diff options
Diffstat (limited to 'vendor/bit-vec/src')
-rw-r--r-- | vendor/bit-vec/src/lib.rs | 2535 |
1 files changed, 2535 insertions, 0 deletions
diff --git a/vendor/bit-vec/src/lib.rs b/vendor/bit-vec/src/lib.rs new file mode 100644 index 000000000..5e6dcbaa4 --- /dev/null +++ b/vendor/bit-vec/src/lib.rs @@ -0,0 +1,2535 @@ +// Copyright 2012-2020 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// FIXME(Gankro): BitVec and BitSet are very tightly coupled. Ideally (for +// maintenance), they should be in separate files/modules, with BitSet only +// using BitVec's public API. This will be hard for performance though, because +// `BitVec` will not want to leak its internal representation while its internal +// representation as `u32`s must be assumed for best performance. + +// (1) Be careful, most things can overflow here because the amount of bits in +// memory can overflow `usize`. +// (2) Make sure that the underlying vector has no excess length: +// E. g. `nbits == 16`, `storage.len() == 2` would be excess length, +// because the last word isn't used at all. This is important because some +// methods rely on it (for *CORRECTNESS*). +// (3) Make sure that the unused bits in the last word are zeroed out, again +// other methods rely on it for *CORRECTNESS*. +// (4) `BitSet` is tightly coupled with `BitVec`, so any changes you make in +// `BitVec` will need to be reflected in `BitSet`. + +//! Collections implemented with bit vectors. +//! +//! # Examples +//! +//! This is a simple example of the [Sieve of Eratosthenes][sieve] +//! which calculates prime numbers up to a given limit. +//! +//! [sieve]: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes +//! +//! ``` +//! use bit_vec::BitVec; +//! +//! let max_prime = 10000; +//! +//! // Store the primes as a BitVec +//! let primes = { +//! // Assume all numbers are prime to begin, and then we +//! // cross off non-primes progressively +//! let mut bv = BitVec::from_elem(max_prime, true); +//! +//! // Neither 0 nor 1 are prime +//! bv.set(0, false); +//! bv.set(1, false); +//! +//! for i in 2.. 1 + (max_prime as f64).sqrt() as usize { +//! // if i is a prime +//! if bv[i] { +//! // Mark all multiples of i as non-prime (any multiples below i * i +//! // will have been marked as non-prime previously) +//! for j in i.. { +//! if i * j >= max_prime { +//! break; +//! } +//! bv.set(i * j, false) +//! } +//! } +//! } +//! bv +//! }; +//! +//! // Simple primality tests below our max bound +//! let print_primes = 20; +//! print!("The primes below {} are: ", print_primes); +//! for x in 0..print_primes { +//! if primes.get(x).unwrap_or(false) { +//! print!("{} ", x); +//! } +//! } +//! println!(); +//! +//! let num_primes = primes.iter().filter(|x| *x).count(); +//! println!("There are {} primes below {}", num_primes, max_prime); +//! assert_eq!(num_primes, 1_229); +//! ``` + +#![doc(html_root_url = "https://docs.rs/bit-vec/0.6.3")] + +#![no_std] + +#[cfg(any(test, feature = "std"))] +#[macro_use] +extern crate std; +#[cfg(feature="std")] +use std::vec::Vec; + +#[cfg(feature="serde")] +extern crate serde; +#[cfg(feature="serde")] +use serde::{Serialize, Deserialize}; + +#[cfg(not(feature="std"))] +#[macro_use] +extern crate alloc; +#[cfg(not(feature="std"))] +use alloc::vec::Vec; + +use core::cmp::Ordering; +use core::cmp; +use core::fmt; +use core::hash; +use core::mem; +use core::iter::FromIterator; +use core::slice; +use core::{u8, usize}; +use core::iter::repeat; +use core::ops::*; + +type MutBlocks<'a, B> = slice::IterMut<'a, B>; + +/// Abstracts over a pile of bits (basically unsigned primitives) +pub trait BitBlock: + Copy + + Add<Self, Output=Self> + + Sub<Self, Output=Self> + + Shl<usize, Output=Self> + + Shr<usize, Output=Self> + + Not<Output=Self> + + BitAnd<Self, Output=Self> + + BitOr<Self, Output=Self> + + BitXor<Self, Output=Self> + + Rem<Self, Output=Self> + + Eq + + Ord + + hash::Hash +{ + /// How many bits it has + fn bits() -> usize; + /// How many bytes it has + #[inline] + fn bytes() -> usize { Self::bits() / 8 } + /// Convert a byte into this type (lowest-order bits set) + fn from_byte(byte: u8) -> Self; + /// Count the number of 1's in the bitwise repr + fn count_ones(self) -> usize; + /// Get `0` + fn zero() -> Self; + /// Get `1` + fn one() -> Self; +} + +macro_rules! bit_block_impl { + ($(($t: ident, $size: expr)),*) => ($( + impl BitBlock for $t { + #[inline] + fn bits() -> usize { $size } + #[inline] + fn from_byte(byte: u8) -> Self { $t::from(byte) } + #[inline] + fn count_ones(self) -> usize { self.count_ones() as usize } + #[inline] + fn one() -> Self { 1 } + #[inline] + fn zero() -> Self { 0 } + } + )*) +} + +bit_block_impl!{ + (u8, 8), + (u16, 16), + (u32, 32), + (u64, 64), + (usize, core::mem::size_of::<usize>() * 8) +} + +fn reverse_bits(byte: u8) -> u8 { + let mut result = 0; + for i in 0..u8::bits() { + result |= ((byte >> i) & 1) << (u8::bits() - 1 - i); + } + result +} + +static TRUE: bool = true; +static FALSE: bool = false; + +/// The bitvector type. +/// +/// # Examples +/// +/// ``` +/// use bit_vec::BitVec; +/// +/// let mut bv = BitVec::from_elem(10, false); +/// +/// // insert all primes less than 10 +/// bv.set(2, true); +/// bv.set(3, true); +/// bv.set(5, true); +/// bv.set(7, true); +/// println!("{:?}", bv); +/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); +/// +/// // flip all values in bitvector, producing non-primes less than 10 +/// bv.negate(); +/// println!("{:?}", bv); +/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); +/// +/// // reset bitvector to empty +/// bv.clear(); +/// println!("{:?}", bv); +/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); +/// ``` +#[cfg_attr(feature="serde", derive(Serialize, Deserialize))] +pub struct BitVec<B=u32> { + /// Internal representation of the bit vector + storage: Vec<B>, + /// The number of valid bits in the internal representation + nbits: usize +} + +// FIXME(Gankro): NopeNopeNopeNopeNope (wait for IndexGet to be a thing) +impl<B: BitBlock> Index<usize> for BitVec<B> { + type Output = bool; + + #[inline] + fn index(&self, i: usize) -> &bool { + if self.get(i).expect("index out of bounds") { + &TRUE + } else { + &FALSE + } + } +} + +/// Computes how many blocks are needed to store that many bits +fn blocks_for_bits<B: BitBlock>(bits: usize) -> usize { + // If we want 17 bits, dividing by 32 will produce 0. So we add 1 to make sure we + // reserve enough. But if we want exactly a multiple of 32, this will actually allocate + // one too many. So we need to check if that's the case. We can do that by computing if + // bitwise AND by `32 - 1` is 0. But LLVM should be able to optimize the semantically + // superior modulo operator on a power of two to this. + // + // Note that we can technically avoid this branch with the expression + // `(nbits + U32_BITS - 1) / 32::BITS`, but if nbits is almost usize::MAX this will overflow. + if bits % B::bits() == 0 { + bits / B::bits() + } else { + bits / B::bits() + 1 + } +} + +/// Computes the bitmask for the final word of the vector +fn mask_for_bits<B: BitBlock>(bits: usize) -> B { + // Note especially that a perfect multiple of U32_BITS should mask all 1s. + (!B::zero()) >> ((B::bits() - bits % B::bits()) % B::bits()) +} + +type B = u32; + +impl BitVec<u32> { + + /// Creates an empty `BitVec`. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// let mut bv = BitVec::new(); + /// ``` + #[inline] + pub fn new() -> Self { + Default::default() + } + + /// Creates a `BitVec` that holds `nbits` elements, setting each element + /// to `bit`. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(10, false); + /// assert_eq!(bv.len(), 10); + /// for x in bv.iter() { + /// assert_eq!