summaryrefslogtreecommitdiffstats
path: root/vendor/chalk-ir-0.87.0/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/chalk-ir-0.87.0/src/lib.rs')
-rw-r--r--vendor/chalk-ir-0.87.0/src/lib.rs3055
1 files changed, 3055 insertions, 0 deletions
diff --git a/vendor/chalk-ir-0.87.0/src/lib.rs b/vendor/chalk-ir-0.87.0/src/lib.rs
new file mode 100644
index 000000000..5cf44b0c3
--- /dev/null
+++ b/vendor/chalk-ir-0.87.0/src/lib.rs
@@ -0,0 +1,3055 @@
+//! Defines the IR for types and logical predicates.
+
+#![deny(rust_2018_idioms)]
+#![warn(missing_docs)]
+
+// Allows macros to refer to this crate as `::chalk_ir`
+extern crate self as chalk_ir;
+
+use crate::cast::{Cast, CastTo, Caster};
+use crate::fold::shift::Shift;
+use crate::fold::{FallibleTypeFolder, Subst, TypeFoldable, TypeFolder, TypeSuperFoldable};
+use crate::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor, VisitExt};
+use chalk_derive::{
+ FallibleTypeFolder, HasInterner, TypeFoldable, TypeSuperVisitable, TypeVisitable, Zip,
+};
+use std::marker::PhantomData;
+use std::ops::ControlFlow;
+
+pub use crate::debug::SeparatorTraitRef;
+#[macro_use(bitflags)]
+extern crate bitflags;
+/// Uninhabited (empty) type, used in combination with `PhantomData`.
+#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub enum Void {}
+
+/// Many of our internal operations (e.g., unification) are an attempt
+/// to perform some operation which may not complete.
+pub type Fallible<T> = Result<T, NoSolution>;
+
+/// A combination of `Fallible` and `Floundered`.
+pub enum FallibleOrFloundered<T> {
+ /// Success
+ Ok(T),
+ /// No solution. See `chalk_ir::NoSolution`.
+ NoSolution,
+ /// Floundered. See `chalk_ir::Floundered`.
+ Floundered,
+}
+
+/// Indicates that the attempted operation has "no solution" -- i.e.,
+/// cannot be performed.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct NoSolution;
+
+/// Indicates that the complete set of program clauses for this goal
+/// cannot be enumerated.
+pub struct Floundered;
+
+macro_rules! impl_debugs {
+ ($($id:ident), *) => {
+ $(
+ impl<I: Interner> std::fmt::Debug for $id<I> {
+ fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
+ write!(fmt, "{}({:?})", stringify!($id), self.0)
+ }
+ }
+ )*
+ };
+}
+
+#[macro_use]
+pub mod zip;
+
+#[macro_use]
+pub mod fold;
+
+#[macro_use]
+pub mod visit;
+
+pub mod cast;
+
+pub mod interner;
+use interner::{HasInterner, Interner};
+
+pub mod could_match;
+pub mod debug;
+
+/// Variance
+#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
+pub enum Variance {
+ /// a <: b
+ Covariant,
+ /// a == b
+ Invariant,
+ /// b <: a
+ Contravariant,
+}
+
+impl Variance {
+ /// `a.xform(b)` combines the variance of a context with the
+ /// variance of a type with the following meaning. If we are in a
+ /// context with variance `a`, and we encounter a type argument in
+ /// a position with variance `b`, then `a.xform(b)` is the new
+ /// variance with which the argument appears.
+ ///
+ /// Example 1:
+ ///
+ /// ```ignore
+ /// *mut Vec<i32>
+ /// ```
+ ///
+ /// Here, the "ambient" variance starts as covariant. `*mut T` is
+ /// invariant with respect to `T`, so the variance in which the
+ /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
+ /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
+ /// respect to its type argument `T`, and hence the variance of
+ /// the `i32` here is `Invariant.xform(Covariant)`, which results
+ /// (again) in `Invariant`.
+ ///
+ /// Example 2:
+ ///
+ /// ```ignore
+ /// fn(*const Vec<i32>, *mut Vec<i32)
+ /// ```
+ ///
+ /// The ambient variance is covariant. A `fn` type is
+ /// contravariant with respect to its parameters, so the variance
+ /// within which both pointer types appear is
+ /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
+ /// T` is covariant with respect to `T`, so the variance within
+ /// which the first `Vec<i32>` appears is
+ /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
+ /// is true for its `i32` argument. In the `*mut T` case, the
+ /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
+ /// and hence the outermost type is `Invariant` with respect to
+ /// `Vec<i32>` (and its `i32` argument).
+ ///
+ /// Source: Figure 1 of "Taming the Wildcards:
+ /// Combining Definition- and Use-Site Variance" published in PLDI'11.
+ /// (Doc from rustc)
+ pub fn xform(self, other: Variance) -> Variance {
+ match (self, other) {
+ (Variance::Invariant, _) => Variance::Invariant,
+ (_, Variance::Invariant) => Variance::Invariant,
+ (_, Variance::Covariant) => self,
+ (Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
+ (Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
+ }
+ }
+
+ /// Converts `Covariant` into `Contravariant` and vice-versa. `Invariant`
+ /// stays the same.
+ pub fn invert(self) -> Variance {
+ match self {
+ Variance::Invariant => Variance::Invariant,
+ Variance::Covariant => Variance::Contravariant,
+ Variance::Contravariant => Variance::Covariant,
+ }
+ }
+}
+
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
+/// The set of assumptions we've made so far, and the current number of
+/// universal (forall) quantifiers we're within.
+pub struct Environment<I: Interner> {
+ /// The clauses in the environment.
+ pub clauses: ProgramClauses<I>,
+}
+
+impl<I: Interner> Copy for Environment<I> where I::InternedProgramClauses: Copy {}
+
+impl<I: Interner> Environment<I> {
+ /// Creates a new environment.
+ pub fn new(interner: I) -> Self {
+ Environment {
+ clauses: ProgramClauses::empty(interner),
+ }
+ }
+
+ /// Adds (an iterator of) clauses to the environment.
+ pub fn add_clauses<II>(&self, interner: I, clauses: II) -> Self
+ where
+ II: IntoIterator<Item = ProgramClause<I>>,
+ {
+ let mut env = self.clone();
+ env.clauses =
+ ProgramClauses::from_iter(interner, env.clauses.iter(interner).cloned().chain(clauses));
+ env
+ }
+
+ /// True if any of the clauses in the environment have a consequence of `Compatible`.
+ /// Panics if the conditions or constraints of that clause are not empty.
+ pub fn has_compatible_clause(&self, interner: I) -> bool {
+ self.clauses.as_slice(interner).iter().any(|c| {
+ let ProgramClauseData(implication) = c.data(interner);
+ match implication.skip_binders().consequence {
+ DomainGoal::Compatible => {
+ // We currently don't generate `Compatible` with any conditions or constraints
+ // If this was needed, for whatever reason, then a third "yes, but must evaluate"
+ // return value would have to be added.
+ assert!(implication.skip_binders().conditions.is_empty(interner));
+ assert!(implication.skip_binders().constraints.is_empty(interner));
+ true
+ }
+ _ => false,
+ }
+ })
+ }
+}
+
+/// A goal with an environment to solve it in.
+#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
+#[allow(missing_docs)]
+pub struct InEnvironment<G: HasInterner> {
+ pub environment: Environment<G::Interner>,
+ pub goal: G,
+}
+
+impl<G: HasInterner<Interner = I> + Copy, I: Interner> Copy for InEnvironment<G> where
+ I::InternedProgramClauses: Copy
+{
+}
+
+impl<G: HasInterner> InEnvironment<G> {
+ /// Creates a new environment/goal pair.
+ pub fn new(environment: &Environment<G::Interner>, goal: G) -> Self {
+ InEnvironment {
+ environment: environment.clone(),
+ goal,
+ }
+ }
+
+ /// Maps the goal without touching the environment.
+ pub fn map<OP, H>(self, op: OP) -> InEnvironment<H>
+ where
+ OP: FnOnce(G) -> H,
+ H: HasInterner<Interner = G::Interner>,
+ {
+ InEnvironment {
+ environment: self.environment,
+ goal: op(self.goal),
+ }
+ }
+}
+
+impl<G: HasInterner> HasInterner for InEnvironment<G> {
+ type Interner = G::Interner;
+}
+
+/// Different signed int types.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+#[allow(missing_docs)]
+pub enum IntTy {
+ Isize,
+ I8,
+ I16,
+ I32,
+ I64,
+ I128,
+}
+
+/// Different unsigned int types.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+#[allow(missing_docs)]
+pub enum UintTy {
+ Usize,
+ U8,
+ U16,
+ U32,
+ U64,
+ U128,
+}
+
+/// Different kinds of float types.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+#[allow(missing_docs)]
+pub enum FloatTy {
+ F32,
+ F64,
+}
+
+/// Types of scalar values.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+#[allow(missing_docs)]
+pub enum Scalar {
+ Bool,
+ Char,
+ Int(IntTy),
+ Uint(UintTy),
+ Float(FloatTy),
+}
+
+/// Whether a function is safe or not.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub enum Safety {
+ /// Safe
+ Safe,
+ /// Unsafe
+ Unsafe,
+}
+
+/// Whether a type is mutable or not.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub enum Mutability {
+ /// Mutable
+ Mut,
+ /// Immutable
+ Not,
+}
+
+/// An universe index is how a universally quantified parameter is
+/// represented when it's binder is moved into the environment.
+/// An example chain of transformations would be:
+/// `forall<T> { Goal(T) }` (syntactical representation)
+/// `forall { Goal(?0) }` (used a DeBruijn index)
+/// `Goal(!U1)` (the quantifier was moved to the environment and replaced with a universe index)
+/// See <https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#placeholders-and-universes> for more.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct UniverseIndex {
+ /// The counter for the universe index, starts with 0.
+ pub counter: usize,
+}
+
+impl UniverseIndex {
+ /// Root universe index (0).
+ pub const ROOT: UniverseIndex = UniverseIndex { counter: 0 };
+
+ /// Root universe index (0).
+ pub fn root() -> UniverseIndex {
+ Self::ROOT
+ }
+
+ /// Whether one universe can "see" another.
+ pub fn can_see(self, ui: UniverseIndex) -> bool {
+ self.counter >= ui.counter
+ }
+
+ /// Increases the index counter.
+ pub fn next(self) -> UniverseIndex {
+ UniverseIndex {
+ counter: self.counter + 1,
+ }
+ }
+}
+
+/// Maps the universes found in the `u_canonicalize` result (the
+/// "canonical" universes) to the universes found in the original
+/// value (and vice versa). When used as a folder -- i.e., from
+/// outside this module -- converts from "canonical" universes to the
+/// original (but see the `UMapToCanonical` folder).
+#[derive(Clone, Debug)]
+pub struct UniverseMap {
+ /// A reverse map -- for each universe Ux that appears in
+ /// `quantified`, the corresponding universe in the original was
+ /// `universes[x]`.
+ pub universes: Vec<UniverseIndex>,
+}
+
+impl UniverseMap {
+ /// Creates a new universe map.
+ pub fn new() -> Self {
+ UniverseMap {
+ universes: vec![UniverseIndex::root()],
+ }
+ }
+
+ /// Number of canonical universes.
+ pub fn num_canonical_universes(&self) -> usize {
+ self.universes.len()
+ }
+}
+
+/// The id for an Abstract Data Type (i.e. structs, unions and enums).
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct AdtId<I: Interner>(pub I::InternedAdtId);
+
+/// The id of a trait definition; could be used to load the trait datum by
+/// invoking the [`trait_datum`] method.
+///
+/// [`trait_datum`]: ../chalk_solve/trait.RustIrDatabase.html#tymethod.trait_datum
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct TraitId<I: Interner>(pub I::DefId);
+
+/// The id for an impl.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct ImplId<I: Interner>(pub I::DefId);
+
+/// Id for a specific clause.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct ClauseId<I: Interner>(pub I::DefId);
+
+/// The id for the associated type member of a trait. The details of the type
+/// can be found by invoking the [`associated_ty_data`] method.
+///
+/// [`associated_ty_data`]: ../chalk_solve/trait.RustIrDatabase.html#tymethod.associated_ty_data
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct AssocTypeId<I: Interner>(pub I::DefId);
+
+/// Id for an opaque type.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct OpaqueTyId<I: Interner>(pub I::DefId);
+
+/// Function definition id.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct FnDefId<I: Interner>(pub I::DefId);
+
+/// Id for Rust closures.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct ClosureId<I: Interner>(pub I::DefId);
+
+/// Id for Rust generators.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct GeneratorId<I: Interner>(pub I::DefId);
+
+/// Id for foreign types.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct ForeignDefId<I: Interner>(pub I::DefId);
+
+impl_debugs!(ImplId, ClauseId);
+
+/// A Rust type. The actual type data is stored in `TyKind`.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+pub struct Ty<I: Interner> {
+ interned: I::InternedType,
+}
+
+impl<I: Interner> Ty<I> {
+ /// Creates a type from `TyKind`.
+ pub fn new(interner: I, data: impl CastTo<TyKind<I>>) -> Self {
+ let ty_kind = data.cast(interner);
+ Ty {
+ interned: I::intern_ty(interner, ty_kind),
+ }
+ }
+
+ /// Gets the interned type.
+ pub fn interned(&self) -> &I::InternedType {
+ &self.interned
+ }
+
+ /// Gets the underlying type data.
