diff options
Diffstat (limited to 'vendor/compiler_builtins')
-rw-r--r-- | vendor/compiler_builtins/.cargo-checksum.json | 2 | ||||
-rw-r--r-- | vendor/compiler_builtins/Cargo.lock | 6 | ||||
-rw-r--r-- | vendor/compiler_builtins/Cargo.toml | 3 | ||||
-rw-r--r-- | vendor/compiler_builtins/build.rs | 20 | ||||
-rw-r--r-- | vendor/compiler_builtins/libm/src/math/fma.rs | 12 | ||||
-rw-r--r-- | vendor/compiler_builtins/libm/src/math/mod.rs | 4 | ||||
-rw-r--r-- | vendor/compiler_builtins/libm/src/math/rint.rs | 48 | ||||
-rw-r--r-- | vendor/compiler_builtins/libm/src/math/rintf.rs | 48 | ||||
-rw-r--r-- | vendor/compiler_builtins/src/math.rs | 16 | ||||
-rw-r--r-- | vendor/compiler_builtins/src/riscv.rs | 18 |
10 files changed, 152 insertions, 25 deletions
diff --git a/vendor/compiler_builtins/.cargo-checksum.json b/vendor/compiler_builtins/.cargo-checksum.json index 90052bb9e..b8a09aaf4 100644 --- a/vendor/compiler_builtins/.cargo-checksum.json +++ b/vendor/compiler_builtins/.cargo-checksum.json @@ -1 +1 @@ -{"files":{"Cargo.lock":"d76ea6435a58ea3155de70652b8c03e08e0c96645dcf7e2f8f3650c06cb699e2","Cargo.toml":"97342c77c2e481ff977fafc2a84d7c729f26e08dee2cf1d00b6be8ddad303797","LICENSE.txt":"0e13fed90654e0bc677d624a2d770833a09541fe0c0bdb3d051b3d081207393a","README.md":"5eb36fbab30693dbbe9f0de54749c95bd06fd6e42013b5b9eff3c062b9fdd34f","build.rs":"0c006642fbbe9fa5372a88cbbbb0bb4b391f635b2bde0c497de10740c1458c5e","examples/intrinsics.rs":"a7aa69c17af3aa8f6edff32c214e80827d3cbe3aea386a2be42244444752d253","libm/src/math/acos.rs":"fb066ba84aba1372d706425ec14f35ff8d971756d15eeebd22ecf42a716493bb","libm/src/math/acosf.rs":"a112b82309bba1d35c4e3d6ad4d6c21ef305343d9ab601ddf4bc61d43bc9f1af","libm/src/math/acosh.rs":"99de01ded7922bb93a882ad5ad8b472b5cae0059dea0bdca2077f65e94483150","libm/src/math/acoshf.rs":"10750c4d39ef6717b20a15ef1ce43e15eb851682d2f820f7e94501adec98b9a5","libm/src/math/asin.rs":"095a1e98996daff45df0b154ca0ec35bbf31db964ee9fdda0207308cb20df441","libm/src/math/asinf.rs":"49cccb4db2881982643a4a7d5453f4f8daf527711bbb67313607a3c178856d61","libm/src/math/asinh.rs":"4dd51affa71cce34a192ad66154e248f8d1c4b40fb497f29052333e425bb740f","libm/src/math/asinhf.rs":"914bfecf449f5e2bce786aa12c056d419073c6011d41c1bab7c39ba765fa4c53","libm/src/math/atan.rs":"d4fe46e1c5739dd09997869dcfbc3c85f03c534af52e700d6c6bcf9c3fedda07","libm/src/math/atan2.rs":"2623bc8ca707d13a7092ce49adf68e9cbf4452ad1bf4a861dc40ca858606a747","libm/src/math/atan2f.rs":"dd01943e0e1f1955912e5c3ffc9467529cf64bd02ac0a6ad5ab31dbe6657f05d","libm/src/math/atanf.rs":"e41b41569474a59c970ede3538e00bda4072cf4d90040017101cc79d7dc28caa","libm/src/math/atanh.rs":"