(x, false); + /// } + /// ``` + #[inline] + pub fn from_elem(nbits: usize, bit: bool) -> Self { + let nblocks = blocks_for_bits::<B>(nbits); + let mut bit_vec = BitVec { + storage: vec![if bit { !B::zero() } else { B::zero() }; nblocks], + nbits, + }; + bit_vec.fix_last_block(); + bit_vec + } + + /// Constructs a new, empty `BitVec` with the specified capacity. + /// + /// The bitvector will be able to hold at least `capacity` bits without + /// reallocating. If `capacity` is 0, it will not allocate. + /// + /// It is important to note that this function does not specify the + /// *length* of the returned bitvector, but only the *capacity*. + #[inline] + pub fn with_capacity(nbits: usize) -> Self { + BitVec { + storage: Vec::with_capacity(blocks_for_bits::<B>(nbits)), + nbits: 0, + } + } + + /// Transforms a byte-vector into a `BitVec`. Each byte becomes eight bits, + /// with the most significant bits of each byte coming first. Each + /// bit becomes `true` if equal to 1 or `false` if equal to 0. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let bv = BitVec::from_bytes(&[0b10100000, 0b00010010]); + /// assert!(bv.eq_vec(&[true, false, true, false, + /// false, false, false, false, + /// false, false, false, true, + /// false, false, true, false])); + /// ``` + pub fn from_bytes(bytes: &[u8]) -> Self { + let len = bytes.len().checked_mul(u8::bits()).expect("capacity overflow"); + let mut bit_vec = BitVec::with_capacity(len); + let complete_words = bytes.len() / B::bytes(); + let extra_bytes = bytes.len() % B::bytes(); + + bit_vec.nbits = len; + + for i in 0..complete_words { + let mut accumulator = B::zero(); + for idx in 0..B::bytes() { + accumulator |= + B::from_byte(reverse_bits(bytes[i * B::bytes() + idx])) << (idx * 8) + } + bit_vec.storage.push(accumulator); + } + + if extra_bytes > 0 { + let mut last_word = B::zero(); + for (i, &byte) in bytes[complete_words * B::bytes()..].iter().enumerate() { + last_word |= + B::from_byte(reverse_bits(byte)) << (i * 8); + } + bit_vec.storage.push(last_word); + } + + bit_vec + } + + /// Creates a `BitVec` of the specified length where the value at each index + /// is `f(index)`. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let bv = BitVec::from_fn(5, |i| { i % 2 == 0 }); + /// assert!(bv.eq_vec(&[true, false, true, false, true])); + /// ``` + #[inline] + pub fn from_fn<F>(len: usize, mut f: F) -> Self + where F: FnMut(usize) -> bool + { + let mut bit_vec = BitVec::from_elem(len, false); + for i in 0..len { + bit_vec.set(i, f(i)); + } + bit_vec + } +} + +impl<B: BitBlock> BitVec<B> { + /// Applies the given operation to the blocks of self and other, and sets + /// self to be the result. This relies on the caller not to corrupt the + /// last word. + #[inline] + fn process<F>(&mut self, other: &BitVec<B>, mut op: F) -> bool + where F: FnMut(B, B) -> B { + assert_eq!(self.len(), other.len()); + debug_assert_eq!(self.storage.len(), other.storage.len()); + let mut changed_bits = B::zero(); + for (a, b) in self.blocks_mut().zip(other.blocks()) { + let w = op(*a, b); + changed_bits = changed_bits | (*a ^ w); + *a = w; + } + changed_bits != B::zero() + } + + /// Iterator over mutable refs to the underlying blocks of data. + #[inline] + fn blocks_mut(&mut self) -> MutBlocks<B> { + // (2) + self.storage.iter_mut() + } + + /// Iterator over the underlying blocks of data + #[inline] + pub fn blocks(&self) -> Blocks<B> { + // (2) + Blocks{iter: self.storage.iter()} + } + + /// Exposes the raw block storage of this BitVec + /// + /// Only really intended for BitSet. + #[inline] + pub fn storage(&self) -> &[B] { + &self.storage + } + + /// Exposes the raw block storage of this BitVec + /// + /// Can probably cause unsafety. Only really intended for BitSet. + #[inline] + pub unsafe fn storage_mut(&mut self) -> &mut Vec<B> { + &mut self.storage + } + + /// Helper for procedures involving spare space in the last block. + #[inline] + fn last_block_with_mask(&self) -> Option<(B, B)> { + let extra_bits = self.len() % B::bits(); + if extra_bits > 0 { + let mask = (B::one() << extra_bits) - B::one(); + let storage_len = self.storage.len(); + Some((self.storage[storage_len - 1], mask)) + } else { + None + } + } + + /// Helper for procedures involving spare space in the last block. + #[inline] + fn last_block_mut_with_mask(&mut self) -> Option<(&mut B, B)> { + let extra_bits = self.len() % B::bits(); + if extra_bits > 0 { + let mask = (B::one() << extra_bits) - B::one(); + let storage_len = self.storage.len(); + Some((&mut self.storage[storage_len - 1], mask)) + } else { + None + } + } + + /// An operation might screw up the unused bits in the last block of the + /// `BitVec`. As per (3), it's assumed to be all 0s. This method fixes it up. + fn fix_last_block(&mut self) { + if let Some((last_block, used_bits)) = self.last_block_mut_with_mask() { + *last_block = *last_block & used_bits; + } + } + + /// Operations such as change detection for xnor, nor and nand are easiest + /// to implement when unused bits are all set to 1s. + fn fix_last_block_with_ones(&mut self) { + if let Some((last_block, used_bits)) = self.last_block_mut_with_mask() { + *last_block = *last_block | !used_bits; + } + } + + /// Check whether last block's invariant is fine. + fn is_last_block_fixed(&self) -> bool { + if let Some((last_block, used_bits)) = self.last_block_with_mask() { + last_block & !used_bits == B::zero() + } else { + true + } + } + + /// Ensure the invariant for the last block. + /// + /// An operation might screw up the unused bits in the last block of the + /// `BitVec`. + /// + /// This method fails in case the last block is not fixed. The check + /// is skipped outside testing. + #[inline] + fn ensure_invariant(&self) { + if cfg!(test) { + debug_assert!(self.is_last_block_fixed()); + } + } + + /// Retrieves the value at index `i`, or `None` if the index is out of bounds. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let bv = BitVec::from_bytes(&[0b01100000]); + /// assert_eq!(bv.get(0), Some(false)); + /// assert_eq!(bv.get(1), Some(true)); + /// assert_eq!(bv.get(100), None); + /// + /// // Can also use array indexing + /// assert_eq!(bv[1], true); + /// ``` + #[inline] + pub fn get(&self, i: usize) -> Option<bool> { + self.ensure_invariant(); + if i >= self.nbits { + return None; + } + let w = i / B::bits(); + let b = i % B::bits(); + self.storage.get(w).map(|&block| + (block & (B::one() << b)) != B::zero() + ) + } + + /// Sets the value of a bit at an index `i`. + /// + /// # Panics + /// + /// Panics if `i` is out of bounds. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(5, false); + /// bv.set(3, true); + /// assert_eq!(bv[3], true); + /// ``` + #[inline] + pub fn set(&mut self, i: usize, x: bool) { + self.ensure_invariant(); + assert!(i < self.nbits, "index out of bounds: {:?} >= {:?}", i, self.nbits); + let w = i / B::bits(); + let b = i % B::bits(); + let flag = B::one() << b; + let val = if x { self.storage[w] | flag } + else { self.storage[w] & !flag }; + self.storage[w] = val; + } + + /// Sets all bits to 1. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let before = 0b01100000; + /// let after = 0b11111111; + /// + /// let mut bv = BitVec::from_bytes(&[before]); + /// bv.set_all(); + /// assert_eq!(bv, BitVec::from_bytes(&[after])); + /// ``` + #[inline] + pub fn set_all(&mut self) { + self.ensure_invariant(); + for w in &mut self.storage { *w = !B::zero(); } + self.fix_last_block(); + } + + /// Flips all bits. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let before = 0b01100000; + /// let after = 0b10011111; + /// + /// let mut bv = BitVec::from_bytes(&[before]); + /// bv.negate(); + /// assert_eq!(bv, BitVec::from_bytes(&[after])); + /// ``` + #[inline] + pub fn negate(&mut self) { + self.ensure_invariant(); + for w in &mut self.storage { *w = !