summaryrefslogtreecommitdiffstats
path: root/vendor/chalk-solve-0.87.0/src/infer/unify.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/chalk-solve-0.87.0/src/infer/unify.rs')
-rw-r--r--vendor/chalk-solve-0.87.0/src/infer/unify.rs1448
1 files changed, 1448 insertions, 0 deletions
diff --git a/vendor/chalk-solve-0.87.0/src/infer/unify.rs b/vendor/chalk-solve-0.87.0/src/infer/unify.rs
new file mode 100644
index 000000000..10086e651
--- /dev/null
+++ b/vendor/chalk-solve-0.87.0/src/infer/unify.rs
@@ -0,0 +1,1448 @@
+use super::var::*;
+use super::*;
+use crate::debug_span;
+use chalk_ir::cast::Cast;
+use chalk_ir::fold::{FallibleTypeFolder, TypeFoldable};
+use chalk_ir::interner::{HasInterner, Interner};
+use chalk_ir::zip::{Zip, Zipper};
+use chalk_ir::UnificationDatabase;
+use std::fmt::Debug;
+use tracing::{debug, instrument};
+
+impl<I: Interner> InferenceTable<I> {
+ pub fn relate<T>(
+ &mut self,
+ interner: I,
+ db: &dyn UnificationDatabase<I>,
+ environment: &Environment<I>,
+ variance: Variance,
+ a: &T,
+ b: &T,
+ ) -> Fallible<RelationResult<I>>
+ where
+ T: ?Sized + Zip<I>,
+ {
+ let snapshot = self.snapshot();
+ match Unifier::new(interner, db, self, environment).relate(variance, a, b) {
+ Ok(r) => {
+ self.commit(snapshot);
+ Ok(r)
+ }
+ Err(e) => {
+ self.rollback_to(snapshot);
+ Err(e)
+ }
+ }
+ }
+}
+
+struct Unifier<'t, I: Interner> {
+ table: &'t mut InferenceTable<I>,
+ environment: &'t Environment<I>,
+ goals: Vec<InEnvironment<Goal<I>>>,
+ interner: I,
+ db: &'t dyn UnificationDatabase<I>,
+}
+
+#[derive(Debug)]
+pub struct RelationResult<I: Interner> {
+ pub goals: Vec<InEnvironment<Goal<I>>>,
+}
+
+impl<'t, I: Interner> Unifier<'t, I> {
+ fn new(
+ interner: I,
+ db: &'t dyn UnificationDatabase<I>,
+ table: &'t mut InferenceTable<I>,
+ environment: &'t Environment<I>,
+ ) -> Self {
+ Unifier {
+ environment,
+ table,
+ goals: vec![],
+ interner,
+ db,
+ }
+ }
+
+ /// The main entry point for the `Unifier` type and really the
+ /// only type meant to be called externally. Performs a
+ /// relation of `a` and `b` and returns the Unification Result.
+ #[instrument(level = "debug", skip(self))]
+ fn relate<T>(mut self, variance: Variance, a: &T, b: &T) -> Fallible<RelationResult<I>>
+ where
+ T: ?Sized + Zip<I>,
+ {
+ Zip::zip_with(&mut self, variance, a, b)?;
+ let interner = self.interner();
+ let mut goals = self.goals;
+ let table = self.table;
+ // Sometimes we'll produce a lifetime outlives goal which we later solve by unification
+ // Technically, these *will* get canonicalized to the same bound var and so that will end up
+ // as a goal like `^0.0 <: ^0.0`, which is trivially true. But, we remove those *here*, which
+ // might help caching.
+ goals.retain(|g| match g.goal.data(interner) {
+ GoalData::SubtypeGoal(SubtypeGoal { a, b }) => {
+ let n_a = table.ty_root(interner, a);
+ let n_b = table.ty_root(interner, b);
+ let a = n_a.as_ref().unwrap_or(a);
+ let b = n_b.as_ref().unwrap_or(b);
+ a != b
+ }
+ _ => true,
+ });
+ Ok(RelationResult { goals })
+ }
+
+ /// Relate `a`, `b` with the variance such that if `variance = Covariant`, `a` is
+ /// a subtype of `b`.
+ fn relate_ty_ty(&mut self, variance: Variance, a: &Ty<I>, b: &Ty<I>) -> Fallible<()> {
+ let interner = self.interner;
+
+ let n_a = self.table.normalize_ty_shallow(interner, a);
+ let n_b = self.table.normalize_ty_shallow(interner, b);
+ let a = n_a.as_ref().unwrap_or(a);
+ let b = n_b.as_ref().unwrap_or(b);
+
+ debug_span!("relate_ty_ty", ?variance, ?a, ?b);
+
+ if a.kind(interner) == b.kind(interner) {
+ return Ok(());
+ }
+
+ match (a.kind(interner), b.kind(interner)) {
+ // Relating two inference variables:
+ // First, if either variable is a float or int kind, then we always
+ // unify if they match. This is because float and ints don't have
+ // subtype relationships.
+ // If both kinds are general then:
+ // If `Invariant`, unify them in the underlying ena table.
+ // If `Covariant` or `Contravariant`, push `SubtypeGoal`
+ (&TyKind::InferenceVar(var1, kind1), &TyKind::InferenceVar(var2, kind2)) => {
+ if matches!(kind1, TyVariableKind::General)
+ && matches!(kind2, TyVariableKind::General)
+ {
+ // Both variable kinds are general; so unify if invariant, otherwise push subtype goal
+ match variance {
+ Variance::Invariant => self.unify_var_var(var1, var2),
+ Variance::Covariant => {
+ self.push_subtype_goal(a.clone(), b.clone());
+ Ok(())
+ }
+ Variance::Contravariant => {
+ self.push_subtype_goal(b.clone(), a.clone());
+ Ok(())
+ }
+ }
+ } else if kind1 == kind2 {
+ // At least one kind is not general, but they match, so unify
+ self.unify_var_var(var1, var2)
+ } else if kind1 == TyVariableKind::General {
+ // First kind is general, second isn't, unify
+ self.unify_general_var_specific_ty(var1, b.clone())
+ } else if kind2 == TyVariableKind::General {
+ // Second kind is general, first isn't, unify
+ self.unify_general_var_specific_ty(var2, a.clone())
+ } else {
+ debug!(
+ "Tried to unify mis-matching inference variables: {:?} and {:?}",
+ kind1, kind2
+ );
+ Err(NoSolution)
+ }
+ }
+
+ // Unifying `forall<X> { T }` with some other forall type `forall<X> { U }`
+ (&TyKind::Function(ref fn1), &TyKind::Function(ref fn2)) => {
+ if fn1.sig == fn2.sig {
+ Zip::zip_with(
+ self,
+ variance,
+ &fn1.clone().into_binders(interner),
+ &fn2.clone().into_binders(interner),
+ )
+ } else {
+ Err(NoSolution)
+ }
+ }
+
+ (&TyKind::Placeholder(ref p1), &TyKind::Placeholder(ref p2)) => {
+ Zip::zip_with(self, variance, p1, p2)
+ }
+
+ // Unifying two dyn is possible if they have the same bounds.