+ pub fn data(&self, interner: I) -> &TyData<I> {
+ I::ty_data(interner, &self.interned)
+ }
+
+ /// Gets the underlying type kind.
+ pub fn kind(&self, interner: I) -> &TyKind<I> {
+ &I::ty_data(interner, &self.interned).kind
+ }
+
+ /// Creates a `FromEnv` constraint using this type.
+ pub fn from_env(&self) -> FromEnv<I> {
+ FromEnv::Ty(self.clone())
+ }
+
+ /// Creates a WF-constraint for this type.
+ pub fn well_formed(&self) -> WellFormed<I> {
+ WellFormed::Ty(self.clone())
+ }
+
+ /// Creates a domain goal `FromEnv(T)` where `T` is this type.
+ pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
+ self.from_env().cast(interner)
+ }
+
+ /// If this is a `TyKind::BoundVar(d)`, returns `Some(d)` else `None`.
+ pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
+ if let TyKind::BoundVar(bv) = self.kind(interner) {
+ Some(*bv)
+ } else {
+ None
+ }
+ }
+
+ /// If this is a `TyKind::InferenceVar(d)`, returns `Some(d)` else `None`.
+ pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
+ if let TyKind::InferenceVar(depth, _) = self.kind(interner) {
+ Some(*depth)
+ } else {
+ None
+ }
+ }
+
+ /// Returns true if this is a `BoundVar` or an `InferenceVar` of `TyVariableKind::General`.
+ pub fn is_general_var(&self, interner: I, binders: &CanonicalVarKinds<I>) -> bool {
+ match self.kind(interner) {
+ TyKind::BoundVar(bv)
+ if bv.debruijn == DebruijnIndex::INNERMOST
+ && binders.at(interner, bv.index).kind
+ == VariableKind::Ty(TyVariableKind::General) =>
+ {
+ true
+ }
+ TyKind::InferenceVar(_, TyVariableKind::General) => true,
+ _ => false,
+ }
+ }
+
+ /// Returns true if this is an `Alias`.
+ pub fn is_alias(&self, interner: I) -> bool {
+ matches!(self.kind(interner), TyKind::Alias(..))
+ }
+
+ /// Returns true if this is an `IntTy` or `UintTy`.
+ pub fn is_integer(&self, interner: I) -> bool {
+ matches!(
+ self.kind(interner),
+ TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
+ )
+ }
+
+ /// Returns true if this is a `FloatTy`.
+ pub fn is_float(&self, interner: I) -> bool {
+ matches!(self.kind(interner), TyKind::Scalar(Scalar::Float(_)))
+ }
+
+ /// Returns `Some(adt_id)` if this is an ADT, `None` otherwise
+ pub fn adt_id(&self, interner: I) -> Option<AdtId<I>> {
+ match self.kind(interner) {
+ TyKind::Adt(adt_id, _) => Some(*adt_id),
+ _ => None,
+ }
+ }
+
+ /// True if this type contains "bound" types/lifetimes, and hence
+ /// needs to be shifted across binders. This is a very inefficient
+ /// check, intended only for debug assertions, because I am lazy.
+ pub fn needs_shift(&self, interner: I) -> bool {
+ self.has_free_vars(interner)
+ }
+}
+
+/// Contains the data for a Ty
+#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
+pub struct TyData<I: Interner> {
+ /// The kind
+ pub kind: TyKind<I>,
+ /// Type flags
+ pub flags: TypeFlags,
+}
+
+bitflags! {
+ /// Contains flags indicating various properties of a Ty
+ pub struct TypeFlags : u16 {
+ /// Does the type contain an InferenceVar
+ const HAS_TY_INFER = 1;
+ /// Does the type contain a lifetime with an InferenceVar
+ const HAS_RE_INFER = 1 << 1;
+ /// Does the type contain a ConstValue with an InferenceVar
+ const HAS_CT_INFER = 1 << 2;
+ /// Does the type contain a Placeholder TyKind
+ const HAS_TY_PLACEHOLDER = 1 << 3;
+ /// Does the type contain a lifetime with a Placeholder
+ const HAS_RE_PLACEHOLDER = 1 << 4;
+ /// Does the type contain a ConstValue Placeholder
+ const HAS_CT_PLACEHOLDER = 1 << 5;
+ /// True when the type has free lifetimes related to a local context
+ const HAS_FREE_LOCAL_REGIONS = 1 << 6;
+ /// Does the type contain a projection of an associated type
+ const HAS_TY_PROJECTION = 1 << 7;
+ /// Does the type contain an opaque type
+ const HAS_TY_OPAQUE = 1 << 8;
+ /// Does the type contain an unevaluated const projection
+ const HAS_CT_PROJECTION = 1 << 9;
+ /// Does the type contain an error
+ const HAS_ERROR = 1 << 10;
+ /// Does the type contain any free lifetimes
+ const HAS_FREE_REGIONS = 1 << 11;
+ /// True when the type contains lifetimes that will be substituted when function is called
+ const HAS_RE_LATE_BOUND = 1 << 12;
+ /// True when the type contains an erased lifetime
+ const HAS_RE_ERASED = 1 << 13;
+ /// Does the type contain placeholders or inference variables that could be replaced later
+ const STILL_FURTHER_SPECIALIZABLE = 1 << 14;
+
+ /// True when the type contains free names local to a particular context
+ const HAS_FREE_LOCAL_NAMES = TypeFlags::HAS_TY_INFER.bits
+ | TypeFlags::HAS_CT_INFER.bits
+ | TypeFlags::HAS_TY_PLACEHOLDER.bits
+ | TypeFlags::HAS_CT_PLACEHOLDER.bits
+ | TypeFlags::HAS_FREE_LOCAL_REGIONS.bits;
+
+ /// Does the type contain any form of projection
+ const HAS_PROJECTION = TypeFlags::HAS_TY_PROJECTION.bits
+ | TypeFlags::HAS_TY_OPAQUE.bits
+ | TypeFlags::HAS_CT_PROJECTION.bits;
+ }
+}
+/// Type data, which holds the actual type information.
+#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
+pub enum TyKind<I: Interner> {
+ /// Abstract data types, i.e., structs, unions, or enumerations.
+ /// For example, a type like `Vec<T>`.
+ Adt(AdtId<I>, Substitution<I>),
+
+ /// an associated type like `Iterator::Item`; see `AssociatedType` for details
+ AssociatedType(AssocTypeId<I>, Substitution<I>),
+
+ /// a scalar type like `bool` or `u32`
+ Scalar(Scalar),
+
+ /// a tuple of the given arity
+ Tuple(usize, Substitution<I>),
+
+ /// an array type like `[T; N]`
+ Array(Ty<I>, Const<I>),
+
+ /// a slice type like `[T]`
+ Slice(Ty<I>),
+
+ /// a raw pointer type like `*const T` or `*mut T`
+ Raw(Mutability, Ty<I>),
+
+ /// a reference type like `&T` or `&mut T`
+ Ref(Mutability, Lifetime<I>, Ty<I>),
+
+ /// a placeholder for opaque types like `impl Trait`
+ OpaqueType(OpaqueTyId<I>, Substitution<I>),
+
+ /// a function definition
+ FnDef(FnDefId<I>, Substitution<I>),
+
+ /// the string primitive type
+ Str,
+
+ /// the never type `!`
+ Never,
+
+ /// A closure.
+ Closure(ClosureId<I>, Substitution<I>),
+
+ /// A generator.
+ Generator(GeneratorId<I>, Substitution<I>),
+
+ /// A generator witness.
+ GeneratorWitness(GeneratorId<I>, Substitution<I>),
+
+ /// foreign types
+ Foreign(ForeignDefId<I>),
+
+ /// This can be used to represent an error, e.g. during name resolution of a type.
+ /// Chalk itself will not produce this, just pass it through when given.
+ Error,
+
+ /// instantiated from a universally quantified type, e.g., from
+ /// `forall<T> { .. }`. Stands in as a representative of "some
+ /// unknown type".
+ Placeholder(PlaceholderIndex),
+
+ /// A "dyn" type is a trait object type created via the "dyn Trait" syntax.
+ /// In the chalk parser, the traits that the object represents is parsed as
+ /// a QuantifiedInlineBound, and is then changed to a list of where clauses
+ /// during lowering.
+ ///
+ /// See the `Opaque` variant for a discussion about the use of
+ /// binders here.
+ Dyn(DynTy<I>),
+
+ /// An "alias" type represents some form of type alias, such as:
+ /// - An associated type projection like `<T as Iterator>::Item`
+ /// - `impl Trait` types
+ /// - Named type aliases like `type Foo<X> = Vec<X>`
+ Alias(AliasTy<I>),
+
+ /// A function type such as `for<'a> fn(&'a u32)`.
+ /// Note that "higher-ranked" types (starting with `for<>`) are either
+ /// function types or dyn types, and do not appear otherwise in Rust
+ /// surface syntax.
+ Function(FnPointer<I>),
+
+ /// References the binding at the given depth. The index is a [de
+ /// Bruijn index], so it counts back through the in-scope binders.
+ BoundVar(BoundVar),
+
+ /// Inference variable defined in the current inference context.
+ InferenceVar(InferenceVar, TyVariableKind),
+}
+
+impl<I: Interner> Copy for TyKind<I>
+where
+ I::InternedLifetime: Copy,
+ I::InternedSubstitution: Copy,
+ I::InternedVariableKinds: Copy,
+ I::InternedQuantifiedWhereClauses: Copy,
+ I::InternedType: Copy,
+ I::InternedConst: Copy,
+{
+}
+
+impl<I: Interner> TyKind<I> {
+ /// Casts the type data to a type.
+ pub fn intern(self, interner: I) -> Ty<I> {
+ Ty::new(interner, self)
+ }
+
+ /// Compute type flags for a TyKind
+ pub fn compute_flags(&self, interner: I) -> TypeFlags {
+ match self {
+ TyKind::Adt(_, substitution)
+ | TyKind::AssociatedType(_, substitution)
+ | TyKind::Tuple(_, substitution)
+ | TyKind::Closure(_, substitution)
+ | TyKind::Generator(_, substitution)
+ | TyKind::GeneratorWitness(_, substitution)
+ | TyKind::FnDef(_, substitution)
+ | TyKind::OpaqueType(_, substitution) => substitution.compute_flags(interner),
+ TyKind::Scalar(_) | TyKind::Str | TyKind::Never | TyKind::Foreign(_) => {
+ TypeFlags::empty()
+ }
+ TyKind::Error => TypeFlags::HAS_ERROR,
+ TyKind::Slice(ty) | TyKind::Raw(_, ty) => ty.data(interner).flags,
+ TyKind::Ref(_, lifetime, ty) => {
+ lifetime.compute_flags(interner) | ty.data(interner).flags
+ }
+ TyKind::Array(ty, const_ty) => {
+ let flags = ty.data(interner).flags;
+ let const_data = const_ty.data(interner);
+ flags
+ | const_data.ty.data(interner).flags
+ | match const_data.value {
+ ConstValue::BoundVar(_) | ConstValue::Concrete(_) => TypeFlags::empty(),
+ ConstValue::InferenceVar(_) => {
+ TypeFlags::HAS_CT_INFER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
+ }
+ ConstValue::Placeholder(_) => {
+ TypeFlags::HAS_CT_PLACEHOLDER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
+ }
+ }
+ }
+ TyKind::Placeholder(_) => TypeFlags::HAS_TY_PLACEHOLDER,
+ TyKind::Dyn(dyn_ty) => {
+ let lifetime_flags = dyn_ty.lifetime.compute_flags(interner);
+ let mut dyn_flags = TypeFlags::empty();
+ for var_kind in dyn_ty.bounds.skip_binders().iter(interner) {
+ match &(var_kind.skip_binders()) {
+ WhereClause::Implemented(trait_ref) => {
+ dyn_flags |= trait_ref.substitution.compute_flags(interner)
+ }
+ WhereClause::AliasEq(alias_eq) => {
+ dyn_flags |= alias_eq.alias.compute_flags(interner);
+ dyn_flags |= alias_eq.ty.data(interner).flags;
+ }
+ WhereClause::LifetimeOutlives(lifetime_outlives) => {
+ dyn_flags |= lifetime_outlives.a.compute_flags(interner)
+ | lifetime_outlives.b.compute_flags(interner);
+ }
+ WhereClause::TypeOutlives(type_outlives) => {
+ dyn_flags |= type_outlives.ty.data(interner).flags;
+ dyn_flags |= type_outlives.lifetime.compute_flags(interner);
+ }
+ }
+ }
+ lifetime_flags | dyn_flags
+ }
+ TyKind::Alias(alias_ty) => alias_ty.compute_flags(interner),
+ TyKind::BoundVar(_) => TypeFlags::empty(),
+ TyKind::InferenceVar(_, _) => TypeFlags::HAS_TY_INFER,
+ TyKind::Function(fn_pointer) => fn_pointer.substitution.0.compute_flags(interner),
+ }
+ }
+}
+
+/// Identifies a particular bound variable within a binder.
+/// Variables are identified by the combination of a [`DebruijnIndex`],
+/// which identifies the *binder*, and an index within that binder.