*w; } + self.fix_last_block(); + } + + /// Calculates the union of two bitvectors. This acts like the bitwise `or` + /// function. + /// + /// Sets `self` to the union of `self` and `other`. Both bitvectors must be + /// the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different lengths. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100100; + /// let b = 0b01011010; + /// let res = 0b01111110; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.union(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[deprecated( + since = "0.7.0", + note = "Please use the 'or' function instead" + )] + #[inline] + pub fn union(&mut self, other: &Self) -> bool { + self.or(other) + } + + /// Calculates the intersection of two bitvectors. This acts like the + /// bitwise `and` function. + /// + /// Sets `self` to the intersection of `self` and `other`. Both bitvectors + /// must be the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different lengths. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100100; + /// let b = 0b01011010; + /// let res = 0b01000000; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.intersect(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[deprecated( + since = "0.7.0", + note = "Please use the 'and' function instead" + )] + #[inline] + pub fn intersect(&mut self, other: &Self) -> bool { + self.and(other) + } + + /// Calculates the bitwise `or` of two bitvectors. + /// + /// Sets `self` to the union of `self` and `other`. Both bitvectors must be + /// the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different lengths. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100100; + /// let b = 0b01011010; + /// let res = 0b01111110; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.or(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[inline] + pub fn or(&mut self, other: &Self) -> bool { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + self.process(other, |w1, w2| (w1 | w2)) + } + + /// Calculates the bitwise `and` of two bitvectors. + /// + /// Sets `self` to the intersection of `self` and `other`. Both bitvectors + /// must be the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different lengths. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100100; + /// let b = 0b01011010; + /// let res = 0b01000000; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.and(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[inline] + pub fn and(&mut self, other: &Self) -> bool { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + self.process(other, |w1, w2| (w1 & w2)) + } + + /// Calculates the difference between two bitvectors. + /// + /// Sets each element of `self` to the value of that element minus the + /// element of `other` at the same index. Both bitvectors must be the same + /// length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different length. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100100; + /// let b = 0b01011010; + /// let a_b = 0b00100100; // a - b + /// let b_a = 0b00011010; // b - a + /// + /// let mut bva = BitVec::from_bytes(&[a]); + /// let bvb = BitVec::from_bytes(&[b]); + /// + /// assert!(bva.difference(&bvb)); + /// assert_eq!(bva, BitVec::from_bytes(&[a_b])); + /// + /// let bva = BitVec::from_bytes(&[a]); + /// let mut bvb = BitVec::from_bytes(&[b]); + /// + /// assert!(bvb.difference(&bva)); + /// assert_eq!(bvb, BitVec::from_bytes(&[b_a])); + /// ``` + #[inline] + pub fn difference(&mut self, other: &Self) -> bool { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + self.process(other, |w1, w2| (w1 & !w2)) + } + + /// Calculates the xor of two bitvectors. + /// + /// Sets `self` to the xor of `self` and `other`. Both bitvectors must be + /// the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different length. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100110; + /// let b = 0b01010100; + /// let res = 0b00110010; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.xor(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[inline] + pub fn xor(&mut self, other: &Self) -> bool { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + self.process(other, |w1, w2| (w1 ^ w2)) + } + + /// Calculates the nand of two bitvectors. + /// + /// Sets `self` to the nand of `self` and `other`. Both bitvectors must be + /// the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different length. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100110; + /// let b = 0b01010100; + /// let res = 0b10111011; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.nand(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[inline] + pub fn nand(&mut self, other: &Self) -> bool { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + self.fix_last_block_with_ones(); + let result = self.process(other, |w1, w2| !(w1 & w2)); + self.fix_last_block(); + result + } + + /// Calculates the nor of two bitvectors. + /// + /// Sets `self` to the nor of `self` and `other`. Both bitvectors must be + /// the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different length. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100110; + /// let b = 0b01010100; + /// let res = 0b10001001; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.nor(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[inline] + pub fn nor(&mut self, other: &Self) -> bool { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + self.fix_last_block_with_ones(); + let result = self.process(other, |w1, w2| !(w1 | w2)); + self.fix_last_block(); + result + } + + /// Calculates the xnor of two bitvectors. + /// + /// Sets `self` to the xnor of `self` and `other`. Both bitvectors must be + /// the same length. Returns `true` if `self` changed. + /// + /// # Panics + /// + /// Panics if the bitvectors are of different length. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let a = 0b01100110; + /// let b = 0b01010100; + /// let res = 0b11001101; + /// + /// let mut a = BitVec::from_bytes(&[a]); + /// let b = BitVec::from_bytes(&[b]); + /// + /// assert!(a.xnor(&b)); + /// assert_eq!(a, BitVec::from_bytes(&[res])); + /// ``` + #[inline] + pub fn xnor(&mut self, other: &Self) -> bool { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + self.fix_last_block_with_ones(); + let result = self.process(other, |w1, w2| !(w1 ^ w2)); + self.fix_last_block(); + result + } + + /// Returns `true` if all bits are 1. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(5, true); + /// assert_eq!(bv.all(), true); + /// + /// bv.set(1, false); + /// assert_eq!(bv.all(), false); + /// ``` + #[inline] + pub fn all(&self) -> bool { + self.ensure_invariant(); + let mut last_word = !B::zero(); + // Check that every block but the last is all-ones... + self.blocks().all(|elem| { + let tmp = last_word; + last_word = elem; + tmp == !B::zero() + // and then check the last one has enough ones + }) && (last_word == mask_for_bits(self.nbits)) + } + + /// Returns an iterator over the elements of the vector in order. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let bv = BitVec::from_bytes(&[0b01110100, 0b10010010]); + /// assert_eq!(bv.iter().filter(|x| *x).count(), 7); + /// ``` + #[inline] + pub fn iter(&self) -> Iter<B> { + self.ensure_invariant(); + Iter { bit_vec: self, range: 0..self.nbits } + } + + /// Moves all bits from `other` into `Self`, leaving `other` empty. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut a = BitVec::from_bytes(&[0b10000000]); + /// let mut b = BitVec::from_bytes(&[0b01100001]); + /// + /// a.append(&mut b); + /// + /// assert_eq!(a.len(), 16); + /// assert_eq!(b.len(), 0); + /// assert!