+ (&TyKind::Dyn(ref qwc1), &TyKind::Dyn(ref qwc2)) => {
+ Zip::zip_with(self, variance, qwc1, qwc2)
+ }
+
+ (TyKind::BoundVar(_), _) | (_, TyKind::BoundVar(_)) => panic!(
+ "unification encountered bound variable: a={:?} b={:?}",
+ a, b
+ ),
+
+ // Unifying an alias type with some other type `U`.
+ (_, &TyKind::Alias(ref alias)) => self.relate_alias_ty(variance.invert(), alias, a),
+ (&TyKind::Alias(ref alias), _) => self.relate_alias_ty(variance, alias, b),
+
+ (&TyKind::InferenceVar(var, kind), ty_data) => {
+ let ty = ty_data.clone().intern(interner);
+ self.relate_var_ty(variance, var, kind, &ty)
+ }
+ (ty_data, &TyKind::InferenceVar(var, kind)) => {
+ // We need to invert the variance if inference var is `b` because we pass it in
+ // as `a` to relate_var_ty
+ let ty = ty_data.clone().intern(interner);
+ self.relate_var_ty(variance.invert(), var, kind, &ty)
+ }
+
+ // This would correspond to unifying a `fn` type with a non-fn
+ // type in Rust; error.
+ (&TyKind::Function(_), _) | (_, &TyKind::Function(_)) => Err(NoSolution),
+
+ // Cannot unify (e.g.) some struct type `Foo` and a placeholder like `T`
+ (_, &TyKind::Placeholder(_)) | (&TyKind::Placeholder(_), _) => Err(NoSolution),
+
+ // Cannot unify `dyn Trait` with things like structs or placeholders
+ (_, &TyKind::Dyn(_)) | (&TyKind::Dyn(_), _) => Err(NoSolution),
+
+ (TyKind::Adt(id_a, substitution_a), TyKind::Adt(id_b, substitution_b)) => {
+ if id_a != id_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ Some(self.unification_database().adt_variance(*id_a)),
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (
+ TyKind::AssociatedType(id_a, substitution_a),
+ TyKind::AssociatedType(id_b, substitution_b),
+ ) => {
+ if id_a != id_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ None, // TODO: AssociatedType variances?
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (TyKind::Scalar(scalar_a), TyKind::Scalar(scalar_b)) => {
+ Zip::zip_with(self, variance, scalar_a, scalar_b)
+ }
+ (TyKind::Str, TyKind::Str) => Ok(()),
+ (TyKind::Tuple(arity_a, substitution_a), TyKind::Tuple(arity_b, substitution_b)) => {
+ if arity_a != arity_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ Some(Variances::from_iter(
+ self.interner,
+ std::iter::repeat(Variance::Covariant).take(*arity_a),
+ )),
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (
+ TyKind::OpaqueType(id_a, substitution_a),
+ TyKind::OpaqueType(id_b, substitution_b),
+ ) => {
+ if id_a != id_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ None,
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => Zip::zip_with(self, variance, ty_a, ty_b),
+ (TyKind::FnDef(id_a, substitution_a), TyKind::FnDef(id_b, substitution_b)) => {
+ if id_a != id_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ Some(self.unification_database().fn_def_variance(*id_a)),
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (
+ TyKind::Ref(mutability_a, lifetime_a, ty_a),
+ TyKind::Ref(mutability_b, lifetime_b, ty_b),
+ ) => {
+ if mutability_a != mutability_b {
+ return Err(NoSolution);
+ }
+ // The lifetime is `Contravariant`
+ Zip::zip_with(
+ self,
+ variance.xform(Variance::Contravariant),
+ lifetime_a,
+ lifetime_b,
+ )?;
+ // The type is `Covariant` when not mut, `Invariant` otherwise
+ let output_variance = match mutability_a {
+ Mutability::Not => Variance::Covariant,
+ Mutability::Mut => Variance::Invariant,
+ };
+ Zip::zip_with(self, variance.xform(output_variance), ty_a, ty_b)
+ }
+ (TyKind::Raw(mutability_a, ty_a), TyKind::Raw(mutability_b, ty_b)) => {
+ if mutability_a != mutability_b {
+ return Err(NoSolution);
+ }
+ let ty_variance = match mutability_a {
+ Mutability::Not => Variance::Covariant,
+ Mutability::Mut => Variance::Invariant,
+ };
+ Zip::zip_with(self, variance.xform(ty_variance), ty_a, ty_b)
+ }
+ (TyKind::Never, TyKind::Never) => Ok(()),
+ (TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) => {
+ Zip::zip_with(self, variance, ty_a, ty_b)?;
+ Zip::zip_with(self, variance, const_a, const_b)
+ }
+ (TyKind::Closure(id_a, substitution_a), TyKind::Closure(id_b, substitution_b)) => {
+ if id_a != id_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ None,
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (TyKind::Generator(id_a, substitution_a), TyKind::Generator(id_b, substitution_b)) => {
+ if id_a != id_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ None,
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (
+ TyKind::GeneratorWitness(id_a, substitution_a),
+ TyKind::GeneratorWitness(id_b, substitution_b),
+ ) => {
+ if id_a != id_b {
+ return Err(NoSolution);
+ }
+ self.zip_substs(
+ variance,
+ None,
+ substitution_a.as_slice(interner),
+ substitution_b.as_slice(interner),
+ )
+ }
+ (TyKind::Foreign(id_a), TyKind::Foreign(id_b)) => {
+ Zip::zip_with(self, variance, id_a, id_b)
+ }
+ (TyKind::Error, TyKind::Error) => Ok(()),
+
+ (_, _) => Err(NoSolution),
+ }
+ }
+
+ /// Unify two inference variables
+ #[instrument(level = "debug", skip(self))]
+ fn unify_var_var(&mut self, a: InferenceVar, b: InferenceVar) -> Fallible<()> {
+ let var1 = EnaVariable::from(a);
+ let var2 = EnaVariable::from(b);
+ self.table
+ .unify
+ .unify_var_var(var1, var2)
+ .expect("unification of two unbound variables cannot fail");
+ Ok(())
+ }
+
+ /// Unify a general inference variable with a specific inference variable
+ /// (type kind is not `General`). For example, unify a `TyVariableKind::General`
+ /// inference variable with a `TyVariableKind::Integer` variable, resulting in the
+ /// general inference variable narrowing to an integer variable.