57a8fb3f0f116fa4a966ac6bc2abd5f80236ead8e79013f468bd3786921f7110","libm/src/math/atanhf.rs":"6f2e57aaec1b5fc7609cb3938b3d155f51b4237dbda530739c34a0448cd9beb9","libm/src/math/cbrt.rs":"f2c45612d2eecd93cfcdd9ebf824c754fc8f8dfd6d16862c0b9c4ccea78c2a0f","libm/src/math/cbrtf.rs":"ad0b483854aa9f17a44d36c049bf0e8ebab34c27e90b787c05f45cc230ec7d19","libm/src/math/ceil.rs":"57ba5b6e207a0ccbd34190d1aa544389ca12126be23821dfb5746497f620ce03","libm/src/math/ceilf.rs":"c922a0475a599b9ea5473e615f74700b99707cebd6927f24ea59cb2a3cb3bbc3","libm/src/math/copysign.rs":"8b6440a251f0f1509d87f18122f74d0d5c03d0b60517e89e441434a3c5d84591","libm/src/math/copysignf.rs":"87d35436d224852ada93a2e93f6730cf1a727b808dd10e7d49ab4585866e336b","libm/src/math/cos.rs":"74babdc13ede78e400c5ca1854c3e22d2e08cbdc5618aefa5bba6f9303ef65b6","libm/src/math/cosf.rs":"09c40f93c445b741e22477ceedf163ca33b6a47f973f7c9876cfba2692edb29c","libm/src/math/cosh.rs":"0d0a7cef18577f321996b8b87561963139f754ad7f2ea0a3b3883811f3f0693a","libm/src/math/coshf.rs":"be8ca8739e4cf1978425b349f941cb4838bba8c10cb559c7940b9fd4fdde21ad","libm/src/math/erf.rs":"52cc9d9d54074a692001fb2d8215cd6903b645d4291ea20482455bc7f6947726","libm/src/math/erff.rs":"d37af67007fe4e9bce994c8c9805dd8af1b0ada68a10db8d8db13424dce65d09","libm/src/math/exp.rs":"ca7405ad0d1993fffcf9aae96f9256307bed3c4916545aaebd1cf1d2df1807fa","libm/src/math/exp10.rs":"2e136c6ecedd8e57a6c31796f57fae4546fcfd8bc6be66c836f553df9c74b907","libm/src/math/exp10f.rs":"9a3ce506ec587066a355ab74e0eb69a03a214ac405718087ae9772365050b20b","libm/src/math/exp2.rs":"94a9304a2ce3bc81f6d2aefd3cde6faa30f13260d46cb13692863cdea1c9a3a1","libm/src/math/exp2f.rs":"785f2630accd35118ec07bf60273e219ed91a215b956b1552eeea5bc2a708cc8","libm/src/math/expf.rs":"ec14c18f891a9e37735ec39e6fc2e9bf674a2c2e083f22e2533b481177359c98","libm/src/math/expm1.rs":"124069f456c8ad331f265c7509d9e223b2a300e461bbfd3d6adfdcdd2ee5b8ac","libm/src/math/expm1f.rs":"18e2116d31ea8410051cc709b9d04b754b0e3ba6758ee1bf0b48749f4999b840","libm/src/math/expo2.rs":"4f4f9fecfccb43f30c2784aa7c0bb656754a52b8ab431f7d1b551c673ab133f1","libm/src/math/fabs.rs":"e6c7db39f98508098cdf64ac0c2f53866c466149a7490afb9fe22b44c4dd81b3","libm/src/math/fabsf.rs":"83a1f5f4d9ca899ba2b701d7332e18b40258b83e111db4c5d8fab2cc1be58aa3","libm/src/math/fdim.rs":"8ec091996005207297c2389ae563e1b18dbc6a9eac951de29a976c5cd7bc32a7","libm/src/math/fdimf.rs":"c7f3f2269834d55be26b6580ddc07c42531577955fa4de35bad1e2a361085614","libm/src/math/fenv.rs":"916ae11e4763588518d64dee82afb41be9d1ee38ecc0679c821d4e7e22cd3dc5","libm/src/math/floor.rs":"5050804cae173af6775c0678d6c1aafb5ca2b744bc8a2f50d9d03b95dcee1fb0","libm/src/math/