+///
+/// Consider this case:
+///
+/// ```ignore
+/// forall<'a, 'b> { forall<'c, 'd> { ... } }
+/// ```
+///
+/// Within the `...` term:
+///
+/// * the variable `'a` have a debruijn index of 1 and index 0
+/// * the variable `'b` have a debruijn index of 1 and index 1
+/// * the variable `'c` have a debruijn index of 0 and index 0
+/// * the variable `'d` have a debruijn index of 0 and index 1
+///
+/// The variables `'a` and `'b` both have debruijn index of 1 because,
+/// counting out, they are the 2nd binder enclosing `...`. The indices
+/// identify the location *within* that binder.
+///
+/// The variables `'c` and `'d` both have debruijn index of 0 because
+/// they appear in the *innermost* binder enclosing the `...`. The
+/// indices identify the location *within* that binder.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
+pub struct BoundVar {
+ /// Debruijn index, which identifies the binder.
+ pub debruijn: DebruijnIndex,
+ /// Index within the binder.
+ pub index: usize,
+}
+
+impl BoundVar {
+ /// Creates a new bound variable.
+ pub fn new(debruijn: DebruijnIndex, index: usize) -> Self {
+ Self { debruijn, index }
+ }
+
+ /// Casts the bound variable to a type.
+ pub fn to_ty<I: Interner>(self, interner: I) -> Ty<I> {
+ TyKind::<I>::BoundVar(self).intern(interner)
+ }
+
+ /// Wrap the bound variable in a lifetime.
+ pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
+ LifetimeData::<I>::BoundVar(self).intern(interner)
+ }
+
+ /// Wraps the bound variable in a constant.
+ pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
+ ConstData {
+ ty,
+ value: ConstValue::<I>::BoundVar(self),
+ }
+ .intern(interner)
+ }
+
+ /// True if this variable is bound within the `amount` innermost binders.
+ pub fn bound_within(self, outer_binder: DebruijnIndex) -> bool {
+ self.debruijn.within(outer_binder)
+ }
+
+ /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
+ #[must_use]
+ pub fn shifted_in(self) -> Self {
+ BoundVar::new(self.debruijn.shifted_in(), self.index)
+ }
+
+ /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
+ #[must_use]
+ pub fn shifted_in_from(self, outer_binder: DebruijnIndex) -> Self {
+ BoundVar::new(self.debruijn.shifted_in_from(outer_binder), self.index)
+ }
+
+ /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
+ #[must_use]
+ pub fn shifted_out(self) -> Option<Self> {
+ self.debruijn
+ .shifted_out()
+ .map(|db| BoundVar::new(db, self.index))
+ }
+
+ /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
+ #[must_use]
+ pub fn shifted_out_to(self, outer_binder: DebruijnIndex) -> Option<Self> {
+ self.debruijn
+ .shifted_out_to(outer_binder)
+ .map(|db| BoundVar::new(db, self.index))
+ }
+
+ /// Return the index of the bound variable, but only if it is bound
+ /// at the innermost binder. Otherwise, returns `None`.
+ pub fn index_if_innermost(self) -> Option<usize> {
+ self.index_if_bound_at(DebruijnIndex::INNERMOST)
+ }
+
+ /// Return the index of the bound variable, but only if it is bound
+ /// at the innermost binder. Otherwise, returns `None`.
+ pub fn index_if_bound_at(self, debruijn: DebruijnIndex) -> Option<usize> {
+ if self.debruijn == debruijn {
+ Some(self.index)
+ } else {
+ None
+ }
+ }
+}
+
+/// References the binder at the given depth. The index is a [de
+/// Bruijn index], so it counts back through the in-scope binders,
+/// with 0 being the innermost binder. This is used in impls and
+/// the like. For example, if we had a rule like `for<T> { (T:
+/// Clone) :- (T: Copy) }`, then `T` would be represented as a
+/// `BoundVar(0)` (as the `for` is the innermost binder).
+///
+/// [de Bruijn index]: https://en.wikipedia.org/wiki/De_Bruijn_index
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
+pub struct DebruijnIndex {
+ depth: u32,
+}
+
+impl DebruijnIndex {
+ /// Innermost index.
+ pub const INNERMOST: DebruijnIndex = DebruijnIndex { depth: 0 };
+ /// One level higher than the innermost index.
+ pub const ONE: DebruijnIndex = DebruijnIndex { depth: 1 };
+
+ /// Creates a new de Bruijn index with a given depth.
+ pub fn new(depth: u32) -> Self {
+ DebruijnIndex { depth }
+ }
+
+ /// Depth of the De Bruijn index, counting from 0 starting with
+ /// the innermost binder.
+ pub fn depth(self) -> u32 {
+ self.depth
+ }
+
+ /// True if the binder identified by this index is within the
+ /// binder identified by the index `outer_binder`.
+ ///
+ /// # Example
+ ///
+ /// Imagine you have the following binders in scope
+ ///
+ /// ```ignore
+ /// forall<a> forall<b> forall<c>
+ /// ```
+ ///
+ /// then the Debruijn index for `c` would be `0`, the index for
+ /// `b` would be 1, and so on. Now consider the following calls:
+ ///
+ /// * `c.within(a) = true`
+ /// * `b.within(a) = true`
+ /// * `a.within(a) = false`
+ /// * `a.within(c) = false`
+ pub fn within(self, outer_binder: DebruijnIndex) -> bool {
+ self < outer_binder
+ }
+
+ /// Returns the resulting index when this value is moved into
+ /// through one binder.
+ #[must_use]
+ pub fn shifted_in(self) -> DebruijnIndex {
+ self.shifted_in_from(DebruijnIndex::ONE)
+ }
+
+ /// Update this index in place by shifting it "in" through
+ /// `amount` number of binders.
+ pub fn shift_in(&mut self) {
+ *self = self.shifted_in();
+ }
+
+ /// Adds `outer_binder` levels to the `self` index. Intuitively, this
+ /// shifts the `self` index, which was valid at the outer binder,
+ /// so that it is valid at the innermost binder.
+ ///
+ /// Example: Assume that the following binders are in scope:
+ ///
+ /// ```ignore
+ /// for<A> for<B> for<C> for<D>
+ /// ^ outer binder
+ /// ```
+ ///
+ /// Assume further that the `outer_binder` argument is 2,
+ /// which means that it is referring to the `for<B>` binder
+ /// (since `D` would be the innermost binder).
+ ///
+ /// This means that `self` is relative to the binder `B` -- so
+ /// if `self` is 0 (`INNERMOST`), then it refers to `B`,
+ /// and if `self` is 1, then it refers to `A`.
+ ///
+ /// We will return as follows:
+ ///
+ /// * `0.shifted_in_from(2) = 2` -- i.e., `B`, when shifted in to the binding level `D`, has index 2
+ /// * `1.shifted_in_from(2) = 3` -- i.e., `A`, when shifted in to the binding level `D`, has index 3
+ /// * `2.shifted_in_from(1) = 3` -- here, we changed the `outer_binder` to refer to `C`.
+ /// Therefore `2` (relative to `C`) refers to `A`, so the result is still 3 (since `A`, relative to the
+ /// innermost binder, has index 3).
+ #[must_use]
+ pub fn shifted_in_from(self, outer_binder: DebruijnIndex) -> DebruijnIndex {
+ DebruijnIndex::new(self.depth() + outer_binder.depth())
+ }
+
+ /// Returns the resulting index when this value is moved out from
+ /// `amount` number of new binders.
+ #[must_use]
+ pub fn shifted_out(self) -> Option<DebruijnIndex> {
+ self.shifted_out_to(DebruijnIndex::ONE)
+ }
+
+ /// Update in place by shifting out from `amount` binders.
+ pub fn shift_out(&mut self) {
+ *self = self.shifted_out().unwrap();
+ }
+
+ /// Subtracts `outer_binder` levels from the `self` index. Intuitively, this
+ /// shifts the `self` index, which was valid at the innermost
+ /// binder, to one that is valid at the binder `outer_binder`.
+ ///
+ /// This will return `None` if the `self` index is internal to the
+ /// outer binder (i.e., if `self < outer_binder`).
+ ///
+ /// Example: Assume that the following binders are in scope:
+ ///
+ /// ```ignore
+ /// for<A> for<B> for<C> for<D>
+ /// ^ outer binder
+ /// ```
+ ///
+ /// Assume further that the `outer_binder` argument is 2,
+ /// which means that it is referring to the `for<B>` binder
+ /// (since `D` would be the innermost binder).
+ ///
+ /// This means that the result is relative to the binder `B` -- so
+ /// if `self` is 0 (`INNERMOST`), then it refers to `B`,
+ /// and if `self` is 1, then it refers to `A`.
+ ///
+ /// We will return as follows:
+ ///
+ /// * `1.shifted_out_to(2) = None` -- i.e., the binder for `C` can't be named from the binding level `B`
+ /// * `3.shifted_out_to(2) = Some(1)` -- i.e., `A`, when shifted out to the binding level `B`, has index 1
+ pub fn shifted_out_to(self, outer_binder: DebruijnIndex) -> Option<DebruijnIndex> {
+ if self.within(outer_binder) {
+ None
+ } else {
+ Some(DebruijnIndex::new(self.depth() - outer_binder.depth()))
+ }
+ }
+}
+
+/// A "DynTy" represents a trait object (`dyn Trait`). Trait objects
+/// are conceptually very related to an "existential type" of the form
+/// `exists<T> { T: Trait }` (another example of such type is `impl Trait`).
+/// `DynTy` represents the bounds on that type.
+///
+/// The "bounds" here represents the unknown self type. So, a type like
+/// `dyn for<'a> Fn(&'a u32)` would be represented with two-levels of
+/// binder, as "depicted" here:
+///
+/// ```notrust
+/// exists<type> {
+/// vec![
+/// // A QuantifiedWhereClause:
+/// forall<region> { ^1.0: Fn(&^0.0 u32) }
+/// ]
+/// }
+/// ```
+///
+/// The outer `exists<type>` binder indicates that there exists
+/// some type that meets the criteria within, but that type is not
+/// known. It is referenced within the type using `^1.0`, indicating
+/// a bound type with debruijn index 1 (i.e., skipping through one
+/// level of binder).
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
+pub struct DynTy<I: Interner> {
+ /// The unknown self type.
+ pub bounds: Binders<QuantifiedWhereClauses<I>>,
+ /// Lifetime of the `DynTy`.
+ pub lifetime: Lifetime<I>,
+}
+
+impl<I: Interner> Copy for DynTy<I>
+where
+ I::InternedLifetime: Copy,
+ I::InternedQuantifiedWhereClauses: Copy,
+ I::InternedVariableKinds: Copy,
+{
+}
+
+/// A type, lifetime or constant whose value is being inferred.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
+pub struct InferenceVar {
+ index: u32,
+}
+
+impl From<u32> for InferenceVar {
+ fn from(index: u32) -> InferenceVar {
+ InferenceVar { index }
+ }
+}
+
+impl InferenceVar {
+ /// Gets the underlying index value.
+ pub fn index(self) -> u32 {
+ self.index
+ }
+
+ /// Wraps the inference variable in a type.
+ pub fn to_ty<I: Interner>(self, interner: I, kind: TyVariableKind) -> Ty<I> {
+ TyKind::<I>::InferenceVar(self, kind).intern(interner)
+ }
+
+ /// Wraps the inference variable in a lifetime.
+ pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
+ LifetimeData::<I>::InferenceVar(self).intern(interner)
+ }
+
+ /// Wraps the inference variable in a constant.
+ pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
+ ConstData {
+ ty,
+ value: ConstValue::<I>::InferenceVar(self),
+ }
+ .intern(interner)
+ }
+}
+
+/// A function signature.
+#[derive(Clone, Copy, PartialEq, Eq, Hash, HasInterner, Debug)]
+#[allow(missing_docs)]
+pub struct FnSig<I: Interner> {
+ pub abi: I::FnAbi,
+ pub safety: Safety,
+ pub variadic: bool,
+}
+/// A wrapper for the substs on a Fn.
+#[derive(Clone, PartialEq, Eq, Hash, HasInterner, TypeFoldable, TypeVisitable)]
+pub struct FnSubst<I: Interner>(pub Substitution<I>);
+
+impl<I: Interner> Copy for FnSubst<I> where I::InternedSubstitution: Copy {}
+
+/// for<'a...'z> X -- all binders are instantiated at once,
+/// and we use deBruijn indices within `self.ty`
+#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
+#[allow(missing_docs)]
+pub struct FnPointer<I: Interner> {
+ pub num_binders: usize,
+ pub sig: FnSig<I>,
+ pub substitution: FnSubst<I>,
+}
+
+impl<I: Interner> Copy for FnPointer<I> where I::InternedSubstitution: Copy {}
+
+impl<I: Interner> FnPointer<I> {
+ /// Represent the current `Fn` as if it was wrapped in `Binders`
+ pub fn into_binders(self, interner: I) -> Binders<FnSubst<I>> {
+ Binders::new(
+ VariableKinds::from_iter(
+ interner,
+ (0..self.num_binders).map(|_| VariableKind::Lifetime),
+ ),
+ self.substitution,
+ )
+ }
+
+ /// Represent the current `Fn` as if it was wrapped in `Binders`
+ pub fn as_binders(&self, interner: I) -> Binders<&FnSubst<I>> {
+ Binders::new(
+ VariableKinds::from_iter(
+ interner,
+ (0..self.num_binders).map(|_| VariableKind::Lifetime),
+ ),
+ &self.substitution,
+ )
+ }
+}
+
+/// Constants.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+pub struct Const<I: Interner> {
+ interned: I::InternedConst,
+}
+
+impl<I: Interner> Const<I> {
+ /// Create a `Const` using something that can be cast to const data.