+
+ #[instrument(level = "debug", skip(self))]
+ fn unify_general_var_specific_ty(
+ &mut self,
+ general_var: InferenceVar,
+ specific_ty: Ty<I>,
+ ) -> Fallible<()> {
+ self.table
+ .unify
+ .unify_var_value(
+ general_var,
+ InferenceValue::from_ty(self.interner, specific_ty),
+ )
+ .unwrap();
+
+ Ok(())
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn relate_binders<'a, T>(
+ &mut self,
+ variance: Variance,
+ a: &Binders<T>,
+ b: &Binders<T>,
+ ) -> Fallible<()>
+ where
+ T: Clone + TypeFoldable<I> + HasInterner<Interner = I> + Zip<I>,
+ 't: 'a,
+ {
+ // for<'a...> T == for<'b...> U
+ //
+ // if:
+ //
+ // for<'a...> exists<'b...> T == U &&
+ // for<'b...> exists<'a...> T == U
+
+ // for<'a...> T <: for<'b...> U
+ //
+ // if
+ //
+ // for<'b...> exists<'a...> T <: U
+
+ let interner = self.interner;
+
+ if let Variance::Invariant | Variance::Contravariant = variance {
+ let a_universal = self
+ .table
+ .instantiate_binders_universally(interner, a.clone());
+ let b_existential = self
+ .table
+ .instantiate_binders_existentially(interner, b.clone());
+ Zip::zip_with(self, Variance::Contravariant, &a_universal, &b_existential)?;
+ }
+
+ if let Variance::Invariant | Variance::Covariant = variance {
+ let b_universal = self
+ .table
+ .instantiate_binders_universally(interner, b.clone());
+ let a_existential = self
+ .table
+ .instantiate_binders_existentially(interner, a.clone());
+ Zip::zip_with(self, Variance::Covariant, &a_existential, &b_universal)?;
+ }
+
+ Ok(())
+ }
+
+ /// Relate an alias like `<T as Trait>::Item` or `impl Trait` with some other
+ /// type `ty`. If the variance is `Invariant`, creates a goal like
+ ///
+ /// ```notrust
+ /// AliasEq(<T as Trait>::Item = U) // associated type projection
+ /// AliasEq(impl Trait = U) // impl trait
+ /// ```
+ /// Otherwise, this creates a new variable `?X`, creates a goal like
+ /// ```notrust
+ /// AliasEq(Alias = ?X)
+ /// ```
+ /// and relates `?X` and `ty`.
+ #[instrument(level = "debug", skip(self))]
+ fn relate_alias_ty(
+ &mut self,
+ variance: Variance,
+ alias: &AliasTy<I>,
+ ty: &Ty<I>,
+ ) -> Fallible<()> {
+ let interner = self.interner;
+ match variance {
+ Variance::Invariant => {
+ self.goals.push(InEnvironment::new(
+ self.environment,
+ AliasEq {
+ alias: alias.clone(),
+ ty: ty.clone(),
+ }
+ .cast(interner),
+ ));
+ Ok(())
+ }
+ Variance::Covariant | Variance::Contravariant => {
+ let var = self
+ .table
+ .new_variable(UniverseIndex::root())
+ .to_ty(interner);
+ self.goals.push(InEnvironment::new(
+ self.environment,
+ AliasEq {
+ alias: alias.clone(),
+ ty: var.clone(),
+ }
+ .cast(interner),
+ ));
+ self.relate_ty_ty(variance, &var, ty)
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn generalize_ty(
+ &mut self,
+ ty: &Ty<I>,
+ universe_index: UniverseIndex,
+ variance: Variance,
+ ) -> Ty<I> {
+ let interner = self.interner;
+ match ty.kind(interner) {
+ TyKind::Adt(id, substitution) => {
+ let variances = if matches!(variance, Variance::Invariant) {
+ None
+ } else {
+ Some(self.unification_database().adt_variance(*id))
+ };
+ let get_variance = |i| {
+ variances
+ .as_ref()
+ .map(|v| v.as_slice(interner)[i])
+ .unwrap_or(Variance::Invariant)
+ };
+ TyKind::Adt(
+ *id,
+ self.generalize_substitution(substitution, universe_index, get_variance),
+ )
+ .intern(interner)
+ }
+ TyKind::AssociatedType(id, substitution) => TyKind::AssociatedType(
+ *id,
+ self.generalize_substitution(substitution, universe_index, |_| variance),
+ )
+ .intern(interner),
+ TyKind::Scalar(scalar) => TyKind::Scalar(*scalar).intern(interner),
+ TyKind::Str => TyKind::Str.intern(interner),
+ TyKind::Tuple(arity, substitution) => TyKind::Tuple(
+ *arity,
+ self.generalize_substitution(substitution, universe_index, |_| variance),
+ )
+ .intern(interner),
+ TyKind::OpaqueType(id, substitution) => TyKind::OpaqueType(
+ *id,
+ self.generalize_substitution(substitution, universe_index, |_| variance),
+ )
+ .intern(interner),
+ TyKind::Slice(ty) => {
+ TyKind::Slice(self.generalize_ty(ty, universe_index, variance)).intern(interner)
+ }
+ TyKind::FnDef(id, substitution) => {
+ let variances = if matches!(variance, Variance::Invariant) {
+ None
+ } else {
+ Some(self.unification_database().fn_def_variance(*id))
+ };
+ let get_variance = |i| {
+ variances
+ .as_ref()
+ .map(|v| v.as_slice(interner)[i])
+ .unwrap_or(Variance::Invariant)
+ };
+ TyKind::FnDef(
+ *id,
+ self.generalize_substitution(substitution, universe_index, get_variance),
+ )
+ .intern(interner)
+ }
+ TyKind::Ref(mutability, lifetime, ty) => {
+ let lifetime_variance = variance.xform(Variance::Contravariant);
+ let ty_variance = match mutability {
+ Mutability::Not => Variance::Covariant,
+ Mutability::Mut => Variance::Invariant,
+ };
+ TyKind::Ref(
+ *mutability,
+ self.generalize_lifetime(lifetime, universe_index, lifetime_variance),
+ self.generalize_ty(ty, universe_index, ty_variance),
+ )
+ .intern(interner)
+ }
+ TyKind::Raw(mutability, ty) => {
+ let ty_variance = match mutability {
+ Mutability::Not => Variance::Covariant,
+ Mutability::Mut => Variance::Invariant,