floorf.rs":"c903e0c57bc60a888c513eb7a873a87a4759ba68fc791b6b931652f8ee74cc03","libm/src/math/fma.rs":"d88e01c2c2d11333dd49b61166caa036ff5f08f3a8c5973b9e3c9574bf2eb675","libm/src/math/fmaf.rs":"1db6ee0d47ddbdb441cfe167edf89b431239f5805708fd0376cf5c01349a4bd6","libm/src/math/fmax.rs":"f6c8e96a8b1a170648d2fa3513e7b6b459085d708c839869f82e305fe58fac37","libm/src/math/fmaxf.rs":"dff0025433232e8a5ec7bd54d847ccf596d762ea4e35f5c54fbaac9404d732fd","libm/src/math/fmin.rs":"95b6cb66ca0e0e22276f0bf88dbe8fb69796a69a196a7491bd4802efbcf2e298","libm/src/math/fminf.rs":"304bc839b15ea3d84e68d2af9f40524ec120d30a36a667b22fcb98a6c258f4c7","libm/src/math/fmod.rs":"a1c0550fc7df8164733d914e222ff0966a2ab886d6e75a1098f24fe0283ae227","libm/src/math/fmodf.rs":"ee51ed092c0eeb8195f35735ff725cfd46612e0d689a7c483538bd92fbe61828","libm/src/math/frexp.rs":"28af70026922a8ab979744c7ad4d8faba6079c4743b7eeb6d14c983a982fbbcc","libm/src/math/frexpf.rs":"2e2593ae8002ba420809ebfaf737ef001cdc912354be3d978a8c0cb930350d4d","libm/src/math/hypot.rs":"841131c4a0cea75bc8a86e29f3f6d0815a61fc99731c9984651ce83d3050d218","libm/src/math/hypotf.rs":"5f317323edc2eb699580fe54b074b7e570a7734d51a0a149c0b49b54470a836c","libm/src/math/ilogb.rs":"d178ad7ca3439f82d565962b143f20448e45b2e2c51357b127abaec683297e32","libm/src/math/ilogbf.rs":"00f2b1b0496e21c6a42d68aea74d7156fa2ff0a735741b9051f3ca1cf0f57586","libm/src/math/j0.rs":"9572b6396c489927d332d0e717920e61ec0618e5e9c31f7eeeec70f5e4abab06","libm/src/math/j0f.rs":"802c8254bded9b3afb6eea8b9af240038a5a4a5d811396729f69ca509e3e7d87","libm/src/math/j1.rs":"97b1af1611fa3d110c2b349ee8e4176100132ea1391b619086b47ac063b81803","libm/src/math/j1f.rs":"9c9b128752e8ea2e7d81b637ba84907ab54a545e7602c49167b313743927930b","libm/src/math/jn.rs":"847d122334e5707ad9627146cddccc082a1f2f5bcd3e5ef54399013a7007ce88","libm/src/math/jnf.rs":"4045076f7d1a1b89882ed60d4dd60a4cbbc66b85cfb90491378c8015effcc476","libm/src/math/k_cos.rs":"f34a69e44d6b8901b03b578a75972f438ab20a7b98a0903fc1903d6fde3899be","libm/src/math/k_cosf.rs":"8f7117ff21cebf8e890a5bcfd7ea858a94172f4172b79a66d53824c2cb0888b1","libm/src/math/k_expo2.rs":"eb4ca9e6a525b7ea6da868c3cb136896682cc46f8396ba2a2ebc3ae9e9ba54b0","libm/src/math/k_expo2f.rs":"d51ad5df61cb5d1258bdb90c52bfed4572bb446a9337de9c04411ed9454ae0cb","libm/src/math/k_sin.rs":"14b2aba6ca07150c92768b5a72acaf5cde6a11d6619e14896512a7ba242e289a","libm/src/math/k_sinf.rs":"2775fcc710807164e6f37a4f8da3c8143cd5f16e19ce7c31c5591522151d7a96","libm/src/math/k_tan.rs":"a72beae4ccd9631eeeb61d6365bbeecae81c8411f3120a999c515cca0d5ea5c5","libm/src/math/k_tanf.rs":"6a794be56fa4b2f60452b9bab19af01c388f174560acbf829a351378ea39495d","libm/src