+ pub fn new(interner: I, data: impl CastTo<ConstData<I>>) -> Self {
+ Const {
+ interned: I::intern_const(interner, data.cast(interner)),
+ }
+ }
+
+ /// Gets the interned constant.
+ pub fn interned(&self) -> &I::InternedConst {
+ &self.interned
+ }
+
+ /// Gets the constant data from the interner.
+ pub fn data(&self, interner: I) -> &ConstData<I> {
+ I::const_data(interner, &self.interned)
+ }
+
+ /// If this is a `ConstData::BoundVar(d)`, returns `Some(d)` else `None`.
+ pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
+ if let ConstValue::BoundVar(bv) = &self.data(interner).value {
+ Some(*bv)
+ } else {
+ None
+ }
+ }
+
+ /// If this is a `ConstData::InferenceVar(d)`, returns `Some(d)` else `None`.
+ pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
+ if let ConstValue::InferenceVar(iv) = &self.data(interner).value {
+ Some(*iv)
+ } else {
+ None
+ }
+ }
+
+ /// True if this const is a "bound" const, and hence
+ /// needs to be shifted across binders. Meant for debug assertions.
+ pub fn needs_shift(&self, interner: I) -> bool {
+ match &self.data(interner).value {
+ ConstValue::BoundVar(_) => true,
+ ConstValue::InferenceVar(_) => false,
+ ConstValue::Placeholder(_) => false,
+ ConstValue::Concrete(_) => false,
+ }
+ }
+}
+
+/// Constant data, containing the constant's type and value.
+#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
+pub struct ConstData<I: Interner> {
+ /// Type that holds the constant.
+ pub ty: Ty<I>,
+ /// The value of the constant.
+ pub value: ConstValue<I>,
+}
+
+/// A constant value, not necessarily concrete.
+#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
+pub enum ConstValue<I: Interner> {
+ /// Bound var (e.g. a parameter).
+ BoundVar(BoundVar),
+ /// Constant whose value is being inferred.
+ InferenceVar(InferenceVar),
+ /// Lifetime on some yet-unknown placeholder.
+ Placeholder(PlaceholderIndex),
+ /// Concrete constant value.
+ Concrete(ConcreteConst<I>),
+}
+
+impl<I: Interner> Copy for ConstValue<I> where I::InternedConcreteConst: Copy {}
+
+impl<I: Interner> ConstData<I> {
+ /// Wraps the constant data in a `Const`.
+ pub fn intern(self, interner: I) -> Const<I> {
+ Const::new(interner, self)
+ }
+}
+
+/// Concrete constant, whose value is known (as opposed to
+/// inferred constants and placeholders).
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+pub struct ConcreteConst<I: Interner> {
+ /// The interned constant.
+ pub interned: I::InternedConcreteConst,
+}
+
+impl<I: Interner> ConcreteConst<I> {
+ /// Checks whether two concrete constants are equal.
+ pub fn const_eq(&self, ty: &Ty<I>, other: &ConcreteConst<I>, interner: I) -> bool {
+ interner.const_eq(&ty.interned, &self.interned, &other.interned)
+ }
+}
+
+/// A Rust lifetime.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+pub struct Lifetime<I: Interner> {
+ interned: I::InternedLifetime,
+}
+
+impl<I: Interner> Lifetime<I> {
+ /// Create a lifetime from lifetime data
+ /// (or something that can be cast to lifetime data).
+ pub fn new(interner: I, data: impl CastTo<LifetimeData<I>>) -> Self {
+ Lifetime {
+ interned: I::intern_lifetime(interner, data.cast(interner)),
+ }
+ }
+
+ /// Gets the interned value.
+ pub fn interned(&self) -> &I::InternedLifetime {
+ &self.interned
+ }
+
+ /// Gets the lifetime data.
+ pub fn data(&self, interner: I) -> &LifetimeData<I> {
+ I::lifetime_data(interner, &self.interned)
+ }
+
+ /// If this is a `Lifetime::BoundVar(d)`, returns `Some(d)` else `None`.
+ pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
+ if let LifetimeData::BoundVar(bv) = self.data(interner) {
+ Some(*bv)
+ } else {
+ None
+ }
+ }
+
+ /// If this is a `Lifetime::InferenceVar(d)`, returns `Some(d)` else `None`.
+ pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
+ if let LifetimeData::InferenceVar(depth) = self.data(interner) {
+ Some(*depth)
+ } else {
+ None
+ }
+ }
+
+ /// True if this lifetime is a "bound" lifetime, and hence
+ /// needs to be shifted across binders. Meant for debug assertions.
+ pub fn needs_shift(&self, interner: I) -> bool {
+ match self.data(interner) {
+ LifetimeData::BoundVar(_) => true,
+ LifetimeData::InferenceVar(_) => false,
+ LifetimeData::Placeholder(_) => false,
+ LifetimeData::Static => false,
+ LifetimeData::Erased => false,
+ LifetimeData::Phantom(..) => unreachable!(),
+ }
+ }
+
+ ///compute type flags for Lifetime
+ fn compute_flags(&self, interner: I) -> TypeFlags {
+ match self.data(interner) {
+ LifetimeData::InferenceVar(_) => {
+ TypeFlags::HAS_RE_INFER
+ | TypeFlags::HAS_FREE_LOCAL_REGIONS
+ | TypeFlags::HAS_FREE_REGIONS
+ }
+ LifetimeData::Placeholder(_) => {
+ TypeFlags::HAS_RE_PLACEHOLDER
+ | TypeFlags::HAS_FREE_LOCAL_REGIONS
+ | TypeFlags::HAS_FREE_REGIONS
+ }
+ LifetimeData::Static => TypeFlags::HAS_FREE_REGIONS,
+ LifetimeData::Phantom(_, _) => TypeFlags::empty(),
+ LifetimeData::BoundVar(_) => TypeFlags::HAS_RE_LATE_BOUND,
+ LifetimeData::Erased => TypeFlags::HAS_RE_ERASED,
+ }
+ }
+}
+
+/// Lifetime data, including what kind of lifetime it is and what it points to.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+pub enum LifetimeData<I: Interner> {
+ /// See TyKind::BoundVar.
+ BoundVar(BoundVar),
+ /// Lifetime whose value is being inferred.
+ InferenceVar(InferenceVar),
+ /// Lifetime on some yet-unknown placeholder.
+ Placeholder(PlaceholderIndex),
+ /// Static lifetime
+ Static,
+ /// An erased lifetime, used by rustc to improve caching when we doesn't
+ /// care about lifetimes
+ Erased,
+ /// Lifetime on phantom data.
+ Phantom(Void, PhantomData<I>),
+}
+
+impl<I: Interner> LifetimeData<I> {
+ /// Wrap the lifetime data in a lifetime.
+ pub fn intern(self, interner: I) -> Lifetime<I> {
+ Lifetime::new(interner, self)
+ }
+}
+
+/// Index of an universally quantified parameter in the environment.
+/// Two indexes are required, the one of the universe itself
+/// and the relative index inside the universe.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct PlaceholderIndex {
+ /// Index *of* the universe.
+ pub ui: UniverseIndex,
+ /// Index *in* the universe.
+ pub idx: usize,
+}
+
+impl PlaceholderIndex {
+ /// Wrap the placeholder instance in a lifetime.
+ pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
+ LifetimeData::<I>::Placeholder(self).intern(interner)
+ }
+
+ /// Create an interned type.
+ pub fn to_ty<I: Interner>(self, interner: I) -> Ty<I> {
+ TyKind::Placeholder(self).intern(interner)
+ }
+
+ /// Wrap the placeholder index in a constant.
+ pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
+ ConstData {
+ ty,
+ value: ConstValue::Placeholder(self),
+ }
+ .intern(interner)
+ }
+}
+/// Represents some extra knowledge we may have about the type variable.
+/// ```ignore
+/// let x: &[u32];
+/// let i = 1;
+/// x[i]
+/// ```
+/// In this example, `i` is known to be some type of integer. We can infer that
+/// it is `usize` because that is the only integer type that slices have an
+/// `Index` impl for. `i` would have a `TyVariableKind` of `Integer` to guide the
+/// inference process.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
+#[allow(missing_docs)]
+pub enum TyVariableKind {
+ General,
+ Integer,
+ Float,
+}
+
+/// The "kind" of variable. Type, lifetime or constant.
+#[derive(Clone, PartialEq, Eq, Hash)]
+#[allow(missing_docs)]
+pub enum VariableKind<I: Interner> {
+ Ty(TyVariableKind),
+ Lifetime,
+ Const(Ty<I>),
+}
+
+impl<I: Interner> interner::HasInterner for VariableKind<I> {
+ type Interner = I;
+}
+
+impl<I: Interner> Copy for VariableKind<I> where I::InternedType: Copy {}
+
+impl<I: Interner> VariableKind<I> {
+ fn to_bound_variable(&self, interner: I, bound_var: BoundVar) -> GenericArg<I> {
+ match self {
+ VariableKind::Ty(_) => {
+ GenericArgData::Ty(TyKind::BoundVar(bound_var).intern(interner)).intern(interner)
+ }
+ VariableKind::Lifetime => {
+ GenericArgData::Lifetime(LifetimeData::BoundVar(bound_var).intern(interner))
+ .intern(interner)
+ }
+ VariableKind::Const(ty) => GenericArgData::Const(
+ ConstData {
+ ty: ty.clone(),
+ value: ConstValue::BoundVar(bound_var),
+ }
+ .intern(interner),
+ )
+ .intern(interner),
+ }
+ }
+}
+
+/// A generic argument, see `GenericArgData` for more information.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+pub struct GenericArg<I: Interner> {
+ interned: I::InternedGenericArg,
+}
+
+impl<I: Interner> GenericArg<I> {
+ /// Constructs a generic argument using `GenericArgData`.
+ pub fn new(interner: I, data: GenericArgData<I>) -> Self {
+ let interned = I::intern_generic_arg(interner, data);
+ GenericArg { interned }
+ }
+
+ /// Gets the interned value.
+ pub fn interned(&self) -> &I::InternedGenericArg {
+ &self.interned
+ }
+
+ /// Gets the underlying data.
+ pub fn data(&self, interner: I) -> &GenericArgData<I> {
+ I::generic_arg_data(interner, &self.interned)
+ }
+
+ /// Asserts that this is a type argument.
+ pub fn assert_ty_ref(&self, interner: I) -> &Ty<I> {
+ self.ty(interner).unwrap()
+ }
+
+ /// Asserts that this is a lifetime argument.
+ pub fn assert_lifetime_ref(&self, interner: I) -> &Lifetime<I> {
+ self.lifetime(interner).unwrap()
+ }
+
+ /// Asserts that this is a constant argument.
+ pub fn assert_const_ref(&self, interner: I) -> &Const<I> {
+ self.constant(interner).unwrap()
+ }
+
+ /// Checks whether the generic argument is a type.
+ pub fn is_ty(&self, interner: I) -> bool {
+ match self.data(interner) {
+ GenericArgData::Ty(_) => true,
+ GenericArgData::Lifetime(_) => false,
+ GenericArgData::Const(_) => false,
+ }
+ }
+
+ /// Returns the type if it is one, `None` otherwise.
+ pub fn ty(&self, interner: I) -> Option<&Ty<I>> {
+ match self.data(interner) {
+ GenericArgData::Ty(t) => Some(t),
+ _ => None,
+ }
+ }
+
+ /// Returns the lifetime if it is one, `None` otherwise.
+ pub fn lifetime(&self, interner: I) -> Option<&Lifetime<I>> {
+ match self.data(interner) {
+ GenericArgData::Lifetime(t) => Some(t),
+ _ => None,
+ }
+ }
+
+ /// Returns the constant if it is one, `None` otherwise.
+ pub fn constant(&self, interner: I) -> Option<&Const<I>> {
+ match self.data(interner) {
+ GenericArgData::Const(c) => Some(c),
+ _ => None,
+ }
+ }
+
+ /// Compute type flags for GenericArg<I>
+ fn compute_flags(&self, interner: I) -> TypeFlags {
+ match self.data(interner) {
+ GenericArgData::Ty(ty) => ty.data(interner).flags,
+ GenericArgData::Lifetime(lifetime) => lifetime.compute_flags(interner),
+ GenericArgData::Const(constant) => {
+ let data = constant.data(interner);
+ let flags = data.ty.data(interner).flags;
+ match data.value {
+ ConstValue::BoundVar(_) => flags,
+ ConstValue::InferenceVar(_) => {
+ flags | TypeFlags::HAS_CT_INFER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
+ }
+ ConstValue::Placeholder(_) => {
+ flags
+ | TypeFlags::HAS_CT_PLACEHOLDER
+ | TypeFlags::STILL_FURTHER_SPECIALIZABLE
+ }
+ ConstValue::Concrete(_) => flags,
+ }
+ }
+ }
+ }
+}
+
+/// Generic arguments data.
+#[derive(Clone, PartialEq, Eq, Hash, TypeVisitable, TypeFoldable, Zip)]
+pub enum GenericArgData<I: Interner> {
+ /// Type argument
+ Ty(Ty<I>),
+ /// Lifetime argument
+ Lifetime(Lifetime<I>),
+ /// Constant argument
+ Const(Const<I>),
+}
+
+impl<I: Interner> Copy for GenericArgData<I>
+where
+ I::InternedType: Copy,
+ I::InternedLifetime: Copy,
+ I::InternedConst: Copy,
+{
+}
+
+impl<I: Interner> GenericArgData<I> {
+ /// Create an interned type.