+ };
+ TyKind::Raw(
+ *mutability,
+ self.generalize_ty(ty, universe_index, ty_variance),
+ )
+ .intern(interner)
+ }
+ TyKind::Never => TyKind::Never.intern(interner),
+ TyKind::Array(ty, const_) => TyKind::Array(
+ self.generalize_ty(ty, universe_index, variance),
+ self.generalize_const(const_, universe_index),
+ )
+ .intern(interner),
+ TyKind::Closure(id, substitution) => TyKind::Closure(
+ *id,
+ self.generalize_substitution(substitution, universe_index, |_| variance),
+ )
+ .intern(interner),
+ TyKind::Generator(id, substitution) => TyKind::Generator(
+ *id,
+ self.generalize_substitution(substitution, universe_index, |_| variance),
+ )
+ .intern(interner),
+ TyKind::GeneratorWitness(id, substitution) => TyKind::GeneratorWitness(
+ *id,
+ self.generalize_substitution(substitution, universe_index, |_| variance),
+ )
+ .intern(interner),
+ TyKind::Foreign(id) => TyKind::Foreign(*id).intern(interner),
+ TyKind::Error => TyKind::Error.intern(interner),
+ TyKind::Dyn(dyn_ty) => {
+ let DynTy { bounds, lifetime } = dyn_ty;
+ let lifetime = self.generalize_lifetime(
+ lifetime,
+ universe_index,
+ variance.xform(Variance::Contravariant),
+ );
+
+ let bounds = bounds.map_ref(|value| {
+ let iter = value.iter(interner).map(|sub_var| {
+ sub_var.map_ref(|clause| {
+ match clause {
+ WhereClause::Implemented(trait_ref) => {
+ let TraitRef {
+ ref substitution,
+ trait_id,
+ } = *trait_ref;
+ let substitution = self.generalize_substitution_skip_self(
+ substitution,
+ universe_index,
+ |_| Some(variance),
+ );
+ WhereClause::Implemented(TraitRef {
+ substitution,
+ trait_id,
+ })
+ }
+ WhereClause::AliasEq(alias_eq) => {
+ let AliasEq { alias, ty: _ } = alias_eq;
+ let alias = match alias {
+ AliasTy::Opaque(opaque_ty) => {
+ let OpaqueTy {
+ ref substitution,
+ opaque_ty_id,
+ } = *opaque_ty;
+ let substitution = self.generalize_substitution(
+ substitution,
+ universe_index,
+ |_| variance,
+ );
+ AliasTy::Opaque(OpaqueTy {
+ substitution,
+ opaque_ty_id,
+ })
+ }
+ AliasTy::Projection(projection_ty) => {
+ let ProjectionTy {
+ ref substitution,
+ associated_ty_id,
+ } = *projection_ty;
+ // TODO: We should be skipping "self", which
+ // would be the first element of
+ // "trait_params" if we had a
+ // `RustIrDatabase` to call
+ // `split_projection` on...
+ // let (assoc_ty_datum, trait_params, assoc_type_params) = s.db().split_projection(&self);
+ let substitution = self.generalize_substitution(
+ substitution,
+ universe_index,
+ |_| variance,
+ );
+ AliasTy::Projection(ProjectionTy {
+ substitution,
+ associated_ty_id,
+ })
+ }
+ };
+ let ty =
+ self.table.new_variable(universe_index).to_ty(interner);
+ WhereClause::AliasEq(AliasEq { alias, ty })
+ }
+ WhereClause::TypeOutlives(_) => {
+ let lifetime_var = self.table.new_variable(universe_index);
+ let lifetime = lifetime_var.to_lifetime(interner);
+ let ty_var = self.table.new_variable(universe_index);
+ let ty = ty_var.to_ty(interner);
+ WhereClause::TypeOutlives(TypeOutlives { ty, lifetime })
+ }
+ WhereClause::LifetimeOutlives(_) => {
+ unreachable!("dyn Trait never contains LifetimeOutlive bounds")
+ }
+ }
+ })
+ });
+ QuantifiedWhereClauses::from_iter(interner, iter)
+ });
+
+ TyKind::Dyn(DynTy { bounds, lifetime }).intern(interner)
+ }
+ TyKind::Function(fn_ptr) => {
+ let FnPointer {
+ num_binders,
+ sig,
+ ref substitution,
+ } = *fn_ptr;
+
+ let len = substitution.0.len(interner);
+ let vars = substitution.0.iter(interner).enumerate().map(|(i, var)| {
+ if i < len - 1 {
+ self.generalize_generic_var(
+ var,
+ universe_index,
+ variance.xform(Variance::Contravariant),
+ )
+ } else {
+ self.generalize_generic_var(
+ substitution.0.as_slice(interner).last().unwrap(),
+ universe_index,
+ variance,
+ )
+ }
+ });
+
+ let substitution = FnSubst(Substitution::from_iter(interner, vars));
+
+ TyKind::Function(FnPointer {
+ num_binders,
+ sig,
+ substitution,
+ })
+ .intern(interner)
+ }
+ TyKind::Placeholder(_) | TyKind::BoundVar(_) => {
+ debug!("just generalizing to the ty itself: {:?}", ty);
+ // BoundVar and PlaceHolder have no internal values to be
+ // generic over, so we just relate directly to it
+ ty.clone()
+ }
+ TyKind::Alias(_) => {
+ let ena_var = self.table.new_variable(universe_index);
+ ena_var.to_ty(interner)
+ }
+ TyKind::InferenceVar(_var, kind) => {
+ if matches!(kind, TyVariableKind::Integer | TyVariableKind::Float) {
+ ty.clone()
+ } else if let Some(ty) = self.table.normalize_ty_shallow(interner, ty) {
+ self.generalize_ty(&ty, universe_index, variance)
+ } else if matches!(variance, Variance::Invariant) {
+ ty.clone()
+ } else {
+ let ena_var = self.table.new_variable(universe_index);
+ ena_var.to_ty(interner)
+ }
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn generalize_lifetime(
+ &mut self,
+ lifetime: &Lifetime<I>,
+ universe_index: UniverseIndex,
+ variance: Variance,
+ ) -> Lifetime<I> {
+ if matches!(lifetime.data(self.interner), LifetimeData::BoundVar(_))
+ || matches!(variance, Variance::Invariant)
+ {
+ lifetime.clone()
+ } else {
+ self.table
+ .new_variable(universe_index)
+ .to_lifetime(self.interner)