/math/ldexp.rs":"b647f0096e80e4d926d8dd18d294c892ee2cb1778effe2c5e1b2664ae5cb1a4e","libm/src/math/ldexpf.rs":"98743fad2cd97a7be496f40ba3157ac1438fce0d0c25d5ab90c3b8c71c3fd0ed","libm/src/math/lgamma.rs":"0edd18e4f96bfcbe8b1b5af3eeca5208cd6d2d479dfa5ad117c9dfeccecf614f","libm/src/math/lgamma_r.rs":"f44a37aeccd56559ef784ae8edf217d14ad5cc2d910f0a65e70ffc86d7dc23dd","libm/src/math/lgammaf.rs":"967845357758b868a571857ec001f9f9154001110b8e97c08b6d10586bed9c49","libm/src/math/lgammaf_r.rs":"7143016d60e11fa235d53968125e57231b1104ce52149b5e1eed39629e0d1ff0","libm/src/math/log.rs":"b5e0c5f30d9e94351488732801be3107c12b854c3f95ad37e256dd88eeca408f","libm/src/math/log10.rs":"3425ff8be001fd1646ba15e254eb6ef4bdc6ccaf0cbee27ddf1fa84e04178b90","libm/src/math/log10f.rs":"fee4f71879bc4c99259e68c0c641364901629fb29a8ebddfcc0d090102cceddd","libm/src/math/log1p.rs":"9cf400852f165e6be19b97036ae9521fb9ca857d0a9a91c117d9123221622185","libm/src/math/log1pf.rs":"2716e6d2afa271996b7c8f47fd9e4952c88f4c1fd8c07c3e8ce8c62794bf71d8","libm/src/math/log2.rs":"dbbbfbaaa8aa6a4dbefea554ea3983090a9691228b011910c751f6adca912c40","libm/src/math/log2f.rs":"92a90350d8edce21c31c285c3e620fca7c62a2366008921715945c2c73b5b79f","libm/src/math/logf.rs":"845342cffc34d3db1f5ec12d8e5b773cd5a79056e28662fcb9bcd80207596f50","libm/src/math/mod.rs":"9de65aedb36910356bc47d25b1468b40ab63faf7e319e599e478a239681bdf9c","libm/src/math/modf.rs":"d012ed5a708ef52b6d1313c22a46cadaf5764dde1220816e3df2f03a0fcc60ae","libm/src/math/modff.rs":"f8f1e4c27a85d2cdb3c8e74439d59ef64aa543b948f22c23227d02d8388d61c2","libm/src/math/nextafter.rs":"3282e7eef214a32736fb6928d490198ad394b26b402b45495115b104839eebfe","libm/src/math/nextafterf.rs":"0937dc8a8155c19842c12181e741cec1f7df1f7a00cee81fcb2475e2842761b7","libm/src/math/pow.rs":"17c38297c5bf99accd915f292b777f8716ecf328916297c8bb9dfde6fd8ce522","libm/src/math/powf.rs":"2c423a0ea57fdc4e20f3533f744c6e6288c998b4de8f2914fafaa0e78be81b04","libm/src/math/rem_pio2.rs":"3e53234977daf61c89c29c940791714aad2f676a6f38188c7d17543a2aa8806f","libm/src/math/rem_pio2_large.rs":"482f31ff4e4eacf885f6130ae26a1d59f76b382059d6c742f30e5036811d3ca8","libm/src/math/rem_pio2f.rs":"07fb48f6d5cbadfd32ce4124b2b74af98b8391a2a6f36ce2a7d32e4500cb65ac","libm/src/math/remainder.rs":"63865f4370853c476b45bb27a5c54a4072146aa4a626835ae5263871a4e7e5dc","libm/src/math/remainderf.rs":"dd3fa432dbda8f2135428198be7bd69c57f8d13df3f365b12f52bf6a82352ac4","libm/src/math/remquo.rs":"3cc0bf55069f165c4843f2c358b3a27279c01e8cdd99f9057a3f7f31f45408f2","libm/src/math/remquof.rs":"cc749e18ecb7e766b8b8eeabdbf89ac99087d3d587e71e30f690676a3d2c1f9b","libm/src/math/round.rs":"f10797ef15dd34a74e