+ pub fn intern(self, interner: I) -> GenericArg<I> {
+ GenericArg::new(interner, self)
+ }
+}
+
+/// A value with an associated variable kind.
+#[derive(Clone, PartialEq, Eq, Hash)]
+pub struct WithKind<I: Interner, T> {
+ /// The associated variable kind.
+ pub kind: VariableKind<I>,
+ /// The wrapped value.
+ value: T,
+}
+
+impl<I: Interner, T: Copy> Copy for WithKind<I, T> where I::InternedType: Copy {}
+
+impl<I: Interner, T> HasInterner for WithKind<I, T> {
+ type Interner = I;
+}
+
+impl<I: Interner, T> From<WithKind<I, T>> for (VariableKind<I>, T) {
+ fn from(with_kind: WithKind<I, T>) -> Self {
+ (with_kind.kind, with_kind.value)
+ }
+}
+
+impl<I: Interner, T> WithKind<I, T> {
+ /// Creates a `WithKind` from a variable kind and a value.
+ pub fn new(kind: VariableKind<I>, value: T) -> Self {
+ Self { kind, value }
+ }
+
+ /// Maps the value in `WithKind`.
+ pub fn map<U, OP>(self, op: OP) -> WithKind<I, U>
+ where
+ OP: FnOnce(T) -> U,
+ {
+ WithKind {
+ kind: self.kind,
+ value: op(self.value),
+ }
+ }
+
+ /// Maps a function taking `WithKind<I, &T>` over `&WithKind<I, T>`.
+ pub fn map_ref<U, OP>(&self, op: OP) -> WithKind<I, U>
+ where
+ OP: FnOnce(&T) -> U,
+ {
+ WithKind {
+ kind: self.kind.clone(),
+ value: op(&self.value),
+ }
+ }
+
+ /// Extract the value, ignoring the variable kind.
+ pub fn skip_kind(&self) -> &T {
+ &self.value
+ }
+}
+
+/// A variable kind with universe index.
+#[allow(type_alias_bounds)]
+pub type CanonicalVarKind<I: Interner> = WithKind<I, UniverseIndex>;
+
+/// An alias, which is a trait indirection such as a projection or opaque type.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+pub enum AliasTy<I: Interner> {
+ /// An associated type projection.
+ Projection(ProjectionTy<I>),
+ /// An opaque type.
+ Opaque(OpaqueTy<I>),
+}
+
+impl<I: Interner> Copy for AliasTy<I> where I::InternedSubstitution: Copy {}
+
+impl<I: Interner> AliasTy<I> {
+ /// Create an interned type for this alias.
+ pub fn intern(self, interner: I) -> Ty<I> {
+ Ty::new(interner, self)
+ }
+
+ /// Compute type flags for aliases
+ fn compute_flags(&self, interner: I) -> TypeFlags {
+ match self {
+ AliasTy::Projection(projection_ty) => {
+ TypeFlags::HAS_TY_PROJECTION | projection_ty.substitution.compute_flags(interner)
+ }
+ AliasTy::Opaque(opaque_ty) => {
+ TypeFlags::HAS_TY_OPAQUE | opaque_ty.substitution.compute_flags(interner)
+ }
+ }
+ }
+}
+
+/// A projection `<P0 as TraitName<P1..Pn>>::AssocItem<Pn+1..Pm>`.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
+pub struct ProjectionTy<I: Interner> {
+ /// The id for the associated type member.
+ pub associated_ty_id: AssocTypeId<I>,
+ /// The substitution for the projection.
+ pub substitution: Substitution<I>,
+}
+
+impl<I: Interner> Copy for ProjectionTy<I> where I::InternedSubstitution: Copy {}
+
+/// An opaque type `opaque type T<..>: Trait = HiddenTy`.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
+pub struct OpaqueTy<I: Interner> {
+ /// The id for the opaque type.
+ pub opaque_ty_id: OpaqueTyId<I>,
+ /// The substitution for the opaque type.
+ pub substitution: Substitution<I>,
+}
+
+impl<I: Interner> Copy for OpaqueTy<I> where I::InternedSubstitution: Copy {}
+
+/// A trait reference describes the relationship between a type and a trait.
+/// This can be used in two forms:
+/// - `P0: Trait<P1..Pn>` (e.g. `i32: Copy`), which mentions that the type
+/// implements the trait.
+/// - `<P0 as Trait<P1..Pn>>` (e.g. `i32 as Copy`), which casts the type to
+/// that specific trait.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
+pub struct TraitRef<I: Interner> {
+ /// The trait id.
+ pub trait_id: TraitId<I>,
+ /// The substitution, containing both the `Self` type and the parameters.
+ pub substitution: Substitution<I>,
+}
+
+impl<I: Interner> Copy for TraitRef<I> where I::InternedSubstitution: Copy {}
+
+impl<I: Interner> TraitRef<I> {
+ /// Gets all type parameters in this trait ref, including `Self`.
+ pub fn type_parameters(&self, interner: I) -> impl Iterator<Item = Ty<I>> + '_ {
+ self.substitution
+ .iter(interner)
+ .filter_map(move |p| p.ty(interner))
+ .cloned()
+ }
+
+ /// Gets the type parameters of the `Self` type in this trait ref.
+ pub fn self_type_parameter(&self, interner: I) -> Ty<I> {
+ self.type_parameters(interner).next().unwrap()
+ }
+
+ /// Construct a `FromEnv` using this trait ref.
+ pub fn from_env(self) -> FromEnv<I> {
+ FromEnv::Trait(self)
+ }
+
+ /// Construct a `WellFormed` using this trait ref.
+ pub fn well_formed(self) -> WellFormed<I> {
+ WellFormed::Trait(self)
+ }
+}
+
+/// Lifetime outlives, which for `'a: 'b`` checks that the lifetime `'a`
+/// is a superset of the value of `'b`.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+#[allow(missing_docs)]
+pub struct LifetimeOutlives<I: Interner> {
+ pub a: Lifetime<I>,
+ pub b: Lifetime<I>,
+}
+
+impl<I: Interner> Copy for LifetimeOutlives<I> where I::InternedLifetime: Copy {}
+
+/// Type outlives, which for `T: 'a` checks that the type `T`
+/// lives at least as long as the lifetime `'a`
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+pub struct TypeOutlives<I: Interner> {
+ /// The type which must outlive the given lifetime.
+ pub ty: Ty<I>,
+ /// The lifetime which the type must outlive.
+ pub lifetime: Lifetime<I>,
+}
+
+impl<I: Interner> Copy for TypeOutlives<I>
+where
+ I::InternedLifetime: Copy,
+ I::InternedType: Copy,
+{
+}
+
+/// Where clauses that can be written by a Rust programmer.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeSuperVisitable, HasInterner, Zip)]
+pub enum WhereClause<I: Interner> {
+ /// Type implements a trait.
+ Implemented(TraitRef<I>),
+ /// Type is equal to an alias.
+ AliasEq(AliasEq<I>),
+ /// One lifetime outlives another.
+ LifetimeOutlives(LifetimeOutlives<I>),
+ /// Type outlives a lifetime.
+ TypeOutlives(TypeOutlives<I>),
+}
+
+impl<I: Interner> Copy for WhereClause<I>
+where
+ I::InternedSubstitution: Copy,
+ I::InternedLifetime: Copy,
+ I::InternedType: Copy,
+{
+}
+
+/// Checks whether a type or trait ref is well-formed.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+pub enum WellFormed<I: Interner> {
+ /// A predicate which is true when some trait ref is well-formed.
+ /// For example, given the following trait definitions:
+ ///
+ /// ```notrust
+ /// trait Clone { ... }
+ /// trait Copy where Self: Clone { ... }
+ /// ```
+ ///
+ /// then we have the following rule:
+ ///
+ /// ```notrust
+ /// WellFormed(?Self: Copy) :- ?Self: Copy, WellFormed(?Self: Clone)
+ /// ```
+ Trait(TraitRef<I>),
+
+ /// A predicate which is true when some type is well-formed.
+ /// For example, given the following type definition:
+ ///
+ /// ```notrust
+ /// struct Set<K> where K: Hash {
+ /// ...
+ /// }
+ /// ```
+ ///
+ /// then we have the following rule: `WellFormedTy(Set<K>) :- Implemented(K: Hash)`.
+ Ty(Ty<I>),
+}
+
+impl<I: Interner> Copy for WellFormed<I>
+where
+ I::InternedType: Copy,
+ I::InternedSubstitution: Copy,
+{
+}
+
+/// Checks whether a type or trait ref can be derived from the contents of the environment.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+pub enum FromEnv<I: Interner> {
+ /// A predicate which enables deriving everything which should be true if we *know* that
+ /// some trait ref is well-formed. For example given the above trait definitions, we can use
+ /// `FromEnv(T: Copy)` to derive that `T: Clone`, like in:
+ ///
+ /// ```notrust
+ /// forall<T> {
+ /// if (FromEnv(T: Copy)) {
+ /// T: Clone
+ /// }
+ /// }
+ /// ```
+ Trait(TraitRef<I>),
+
+ /// A predicate which enables deriving everything which should be true if we *know* that
+ /// some type is well-formed. For example given the above type definition, we can use
+ /// `FromEnv(Set<K>)` to derive that `K: Hash`, like in:
+ ///
+ /// ```notrust
+ /// forall<K> {
+ /// if (FromEnv(Set<K>)) {
+ /// K: Hash
+ /// }
+ /// }
+ /// ```
+ Ty(Ty<I>),
+}
+
+impl<I: Interner> Copy for FromEnv<I>
+where
+ I::InternedType: Copy,
+ I::InternedSubstitution: Copy,
+{
+}
+
+/// A "domain goal" is a goal that is directly about Rust, rather than a pure
+/// logical statement. As much as possible, the Chalk solver should avoid
+/// decomposing this enum, and instead treat its values opaquely.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeSuperVisitable, HasInterner, Zip)]
+pub enum DomainGoal<I: Interner> {
+ /// Simple goal that is true if the where clause is true.
+ Holds(WhereClause<I>),
+
+ /// True if the type or trait ref is well-formed.
+ WellFormed(WellFormed<I>),
+
+ /// True if the trait ref can be derived from in-scope where clauses.
+ FromEnv(FromEnv<I>),
+
+ /// True if the alias type can be normalized to some other type
+ Normalize(Normalize<I>),
+
+ /// True if a type is considered to have been "defined" by the current crate. This is true for
+ /// a `struct Foo { }` but false for a `#[upstream] struct Foo { }`. However, for fundamental types
+ /// like `Box<T>`, it is true if `T` is local.
+ IsLocal(Ty<I>),
+
+ /// True if a type is *not* considered to have been "defined" by the current crate. This is
+ /// false for a `struct Foo { }` but true for a `#[upstream] struct Foo { }`. However, for
+ /// fundamental types like `Box<T>`, it is true if `T` is upstream.
+ IsUpstream(Ty<I>),
+
+ /// True if a type and its input types are fully visible, known types. That is, there are no
+ /// unknown type parameters anywhere in this type.
+ ///
+ /// More formally, for each struct S<P0..Pn>:
+ /// forall<P0..Pn> {
+ /// IsFullyVisible(S<P0...Pn>) :-
+ /// IsFullyVisible(P0),
+ /// ...
+ /// IsFullyVisible(Pn)
+ /// }
+ ///
+ /// Note that any of these types can have lifetimes in their parameters too, but we only
+ /// consider type parameters.
+ IsFullyVisible(Ty<I>),
+
+ /// Used to dictate when trait impls are allowed in the current (local) crate based on the
+ /// orphan rules.
+ ///
+ /// `LocalImplAllowed(T: Trait)` is true if the type T is allowed to impl trait Trait in
+ /// the current crate. Under the current rules, this is unconditionally true for all types if
+ /// the Trait is considered to be "defined" in the current crate. If that is not the case, then
+ /// `LocalImplAllowed(T: Trait)` can still be true if `IsLocal(T)` is true.
+ LocalImplAllowed(TraitRef<I>),
+
+ /// Used to activate the "compatible modality" rules. Rules that introduce predicates that have
+ /// to do with "all compatible universes" should depend on this clause so that they only apply
+ /// if this is present.
+ Compatible,
+
+ /// Used to indicate that a given type is in a downstream crate. Downstream crates contain the
+ /// current crate at some level of their dependencies.
+ ///
+ /// Since chalk does not actually see downstream types, this is usually introduced with
+ /// implication on a fresh, universally quantified type.
+ ///
+ /// forall<T> { if (DownstreamType(T)) { /* ... */ } }
+ ///
+ /// This makes a new type `T` available and makes `DownstreamType(T)` provable for that type.
+ DownstreamType(Ty<I>),
+
+ /// Used to activate the "reveal mode", in which opaque (`impl Trait`) types can be equated
+ /// to their actual type.
+ Reveal,
+
+ /// Used to indicate that a trait is object safe.
+ ObjectSafe(TraitId<I>),
+}
+
+impl<I: Interner> Copy for DomainGoal<I>
+where
+ I::InternedSubstitution: Copy,
+ I::InternedLifetime: Copy,
+ I::InternedType: Copy,
+{
+}
+
+/// A where clause that can contain `forall<>` or `exists<>` quantifiers.