(a.eq_vec(&[true, false, false, false, false, false, false, false, + /// false, true, true, false, false, false, false, true])); + /// ``` + pub fn append(&mut self, other: &mut Self) { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + + let b = self.len() % B::bits(); + let o = other.len() % B::bits(); + let will_overflow = (b + o > B::bits()) || (o == 0 && b != 0); + + self.nbits += other.len(); + other.nbits = 0; + + if b == 0 { + self.storage.append(&mut other.storage); + } else { + self.storage.reserve(other.storage.len()); + + for block in other.storage.drain(..) { + { + let last = self.storage.last_mut().unwrap(); + *last = *last | (block << b); + } + self.storage.push(block >> (B::bits() - b)); + } + + // Remove additional block if the last shift did not overflow + if !will_overflow { + self.storage.pop(); + } + } + } + + /// Splits the `BitVec` into two at the given bit, + /// retaining the first half in-place and returning the second one. + /// + /// # Panics + /// + /// Panics if `at` is out of bounds. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// let mut a = BitVec::new(); + /// a.push(true); + /// a.push(false); + /// a.push(false); + /// a.push(true); + /// + /// let b = a.split_off(2); + /// + /// assert_eq!(a.len(), 2); + /// assert_eq!(b.len(), 2); + /// assert!(a.eq_vec(&[true, false])); + /// assert!(b.eq_vec(&[false, true])); + /// ``` + pub fn split_off(&mut self, at: usize) -> Self { + self.ensure_invariant(); + assert!(at <= self.len(), "`at` out of bounds"); + + let mut other = BitVec::<B>::default(); + + if at == 0 { + mem::swap(self, &mut other); + return other; + } else if at == self.len() { + return other; + } + + let w = at / B::bits(); + let b = at % B::bits(); + other.nbits = self.nbits - at; + self.nbits = at; + if b == 0 { + // Split at block boundary + other.storage = self.storage.split_off(w); + } else { + other.storage.reserve(self.storage.len() - w); + + { + let mut iter = self.storage[w..].iter(); + let mut last = *iter.next().unwrap(); + for &cur in iter { + other.storage.push((last >> b) | (cur << (B::bits() - b))); + last = cur; + } + other.storage.push(last >> b); + } + + self.storage.truncate(w + 1); + self.fix_last_block(); + } + + other + } + + /// Returns `true` if all bits are 0. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(10, false); + /// assert_eq!(bv.none(), true); + /// + /// bv.set(3, true); + /// assert_eq!(bv.none(), false); + /// ``` + #[inline] + pub fn none(&self) -> bool { + self.blocks().all(|w| w == B::zero()) + } + + /// Returns `true` if any bit is 1. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(10, false); + /// assert_eq!(bv.any(), false); + /// + /// bv.set(3, true); + /// assert_eq!(bv.any(), true); + /// ``` + #[inline] + pub fn any(&self) -> bool { + !self.none() + } + + /// Organises the bits into bytes, such that the first bit in the + /// `BitVec` becomes the high-order bit of the first byte. If the + /// size of the `BitVec` is not a multiple of eight then trailing bits + /// will be filled-in with `false`. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(3, true); + /// bv.set(1, false); + /// + /// assert_eq!(bv.to_bytes(), [0b10100000]); + /// + /// let mut bv = BitVec::from_elem(9, false); + /// bv.set(2, true); + /// bv.set(8, true); + /// + /// assert_eq!(bv.to_bytes(), [0b00100000, 0b10000000]); + /// ``` + pub fn to_bytes(&self) -> Vec<u8> { + self.ensure_invariant(); + // Oh lord, we're mapping this to bytes bit-by-bit! + fn bit<B: BitBlock>(bit_vec: &BitVec<B>, byte: usize, bit: usize) -> u8 { + let offset = byte * 8 + bit; + if offset >= bit_vec.nbits { + 0 + } else { + (bit_vec[offset] as u8) << (7 - bit) + } + } + + let len = self.nbits / 8 + + if self.nbits % 8 == 0 { 0 } else { 1 }; + (0..len).map(|i| + bit(self, i, 0) | + bit(self, i, 1) | + bit(self, i, 2) | + bit(self, i, 3) | + bit(self, i, 4) | + bit(self, i, 5) | + bit(self, i, 6) | + bit(self, i, 7) + ).collect() + } + + /// Compares a `BitVec` to a slice of `bool`s. + /// Both the `BitVec` and slice must have the same length. + /// + /// # Panics + /// + /// Panics if the `BitVec` and slice are of different length. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let bv = BitVec::from_bytes(&[0b10100000]); + /// + /// assert!(bv.eq_vec(&[true, false, true, false, + /// false, false, false, false])); + /// ``` + #[inline] + pub fn eq_vec(&self, v: &[bool]) -> bool { + assert_eq!(self.nbits, v.len()); + self.iter().zip(v.iter().cloned()).all(|(b1, b2)| b1 == b2) + } + + /// Shortens a `BitVec`, dropping excess elements. + /// + /// If `len` is greater than the vector's current length, this has no + /// effect. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_bytes(&[0b01001011]); + /// bv.truncate(2); + /// assert!(bv.eq_vec(&[false, true])); + /// ``` + #[inline] + pub fn truncate(&mut self, len: usize) { + self.ensure_invariant(); + if len < self.len() { + self.nbits = len; + // This fixes (2). + self.storage.truncate(blocks_for_bits::<B>(len)); + self.fix_last_block(); + } + } + + /// Reserves capacity for at least `additional` more bits to be inserted in the given + /// `BitVec`. The collection may reserve more space to avoid frequent reallocations. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(3, false); + /// bv.reserve(10); + /// assert_eq!(bv.len(), 3); + /// assert!(bv.capacity() >= 13); + /// ``` + #[inline] + pub fn reserve(&mut self, additional: usize) { + let desired_cap = self.len().checked_add(additional).expect("capacity overflow"); + let storage_len = self.storage.len(); + if desired_cap > self.capacity() { + self.storage.reserve(blocks_for_bits::<B>(desired_cap) - storage_len); + } + } + + /// Reserves the minimum capacity for exactly `additional` more bits to be inserted in the + /// given `BitVec`. Does nothing if the capacity is already sufficient. + /// + /// Note that the allocator may give the collection more space than it requests. Therefore + /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future + /// insertions are expected. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_elem(3, false); + /// bv.reserve(10); + /// assert_eq!(bv.len(), 3); + /// assert!(bv.capacity() >= 13); + /// ``` + #[inline] + pub fn reserve_exact(&mut self, additional: usize) { + let desired_cap = self.len().checked_add(additional).expect("capacity overflow"); + let storage_len = self.storage.len(); + if desired_cap > self.capacity() { + self.storage.reserve_exact(blocks_for_bits::<B>(desired_cap) - storage_len); + } + } + + /// Returns the capacity in bits for this bit vector. Inserting any + /// element less than this amount will not trigger a resizing. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::new(); + /// bv.reserve(10); + /// assert!(bv.capacity() >= 10); + /// ``` + #[inline] + pub fn capacity(&self) -> usize { + self.storage.capacity().checked_mul(B::bits()).unwrap_or(usize::MAX) + } + + /// Grows the `BitVec` in-place, adding `n` copies of `value` to the `BitVec`. + /// + /// # Panics + /// + /// Panics if the new len overflows a `usize`. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_bytes(&[0b01001011]); + /// bv.grow(2, true); + /// assert_eq!(bv.len(), 10); + /// assert_eq!(bv.to_bytes(), [0b01001011, 0b11000000]); + /// ``` + pub fn grow(&mut self, n: usize, value: bool) { + self.ensure_invariant(); + + // Note: we just bulk set all the bits in the last word in this fn in multiple places + // which is technically wrong if not all of these bits are to be used. However, at the end + // of this fn we call `fix_last_block` at the end of this fn, which should fix this. + + let new_nbits = self.nbits.checked_add(n).expect("capacity overflow"); + let new_nblocks = blocks_for_bits::<B>(new_nbits); + let full_value = if value { !B::zero() } else { B::zero() }; + + // Correct the old tail word, setting or clearing formerly unused bits + let num_cur_blocks = blocks_for_bits::<B>(self.nbits); + if self.nbits % B::bits() > 0 { + let mask = mask_for_bits::<B>(self.nbits); + if value { + let block = &mut self.storage[num_cur_blocks - 1]; + *block = *block | !mask; + } else { + // Extra bits are already zero by invariant. + } + } + + // Fill in words after the old tail word + let stop_idx = cmp::min(self.storage.len(), new_nblocks); + for idx in num_cur_blocks..stop_idx { + self.storage[idx] = full_value; + } + + // Allocate new words, if needed + if new_nblocks > self.storage.len() { + let to_add = new_nblocks - self.storage.len(); + self.storage.extend(repeat(full_value).take(to_add)); + } + + // Adjust internal bit count + self.nbits = new_nbits; + + self.fix_last_block(); + } + + /// Removes the last bit from the BitVec, and returns it. Returns None if the BitVec is empty. