid.ident(),
+ span: lo.to(self.prev_span),
+ id: ast::DUMMY_NODE_ID,
+ attrs,
+ vis: visibility,
+ node: ForeignItemKind::Macro(mac),
+ }
+ )
+ }
+ None => {
+ if !attrs.is_empty() {
+ self.expected_item_err(&attrs)?;
+ }
+
+ self.unexpected()
+ }
+ }
+ }
+
+ /// This is the fall-through for parsing items.
+ fn parse_macro_use_or_failure(
+ &mut self,
+ attrs: Vec<Attribute> ,
+ macros_allowed: bool,
+ attributes_allowed: bool,
+ lo: Span,
+ visibility: Visibility
+ ) -> PResult<'a, Option<P<Item>>> {
+ if macros_allowed && self.token.is_path_start() {
+ // MACRO INVOCATION ITEM
+
+ let prev_span = self.prev_span;
+ self.complain_if_pub_macro(&visibility.node, prev_span);
+
+ let mac_lo = self.span;
+
+ // item macro.
+ let pth = self.parse_path(PathStyle::Mod)?;
+ self.expect(&token::Not)?;
+
+ // a 'special' identifier (like what `macro_rules!` uses)
+ // is optional. We should eventually unify invoc syntax
+ // and remove this.
+ let id = if self.token.is_ident() {
+ self.parse_ident()?
+ } else {
+ keywords::Invalid.ident() // no special identifier
+ };
+ // eat a matched-delimiter token tree:
+ let (delim, tts) = self.expect_delimited_token_tree()?;
+ if delim != MacDelimiter::Brace {
+ if !self.eat(&token::Semi) {
+ self.span_err(self.prev_span,
+ "macros that expand to items must either \
+ be surrounded with braces or followed by \
+ a semicolon");
+ }
+ }
+
+ let hi = self.prev_span;
+ let mac = respan(mac_lo.to(hi), Mac_ { path: pth, tts, delim });
+ let item = self.mk_item(lo.to(hi), id, ItemKind::Mac(mac), visibility, attrs);
+ return Ok(Some(item));
+ }
+
+ // FAILURE TO PARSE ITEM
+ match visibility.node {
+ VisibilityKind::Inherited => {}
+ _ => {
+ return Err(self.span_fatal(self.prev_span, "unmatched visibility `pub`"));
+ }
+ }
+
+ if !attributes_allowed && !attrs.is_empty() {
+ self.expected_item_err(&attrs)?;
+ }
+ Ok(None)
+ }
+
+ /// Parses a macro invocation inside a `trait`, `impl` or `extern` block.
+ fn parse_assoc_macro_invoc(&mut self, item_kind: &str, vis: Option<&Visibility>,
+ at_end: &mut bool) -> PResult<'a, Option<Mac>>
+ {
+ if self.token.is_path_start() {
+ let prev_span = self.prev_span;
+ let lo = self.span;
+ let pth = self.parse_path(PathStyle::Mod)?;
+
+ if pth.segments.len() == 1 {
+ if !self.eat(&token::Not) {
+ return Err(self.missing_assoc_item_kind_err(item_kind, prev_span));
+ }
+ } else {
+ self.expect(&token::Not)?;
+ }
+
+ if let Some(vis) = vis {
+ self.complain_if_pub_macro(&vis.node, prev_span);
+ }
+
+ *at_end = true;
+
+ // eat a matched-delimiter token tree:
+ let (delim, tts) = self.expect_delimited_token_tree()?;
+ if delim != MacDelimiter::Brace {
+ self.expect(&token::Semi)?;
+ }
+
+ Ok(Some(respan(lo.to(self.prev_span), Mac_ { path: pth, tts, delim })))
+ } else {
+ Ok(None)
+ }
+ }
+
+ fn collect_tokens<F, R>(&mut self, f: F) -> PResult<'a, (R, TokenStream)>
+ where F: FnOnce(&mut Self) -> PResult<'a, R>
+ {
+ // Record all tokens we parse when parsing this item.
+ let mut tokens = Vec::new();
+ let prev_collecting = match self.token_cursor.frame.last_token {
+ LastToken::Collecting(ref mut list) => {
+ Some(mem::replace(list, Vec::new()))
+ }
+ LastToken::Was(ref mut last) => {
+ tokens.extend(last.take());
+ None
+ }
+ };
+ self.token_cursor.frame.last_token = LastToken::Collecting(tokens);
+ let prev = self.token_cursor.stack.len();
+ let ret = f(self);
+ let last_token = if self.token_cursor.stack.len() == prev {
+ &mut self.token_cursor.frame.last_token
+ } else {
+ &mut self.token_cursor.stack[prev].last_token
+ };
+
+ // Pull out the tokens that we've collected from the call to `f` above.
+ let mut collected_tokens = match *last_token {
+ LastToken::Collecting(ref mut v) => mem::replace(v, Vec::new()),
+ LastToken::Was(_) => panic!("our vector went away?"),
+ };
+
+ // If we're not at EOF our current token wasn't actually consumed by
+ // `f`, but it'll still be in our list that we pulled out. In that case
+ // put it back.
+ let extra_token = if self.token != token::Eof {
+ collected_tokens.pop()
+ } else {
+ None
+ };
+
+ // If we were previously collecting tokens, then this was a recursive
+ // call. In that case we need to record all the tokens we collected in
+ // our parent list as well. To do that we push a clone of our stream
+ // onto the previous list.
