summaryrefslogtreecommitdiffstats
path: root/tests/codegen/swap-large-types.rs
diff options
context:
space:
mode:
Diffstat (limited to 'tests/codegen/swap-large-types.rs')
-rw-r--r--tests/codegen/swap-large-types.rs91
1 files changed, 91 insertions, 0 deletions
diff --git a/tests/codegen/swap-large-types.rs b/tests/codegen/swap-large-types.rs
new file mode 100644
index 000000000..4a6840357
--- /dev/null
+++ b/tests/codegen/swap-large-types.rs
@@ -0,0 +1,91 @@
+// compile-flags: -O
+// only-x86_64
+// ignore-debug: the debug assertions get in the way
+
+#![crate_type = "lib"]
+
+use std::mem::swap;
+use std::ptr::{read, copy_nonoverlapping, write};
+
+type KeccakBuffer = [[u64; 5]; 5];
+
+// A basic read+copy+write swap implementation ends up copying one of the values
+// to stack for large types, which is completely unnecessary as the lack of
+// overlap means we can just do whatever fits in registers at a time.
+
+// CHECK-LABEL: @swap_basic
+#[no_mangle]
+pub fn swap_basic(x: &mut KeccakBuffer, y: &mut KeccakBuffer) {
+// CHECK: alloca [5 x [5 x i64]]
+
+ // SAFETY: exclusive references are always valid to read/write,
+ // are non-overlapping, and nothing here panics so it's drop-safe.
+ unsafe {
+ let z = read(x);
+ copy_nonoverlapping(y, x, 1);
+ write(y, z);
+ }
+}
+
+// This test verifies that the library does something smarter, and thus
+// doesn't need any scratch space on the stack.
+
+// CHECK-LABEL: @swap_std
+#[no_mangle]
+pub fn swap_std(x: &mut KeccakBuffer, y: &mut KeccakBuffer) {
+// CHECK-NOT: alloca
+// CHECK: load <{{[0-9]+}} x i64>
+// CHECK: store <{{[0-9]+}} x i64>
+ swap(x, y)
+}
+
+// Verify that types with usize alignment are swapped via vectored usizes,
+// not falling back to byte-level code.
+
+// CHECK-LABEL: @swap_slice
+#[no_mangle]
+pub fn swap_slice(x: &mut [KeccakBuffer], y: &mut [KeccakBuffer]) {
+// CHECK-NOT: alloca
+// CHECK: load <{{[0-9]+}} x i64>
+// CHECK: store <{{[0-9]+}} x i64>
+ if x.len() == y.len() {
+ x.swap_with_slice(y);
+ }
+}
+
+// But for a large align-1 type, vectorized byte copying is what we want.
+
+type OneKilobyteBuffer = [u8; 1024];
+
+// CHECK-LABEL: @swap_1kb_slices
+#[no_mangle]
+pub fn swap_1kb_slices(x: &mut [OneKilobyteBuffer], y: &mut [OneKilobyteBuffer]) {
+// CHECK-NOT: alloca
+// CHECK: load <{{[0-9]+}} x i8>
+// CHECK: store <{{[0-9]+}} x i8>
+ if x.len() == y.len() {
+ x.swap_with_slice(y);
+ }
+}
+
+// This verifies that the 2×read + 2×write optimizes to just 3 memcpys
+// for an unusual type like this. It's not clear whether we should do anything
+// smarter in Rust for these, so for now it's fine to leave these up to the backend.
+// That's not as bad as it might seem, as for example, LLVM will lower the
+// memcpys below to VMOVAPS on YMMs if one enables the AVX target feature.
+// Eventually we'll be able to pass `align_of::<T>` to a const generic and
+// thus pick a smarter chunk size ourselves without huge code duplication.
+
+#[repr(align(64))]
+pub struct BigButHighlyAligned([u8; 64 * 3]);
+
+// CHECK-LABEL: @swap_big_aligned
+#[no_mangle]
+pub fn swap_big_aligned(x: &mut BigButHighlyAligned, y: &mut BigButHighlyAligned) {
+// CHECK-NOT: call void @llvm.memcpy
+// CHECK: call void @llvm.memcpy.{{.+}}({{i8\*|ptr}} noundef nonnull align 64 dereferenceable(192)
+// CHECK: call void @llvm.memcpy.{{.+}}({{i8\*|ptr}} noundef nonnull align 64 dereferenceable(192)
+// CHECK: call void @llvm.memcpy.{{.+}}({{i8\*|ptr}} noundef nonnull align 64 dereferenceable(192)
+// CHECK-NOT: call void @llvm.memcpy
+ swap(x, y)
+}