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::from_bytes(&[0b01001001]); + /// assert_eq!(bv.pop(), Some(true)); + /// assert_eq!(bv.pop(), Some(false)); + /// assert_eq!(bv.len(), 6); + /// ``` + #[inline] + pub fn pop(&mut self) -> Option<bool> { + self.ensure_invariant(); + + if self.is_empty() { + None + } else { + let i = self.nbits - 1; + let ret = self[i]; + // (3) + self.set(i, false); + self.nbits = i; + if self.nbits % B::bits() == 0 { + // (2) + self.storage.pop(); + } + Some(ret) + } + } + + /// Pushes a `bool` onto the end. + /// + /// # Examples + /// + /// ``` + /// use bit_vec::BitVec; + /// + /// let mut bv = BitVec::new(); + /// bv.push(true); + /// bv.push(false); + /// assert!(bv.eq_vec(&[true, false])); + /// ``` + #[inline] + pub fn push(&mut self, elem: bool) { + if self.nbits % B::bits() == 0 { + self.storage.push(B::zero()); + } + let insert_pos = self.nbits; + self.nbits = self.nbits.checked_add(1).expect("Capacity overflow"); + self.set(insert_pos, elem); + } + + /// Returns the total number of bits in this vector + #[inline] + pub fn len(&self) -> usize { self.nbits } + + /// Sets the number of bits that this BitVec considers initialized. + /// + /// Almost certainly can cause bad stuff. Only really intended for BitSet. + #[inline] + pub unsafe fn set_len(&mut self, len: usize) { + self.nbits = len; + } + + /// Returns true if there are no bits in this vector + #[inline] + pub fn is_empty(&self) -> bool { self.len() == 0 } + + /// Clears all bits in this vector. + #[inline] + pub fn clear(&mut self) { + self.ensure_invariant(); + for w in &mut self.storage { *w = B::zero(); } + } + + /// Shrinks the capacity of the underlying storage as much as + /// possible. + /// + /// It will drop down as close as possible to the length but the + /// allocator may still inform the underlying storage that there + /// is space for a few more elements/bits. + pub fn shrink_to_fit(&mut self) { + self.storage.shrink_to_fit(); + } +} + +impl<B: BitBlock> Default for BitVec<B> { + #[inline] + fn default() -> Self { BitVec { storage: Vec::new(), nbits: 0 } } +} + +impl<B: BitBlock> FromIterator<bool> for BitVec<B> { + #[inline] + fn from_iter<I: IntoIterator<Item=bool>>(iter: I) -> Self { + let mut ret: Self = Default::default(); + ret.extend(iter); + ret + } +} + +impl<B: BitBlock> Extend<bool> for BitVec<B> { + #[inline] + fn extend<I: IntoIterator<Item=bool>>(&mut self, iterable: I) { + self.ensure_invariant(); + let iterator = iterable.into_iter(); + let (min, _) = iterator.size_hint(); + self.reserve(min); + for element in iterator { + self.push(element) + } + } +} + +impl<B: BitBlock> Clone for BitVec<B> { + #[inline] + fn clone(&self) -> Self { + self.ensure_invariant(); + BitVec { storage: self.storage.clone(), nbits: self.nbits } + } + + #[inline] + fn clone_from(&mut self, source: &Self) { + debug_assert!(source.is_last_block_fixed()); + self.nbits = source.nbits; + self.storage.clone_from(&source.storage); + } +} + +impl<B: BitBlock> PartialOrd for BitVec<B> { + #[inline] + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + Some(self.cmp(other)) + } +} + +impl<B: BitBlock> Ord for BitVec<B> { + #[inline] + fn cmp(&self, other: &Self) -> Ordering { + self.ensure_invariant(); + debug_assert!(other.is_last_block_fixed()); + let mut a = self.iter(); + let mut b = other.iter(); + loop { + match (a.next(), b.next()) { + (Some(x), Some(y)) => match x.cmp(&y) { + Ordering::Equal => {} + otherwise => return otherwise, + }, + (None, None) => return Ordering::Equal, + (None, _) => return Ordering::Less, + (_, None) => return Ordering::Greater, + } + } + } +} + +impl<B: BitBlock> fmt::Debug for BitVec<B> { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + self.ensure_invariant(); + for bit in self { + write!(fmt, "{}", if bit { 1 } else { 0 })?; + } + Ok(()) + } +} + +impl<B: BitBlock> hash::Hash for BitVec<B> { + #[inline] + fn hash<H: hash::Hasher>(&self, state: &mut H) { + self.ensure_invariant(); + self.nbits.hash(state); + for elem in self.blocks() { + elem.hash(state); + } + } +} + +impl<B: BitBlock> cmp::PartialEq for BitVec<B> { + #[inline] + fn eq(&self, other: &Self) -> bool { + if self.nbits != other.nbits { + self.ensure_invariant(); + other.ensure_invariant(); + return false; + } + self.blocks().zip(other.blocks()).all(|(w1, w2)| w1 == w2) + } +} + +impl<B: BitBlock> cmp::Eq for BitVec<B> {} + +/// An iterator for `BitVec`. +#[derive(Clone)] +pub struct Iter<'a, B: 'a = u32> { + bit_vec: &'a BitVec<B>, + range: Range<usize>, +} + +impl<'a, B: BitBlock> Iterator for Iter<'a, B> { + type Item = bool; + + #[inline] + fn next(&mut self) -> Option<bool> { + // NB: indexing is slow for extern crates when it has to go through &TRUE or &FALSE + // variables. get is more direct, and unwrap is fine since we're sure of the range. + self.range.next().map(|i| self.bit_vec.get(i).unwrap()) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.range.size_hint() + } +} + +impl<'a, B: BitBlock> DoubleEndedIterator for Iter<'a, B> { + #[inline] + fn next_back(&mut self) -> Option<bool> { + self.range.next_back().map(|i| self.bit_vec.get(i).unwrap()) + } +} + +impl<'a, B: BitBlock> ExactSizeIterator for Iter<'a, B> {} + +impl<'a, B: BitBlock> IntoIterator for &'a BitVec<B> { + type Item = bool; + type IntoIter = Iter<'a, B>; + + #[inline] + fn into_iter(self) -> Iter<'a, B> { + self.iter() + } +} + +pub struct IntoIter<B=u32> { + bit_vec: BitVec<B>, + range: Range<usize>, +} + +impl<B: BitBlock> Iterator for IntoIter<B> { + type Item = bool; + + #[inline] + fn next(&mut self) -> Option<bool> { + self.range.next().map(|i| self.bit_vec.get(i).unwrap()) + } +} + +impl<B: BitBlock> DoubleEndedIterator for IntoIter<B> { + #[inline] + fn next_back(&mut self) -> Option<bool> { + self.range.next_back().map(|i| self.bit_vec.get(i).unwrap()) + } +} + +impl<B: BitBlock> ExactSizeIterator for IntoIter<B> {} + +impl<B: BitBlock> IntoIterator for BitVec<B> { + type Item = bool; + type IntoIter = IntoIter<B>; + + #[inline] + fn into_iter(self) -> IntoIter<B> { + let nbits = self.nbits; + IntoIter { bit_vec: self, range: 0..nbits } + } +} + +/// An iterator over the blocks of a `BitVec`. +#[derive(Clone)] +pub struct Blocks<'a, B: 'a> { + iter: slice::Iter<'a, B>, +} + +impl<'a, B: BitBlock> Iterator for Blocks<'a, B> { + type Item = B; + + #[inline] + fn next(&mut self) -> Option<B> { + self.iter.next().cloned() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +impl<'a, B: BitBlock> DoubleEndedIterator for Blocks<'a, B> { + #[inline] + fn next_back(&mut self) -> Option<B> { + self.iter.next_back().cloned() + } +} + +impl<'a, B: BitBlock> ExactSizeIterator for Blocks<'a, B> {} + +#[cfg(test)] +mod tests { + use super::{BitVec, Iter, Vec}; + + // This is stupid, but I want to differentiate from a "random" 32 + const U32_BITS: usize = 32; + + #[test] + fn test_to_str() { + let zerolen = BitVec::new(); + assert_eq!(format!("{:?}", zerolen), ""); + + let eightbits = BitVec::from_elem(8, false); + assert_eq!(format!("{:?}", eightbits), "00000000") + } + + #[test] + fn test_0_elements() { + let act = BitVec::new(); + let exp = Vec::new(); + assert!(act.eq_vec(&exp)); + assert!(act.none() && act.all()); + } + + #[test] + fn test_1_element() { + let mut act = BitVec::from_elem(1, false); + assert!