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn generalize_const(&mut self, const_: &Const<I>, universe_index: UniverseIndex) -> Const<I> {
+ let data = const_.data(self.interner);
+ if matches!(data.value, ConstValue::BoundVar(_)) {
+ const_.clone()
+ } else {
+ self.table
+ .new_variable(universe_index)
+ .to_const(self.interner, data.ty.clone())
+ }
+ }
+
+ fn generalize_generic_var(
+ &mut self,
+ sub_var: &GenericArg<I>,
+ universe_index: UniverseIndex,
+ variance: Variance,
+ ) -> GenericArg<I> {
+ let interner = self.interner;
+ (match sub_var.data(interner) {
+ GenericArgData::Ty(ty) => {
+ GenericArgData::Ty(self.generalize_ty(ty, universe_index, variance))
+ }
+ GenericArgData::Lifetime(lifetime) => GenericArgData::Lifetime(
+ self.generalize_lifetime(lifetime, universe_index, variance),
+ ),
+ GenericArgData::Const(const_value) => {
+ GenericArgData::Const(self.generalize_const(const_value, universe_index))
+ }
+ })
+ .intern(interner)
+ }
+
+ /// Generalizes all but the first
+ #[instrument(level = "debug", skip(self, get_variance))]
+ fn generalize_substitution_skip_self<F: Fn(usize) -> Option<Variance>>(
+ &mut self,
+ substitution: &Substitution<I>,
+ universe_index: UniverseIndex,
+ get_variance: F,
+ ) -> Substitution<I> {
+ let interner = self.interner;
+ let vars = substitution.iter(interner).enumerate().map(|(i, sub_var)| {
+ if i == 0 {
+ sub_var.clone()
+ } else {
+ let variance = get_variance(i).unwrap_or(Variance::Invariant);
+ self.generalize_generic_var(sub_var, universe_index, variance)
+ }
+ });
+ Substitution::from_iter(interner, vars)
+ }
+
+ #[instrument(level = "debug", skip(self, get_variance))]
+ fn generalize_substitution<F: Fn(usize) -> Variance>(
+ &mut self,
+ substitution: &Substitution<I>,
+ universe_index: UniverseIndex,
+ get_variance: F,
+ ) -> Substitution<I> {
+ let interner = self.interner;
+ let vars = substitution.iter(interner).enumerate().map(|(i, sub_var)| {
+ let variance = get_variance(i);
+ self.generalize_generic_var(sub_var, universe_index, variance)
+ });
+
+ Substitution::from_iter(interner, vars)
+ }
+
+ /// Unify an inference variable `var` with some non-inference
+ /// variable `ty`, just bind `var` to `ty`. But we must enforce two conditions:
+ ///
+ /// - `var` does not appear inside of `ty` (the standard `OccursCheck`)
+ /// - `ty` does not reference anything in a lifetime that could not be named in `var`
+ /// (the extended `OccursCheck` created to handle universes)
+ #[instrument(level = "debug", skip(self))]
+ fn relate_var_ty(
+ &mut self,
+ variance: Variance,
+ var: InferenceVar,
+ var_kind: TyVariableKind,
+ ty: &Ty<I>,
+ ) -> Fallible<()> {
+ let interner = self.interner;
+
+ match (var_kind, ty.is_integer(interner), ty.is_float(interner)) {
+ // General inference variables can unify with any type
+ (TyVariableKind::General, _, _)
+ // Integer inference variables can only unify with integer types
+ | (TyVariableKind::Integer, true, _)
+ // Float inference variables can only unify with float types
+ | (TyVariableKind::Float, _, true) => {
+ },
+ _ => return Err(NoSolution),
+ }
+
+ let var = EnaVariable::from(var);
+
+ // Determine the universe index associated with this
+ // variable. This is basically a count of the number of
+ // `forall` binders that had been introduced at the point
+ // this variable was created -- though it may change over time
+ // as the variable is unified.
+ let universe_index = self.table.universe_of_unbound_var(var);
+ // let universe_index = self.table.max_universe();
+
+ debug!("relate_var_ty: universe index of var: {:?}", universe_index);
+
+ debug!("trying fold_with on {:?}", ty);
+ let ty1 = ty
+ .clone()
+ .try_fold_with(
+ &mut OccursCheck::new(self, var, universe_index),
+ DebruijnIndex::INNERMOST,
+ )
+ .map_err(|e| {
+ debug!("failed to fold {:?}", ty);
+ e
+ })?;
+
+ // "Generalize" types. This ensures that we aren't accidentally forcing
+ // too much onto `var`. Instead of directly setting `var` equal to `ty`,
+ // we just take the outermost structure we _know_ `var` holds, and then
+ // apply that to `ty`. This involves creating new inference vars for
+ // everything inside `var`, then calling `relate_ty_ty` to relate those
+ // inference vars to the things they generalized with the correct
+ // variance.
+
+ // The main problem this solves is that lifetime relationships are
+ // relationships, not just eq ones. So when solving &'a u32 <: U,
+ // generalizing we would end up with U = &'a u32. Instead, we want
+ // U = &'b u32, with a lifetime constraint 'a <: 'b. This matters
+ // especially when solving multiple constraints - for example, &'a u32
+ // <: U, &'b u32 <: U (where without generalizing, we'd end up with 'a
+ // <: 'b, where we really want 'a <: 'c, 'b <: 'c for some 'c).
+
+ // Example operation: consider `ty` as `&'x SomeType`. To generalize
+ // this, we create two new vars `'0` and `1`. Then we relate `var` with
+ // `&'0 1` and `&'0 1` with `&'x SomeType`. The second relation will
+ // recurse, and we'll end up relating `'0` with `'x` and `1` with `SomeType`.