912ba8621d60bc0200c87b94308c9de3cc88d7aec4feb4","libm/src/math/roundf.rs":"27e37cfcf82373709e7debf9c0c18f7ed00ae0f5d97a214c388041f7a6996d35","libm/src/math/scalbn.rs":"b5c9d6d4177fe393cbfe1c634d75ce14b754f6cbce87c5bf979a9661491748a2","libm/src/math/scalbnf.rs":"4f198d06db1896386256fb9a5ac5b805b16b836226c18780a475cf18d7c1449c","libm/src/math/sin.rs":"bb483a2138ca779e03a191222636f0c60fd75a77a2a12f263bda4b6aa9136317","libm/src/math/sincos.rs":"1cf62a16c215e367f51078a3ba23a3f257682032a8f3c657293029a886b18d82","libm/src/math/sincosf.rs":"b0f589e6ada8215944d7784f420c6721c90387d799e349ce7676674f3c475e75","libm/src/math/sinf.rs":"dcddac1d56b084cbb8d0e019433c9c5fe2201d9b257a7dcf2f85c9a8f14b79cf","libm/src/math/sinh.rs":"d8ee4c7af883a526f36c1a6da13bb81fba9181b477e2f2538161a2bee97edc35","libm/src/math/sinhf.rs":"d06eb030ba9dbf7094df127262bfe99f149b4db49fa8ab8c15499660f1e46b26","libm/src/math/sqrt.rs":"824570a631c2542ccee68b65e3eb08fe79c037a29bbaaf54da5367e7b236124a","libm/src/math/sqrtf.rs":"4cf418d74f7751d522a642a9a8d6b86ee3472c6aaef44f0eb1bc26f4d8a90985","libm/src/math/tan.rs":"930ecedaadc60f704c2dfa4e15186f59713c1ba7d948529d215223b424827db5","libm/src/math/tanf.rs":"894156a3b107aee08461eb4e7e412fc049aa237d176ae705c6e3e2d7060d94e3","libm/src/math/tanh.rs":"f1f08eb98ed959a17370a7aaf0177be36e3764543424e78feb033ed3f5e8ec98","libm/src/math/tanhf.rs":"74027b0c672a4e64bdef6d7a3069b90caec50e1e7dbb2c12d2828f310502f41e","libm/src/math/tgamma.rs":"c889cfa49bbeb4dbb0941fe9fac3b4da7d5879dcf04a3b9bb6e56de529baf374","libm/src/math/tgammaf.rs":"0737b34777095d0e4d07fe533e8f105082dd4e8ece411bba6ae5993b45b9388c","libm/src/math/trunc.rs":"642264897cc1505e720c8cf313be81aa9fd53aae866644a2e988d01dbc77fd8a","libm/src/math/truncf.rs":"dee3607baf1af0f01deae46e429e097234c50b268eaefebbe716f19f38597900","src/arm.rs":"acf149932aa46a2755cf8cd2eb7d6ae249e46b1e10ad45ce5f924561945d1273","src/arm_linux.rs":"35a4cb7b75015543feb15b0c692da0faf0e6037d3b97a4a18067ba416eae1a70","src/float/add.rs":"3ec32ceaf470a89777b54f9cde61832fdadeade0f4894f268a949e968520bc57","src/float/cmp.rs":"79b1fdc8d5f943c4ad5ea4ad32623b18f63e17ac3852fbc64a4942228007e1fc","src/float/conv.rs":"e2b5e6fe398f35c7db4af62ba1fd79b39591fe1bfaf304ae825ed3c8cf902d9c","src/float/div.rs":"fe21115ecb1b3330569fd85cb51c650bf80683f152333db988d8e0d564a9ae11","src/float/extend.rs":"180b2e791c58e0526de0a798845c580ce3222c8a15c8665e6e6a4bf5cf1a34aa","src/float/mod.rs":"48d76632575789a6ecf99213b1ed38c21c86ad5a5c3fa33ccb31f77829271b79","src/float/mul.rs":"0d0c1f0c28c149ecadeafd459d3c4c9327e4cfcae2cba479957bb8010ef51a01","src/float/pow.rs":"2ada190738731eb6f24104f8fb8c4d6f03cfb16451536dbee32f2b33db0c4b