(act.eq_vec(&[false])); + assert!(act.none() && !act.all()); + act = BitVec::from_elem(1, true); + assert!(act.eq_vec(&[true])); + assert!(!act.none() && act.all()); + } + + #[test] + fn test_2_elements() { + let mut b = BitVec::from_elem(2, false); + b.set(0, true); + b.set(1, false); + assert_eq!(format!("{:?}", b), "10"); + assert!(!b.none() && !b.all()); + } + + #[test] + fn test_10_elements() { + let mut act; + // all 0 + + act = BitVec::from_elem(10, false); + assert!((act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false]))); + assert!(act.none() && !act.all()); + // all 1 + + act = BitVec::from_elem(10, true); + assert!((act.eq_vec(&[true, true, true, true, true, true, true, true, true, true]))); + assert!(!act.none() && act.all()); + // mixed + + act = BitVec::from_elem(10, false); + act.set(0, true); + act.set(1, true); + act.set(2, true); + act.set(3, true); + act.set(4, true); + assert!((act.eq_vec(&[true, true, true, true, true, false, false, false, false, false]))); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(10, false); + act.set(5, true); + act.set(6, true); + act.set(7, true); + act.set(8, true); + act.set(9, true); + assert!((act.eq_vec(&[false, false, false, false, false, true, true, true, true, true]))); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(10, false); + act.set(0, true); + act.set(3, true); + act.set(6, true); + act.set(9, true); + assert!((act.eq_vec(&[true, false, false, true, false, false, true, false, false, true]))); + assert!(!act.none() && !act.all()); + } + + #[test] + fn test_31_elements() { + let mut act; + // all 0 + + act = BitVec::from_elem(31, false); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false])); + assert!(act.none() && !act.all()); + // all 1 + + act = BitVec::from_elem(31, true); + assert!(act.eq_vec( + &[true, true, true, true, true, true, true, true, true, true, true, true, true, + true, true, true, true, true, true, true, true, true, true, true, true, true, + true, true, true, true, true])); + assert!(!act.none() && act.all()); + // mixed + + act = BitVec::from_elem(31, false); + act.set(0, true); + act.set(1, true); + act.set(2, true); + act.set(3, true); + act.set(4, true); + act.set(5, true); + act.set(6, true); + act.set(7, true); + assert!(act.eq_vec( + &[true, true, true, true, true, true, true, true, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(31, false); + act.set(16, true); + act.set(17, true); + act.set(18, true); + act.set(19, true); + act.set(20, true); + act.set(21, true); + act.set(22, true); + act.set(23, true); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, true, true, true, true, true, true, true, true, + false, false, false, false, false, false, false])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(31, false); + act.set(24, true); + act.set(25, true); + act.set(26, true); + act.set(27, true); + act.set(28, true); + act.set(29, true); + act.set(30, true); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, true, true, true, true, true, true, true])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(31, false); + act.set(3, true); + act.set(17, true); + act.set(30, true); + assert!(act.eq_vec( + &[false, false, false, true, false, false, false, false, false, false, false, false, + false, false, false, false, false, true, false, false, false, false, false, false, + false, false, false, false, false, false, true])); + assert!(!act.none() && !act.all()); + } + + #[test] + fn test_32_elements() { + let mut act; + // all 0 + + act = BitVec::from_elem(32, false); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false])); + assert!(act.none() && !act.all()); + // all 1 + + act = BitVec::from_elem(32, true); + assert!(act.eq_vec( + &[true, true, true, true, true, true, true, true, true, true, true, true, true, + true, true, true, true, true, true, true, true, true, true, true, true, true, + true, true, true, true, true, true])); + assert!(!act.none() && act.all()); + // mixed + + act = BitVec::from_elem(32, false); + act.set(0, true); + act.set(1, true); + act.set(2, true); + act.set(3, true); + act.set(4, true); + act.set(5, true); + act.set(6, true); + act.set(7, true); + assert!(act.eq_vec( + &[true, true, true, true, true, true, true, true, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(32, false); + act.set(16, true); + act.set(17, true); + act.set(18, true); + act.set(19, true); + act.set(20, true); + act.set(21, true); + act.set(22, true); + act.set(23, true); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, true, true, true, true, true, true, true, true, + false, false, false, false, false, false, false, false])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(32, false); + act.set(24, true); + act.set(25, true); + act.set(26, true); + act.set(27, true); + act.set(28, true); + act.set(29, true); + act.set(30, true); + act.set(31, true); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, true, true, true, true, true, true, true, true])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(32, false); + act.set(3, true); + act.set(17, true); + act.set(30, true); + act.set(31, true); + assert!(act.eq_vec( + &[false, false, false, true, false, false, false, false, false, false, false, false, + false, false, false, false, false, true, false, false, false, false, false, false, + false, false, false, false, false, false, true, true])); + assert!(!act.none() && !act.all()); + } + + #[test] + fn test_33_elements() { + let mut act; + // all 0 + + act = BitVec::from_elem(33, false); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false])); + assert!(act.none() && !act.all()); + // all 1 + + act = BitVec::from_elem(33, true); + assert!(act.eq_vec( + &[true, true, true, true, true, true, true, true, true, true, true, true, true, + true, true, true, true, true, true, true, true, true, true, true, true, true, + true, true, true, true, true, true, true])); + assert!(!act.none() && act.all()); + // mixed + + act = BitVec::from_elem(33, false); + act.set(0, true); + act.set(1, true); + act.set(2, true); + act.set(3, true); + act.set(4, true); + act.set(5, true); + act.set(6, true); + act.set(7, true); + assert!(act.eq_vec( + &[true, true, true, true, true, true, true, true, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(33, false); + act.set(16, true); + act.set(17, true); + act.set(18, true); + act.set(19, true); + act.set(20, true); + act.set(21, true); + act.set(22, true); + act.set(23, true); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, true, true, true, true, true, true, true, true, + false, false, false, false, false, false, false, false, false])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(33, false); + act.set(24, true); + act.set(25, true); + act.set(26, true); + act.set(27, true); + act.set(28, true); + act.set(29, true); + act.set(30, true); + act.set(31, true); + assert!(act.eq_vec( + &[false, false, false, false, false, false, false, false, false, false, false, + false, false, false, false, false, false, false, false, false, false, false, + false, false, true, true, true, true, true, true, true, true, false])); + assert!(!act.none() && !act.all()); + // mixed + + act = BitVec::from_elem(33, false); + act.set(3, true); + act.set(17, true); + act.set(30, true); + act.set(31, true); + act.set(32, true); + assert!(act.eq_vec( + &[false, false, false, true, false, false, false, false, false, false, false, false, + false, false, false, false, false, true, false, false, false, false, false, false, + false, false, false, false, false, false, true, true, true])); + assert!(!act.none() && !act.all()); + } + + #[test] + fn test_equal_differing_sizes() { + let v0 = BitVec::from_elem(10, false); + let v1 = BitVec::from_elem(11, false); + assert_ne!(v0, v1); + } + + #[test] + fn test_equal_greatly_differing_sizes() { + let v0 = BitVec::from_elem(10, false); + let v1 = BitVec::from_elem(110, false); + assert_ne!