+ let generalized_val = self.generalize_ty(&ty1, universe_index, variance);
+
+ debug!("var {:?} generalized to {:?}", var, generalized_val);
+
+ self.table
+ .unify
+ .unify_var_value(
+ var,
+ InferenceValue::from_ty(interner, generalized_val.clone()),
+ )
+ .unwrap();
+ debug!("var {:?} set to {:?}", var, generalized_val);
+
+ self.relate_ty_ty(variance, &generalized_val, &ty1)?;
+
+ debug!(
+ "generalized version {:?} related to original {:?}",
+ generalized_val, ty1
+ );
+
+ Ok(())
+ }
+
+ fn relate_lifetime_lifetime(
+ &mut self,
+ variance: Variance,
+ a: &Lifetime<I>,
+ b: &Lifetime<I>,
+ ) -> Fallible<()> {
+ let interner = self.interner;
+
+ let n_a = self.table.normalize_lifetime_shallow(interner, a);
+ let n_b = self.table.normalize_lifetime_shallow(interner, b);
+ let a = n_a.as_ref().unwrap_or(a);
+ let b = n_b.as_ref().unwrap_or(b);
+
+ debug_span!("relate_lifetime_lifetime", ?variance, ?a, ?b);
+
+ match (a.data(interner), b.data(interner)) {
+ (&LifetimeData::InferenceVar(var_a), &LifetimeData::InferenceVar(var_b)) => {
+ let var_a = EnaVariable::from(var_a);
+ let var_b = EnaVariable::from(var_b);
+ debug!(?var_a, ?var_b);
+ self.table.unify.unify_var_var(var_a, var_b).unwrap();
+ Ok(())
+ }
+
+ (
+ &LifetimeData::InferenceVar(a_var),
+ &LifetimeData::Placeholder(PlaceholderIndex { ui, .. }),
+ ) => self.unify_lifetime_var(variance, a_var, b, ui),
+
+ (
+ &LifetimeData::Placeholder(PlaceholderIndex { ui, .. }),
+ &LifetimeData::InferenceVar(b_var),
+ ) => self.unify_lifetime_var(variance.invert(), b_var, a, ui),
+
+ (&LifetimeData::InferenceVar(a_var), &LifetimeData::Erased)
+ | (&LifetimeData::InferenceVar(a_var), &LifetimeData::Static) => {
+ self.unify_lifetime_var(variance, a_var, b, UniverseIndex::root())
+ }
+
+ (&LifetimeData::Erased, &LifetimeData::InferenceVar(b_var))
+ | (&LifetimeData::Static, &LifetimeData::InferenceVar(b_var)) => {
+ self.unify_lifetime_var(variance.invert(), b_var, a, UniverseIndex::root())
+ }
+
+ (&LifetimeData::Static, &LifetimeData::Static)
+ | (&LifetimeData::Erased, &LifetimeData::Erased) => Ok(()),
+
+ (&LifetimeData::Static, &LifetimeData::Placeholder(_))
+ | (&LifetimeData::Static, &LifetimeData::Erased)
+ | (&LifetimeData::Placeholder(_), &LifetimeData::Static)
+ | (&LifetimeData::Placeholder(_), &LifetimeData::Placeholder(_))
+ | (&LifetimeData::Placeholder(_), &LifetimeData::Erased)
+ | (&LifetimeData::Erased, &LifetimeData::Static)
+ | (&LifetimeData::Erased, &LifetimeData::Placeholder(_)) => {
+ if a != b {
+ self.push_lifetime_outlives_goals(variance, a.clone(), b.clone());
+ Ok(())
+ } else {
+ Ok(())
+ }
+ }
+
+ (LifetimeData::BoundVar(_), _) | (_, LifetimeData::BoundVar(_)) => panic!(
+ "unification encountered bound variable: a={:?} b={:?}",
+ a, b
+ ),
+
+ (LifetimeData::Phantom(..), _) | (_, LifetimeData::Phantom(..)) => unreachable!(),
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn unify_lifetime_var(
+ &mut self,
+ variance: Variance,
+ var: InferenceVar,
+ value: &Lifetime<I>,
+ value_ui: UniverseIndex,
+ ) -> Fallible<()> {
+ let var = EnaVariable::from(var);
+ let var_ui = self.table.universe_of_unbound_var(var);
+ if var_ui.can_see(value_ui) && matches!(variance, Variance::Invariant) {
+ debug!("{:?} in {:?} can see {:?}; unifying", var, var_ui, value_ui);
+ self.table
+ .unify
+ .unify_var_value(
+ var,
+ InferenceValue::from_lifetime(self.interner, value.clone()),
+ )
+ .unwrap();
+ Ok(())
+ } else {
+ debug!(
+ "{:?} in {:?} cannot see {:?}; pushing constraint",
+ var, var_ui, value_ui
+ );
+ self.push_lifetime_outlives_goals(
+ variance,
+ var.to_lifetime(self.interner),
+ value.clone(),
+ );
+ Ok(())
+ }
+ }
+
+ fn relate_const_const<'a>(
+ &mut self,
+ variance: Variance,
+ a: &'a Const<I>,
+ b: &'a Const<I>,
+ ) -> Fallible<()> {
+ let interner = self.interner;
+
+ let n_a = self.table.normalize_const_shallow(interner, a);
+ let n_b = self.table.normalize_const_shallow(interner, b);
+ let a = n_a.as_ref().unwrap_or(a);
+ let b = n_b.as_ref().unwrap_or(b);
+
+ debug_span!("relate_const_const", ?variance, ?a, ?b);
+
+ let ConstData {
+ ty: a_ty,
+ value: a_val,
+ } = a.data(interner);
+ let ConstData {
+ ty: b_ty,
+ value: b_val,
+ } = b.data(interner);
+
+ self.relate_ty_ty(variance, a_ty, b_ty)?;
+
+ match (a_val, b_val) {
+ // Unifying two inference variables: unify them in the underlying
+ // ena table.
+ (&ConstValue::InferenceVar(var1), &ConstValue::InferenceVar(var2)) => {
+ debug!(?var1, ?var2, "relate_ty_ty");
+ let var1 = EnaVariable::from(var1);
+ let var2 = EnaVariable::from(var2);
+ self.table
+ .unify
+ .unify_var_var(var1, var2)
+ .expect("unification of two unbound variables cannot fail");
+ Ok(())
+ }
+
+ // Unifying an inference variables with a non-inference variable.