+pub type QuantifiedWhereClause<I> = Binders<WhereClause<I>>;
+
+impl<I: Interner> WhereClause<I> {
+ /// Turn a where clause into the WF version of it i.e.:
+ /// * `Implemented(T: Trait)` maps to `WellFormed(T: Trait)`
+ /// * `ProjectionEq(<T as Trait>::Item = Foo)` maps to `WellFormed(<T as Trait>::Item = Foo)`
+ /// * any other clause maps to itself
+ pub fn into_well_formed_goal(self, interner: I) -> DomainGoal<I> {
+ match self {
+ WhereClause::Implemented(trait_ref) => WellFormed::Trait(trait_ref).cast(interner),
+ wc => wc.cast(interner),
+ }
+ }
+
+ /// Same as `into_well_formed_goal` but with the `FromEnv` predicate instead of `WellFormed`.
+ pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
+ match self {
+ WhereClause::Implemented(trait_ref) => FromEnv::Trait(trait_ref).cast(interner),
+ wc => wc.cast(interner),
+ }
+ }
+
+ /// If where clause is a `TraitRef`, returns its trait id.
+ pub fn trait_id(&self) -> Option<TraitId<I>> {
+ match self {
+ WhereClause::Implemented(trait_ref) => Some(trait_ref.trait_id),
+ WhereClause::AliasEq(_) => None,
+ WhereClause::LifetimeOutlives(_) => None,
+ WhereClause::TypeOutlives(_) => None,
+ }
+ }
+}
+
+impl<I: Interner> QuantifiedWhereClause<I> {
+ /// As with `WhereClause::into_well_formed_goal`, but for a
+ /// quantified where clause. For example, `forall<T> {
+ /// Implemented(T: Trait)}` would map to `forall<T> {
+ /// WellFormed(T: Trait) }`.
+ pub fn into_well_formed_goal(self, interner: I) -> Binders<DomainGoal<I>> {
+ self.map(|wc| wc.into_well_formed_goal(interner))
+ }
+
+ /// As with `WhereClause::into_from_env_goal`, but mapped over any
+ /// binders. For example, `forall<T> {
+ /// Implemented(T: Trait)}` would map to `forall<T> {
+ /// FromEnv(T: Trait) }`.
+ pub fn into_from_env_goal(self, interner: I) -> Binders<DomainGoal<I>> {
+ self.map(|wc| wc.into_from_env_goal(interner))
+ }
+
+ /// If the underlying where clause is a `TraitRef`, returns its trait id.
+ pub fn trait_id(&self) -> Option<TraitId<I>> {
+ self.skip_binders().trait_id()
+ }
+}
+
+impl<I: Interner> DomainGoal<I> {
+ /// Convert `Implemented(...)` into `FromEnv(...)`, but leave other
+ /// goals unchanged.
+ pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
+ match self {
+ DomainGoal::Holds(wc) => wc.into_from_env_goal(interner),
+ goal => goal,
+ }
+ }
+
+ /// Lists generic arguments that are inputs to this domain goal.
+ pub fn inputs(&self, interner: I) -> Vec<GenericArg<I>> {
+ match self {
+ DomainGoal::Holds(WhereClause::AliasEq(alias_eq)) => {
+ vec![GenericArgData::Ty(alias_eq.alias.clone().intern(interner)).intern(interner)]
+ }
+ _ => Vec::new(),
+ }
+ }
+}
+
+/// Equality goal: tries to prove that two values are equal.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
+#[allow(missing_docs)]
+pub struct EqGoal<I: Interner> {
+ pub a: GenericArg<I>,
+ pub b: GenericArg<I>,
+}
+
+impl<I: Interner> Copy for EqGoal<I> where I::InternedGenericArg: Copy {}
+
+/// Subtype goal: tries to prove that `a` is a subtype of `b`
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
+#[allow(missing_docs)]
+pub struct SubtypeGoal<I: Interner> {
+ pub a: Ty<I>,
+ pub b: Ty<I>,
+}
+
+impl<I: Interner> Copy for SubtypeGoal<I> where I::InternedType: Copy {}
+
+/// Proves that the given type alias **normalizes** to the given
+/// type. A projection `T::Foo` normalizes to the type `U` if we can
+/// **match it to an impl** and that impl has a `type Foo = V` where
+/// `U = V`.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
+#[allow(missing_docs)]
+pub struct Normalize<I: Interner> {
+ pub alias: AliasTy<I>,
+ pub ty: Ty<I>,
+}
+
+impl<I: Interner> Copy for Normalize<I>
+where
+ I::InternedSubstitution: Copy,
+ I::InternedType: Copy,
+{
+}
+
+/// Proves **equality** between an alias and a type.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
+#[allow(missing_docs)]
+pub struct AliasEq<I: Interner> {
+ pub alias: AliasTy<I>,
+ pub ty: Ty<I>,
+}
+
+impl<I: Interner> Copy for AliasEq<I>
+where
+ I::InternedSubstitution: Copy,
+ I::InternedType: Copy,
+{
+}
+
+impl<I: Interner> HasInterner for AliasEq<I> {
+ type Interner = I;
+}
+
+/// Indicates that the `value` is universally quantified over `N`
+/// parameters of the given kinds, where `N == self.binders.len()`. A
+/// variable with depth `i < N` refers to the value at
+/// `self.binders[i]`. Variables with depth `>= N` are free.
+///
+/// (IOW, we use deBruijn indices, where binders are introduced in reverse order
+/// of `self.binders`.)
+#[derive(Clone, PartialEq, Eq, Hash)]
+pub struct Binders<T: HasInterner> {
+ /// The binders that quantify over the value.
+ pub binders: VariableKinds<T::Interner>,
+
+ /// The value being quantified over.
+ value: T,
+}
+
+impl<T: HasInterner + Copy> Copy for Binders<T> where
+ <T::Interner as Interner>::InternedVariableKinds: Copy
+{
+}
+
+impl<T: HasInterner> HasInterner for Binders<T> {
+ type Interner = T::Interner;
+}
+
+impl<T: Clone + HasInterner> Binders<&T> {
+ /// Converts a `Binders<&T>` to a `Binders<T>` by cloning `T`.
+ pub fn cloned(self) -> Binders<T> {
+ self.map(Clone::clone)
+ }
+}
+
+impl<T: HasInterner> Binders<T> {
+ /// Create new binders.
+ pub fn new(binders: VariableKinds<T::Interner>, value: T) -> Self {
+ Self { binders, value }
+ }
+
+ /// Wraps the given value in a binder without variables, i.e. `for<>
+ /// (value)`. Since our deBruijn indices count binders, not variables, this
+ /// is sometimes useful.
+ pub fn empty(interner: T::Interner, value: T) -> Self {
+ let binders = VariableKinds::empty(interner);
+ Self { binders, value }
+ }
+
+ /// Skips the binder and returns the "bound" value. This is a
+ /// risky thing to do because it's easy to get confused about
+ /// De Bruijn indices and the like. `skip_binder` is only valid
+ /// when you are either extracting data that has nothing to
+ /// do with bound vars, or you are being very careful about
+ /// your depth accounting.
+ ///
+ /// Some examples where `skip_binder` is reasonable:
+ ///
+ /// - extracting the `TraitId` from a TraitRef;
+ /// - checking if there are any fields in a StructDatum
+ pub fn skip_binders(&self) -> &T {
+ &self.value
+ }
+
+ /// Skips the binder and returns the "bound" value as well as the skipped free variables. This
+ /// is just as risky as [`skip_binders`][Self::skip_binders].
+ pub fn into_value_and_skipped_binders(self) -> (T, VariableKinds<T::Interner>) {
+ (self.value, self.binders)
+ }
+
+ /// Converts `&Binders<T>` to `Binders<&T>`. Produces new `Binders`
+ /// with cloned quantifiers containing a reference to the original
+ /// value, leaving the original in place.
+ pub fn as_ref(&self) -> Binders<&T> {
+ Binders {
+ binders: self.binders.clone(),
+ value: &self.value,
+ }
+ }
+
+ /// Maps the binders by applying a function.
+ pub fn map<U, OP>(self, op: OP) -> Binders<U>
+ where
+ OP: FnOnce(T) -> U,
+ U: HasInterner<Interner = T::Interner>,
+ {
+ let value = op(self.value);
+ Binders {
+ binders: self.binders,
+ value,
+ }
+ }
+
+ /// Transforms the inner value according to the given function; returns
+ /// `None` if the function returns `None`.
+ pub fn filter_map<U, OP>(self, op: OP) -> Option<Binders<U>>
+ where
+ OP: FnOnce(T) -> Option<U>,
+ U: HasInterner<Interner = T::Interner>,
+ {
+ let value = op(self.value)?;
+ Some(Binders {
+ binders: self.binders,
+ value,
+ })
+ }
+
+ /// Maps a function taking `Binders<&T>` over `&Binders<T>`.
+ pub fn map_ref<'a, U, OP>(&'a self, op: OP) -> Binders<U>
+ where
+ OP: FnOnce(&'a T) -> U,
+ U: HasInterner<Interner = T::Interner>,
+ {
+ self.as_ref().map(op)
+ }
+
+ /// Creates a `Substitution` containing bound vars such that applying this
+ /// substitution will not change the value, i.e. `^0.0, ^0.1, ^0.2` and so
+ /// on.
+ pub fn identity_substitution(&self, interner: T::Interner) -> Substitution<T::Interner> {
+ Substitution::from_iter(
+ interner,
+ self.binders
+ .iter(interner)
+ .enumerate()
+ .map(|p| p.to_generic_arg(interner)),
+ )
+ }
+
+ /// Creates a fresh binders that contains a single type
+ /// variable. The result of the closure will be embedded in this
+ /// binder. Note that you should be careful with what you return
+ /// from the closure to account for the binder that will be added.
+ ///
+ /// XXX FIXME -- this is potentially a pretty footgun-y function.
+ pub fn with_fresh_type_var(
+ interner: T::Interner,
+ op: impl FnOnce(Ty<T::Interner>) -> T,
+ ) -> Binders<T> {
+ // The new variable is at the front and everything afterwards is shifted up by 1
+ let new_var = TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0)).intern(interner);
+ let value = op(new_var);
+ let binders = VariableKinds::from1(interner, VariableKind::Ty(TyVariableKind::General));
+ Binders { binders, value }
+ }
+
+ /// Returns the number of binders.
+ pub fn len(&self, interner: T::Interner) -> usize {
+ self.binders.len(interner)
+ }
+}
+
+impl<T, I> Binders<Binders<T>>
+where
+ T: TypeFoldable<I> + HasInterner<Interner = I>,
+ I: Interner,
+{
+ /// This turns two levels of binders (`for<A> for<B>`) into one level (`for<A, B>`).
+ pub fn fuse_binders(self, interner: T::Interner) -> Binders<T> {
+ let num_binders = self.len(interner);
+ // generate a substitution to shift the indexes of the inner binder:
+ let subst = Substitution::from_iter(
+ interner,
+ self.value
+ .binders
+ .iter(interner)
+ .enumerate()
+ .map(|(i, pk)| (i + num_binders, pk).to_generic_arg(interner)),
+ );
+ let binders = VariableKinds::from_iter(
+ interner,
+ self.binders
+ .iter(interner)
+ .chain(self.value.binders.iter(interner))
+ .cloned(),
+ );
+ let value = self.value.substitute(interner, &subst);
+ Binders { binders, value }
+ }
+}
+
+impl<T: HasInterner> From<Binders<T>> for (VariableKinds<T::Interner>, T) {
+ fn from(binders: Binders<T>) -> Self {
+ (binders.binders, binders.value)
+ }
+}
+
+impl<T, I> Binders<T>
+where
+ T: TypeFoldable<I> + HasInterner<Interner = I>,
+ I: Interner,
+{
+ /// Substitute `parameters` for the variables introduced by these
+ /// binders. So if the binders represent (e.g.) `<X, Y> { T }` and
+ /// parameters is the slice `[A, B]`, then returns `[X => A, Y =>
+ /// B] T`.
+ pub fn substitute(self, interner: I, parameters: &(impl AsParameters<I> + ?Sized)) -> T {
+ let parameters = parameters.as_parameters(interner);
+ assert_eq!(self.binders.len(interner), parameters.len());
+ Subst::apply(interner, parameters, self.value)
+ }
+}
+
+/// Allows iterating over a Binders<Vec<T>>, for instance.
+/// Each element will include the same set of parameter bounds.
+impl<V, U> IntoIterator for Binders<V>
+where
+ V: HasInterner + IntoIterator<Item = U>,
+ U: HasInterner<Interner = V::Interner>,
+{
+ type Item = Binders<U>;
+ type IntoIter = BindersIntoIterator<V>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ BindersIntoIterator {
+ iter: self.value.into_iter(),
+ binders: self.binders,
+ }
+ }
+}
+
+/// `IntoIterator` for binders.
+pub struct BindersIntoIterator<V: HasInterner + IntoIterator> {
+ iter: <V as IntoIterator>::IntoIter,
+ binders: VariableKinds<V::Interner>,
+}
+
+impl<V> Iterator for BindersIntoIterator<V>
+where
+ V: HasInterner + IntoIterator,
+ <V as IntoIterator>::Item: HasInterner<Interner = V::Interner>,
+{
+ type Item = Binders<<V as IntoIterator>::Item>;
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter
+ .next()
+ .map(|v| Binders::new(self.binders.clone(), v))
+ }
+}
+
+/// Represents one clause of the form `consequence :- conditions` where
+/// `conditions = cond_1 && cond_2 && ...` is the conjunction of the individual
+/// conditions.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+pub struct ProgramClauseImplication<I: Interner> {
+ /// The consequence of the clause, which holds if the conditions holds.