(v0, v1); + } + + #[test] + fn test_equal_sneaky_small() { + let mut a = BitVec::from_elem(1, false); + a.set(0, true); + + let mut b = BitVec::from_elem(1, true); + b.set(0, true); + + assert_eq!(a, b); + } + + #[test] + fn test_equal_sneaky_big() { + let mut a = BitVec::from_elem(100, false); + for i in 0..100 { + a.set(i, true); + } + + let mut b = BitVec::from_elem(100, true); + for i in 0..100 { + b.set(i, true); + } + + assert_eq!(a, b); + } + + #[test] + fn test_from_bytes() { + let bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111]); + let str = concat!("10110110", "00000000", "11111111"); + assert_eq!(format!("{:?}", bit_vec), str); + } + + #[test] + fn test_to_bytes() { + let mut bv = BitVec::from_elem(3, true); + bv.set(1, false); + assert_eq!(bv.to_bytes(), [0b10100000]); + + let mut bv = BitVec::from_elem(9, false); + bv.set(2, true); + bv.set(8, true); + assert_eq!(bv.to_bytes(), [0b00100000, 0b10000000]); + } + + #[test] + fn test_from_bools() { + let bools = vec![true, false, true, true]; + let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); + assert_eq!(format!("{:?}", bit_vec), "1011"); + } + + #[test] + fn test_to_bools() { + let bools = vec![false, false, true, false, false, true, true, false]; + assert_eq!(BitVec::from_bytes(&[0b00100110]).iter().collect::<Vec<bool>>(), bools); + } + + #[test] + fn test_bit_vec_iterator() { + let bools = vec![true, false, true, true]; + let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); + + assert_eq!(bit_vec.iter().collect::<Vec<bool>>(), bools); + + let long: Vec<_> = (0..10000).map(|i| i % 2 == 0).collect(); + let bit_vec: BitVec = long.iter().map(|n| *n).collect(); + assert_eq!(bit_vec.iter().collect::<Vec<bool>>(), long) + } + + #[test] + fn test_small_difference() { + let mut b1 = BitVec::from_elem(3, false); + let mut b2 = BitVec::from_elem(3, false); + b1.set(0, true); + b1.set(1, true); + b2.set(1, true); + b2.set(2, true); + assert!(b1.difference(&b2)); + assert!(b1[0]); + assert!(!b1[1]); + assert!(!b1[2]); + } + + #[test] + fn test_big_difference() { + let mut b1 = BitVec::from_elem(100, false); + let mut b2 = BitVec::from_elem(100, false); + b1.set(0, true); + b1.set(40, true); + b2.set(40, true); + b2.set(80, true); + assert!(b1.difference(&b2)); + assert!(b1[0]); + assert!(!b1[40]); + assert!(!b1[80]); + } + + #[test] + fn test_small_xor() { + let mut a = BitVec::from_bytes(&[0b0011]); + let b = BitVec::from_bytes(&[0b0101]); + let c = BitVec::from_bytes(&[0b0110]); + assert!(a.xor(&b)); + assert_eq!(a,c); + } + + #[test] + fn test_small_xnor() { + let mut a = BitVec::from_bytes(&[0b0011]); + let b = BitVec::from_bytes(&[0b1111_0101]); + let c = BitVec::from_bytes(&[0b1001]); + assert!(a.xnor(&b)); + assert_eq!(a,c); + } + + #[test] + fn test_small_nand() { + let mut a = BitVec::from_bytes(&[0b1111_0011]); + let b = BitVec::from_bytes(&[0b1111_0101]); + let c = BitVec::from_bytes(&[0b1110]); + assert!(a.nand(&b)); + assert_eq!(a,c); + } + + #[test] + fn test_small_nor() { + let mut a = BitVec::from_bytes(&[0b0011]); + let b = BitVec::from_bytes(&[0b1111_0101]); + let c = BitVec::from_bytes(&[0b1000]); + assert!(a.nor(&b)); + assert_eq!(a,c); + } + + #[test] + fn test_big_xor() { + let mut a = BitVec::from_bytes(&[ // 88 bits + 0, 0, 0b00010100, 0, + 0, 0, 0, 0b00110100, + 0, 0, 0]); + let b = BitVec::from_bytes(&[ // 88 bits + 0, 0, 0b00010100, 0, + 0, 0, 0, 0, + 0, 0, 0b00110100]); + let c = BitVec::from_bytes(&[ // 88 bits + 0, 0, 0, 0, + 0, 0, 0, 0b00110100, + 0, 0, 0b00110100]); + assert!(a.xor(&b)); + assert_eq!(a,c); + } + + #[test] + fn test_big_xnor() { + let mut a = BitVec::from_bytes(&[ // 88 bits + 0, 0, 0b00010100, 0, + 0, 0, 0, 0b00110100, + 0, 0, 0]); + let b = BitVec::from_bytes(&[ // 88 bits + 0, 0, 0b00010100, 0, + 0, 0, 0, 0, + 0, 0, 0b00110100]); + let c = BitVec::from_bytes(&[ // 88 bits + !0, !0, !0, !0, + !0, !0, !0, !0b00110100, + !0, !0, !0b00110100]); + assert!(a.xnor(&b)); + assert_eq!(a,c); + } + + #[test] + fn test_small_clear() { + let mut b = BitVec::from_elem(14, true); + assert!(!b.none() && b.all()); + b.clear(); + assert!(b.none() && !b.all()); + } + + #[test] + fn test_big_clear() { + let mut b = BitVec::from_elem(140, true); + assert!(!b.none() && b.all()); + b.clear(); + assert!(b.none() && !b.all()); + } + + #[test] + fn test_bit_vec_lt() { + let mut a = BitVec::from_elem(5, false); + let mut b = BitVec::from_elem(5, false); + + assert!(!(a < b) && !(b < a)); + b.set(2, true); + assert!(a < b); + a.set(3, true); + assert!(a < b); + a.set(2, true); + assert!(!(a < b) && b < a); + b.set(0, true); + assert!(a < b); + } + + #[test] + fn test_ord() { + let mut a = BitVec::from_elem(5, false); + let mut b = BitVec::from_elem(5, false); + + assert!(a <= b && a >= b); + a.set(1, true); + assert!(a > b && a >= b); + assert!(b < a && b <= a); + b.set(1, true); + b.set(2, true); + assert!(b > a && b >= a); + assert!(a < b && a <= b); + } + + #[test] + fn test_small_bit_vec_tests() { + let v = BitVec::from_bytes(&[0]); + assert!(!v.all()); + assert!(!v.any()); + assert!(v.none()); + + let v = BitVec::from_bytes(&[0b00010100]); + assert!(!v.all()); + assert!(v.any()); + assert!(!v.none()); + + let v = BitVec::from_bytes(&[0xFF]); + assert!(v.all()); + assert!(v.any()); + assert!(!v.none()); + } + + #[test] + fn test_big_bit_vec_tests() { + let v = BitVec::from_bytes(&[ // 88 bits + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0]); + assert!(!v.all()); + assert!(!v.any()); + assert!(v.none()); + + let v = BitVec::from_bytes(&[ // 88 bits + 0, 0, 0b00010100, 0, + 0, 0, 0, 0b00110100, + 0, 0, 0]); + assert!(!v.all()); + assert!(v.any()); + assert!(!v.none()); + + let v = BitVec::from_bytes(&[ // 88 bits + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF]); + assert!(v.all()); + assert!(v.any()); + assert!(!v.none()); + } + + #[test] + fn test_bit_vec_push_pop() { + let mut s = BitVec::from_elem(5 * U32_BITS - 2, false); + assert_eq!(s.len(), 5 * U32_BITS - 2); + assert_eq!(s[5 * U32_BITS - 3], false); + s.push(true); + s.push(true); + assert_eq!(s[5 * U32_BITS - 2], true); + assert_eq!(s[5 * U32_BITS - 1], true); + // Here the internal vector will need to be extended + s.push(false); + assert_eq!(s[5 * U32_BITS], false); + s.push(false); + assert_eq!(s[5 * U32_BITS + 1], false); + assert_eq!(s.len(), 5 * U32_BITS + 2); + // Pop it all off + assert_eq!(s.pop(), Some(false)); + assert_eq!(s.pop(), Some(false)); + assert_eq!(s.pop(), Some(true)); + assert_eq!(s.pop(), Some(true)); + assert_eq!(s.len(), 5 * U32_BITS - 2); + } + + #[test] + fn test_bit_vec_truncate() { + let mut s = BitVec::from_elem(5 * U32_BITS, true); + + assert_eq!(s, BitVec::from_elem(5 * U32_BITS, true)); + assert_eq!(s.len(), 5 * U32_BITS); + s.truncate(4 * U32_BITS); + assert_eq!(s, BitVec::from_elem(4 * U32_BITS, true)); + assert_eq!(s.len(), 4 * U32_BITS); + // Truncating to a size > s.len() should be a noop + s.truncate(5 * U32_BITS); + assert_eq!(s, BitVec::from_elem(4 * U32_BITS, true)); + assert_eq!(s.len(), 4 * U32_BITS); + s.truncate(3 * U32_BITS - 10); + assert_eq!(s, BitVec::from_elem(3 * U32_BITS - 10, true)); + assert_eq!(s.len(), 3 * U32_BITS - 10); + s.truncate(0); + assert_eq!(s, BitVec::from_elem(0, true)); + assert_eq!(s.len(), 0); + } + + #[test] + fn test_bit_vec_reserve() { + let mut s = BitVec::from_elem(5 * U32_BITS, true); + // Check capacity + assert!(s.capacity() >= 5 * U32_BITS); + s.reserve(2 * U32_BITS); + assert!(s.capacity() >= 7 * U32_BITS); + s.reserve(7 * U32_BITS); + assert!(s.capacity() >= 12 * U32_BITS); + s.reserve_exact(7 * U32_BITS); + assert!(s.capacity() >= 12 * U32_BITS); + s.reserve(7 * U32_BITS + 1); + assert!(s.capacity() >= 12 * U32_BITS + 1); + // Check that length hasn't changed + assert_eq!