+ (&ConstValue::InferenceVar(var), &ConstValue::Concrete(_))
+ | (&ConstValue::InferenceVar(var), &ConstValue::Placeholder(_)) => {
+ debug!(?var, ty=?b, "unify_var_ty");
+ self.unify_var_const(var, b)
+ }
+
+ (&ConstValue::Concrete(_), &ConstValue::InferenceVar(var))
+ | (&ConstValue::Placeholder(_), &ConstValue::InferenceVar(var)) => {
+ debug!(?var, ty=?a, "unify_var_ty");
+ self.unify_var_const(var, a)
+ }
+
+ (&ConstValue::Placeholder(p1), &ConstValue::Placeholder(p2)) => {
+ Zip::zip_with(self, variance, &p1, &p2)
+ }
+
+ (&ConstValue::Concrete(ref ev1), &ConstValue::Concrete(ref ev2)) => {
+ if ev1.const_eq(a_ty, ev2, interner) {
+ Ok(())
+ } else {
+ Err(NoSolution)
+ }
+ }
+
+ (&ConstValue::Concrete(_), &ConstValue::Placeholder(_))
+ | (&ConstValue::Placeholder(_), &ConstValue::Concrete(_)) => Err(NoSolution),
+
+ (ConstValue::BoundVar(_), _) | (_, ConstValue::BoundVar(_)) => panic!(
+ "unification encountered bound variable: a={:?} b={:?}",
+ a, b
+ ),
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn unify_var_const(&mut self, var: InferenceVar, c: &Const<I>) -> Fallible<()> {
+ let interner = self.interner;
+ let var = EnaVariable::from(var);
+
+ // Determine the universe index associated with this
+ // variable. This is basically a count of the number of
+ // `forall` binders that had been introduced at the point
+ // this variable was created -- though it may change over time
+ // as the variable is unified.
+ let universe_index = self.table.universe_of_unbound_var(var);
+
+ let c1 = c.clone().try_fold_with(
+ &mut OccursCheck::new(self, var, universe_index),
+ DebruijnIndex::INNERMOST,
+ )?;
+
+ debug!("unify_var_const: var {:?} set to {:?}", var, c1);
+ self.table
+ .unify
+ .unify_var_value(var, InferenceValue::from_const(interner, c1))
+ .unwrap();
+
+ Ok(())
+ }
+
+ /// Relate `a`, `b` such that if `variance = Covariant`, `a` is a subtype of
+ /// `b` and thus `a` must outlive `b`.
+ fn push_lifetime_outlives_goals(&mut self, variance: Variance, a: Lifetime<I>, b: Lifetime<I>) {
+ debug!(
+ "pushing lifetime outlives goals for a={:?} b={:?} with variance {:?}",
+ a, b, variance
+ );
+ if matches!(variance, Variance::Invariant | Variance::Contravariant) {
+ self.goals.push(InEnvironment::new(
+ self.environment,
+ WhereClause::LifetimeOutlives(LifetimeOutlives {
+ a: a.clone(),
+ b: b.clone(),
+ })
+ .cast(self.interner),
+ ));
+ }
+ if matches!(variance, Variance::Invariant | Variance::Covariant) {
+ self.goals.push(InEnvironment::new(
+ self.environment,
+ WhereClause::LifetimeOutlives(LifetimeOutlives { a: b, b: a }).cast(self.interner),
+ ));
+ }
+ }
+
+ /// Pushes a goal of `a` being a subtype of `b`.
+ fn push_subtype_goal(&mut self, a: Ty<I>, b: Ty<I>) {
+ let subtype_goal = GoalData::SubtypeGoal(SubtypeGoal { a, b }).intern(self.interner());
+ self.goals
+ .push(InEnvironment::new(self.environment, subtype_goal));
+ }
+}
+
+impl<'i, I: Interner> Zipper<I> for Unifier<'i, I> {
+ fn zip_tys(&mut self, variance: Variance, a: &Ty<I>, b: &Ty<I>) -> Fallible<()> {
+ debug!("zip_tys {:?}, {:?}, {:?}", variance, a, b);
+ self.relate_ty_ty(variance, a, b)
+ }
+
+ fn zip_lifetimes(
+ &mut self,
+ variance: Variance,
+ a: &Lifetime<I>,
+ b: &Lifetime<I>,
+ ) -> Fallible<()> {
+ self.relate_lifetime_lifetime(variance, a, b)
+ }
+
+ fn zip_consts(&mut self, variance: Variance, a: &Const<I>, b: &Const<I>) -> Fallible<()> {
+ self.relate_const_const(variance, a, b)
+ }
+
+ fn zip_binders<T>(&mut self, variance: Variance, a: &Binders<T>, b: &Binders<T>) -> Fallible<()>
+ where
+ T: Clone + HasInterner<Interner = I> + Zip<I> + TypeFoldable<I>,
+ {
+ // The binders that appear in types (apart from quantified types, which are
+ // handled in `unify_ty`) appear as part of `dyn Trait` and `impl Trait` types.
+ //
+ // They come in two varieties:
+ //
+ // * The existential binder from `dyn Trait` / `impl Trait`
+ // (representing the hidden "self" type)
+ // * The `for<..>` binders from higher-ranked traits.
+ //
+ // In both cases we can use the same `relate_binders` routine.