19","src/float/sub.rs":"c2a87f4628f51d5d908d0f25b5d51ce0599dc559d5a72b20e131261f484d5848","src/float/trunc.rs":"d21d2a2f9a1918b4bbb594691e397972a7c04b74b2acf04016c55693abf6d24b","src/int/addsub.rs":"7ec45ce1ba15b56a5b7129d3e5722c4db764c6545306d3fa9090983bcabd6f17","src/int/leading_zeros.rs":"ccf5e9d098c80034dcf6e38437c9a2eb670fa8043558bbfb574f2293164729a6","src/int/mod.rs":"bab1b77535ceebdebb89fd4e59e7105f8c45347bb638351a626615b24544a0b1","src/int/mul.rs":"bb48d8fd42d8f9f5fe9271d8d0f7a92dbae320bf4346e19d1071eb2093cb8ed9","src/int/sdiv.rs":"ace4cb0ec388a38834e01cab2c5bc87182d31588dfc0b1ae117c11ed0c4781cf","src/int/shift.rs":"3967c28a8d61279546e91958d64745fec63f15aee9175eb0602cc6353830da6c","src/int/specialized_div_rem/asymmetric.rs":"27f5bf70a35109f9d4e4e1ad1e8003aa17da5a1e436bf3e63a493d7528a3a566","src/int/specialized_div_rem/binary_long.rs":"9f1ced81a394f000a21a329683144d68ee431a954136a3634eb55b1ee2cf6d51","src/int/specialized_div_rem/delegate.rs":"9df141af98e391361e25d71ae38d5e845a91d896edd2c041132fd46af8268e85","src/int/specialized_div_rem/mod.rs":"73c98b9f69cc9b101ae4c9081e82d66af1df4a58cf0c9bb2a8c8659265687f12","src/int/specialized_div_rem/norm_shift.rs":"3be7ee0dea545c1f702d9daf67dad2b624bf7b17b075c8b90d3d3f7b53df4c21","src/int/specialized_div_rem/trifecta.rs":"87eef69da255b809fd710b14f2eb3f9f59e3dac625f8564ebc8ba78f9763523b","src/int/udiv.rs":"3732b490a472505411577f008b92f489287745968ce6791665201201377d3475","src/lib.rs":"d0e85291d12a57c61791257e3adefb8f2222e1ba6f9e5cd4cf7fba59d26477f4","src/macros.rs":"de690dffc59a5884ed06c67d38f06c41ed02fcd6318189397a0d4aafbd375ad8","src/math.rs":"7cafdf3d65e083b31a9ceebab9510236b2c7290dbf1927f435d0f9b2d62d2a0b","src/mem/impls.rs":"a8d1c28a77d9b334872abbebfcba3fd1802175bef53c0b545e85242860698780","src/mem/mod.rs":"5034543d963149c14a6823bee32a1fb9dfd950c32153d37f97e9df1dc6c23129","src/mem/x86_64.rs":"9f740891f666acf384159128eef233d9e15c6120da8016370c6f9f05cc29d653","src/probestack.rs":"ef5c07e9b95de7b2b77a937789fcfefd9846274317489ad6d623e377c9888601","src/riscv.rs":"8aa8cde1106a179e9a37724193bc5cea5defe212eb38e3049c23b254578f78d4","src/x86.rs":"117b50d6725ee0af0a7b3d197ea580655561f66a870ebc450d96af22bf7f39f6","src/x86_64.rs":"4f16bc9fad7757d48a6da3a078c715dd3a22154aadb4f1998d4c1b5d91396f9e"},"package":"18cd7635fea7bb481ea543b392789844c1ad581299da70184c7175ce3af76603"}