+ pub consequence: DomainGoal<I>,
+
+ /// The condition goals that should hold.
+ pub conditions: Goals<I>,
+
+ /// The lifetime constraints that should be proven.
+ pub constraints: Constraints<I>,
+
+ /// The relative priority of the implication.
+ pub priority: ClausePriority,
+}
+
+/// Specifies how important an implication is.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
+pub enum ClausePriority {
+ /// High priority, the solver should prioritize this.
+ High,
+
+ /// Low priority, this implication has lower chance to be relevant to the goal.
+ Low,
+}
+
+impl std::ops::BitAnd for ClausePriority {
+ type Output = ClausePriority;
+ fn bitand(self, rhs: ClausePriority) -> Self::Output {
+ match (self, rhs) {
+ (ClausePriority::High, ClausePriority::High) => ClausePriority::High,
+ _ => ClausePriority::Low,
+ }
+ }
+}
+
+/// Contains the data for a program clause.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, HasInterner, Zip)]
+pub struct ProgramClauseData<I: Interner>(pub Binders<ProgramClauseImplication<I>>);
+
+impl<I: Interner> ProgramClauseImplication<I> {
+ /// Change the implication into an application holding a `FromEnv` goal.
+ pub fn into_from_env_clause(self, interner: I) -> ProgramClauseImplication<I> {
+ if self.conditions.is_empty(interner) {
+ ProgramClauseImplication {
+ consequence: self.consequence.into_from_env_goal(interner),
+ conditions: self.conditions.clone(),
+ constraints: self.constraints.clone(),
+ priority: self.priority,
+ }
+ } else {
+ self
+ }
+ }
+}
+
+impl<I: Interner> ProgramClauseData<I> {
+ /// Change the program clause data into a `FromEnv` program clause.
+ pub fn into_from_env_clause(self, interner: I) -> ProgramClauseData<I> {
+ ProgramClauseData(self.0.map(|i| i.into_from_env_clause(interner)))
+ }
+
+ /// Intern the program clause data.
+ pub fn intern(self, interner: I) -> ProgramClause<I> {
+ ProgramClause {
+ interned: interner.intern_program_clause(self),
+ }
+ }
+}
+
+/// A program clause is a logic expression used to describe a part of the program.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+pub struct ProgramClause<I: Interner> {
+ interned: I::InternedProgramClause,
+}
+
+impl<I: Interner> ProgramClause<I> {
+ /// Create a new program clause using `ProgramClauseData`.
+ pub fn new(interner: I, clause: ProgramClauseData<I>) -> Self {
+ let interned = interner.intern_program_clause(clause);
+ Self { interned }
+ }
+
+ /// Change the clause into a `FromEnv` clause.
+ pub fn into_from_env_clause(self, interner: I) -> ProgramClause<I> {
+ let program_clause_data = self.data(interner);
+ let new_clause = program_clause_data.clone().into_from_env_clause(interner);
+ Self::new(interner, new_clause)
+ }
+
+ /// Get the interned program clause.
+ pub fn interned(&self) -> &I::InternedProgramClause {
+ &self.interned
+ }
+
+ /// Get the program clause data.
+ pub fn data(&self, interner: I) -> &ProgramClauseData<I> {
+ interner.program_clause_data(&self.interned)
+ }
+}
+
+/// Wraps a "canonicalized item". Items are canonicalized as follows:
+///
+/// All unresolved existential variables are "renumbered" according to their
+/// first appearance; the kind/universe of the variable is recorded in the
+/// `binders` field.
+#[derive(Clone, Debug, PartialEq, Eq, Hash)]
+pub struct Canonical<T: HasInterner> {
+ /// The item that is canonicalized.
+ pub value: T,
+
+ /// The kind/universe of the variable.
+ pub binders: CanonicalVarKinds<T::Interner>,
+}
+
+impl<T: HasInterner> HasInterner for Canonical<T> {
+ type Interner = T::Interner;
+}
+
+/// A "universe canonical" value. This is a wrapper around a
+/// `Canonical`, indicating that the universes within have been
+/// "renumbered" to start from 0 and collapse unimportant
+/// distinctions.
+///
+/// To produce one of these values, use the `u_canonicalize` method.
+#[derive(Clone, Debug, PartialEq, Eq, Hash)]
+pub struct UCanonical<T: HasInterner> {
+ /// The wrapped `Canonical`.
+ pub canonical: Canonical<T>,
+
+ /// The number of universes that have been collapsed.
+ pub universes: usize,
+}
+
+impl<T: HasInterner> UCanonical<T> {
+ /// Checks whether the universe canonical value is a trivial
+ /// substitution (e.g. an identity substitution).
+ pub fn is_trivial_substitution(
+ &self,
+ interner: T::Interner,
+ canonical_subst: &Canonical<AnswerSubst<T::Interner>>,
+ ) -> bool {
+ let subst = &canonical_subst.value.subst;
+ assert_eq!(
+ self.canonical.binders.len(interner),
+ subst.as_slice(interner).len()
+ );
+ subst.is_identity_subst(interner)
+ }
+
+ /// Creates an identity substitution.
+ pub fn trivial_substitution(&self, interner: T::Interner) -> Substitution<T::Interner> {
+ let binders = &self.canonical.binders;
+ Substitution::from_iter(
+ interner,
+ binders
+ .iter(interner)
+ .enumerate()
+ .map(|(index, pk)| {
+ let bound_var = BoundVar::new(DebruijnIndex::INNERMOST, index);
+ match &pk.kind {
+ VariableKind::Ty(_) => {
+ GenericArgData::Ty(TyKind::BoundVar(bound_var).intern(interner))
+ .intern(interner)
+ }
+ VariableKind::Lifetime => GenericArgData::Lifetime(
+ LifetimeData::BoundVar(bound_var).intern(interner),
+ )
+ .intern(interner),
+ VariableKind::Const(ty) => GenericArgData::Const(
+ ConstData {
+ ty: ty.clone(),
+ value: ConstValue::BoundVar(bound_var),
+ }
+ .intern(interner),
+ )
+ .intern(interner),
+ }
+ })
+ .collect::<Vec<_>>(),
+ )
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+/// A general goal; this is the full range of questions you can pose to Chalk.
+pub struct Goal<I: Interner> {
+ interned: I::InternedGoal,
+}
+
+impl<I: Interner> Goal<I> {
+ /// Create a new goal using `GoalData`.
+ pub fn new(interner: I, interned: GoalData<I>) -> Self {
+ let interned = I::intern_goal(interner, interned);
+ Self { interned }
+ }
+
+ /// Gets the interned goal.
+ pub fn interned(&self) -> &I::InternedGoal {
+ &self.interned
+ }
+
+ /// Gets the interned goal data.
+ pub fn data(&self, interner: I) -> &GoalData<I> {
+ interner.goal_data(&self.interned)
+ }
+
+ /// Create a goal using a `forall` or `exists` quantifier.
+ pub fn quantify(self, interner: I, kind: QuantifierKind, binders: VariableKinds<I>) -> Goal<I> {
+ GoalData::Quantified(kind, Binders::new(binders, self)).intern(interner)
+ }
+
+ /// Takes a goal `G` and turns it into `not { G }`.
+ pub fn negate(self, interner: I) -> Self {
+ GoalData::Not(self).intern(interner)
+ }
+
+ /// Takes a goal `G` and turns it into `compatible { G }`.
+ pub fn compatible(self, interner: I) -> Self {
+ // compatible { G } desugars into: forall<T> { if (Compatible, DownstreamType(T)) { G } }
+ // This activates the compatible modality rules and introduces an anonymous downstream type
+ GoalData::Quantified(
+ QuantifierKind::ForAll,
+ Binders::with_fresh_type_var(interner, |ty| {
+ GoalData::Implies(
+ ProgramClauses::from_iter(
+ interner,
+ vec![DomainGoal::Compatible, DomainGoal::DownstreamType(ty)],
+ ),
+ self.shifted_in(interner),
+ )
+ .intern(interner)
+ }),
+ )
+ .intern(interner)
+ }
+
+ /// Create an implication goal that holds if the predicates are true.
+ pub fn implied_by(self, interner: I, predicates: ProgramClauses<I>) -> Goal<I> {
+ GoalData::Implies(predicates, self).intern(interner)
+ }
+
+ /// True if this goal is "trivially true" -- i.e., no work is
+ /// required to prove it.
+ pub fn is_trivially_true(&self, interner: I) -> bool {
+ match self.data(interner) {
+ GoalData::All(goals) => goals.is_empty(interner),
+ _ => false,
+ }
+ }
+}
+
+impl<I> Goal<I>
+where
+ I: Interner,
+{
+ /// Creates a single goal that only holds if a list of goals holds.
+ pub fn all<II>(interner: I, iter: II) -> Self
+ where
+ II: IntoIterator<Item = Goal<I>>,
+ {
+ let mut iter = iter.into_iter();
+ if let Some(goal0) = iter.next() {
+ if let Some(goal1) = iter.next() {
+ // More than one goal to prove
+ let goals = Goals::from_iter(
+ interner,
+ Some(goal0).into_iter().chain(Some(goal1)).chain(iter),
+ );
+ GoalData::All(goals).intern(interner)
+ } else {
+ // One goal to prove
+ goal0
+ }
+ } else {
+ // No goals to prove, always true
+ GoalData::All(Goals::empty(interner)).intern(interner)
+ }
+ }
+}
+
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+/// A general goal; this is the full range of questions you can pose to Chalk.
+pub enum GoalData<I: Interner> {
+ /// Introduces a binding at depth 0, shifting other bindings up
+ /// (deBruijn index).
+ Quantified(QuantifierKind, Binders<Goal<I>>),
+
+ /// A goal that holds given some clauses (like an if-statement).
+ Implies(ProgramClauses<I>, Goal<I>),
+
+ /// List of goals that all should hold.
+ All(Goals<I>),
+
+ /// Negation: the inner goal should not hold.
+ Not(Goal<I>),
+
+ /// Make two things equal; the rules for doing so are well known to the logic
+ EqGoal(EqGoal<I>),
+
+ /// Make one thing a subtype of another; the rules for doing so are well known to the logic
+ SubtypeGoal(SubtypeGoal<I>),
+
+ /// A "domain goal" indicates some base sort of goal that can be
+ /// proven via program clauses
+ DomainGoal(DomainGoal<I>),
+
+ /// Indicates something that cannot be proven to be true or false
+ /// definitively. This can occur with overflow but also with
+ /// unifications of skolemized variables like `forall<X,Y> { X = Y
+ /// }`. Of course, that statement is false, as there exist types
+ /// X, Y where `X = Y` is not true. But we treat it as "cannot
+ /// prove" so that `forall<X,Y> { not { X = Y } }` also winds up
+ /// as cannot prove.
+ CannotProve,
+}
+
+impl<I: Interner> Copy for GoalData<I>
+where
+ I::InternedType: Copy,
+ I::InternedLifetime: Copy,
+ I::InternedGenericArg: Copy,
+ I::InternedSubstitution: Copy,
+ I::InternedGoal: Copy,
+ I::InternedGoals: Copy,
+ I::InternedProgramClauses: Copy,
+ I::InternedVariableKinds: Copy,
+{
+}
+
+impl<I: Interner> GoalData<I> {
+ /// Create an interned goal.
+ pub fn intern(self, interner: I) -> Goal<I> {
+ Goal::new(interner, self)
+ }
+}
+
+/// Kinds of quantifiers in the logic, such as `forall` and `exists`.
+#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
+pub enum QuantifierKind {
+ /// Universal quantifier `ForAll`.
+ ///
+ /// A formula with the universal quantifier `forall(x). P(x)` is satisfiable
+ /// if and only if the subformula `P(x)` is true for all possible values for x.
+ ForAll,
+
+ /// Existential quantifier `Exists`.
+ ///
+ /// A formula with the existential quantifier `exists(x). P(x)` is satisfiable
+ /// if and only if there exists at least one value for all possible values of x
+ /// which satisfies the subformula `P(x)`.
+
+ /// In the context of chalk, the existential quantifier usually demands the
+ /// existence of exactly one instance (i.e. type) that satisfies the formula
+ /// (i.e. type constraints). More than one instance means that the result is ambiguous.
+ Exists,
+}
+
+/// A constraint on lifetimes.
+///
+/// When we search for solutions within the trait system, we essentially ignore
+/// lifetime constraints, instead gathering them up to return with our solution
+/// for later checking. This allows for decoupling between type and region
+/// checking in the compiler.
+#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
+pub enum Constraint<I: Interner> {
+ /// Outlives constraint `'a: 'b`, indicating that the value of `'a` must be
+ /// a superset of the value of `'b`.
+ LifetimeOutlives(Lifetime<I>, Lifetime<I>),
+
+ /// Type outlives constraint `T: 'a`, indicating that the type `T` must live
+ /// at least as long as the value of `'a`.
+ TypeOutlives(Ty<I>, Lifetime<I>),
+}
+
+impl<I: Interner> Copy for Constraint<I>
+where
+ I::InternedLifetime: Copy,
+ I::InternedType: Copy,
+{
+}
+
+impl<I: Interner> Substitution<I> {
+ /// A substitution is an **identity substitution** if it looks
+ /// like this
+ ///
+ /// ```text
+ /// ?0 := ?0
+ /// ?1 := ?1
+ /// ?2 := ?2
+ /// ...