+ match prev_collecting {
+ Some(mut list) => {
+ list.extend(collected_tokens.iter().cloned());
+ list.extend(extra_token);
+ *last_token = LastToken::Collecting(list);
+ }
+ None => {
+ *last_token = LastToken::Was(extra_token);
+ }
+ }
+
+ Ok((ret?, TokenStream::new(collected_tokens)))
+ }
+
+ pub fn parse_item(&mut self) -> PResult<'a, Option<P<Item>>> {
+ let attrs = self.parse_outer_attributes()?;
+ self.parse_item_(attrs, true, false)
+ }
+
+ /// `::{` or `::*`
+ fn is_import_coupler(&mut self) -> bool {
+ self.check(&token::ModSep) &&
+ self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace) ||
+ *t == token::BinOp(token::Star))
+ }
+
+ /// Parses a `UseTree`.
+ ///
+ /// ```
+ /// USE_TREE = [`::`] `*` |
+ /// [`::`] `{` USE_TREE_LIST `}` |
+ /// PATH `::` `*` |
+ /// PATH `::` `{` USE_TREE_LIST `}` |
+ /// PATH [`as` IDENT]
+ /// ```
+ fn parse_use_tree(&mut self) -> PResult<'a, UseTree> {
+ let lo = self.span;
+
+ let mut prefix = ast::Path { segments: Vec::new(), span: lo.shrink_to_lo() };
+ let kind = if self.check(&token::OpenDelim(token::Brace)) ||
+ self.check(&token::BinOp(token::Star)) ||
+ self.is_import_coupler() {
+ // `use *;` or `use ::*;` or `use {...};` or `use ::{...};`
+ let mod_sep_ctxt = self.span.ctxt();
+ if self.eat(&token::ModSep) {
+ prefix.segments.push(
+ PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt))
+ );
+ }
+
+ if self.eat(&token::BinOp(token::Star)) {
+ UseTreeKind::Glob
+ } else {
+ UseTreeKind::Nested(self.parse_use_tree_list()?)
+ }
+ } else {
+ // `use path::*;` or `use path::{...};` or `use path;` or `use path as bar;`
+ prefix = self.parse_path(PathStyle::Mod)?;
+
+ if self.eat(&token::ModSep) {
+ if self.eat(&token::BinOp(token::Star)) {
+ UseTreeKind::Glob
+ } else {
+ UseTreeKind::Nested(self.parse_use_tree_list()?)
+ }
+ } else {
+ UseTreeKind::Simple(self.parse_rename()?, ast::DUMMY_NODE_ID, ast::DUMMY_NODE_ID)
+ }
+ };
+
+ Ok(UseTree { prefix, kind, span: lo.to(self.prev_span) })
+ }
+
+ /// Parses a `UseTreeKind::Nested(list)`.
+ ///
+ /// ```
+ /// USE_TREE_LIST = Ø | (USE_TREE `,`)* USE_TREE [`,`]
+ /// ```
+ fn parse_use_tree_list(&mut self) -> PResult<'a, Vec<(UseTree, ast::NodeId)>> {
+ self.parse_unspanned_seq(&token::OpenDelim(token::Brace),
+ &token::CloseDelim(token::Brace),
+ SeqSep::trailing_allowed(token::Comma), |this| {
+ Ok((this.parse_use_tree()?, ast::DUMMY_NODE_ID))
+ })
+ }
+
+ fn parse_rename(&mut self) -> PResult<'a, Option<Ident>> {
+ if self.eat_keyword(keywords::As) {
+ self.parse_ident_or_underscore().map(Some)
+ } else {
+ Ok(None)
+ }
+ }
+
+ /// Parses a source module as a crate. This is the main entry point for the parser.
+ pub fn parse_crate_mod(&mut self) -> PResult<'a, Crate> {
+ let lo = self.span;
+ let krate = Ok(ast::Crate {
+ attrs: self.parse_inner_attributes()?,
+ module: self.parse_mod_items(&token::Eof, lo)?,
+ span: lo.to(self.span),
+ });
+ emit_unclosed_delims(&self.unclosed_delims, self.diagnostic());
+ self.unclosed_delims.clear();
+ krate
+ }
+
+ pub fn parse_optional_str(&mut self) -> Option<(Symbol, ast::StrStyle, Option<ast::Name>)> {
+ let ret = match self.token {
+ token::Literal(token::Str_(s), suf) => (s, ast::StrStyle::Cooked, suf),
+ token::Literal(token::StrRaw(s, n), suf) => (s, ast::StrStyle::Raw(n), suf),
+ _ => return None
+ };
+ self.bump();
+ Some(ret)
+ }
+
+ pub fn parse_str(&mut self) -> PResult<'a, (Symbol, StrStyle)> {
+ match self.parse_optional_str() {
+ Some((s, style, suf)) => {
+ let sp = self.prev_span;
+ self.expect_no_suffix(sp, "string literal", suf);
+ Ok((s, style))
+ }
+ _ => {
+ let msg = "expected string literal";
+ let mut err = self.fatal(msg);
+ err.span_label(self.span, msg);
+ Err(err)
+ }
+ }
+ }
+}
+
+pub fn emit_unclosed_delims(unclosed_delims: &[UnmatchedBrace], handler: &errors::Handler) {
+ for unmatched in unclosed_delims {
+ let mut err = handler.struct_span_err(unmatched.found_span, &format!(
+ "incorrect close delimiter: `{}`",
+ pprust::token_to_string(&token::Token::CloseDelim(unmatched.found_delim)),
+ ));
+ err.span_label(unmatched.found_span, "incorrect close delimiter");
+ if let Some(sp) = unmatched.candidate_span {
+ err.span_label(sp, "close delimiter possibly meant for this");
+ }
+ if let Some(sp) = unmatched.unclosed_span {
+ err.span_label(sp, "un-closed delimiter");
+ }
+ err.emit();
+ }
+}