+
+ self.relate_binders(variance, a, b)
+ }
+
+ fn interner(&self) -> I {
+ self.interner
+ }
+
+ fn unification_database(&self) -> &dyn UnificationDatabase<I> {
+ self.db
+ }
+}
+
+struct OccursCheck<'u, 't, I: Interner> {
+ unifier: &'u mut Unifier<'t, I>,
+ var: EnaVariable<I>,
+ universe_index: UniverseIndex,
+}
+
+impl<'u, 't, I: Interner> OccursCheck<'u, 't, I> {
+ fn new(
+ unifier: &'u mut Unifier<'t, I>,
+ var: EnaVariable<I>,
+ universe_index: UniverseIndex,
+ ) -> Self {
+ OccursCheck {
+ unifier,
+ var,
+ universe_index,
+ }
+ }
+}
+
+impl<'i, I: Interner> FallibleTypeFolder<I> for OccursCheck<'_, 'i, I> {
+ type Error = NoSolution;
+
+ fn as_dyn(&mut self) -> &mut dyn FallibleTypeFolder<I, Error = Self::Error> {
+ self
+ }
+
+ fn try_fold_free_placeholder_ty(
+ &mut self,
+ universe: PlaceholderIndex,
+ _outer_binder: DebruijnIndex,
+ ) -> Fallible<Ty<I>> {
+ let interner = self.interner();
+ if self.universe_index < universe.ui {
+ debug!(
+ "OccursCheck aborting because self.universe_index ({:?}) < universe.ui ({:?})",
+ self.universe_index, universe.ui
+ );
+ Err(NoSolution)
+ } else {
+ Ok(universe.to_ty(interner)) // no need to shift, not relative to depth
+ }
+ }
+
+ fn try_fold_free_placeholder_const(
+ &mut self,
+ ty: Ty<I>,
+ universe: PlaceholderIndex,
+ _outer_binder: DebruijnIndex,
+ ) -> Fallible<Const<I>> {
+ let interner = self.interner();
+ if self.universe_index < universe.ui {
+ Err(NoSolution)
+ } else {
+ Ok(universe.to_const(interner, ty)) // no need to shift, not relative to depth
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn try_fold_free_placeholder_lifetime(
+ &mut self,
+ ui: PlaceholderIndex,
+ _outer_binder: DebruijnIndex,
+ ) -> Fallible<Lifetime<I>> {
+ let interner = self.interner();
+ if self.universe_index < ui.ui {
+ // Scenario is like:
+ //
+ // exists<T> forall<'b> ?T = Foo<'b>
+ //
+ // unlike with a type variable, this **might** be
+ // ok. Ultimately it depends on whether the
+ // `forall` also introduced relations to lifetimes
+ // nameable in T. To handle that, we introduce a
+ // fresh region variable `'x` in same universe as `T`
+ // and add a side-constraint that `'x = 'b`:
+ //
+ // exists<'x> forall<'b> ?T = Foo<'x>, where 'x = 'b
+
+ let tick_x = self.unifier.table.new_variable(self.universe_index);
+ self.unifier.push_lifetime_outlives_goals(
+ Variance::Invariant,
+ tick_x.to_lifetime(interner),
+ ui.to_lifetime(interner),
+ );
+ Ok(tick_x.to_lifetime(interner))
+ } else {
+ // If the `ui` is higher than `self.universe_index`, then we can name
+ // this lifetime, no problem.
+ Ok(ui.to_lifetime(interner)) // no need to shift, not relative to depth
+ }
+ }
+
+ fn try_fold_inference_ty(
+ &mut self,
+ var: InferenceVar,
+ kind: TyVariableKind,
+ _outer_binder: DebruijnIndex,
+ ) -> Fallible<Ty<I>> {
+ let interner = self.interner();
+ let var = EnaVariable::from(var);
+ match self.unifier.table.unify.probe_value(var) {
+ // If this variable already has a value, fold over that value instead.
+ InferenceValue::Bound(normalized_ty) => {
+ let normalized_ty = normalized_ty.assert_ty_ref(interner);
+ let normalized_ty = normalized_ty
+ .clone()
+ .try_fold_with(self, DebruijnIndex::INNERMOST)?;
+ assert!(!normalized_ty.needs_shift(interner));
+ Ok(normalized_ty)
+ }
+
+ // Otherwise, check the universe of the variable, and also
+ // check for cycles with `self.var` (which this will soon
+ // become the value of).
+ InferenceValue::Unbound(ui) => {
+ if self.unifier.table.unify.unioned(var, self.var) {
+ debug!(
+ "OccursCheck aborting because {:?} unioned with {:?}",
+ var, self.var,
+ );
+ return Err(NoSolution);
+ }
+
+ if self.universe_index < ui {
+ // Scenario is like:
+ //
+ // ?A = foo(?B)
+ //
+ // where ?A is in universe 0 and ?B is in universe 1.
+ // This is OK, if ?B is promoted to universe 0.
+ self.unifier
+ .table
+ .unify
+ .unify_var_value(var, InferenceValue::Unbound(self.universe_index))
+ .unwrap();
+ }
+
+ Ok(var.to_ty_with_kind(interner, kind))
+ }
+ }
+ }
+
+ fn try_fold_inference_const(
+ &mut self,
+ ty: Ty<I>,
+ var: InferenceVar,
+ _outer_binder: DebruijnIndex,
+ ) -> Fallible<Const<I>> {
+ let interner = self.interner();
+ let var = EnaVariable::from(var);
+ match self.unifier.table.unify.probe_value(var) {
+ // If this variable already has a value, fold over that value instead.
+ InferenceValue::Bound(normalized_const) => {
+ let normalized_const = normalized_const.assert_const_ref(interner);
+ let normalized_const = normalized_const
+ .clone()
+ .try_fold_with(self, DebruijnIndex::INNERMOST)?;
+ assert!(!normalized_const.needs_shift(interner));
+ Ok(normalized_const)
+ }
+
+ // Otherwise, check the universe of the variable, and also
+ // check for cycles with `self.var` (which this will soon
+ // become the value of).
+ InferenceValue::Unbound(ui) => {
+ if self.unifier.table.unify.unioned(var, self.var) {
+ return Err(NoSolution);
+ }
+
+ if self.universe_index < ui {
+ // Scenario is like:
+ //
+ // forall<const A> exists<const B> ?C = Foo<B>
+ //
+ // where A is in universe 0 and B is in universe 1.
+ // This is OK, if B is promoted to universe 0.
+ self.unifier
+ .table
+ .unify
+ .unify_var_value(var, InferenceValue::Unbound(self.universe_index))
+ .unwrap();
+ }
+
+ Ok(var.to_const(interner, ty))
+ }
+ }
+ }
+
+ fn try_fold_inference_lifetime(
+ &mut self,
+ var: InferenceVar,
+ outer_binder: DebruijnIndex,
+ ) -> Fallible<Lifetime<I>> {
+ // a free existentially bound region; find the
+ // inference variable it corresponds to
+ let interner = self.interner();
+ let var = EnaVariable::from(var);
+ match self.unifier.table.unify.probe_value(var) {
+ InferenceValue::Unbound(ui) => {
+ if self.universe_index < ui {
+ // Scenario is like:
+ //
+ // exists<T> forall<'b> exists<'a> ?T = Foo<'a>
+ //
+ // where ?A is in universe 0 and `'b` is in universe 1.
+ // This is OK, if `'b` is promoted to universe 0.
+ self.unifier
+ .table
+ .unify
+ .unify_var_value(var, InferenceValue::Unbound(self.universe_index))
+ .unwrap();
+ }
+ Ok(var.to_lifetime(interner))
+ }
+
+ InferenceValue::Bound(l) => {
+ let l = l.assert_lifetime_ref(interner);
+ let l = l.clone().try_fold_with(self, outer_binder)?;
+ assert!(!l.needs_shift(interner));
+ Ok(l)
+ }
+ }
+ }
+
+ fn forbid_free_vars(&self) -> bool {
+ true
+ }
+
+ fn interner(&self) -> I {
+ self.unifier.interner
+ }
+}