+ /// ```
+ ///
+ /// Basically, each value is mapped to a type or lifetime with its
+ /// same index.
+ pub fn is_identity_subst(&self, interner: I) -> bool {
+ self.iter(interner).zip(0..).all(|(generic_arg, index)| {
+ let index_db = BoundVar::new(DebruijnIndex::INNERMOST, index);
+ match generic_arg.data(interner) {
+ GenericArgData::Ty(ty) => match ty.kind(interner) {
+ TyKind::BoundVar(depth) => index_db == *depth,
+ _ => false,
+ },
+ GenericArgData::Lifetime(lifetime) => match lifetime.data(interner) {
+ LifetimeData::BoundVar(depth) => index_db == *depth,
+ _ => false,
+ },
+ GenericArgData::Const(constant) => match &constant.data(interner).value {
+ ConstValue::BoundVar(depth) => index_db == *depth,
+ _ => false,
+ },
+ }
+ })
+ }
+
+ /// Apply the substitution to a value.
+ pub fn apply<T>(&self, value: T, interner: I) -> T
+ where
+ T: TypeFoldable<I>,
+ {
+ Substitute::apply(self, value, interner)
+ }
+
+ /// Gets an iterator of all type parameters.
+ pub fn type_parameters(&self, interner: I) -> impl Iterator<Item = Ty<I>> + '_ {
+ self.iter(interner)
+ .filter_map(move |p| p.ty(interner))
+ .cloned()
+ }
+
+ /// Compute type flags for Substitution<I>
+ fn compute_flags(&self, interner: I) -> TypeFlags {
+ let mut flags = TypeFlags::empty();
+ for generic_arg in self.iter(interner) {
+ flags |= generic_arg.compute_flags(interner);
+ }
+ flags
+ }
+}
+
+#[derive(FallibleTypeFolder)]
+struct SubstFolder<'i, I: Interner, A: AsParameters<I>> {
+ interner: I,
+ subst: &'i A,
+}
+
+impl<I: Interner, A: AsParameters<I>> SubstFolder<'_, I, A> {
+ /// Index into the list of parameters.
+ pub fn at(&self, index: usize) -> &GenericArg<I> {
+ let interner = self.interner;
+ &self.subst.as_parameters(interner)[index]
+ }
+}
+
+/// Convert a value to a list of parameters.
+pub trait AsParameters<I: Interner> {
+ /// Convert the current value to parameters.
+ fn as_parameters(&self, interner: I) -> &[GenericArg<I>];
+}
+
+impl<I: Interner> AsParameters<I> for Substitution<I> {
+ #[allow(unreachable_code, unused_variables)]
+ fn as_parameters(&self, interner: I) -> &[GenericArg<I>] {
+ self.as_slice(interner)
+ }
+}
+
+impl<I: Interner> AsParameters<I> for [GenericArg<I>] {
+ fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
+ self
+ }
+}
+
+impl<I: Interner> AsParameters<I> for [GenericArg<I>; 1] {
+ fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
+ self
+ }
+}
+
+impl<I: Interner> AsParameters<I> for Vec<GenericArg<I>> {
+ fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
+ self
+ }
+}
+
+impl<T, I: Interner> AsParameters<I> for &T
+where
+ T: ?Sized + AsParameters<I>,
+{
+ fn as_parameters(&self, interner: I) -> &[GenericArg<I>] {
+ T::as_parameters(self, interner)
+ }
+}
+
+/// An extension trait to anything that can be represented as list of `GenericArg`s that signifies
+/// that it can applied as a substituion to a value
+pub trait Substitute<I: Interner>: AsParameters<I> {
+ /// Apply the substitution to a value.
+ fn apply<T: TypeFoldable<I>>(&self, value: T, interner: I) -> T;
+}
+
+impl<I: Interner, A: AsParameters<I>> Substitute<I> for A {
+ fn apply<T>(&self, value: T, interner: I) -> T
+ where
+ T: TypeFoldable<I>,
+ {
+ value
+ .try_fold_with(
+ &mut SubstFolder {
+ interner,
+ subst: self,
+ },
+ DebruijnIndex::INNERMOST,
+ )
+ .unwrap()
+ }
+}
+
+/// Utility for converting a list of all the binders into scope
+/// into references to those binders. Simply pair the binders with
+/// the indices, and invoke `to_generic_arg()` on the `(binder,
+/// index)` pair. The result will be a reference to a bound
+/// variable of appropriate kind at the corresponding index.
+pub trait ToGenericArg<I: Interner> {
+ /// Converts the binders in scope to references to those binders.
+ fn to_generic_arg(&self, interner: I) -> GenericArg<I> {
+ self.to_generic_arg_at_depth(interner, DebruijnIndex::INNERMOST)
+ }
+
+ /// Converts the binders at the specified depth to references to those binders.
+ fn to_generic_arg_at_depth(&self, interner: I, debruijn: DebruijnIndex) -> GenericArg<I>;
+}
+
+impl<'a, I: Interner> ToGenericArg<I> for (usize, &'a VariableKind<I>) {
+ fn to_generic_arg_at_depth(&self, interner: I, debruijn: DebruijnIndex) -> GenericArg<I> {
+ let &(index, binder) = self;
+ let bound_var = BoundVar::new(debruijn, index);
+ binder.to_bound_variable(interner, bound_var)
+ }
+}
+
+impl<'i, I: Interner, A: AsParameters<I>> TypeFolder<I> for SubstFolder<'i, I, A> {
+ fn as_dyn(&mut self) -> &mut dyn TypeFolder<I> {
+ self
+ }
+
+ fn fold_free_var_ty(&mut self, bound_var: BoundVar, outer_binder: DebruijnIndex) -> Ty<I> {
+ assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
+ let ty = self.at(bound_var.index);
+ let ty = ty.assert_ty_ref(TypeFolder::interner(self));
+ ty.clone()
+ .shifted_in_from(TypeFolder::interner(self), outer_binder)
+ }
+
+ fn fold_free_var_lifetime(
+ &mut self,
+ bound_var: BoundVar,
+ outer_binder: DebruijnIndex,
+ ) -> Lifetime<I> {
+ assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
+ let l = self.at(bound_var.index);
+ let l = l.assert_lifetime_ref(TypeFolder::interner(self));
+ l.clone()
+ .shifted_in_from(TypeFolder::interner(self), outer_binder)
+ }
+
+ fn fold_free_var_const(
+ &mut self,
+ _ty: Ty<I>,
+ bound_var: BoundVar,
+ outer_binder: DebruijnIndex,
+ ) -> Const<I> {
+ assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
+ let c = self.at(bound_var.index);
+ let c = c.assert_const_ref(TypeFolder::interner(self));
+ c.clone()
+ .shifted_in_from(TypeFolder::interner(self), outer_binder)
+ }
+
+ fn interner(&self) -> I {
+ self.interner
+ }
+}
+
+macro_rules! interned_slice_common {
+ ($seq:ident, $data:ident => $elem:ty, $intern:ident => $interned:ident) => {
+ /// List of interned elements.
+ #[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
+ pub struct $seq<I: Interner> {
+ interned: I::$interned,
+ }
+
+ impl<I: Interner> $seq<I> {
+ /// Get the interned elements.
+ pub fn interned(&self) -> &I::$interned {
+ &self.interned
+ }
+
+ /// Returns a slice containing the elements.
+ pub fn as_slice(&self, interner: I) -> &[$elem] {
+ Interner::$data(interner, &self.interned)
+ }
+
+ /// Index into the sequence.
+ pub fn at(&self, interner: I, index: usize) -> &$elem {
+ &self.as_slice(interner)[index]
+ }
+
+ /// Create an empty sequence.
+ pub fn empty(interner: I) -> Self {
+ Self::from_iter(interner, None::<$elem>)
+ }
+
+ /// Check whether this is an empty sequence.
+ pub fn is_empty(&self, interner: I) -> bool {
+ self.as_slice(interner).is_empty()
+ }
+
+ /// Get an iterator over the elements of the sequence.
+ pub fn iter(&self, interner: I) -> std::slice::Iter<'_, $elem> {
+ self.as_slice(interner).iter()
+ }
+
+ /// Get the length of the sequence.
+ pub fn len(&self, interner: I) -> usize {
+ self.as_slice(interner).len()
+ }
+ }
+ };
+}
+
+macro_rules! interned_slice {
+ ($seq:ident, $data:ident => $elem:ty, $intern:ident => $interned:ident) => {
+ interned_slice_common!($seq, $data => $elem, $intern => $interned);
+
+ impl<I: Interner> $seq<I> {
+ /// Tries to create a sequence using an iterator of element-like things.
+ pub fn from_fallible<E>(
+ interner: I,
+ elements: impl IntoIterator<Item = Result<impl CastTo<$elem>, E>>,
+ ) -> Result<Self, E> {
+ Ok(Self {
+ interned: I::$intern(interner, elements.into_iter().casted(interner))?,
+ })
+ }
+
+ /// Create a sequence from elements
+ pub fn from_iter(
+ interner: I,
+ elements: impl IntoIterator<Item = impl CastTo<$elem>>,
+ ) -> Self {
+ Self::from_fallible(
+ interner,
+ elements
+ .into_iter()
+ .map(|el| -> Result<$elem, ()> { Ok(el.cast(interner)) }),
+ )
+ .unwrap()
+ }
+
+ /// Create a sequence from a single element.
+ pub fn from1(interner: I, element: impl CastTo<$elem>) -> Self {
+ Self::from_iter(interner, Some(element))
+ }
+ }
+ };
+}
+
+interned_slice!(
+ QuantifiedWhereClauses,
+ quantified_where_clauses_data => QuantifiedWhereClause<I>,
+ intern_quantified_where_clauses => InternedQuantifiedWhereClauses
+);
+
+interned_slice!(
+ ProgramClauses,
+ program_clauses_data => ProgramClause<I>,
+ intern_program_clauses => InternedProgramClauses
+);
+
+interned_slice!(
+ VariableKinds,
+ variable_kinds_data => VariableKind<I>,
+ intern_generic_arg_kinds => InternedVariableKinds
+);
+
+interned_slice!(
+ CanonicalVarKinds,
+ canonical_var_kinds_data => CanonicalVarKind<I>,
+ intern_canonical_var_kinds => InternedCanonicalVarKinds
+);
+
+interned_slice!(Goals, goals_data => Goal<I>, intern_goals => InternedGoals);
+
+interned_slice!(
+ Constraints,
+ constraints_data => InEnvironment<Constraint<I>>,
+ intern_constraints => InternedConstraints
+);
+
+interned_slice!(
+ Substitution,
+ substitution_data => GenericArg<I>,
+ intern_substitution => InternedSubstitution
+);
+
+interned_slice_common!(
+ Variances,
+ variances_data => Variance,
+ intern_variance => InternedVariances
+);
+
+impl<I: Interner> Variances<I> {
+ /// Tries to create a list of canonical variable kinds using an iterator.
+ pub fn from_fallible<E>(
+ interner: I,
+ variances: impl IntoIterator<Item = Result<Variance, E>>,
+ ) -> Result<Self, E> {
+ Ok(Variances {
+ interned: I::intern_variances(interner, variances.into_iter())?,
+ })
+ }
+
+ /// Creates a list of canonical variable kinds using an iterator.
+ pub fn from_iter(interner: I, variances: impl IntoIterator<Item = Variance>) -> Self {
+ Self::from_fallible(
+ interner,
+ variances
+ .into_iter()
+ .map(|p| -> Result<Variance, ()> { Ok(p) }),
+ )
+ .unwrap()
+ }
+
+ /// Creates a list of canonical variable kinds from a single canonical variable kind.
+ pub fn from1(interner: I, variance: Variance) -> Self {
+ Self::from_iter(interner, Some(variance))
+ }
+}
+
+/// Combines a substitution (`subst`) with a set of region constraints
+/// (`constraints`). This represents the result of a query; the
+/// substitution stores the values for the query's unknown variables,
+/// and the constraints represents any region constraints that must
+/// additionally be solved.
+#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
+pub struct ConstrainedSubst<I: Interner> {
+ /// The substitution that is being constrained.
+ ///
+ /// NB: The `is_trivial` routine relies on the fact that `subst` is folded first.
+ pub subst: Substitution<I>,
+
+ /// Region constraints that constrain the substitution.
+ pub constraints: Constraints<I>,
+}
+
+/// The resulting substitution after solving a goal.
+#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
+pub struct AnswerSubst<I: Interner> {
+ /// The substitution result.
+ ///
+ /// NB: The `is_trivial` routine relies on the fact that `subst` is folded first.
+ pub subst: Substitution<I>,
+
+ /// List of constraints that are part of the answer.
+ pub constraints: Constraints<I>,
+
+ /// Delayed subgoals, used when the solver answered with an (incomplete) `Answer` (instead of a `CompleteAnswer`).
+ pub delayed_subgoals: Vec<InEnvironment<Goal<I>>>,
+}
+
+/// Logic to decide the Variance for a given subst
+pub trait UnificationDatabase<I>
+where
+ Self: std::fmt::Debug,
+ I: Interner,
+{
+ /// Gets the variances for the substitution of a fn def
+ fn fn_def_variance(&self, fn_def_id: FnDefId<I>) -> Variances<I>;
+
+ /// Gets the variances for the substitution of a adt
+ fn adt_variance(&self, adt_id: AdtId<I>) -> Variances<I>;
+}