(s.len(), 5 * U32_BITS); + s.push(true); + s.push(false); + s.push(true); + assert_eq!(s[5 * U32_BITS - 1], true); + assert_eq!(s[5 * U32_BITS - 0], true); + assert_eq!(s[5 * U32_BITS + 1], false); + assert_eq!(s[5 * U32_BITS + 2], true); + } + + #[test] + fn test_bit_vec_grow() { + let mut bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010]); + bit_vec.grow(32, true); + assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010, + 0xFF, 0xFF, 0xFF, 0xFF])); + bit_vec.grow(64, false); + assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010, + 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0])); + bit_vec.grow(16, true); + assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b10101010, + 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF])); + } + + #[test] + fn test_bit_vec_extend() { + let mut bit_vec = BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111]); + let ext = BitVec::from_bytes(&[0b01001001, 0b10010010, 0b10111101]); + bit_vec.extend(ext.iter()); + assert_eq!(bit_vec, BitVec::from_bytes(&[0b10110110, 0b00000000, 0b11111111, + 0b01001001, 0b10010010, 0b10111101])); + } + + #[test] + fn test_bit_vec_append() { + // Append to BitVec that holds a multiple of U32_BITS bits + let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011]); + let mut b = BitVec::new(); + b.push(false); + b.push(true); + b.push(true); + + a.append(&mut b); + + assert_eq!(a.len(), 35); + assert_eq!(b.len(), 0); + assert!(b.capacity() >= 3); + + assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, + false, false, false, true, false, false, true, false, + true, false, false, true, false, false, true, false, + false, false, true, true, false, false, true, true, + false, true, true])); + + // Append to arbitrary BitVec + let mut a = BitVec::new(); + a.push(true); + a.push(false); + + let mut b = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]); + + a.append(&mut b); + + assert_eq!(a.len(), 42); + assert_eq!(b.len(), 0); + assert!(b.capacity() >= 40); + + assert!(a.eq_vec(&[true, false, true, false, true, false, false, false, + false, false, false, false, false, true, false, false, + true, false, true, false, false, true, false, false, + true, false, false, false, true, true, false, false, + true, true, true, false, false, true, false, true, + false, true])); + + // Append to empty BitVec + let mut a = BitVec::new(); + let mut b = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]); + + a.append(&mut b); + + assert_eq!(a.len(), 40); + assert_eq!(b.len(), 0); + assert!(b.capacity() >= 40); + + assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, + false, false, false, true, false, false, true, false, + true, false, false, true, false, false, true, false, + false, false, true, true, false, false, true, true, + true, false, false, true, false, true, false, true])); + + // Append empty BitVec + let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b10010101]); + let mut b = BitVec::new(); + + a.append(&mut b); + + assert_eq!(a.len(), 40); + assert_eq!(b.len(), 0); + + assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, + false, false, false, true, false, false, true, false, + true, false, false, true, false, false, true, false, + false, false, true, true, false, false, true, true, + true, false, false, true, false, true, false, true])); + } + + #[test] + fn test_bit_vec_split_off() { + // Split at 0 + let mut a = BitVec::new(); + a.push(true); + a.push(false); + a.push(false); + a.push(true); + + let b = a.split_off(0); + + assert_eq!(a.len(), 0); + assert_eq!(b.len(), 4); + + assert!(b.eq_vec(&[true, false, false, true])); + + // Split at last bit + a.truncate(0); + a.push(true); + a.push(false); + a.push(false); + a.push(true); + + let b = a.split_off(4); + + assert_eq!(a.len(), 4); + assert_eq!(b.len(), 0); + + assert!(a.eq_vec(&[true, false, false, true])); + + // Split at block boundary + let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b11110011]); + + let b = a.split_off(32); + + assert_eq!(a.len(), 32); + assert_eq!(b.len(), 8); + + assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, + false, false, false, true, false, false, true, false, + true, false, false, true, false, false, true, false, + false, false, true, true, false, false, true, true])); + assert!(b.eq_vec(&[true, true, true, true, false, false, true, true])); + + // Don't split at block boundary + let mut a = BitVec::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, + 0b01101011, 0b10101101]); + + let b = a.split_off(13); + + assert_eq!(a.len(), 13); + assert_eq!(b.len(), 35); + + assert!(a.eq_vec(&[true, false, true, false, false, false, false, false, + false, false, false, true, false])); + assert!(b.eq_vec(&[false, true, false, true, false, false, true, false, + false, true, false, false, false, true, true, false, + false, true, true, false, true, true, false, true, + false, true, true, true, false, true, false, true, + true, false, true])); + } + + #[test] + fn test_into_iter() { + let bools = vec![true, false, true, true]; + let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); + let mut iter = bit_vec.into_iter(); + assert_eq!(Some(true), iter.next()); + assert_eq!(Some(false), iter.next()); + assert_eq!(Some(true), iter.next()); + assert_eq!(Some(true), iter.next()); + assert_eq!(None, iter.next()); + assert_eq!(None, iter.next()); + + let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); + let mut iter = bit_vec.into_iter(); + assert_eq!(Some(true), iter.next_back()); + assert_eq!(Some(true), iter.next_back()); + assert_eq!(Some(false), iter.next_back()); + assert_eq!(Some(true), iter.next_back()); + assert_eq!(None, iter.next_back()); + assert_eq!(None, iter.next_back()); + + let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); + let mut iter = bit_vec.into_iter(); + assert_eq!(Some(true), iter.next_back()); + assert_eq!(Some(true), iter.next()); + assert_eq!(Some(false), iter.next()); + assert_eq!(Some(true), iter.next_back()); + assert_eq!(None, iter.next()); + assert_eq!(None, iter.next_back()); + } + + #[test] + fn iter() { + let b = BitVec::with_capacity(10); + let _a: Iter = b.iter(); + } + + #[cfg(feature="serde")] + #[test] + fn test_serialization() { + let bit_vec: BitVec = BitVec::new(); + let serialized = serde_json::to_string(&bit_vec).unwrap(); + let unserialized: BitVec = serde_json::from_str(&serialized).unwrap(); + assert_eq!(bit_vec, unserialized); + + let bools = vec![true, false, true, true]; + let bit_vec: BitVec = bools.iter().map(|n| *n).collect(); + let serialized = serde_json::to_string(&bit_vec).unwrap(); + let unserialized = serde_json::from_str(&serialized).unwrap(); + assert_eq!(bit_vec, unserialized); + } + + #[test] + fn test_bit_vec_unaligned_small_append() { + let mut a = BitVec::from_elem(8, false); + a.set(7, true); + + let mut b = BitVec::from_elem(16, false); + b.set(14, true); + + let mut c = BitVec::from_elem(8, false); + c.set(6, true); + c.set(7, true); + + a.append(&mut b); + a.append(&mut c); + + assert_eq!(&[01, 00, 02, 03][..], &*a.to_bytes()); + } + + #[test] + fn test_bit_vec_unaligned_large_append() { + let mut a = BitVec::from_elem(48, false); + a.set(47, true); + + let mut b = BitVec::from_elem(48, false); + b.set(46, true); + + let mut c = BitVec::from_elem(48, false); + c.set(46, true); + c.set(47, true); + + a.append(&mut b); + a.append(&mut c); + + assert_eq!(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x01, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x03][..], &*a.to_bytes()); + } + + #[test] + fn test_bit_vec_append_aligned_to_unaligned() { + let mut a = BitVec::from_elem(2, true); + let mut b = BitVec::from_elem(32, false); + let mut c = BitVec::from_elem(8, true); + a.append(&mut b); + a.append(&mut c); + assert_eq!(&[0xc0, 0x00, 0x00, 0x00, 0x3f, 0xc0][..], &*a.to_bytes()); + } +} |