\ No newline at end of file +{"files":{"Cargo.lock":"df46bad6dcb1c7910251eda72d7d98fb52bf3d496999fbbdf3e2d9a42af1c128","Cargo.toml":"dee1cddda8968fd6b6453344d07f873bee6de9286cf35f47ca85347fdad209ae","LICENSE.txt":"0e13fed90654e0bc677d624a2d770833a09541fe0c0bdb3d051b3d081207393a","README.md":"5eb36fbab30693dbbe9f0de54749c95bd06fd6e42013b5b9eff3c062b9fdd34f","build.rs":"eea8b74d2b7ad2d3b51df7900d9af31b37ee00faacd9deff1a486d7b557e228a","examples/intrinsics.rs":"a7aa69c17af3aa8f6edff32c214e80827d3cbe3aea386a2be42244444752d253","libm/src/math/acos.rs":"fb066ba84aba1372d706425ec14f35ff8d971756d15eeebd22ecf42a716493bb","libm/src/math/acosf.rs":"a112b82309bba1d35c4e3d6ad4d6c21ef305343d9ab601ddf4bc61d43bc9f1af","libm/src/math/acosh.rs":"99de01ded7922bb93a882ad5ad8b472b5cae0059dea0bdca2077f65e94483150","libm/src/math/acoshf.rs":"10750c4d39ef6717b20a15ef1ce43e15eb851682d2f820f7e94501adec98b9a5","libm/src/math/asin.rs":"095a1e98996daff45df0b154ca0ec35bbf31db964ee9fdda0207308cb20df441","libm/src/math/asinf.rs":"49cccb4db2881982643a4a7d5453f4f8daf527711bbb67313607a3c178856d61","libm/src/math/asinh.rs":"4dd51affa71cce34a192ad66154e248f8d1c4b40fb497f29052333e425bb740f","libm/src/math/asinhf.rs":"914bfecf449f5e2bce786aa12c056d419073c6011d41c1bab7c39ba765fa4c53","libm/src/math/atan.rs":"d4fe46e1c5739dd09997869dcfbc3c85f03c534af52e700d6c6bcf9c3fedda07","libm/src/math/atan2.rs":"2623bc8ca707d13a7092ce49adf68e9cbf4452ad1bf4a861dc40ca858606a747","libm/src/math/atan2f.rs":"dd01943e0e1f1955912e5c3ffc9467529cf64bd02ac0a6ad5ab31dbe6657f05d","libm/src/math/atanf.rs":"e41b41569474a59c970ede3538e00bda4072cf4d90040017101cc79d7dc28caa","libm/src/math/atanh.rs":"57a8fb3f0f116fa4a966ac6bc2abd5f80236ead8e79013f468bd3786921f7110","libm/src/math/atanhf.rs":"6f2e57aaec1b5fc7609cb3938b3d155f51b4237dbda530739c34a0448cd9beb9","libm/src/math/cbrt.rs":"f2c45612d2eecd93cfcdd9ebf824c754fc8f8dfd6d16862c0b9c4ccea78c2a0f","libm/src/math/cbrtf.rs":"ad0b483854aa9f17a44d36c049bf0e8ebab34c27e90b787c05f45cc230ec7d19","libm/src/math/ceil.rs":"57ba5b6e207a0ccbd34190d1aa544389ca12126be23821dfb5746497f620ce03","libm/src/math/ceilf.rs":"c922a0475a599b9ea5473e615f74700b99707cebd6927f24ea59cb2a3cb3bbc3","libm/src/math/copysign.rs":"8b6440a251f0f1509d87f18122f74d0d5c03d0b60517e89e441434a3c5d84591","libm/src/math/copysignf.rs":"87d35436d224852ada93a2e93f6730cf1a727b808dd10e7d49ab4585866e336b","libm/src/math/cos.rs":"74babdc13ede78e400c5ca1854c3e22d2e08cbdc5618aefa5bba6f9303ef65b6","libm/src/math/cosf.rs":"09c40f93c445b741e22477ceedf163ca33b6a47f973f7c9876cfba2692edb29c","libm/src/math/cosh.rs":"0d0a7cef18577f321996b8b87561963139f754ad7f2ea0a3b3883811f3f0693a","libm/src/math/coshf.rs":"be8ca8739e4cf1978425b349f941cb4838bba8c10cb559c7940b9fd4fdde21ad","libm/src/math/erf.rs":"52cc9d9d54074a692001fb2d8215cd6903b645d4291ea20482455bc7f6947726","libm/src/math/erff.rs":"d37af67007fe4e9bce994c8c9805dd8af1b0ada68a10db8d8db13424dce65d09","libm/src/math/exp.rs":"ca7405ad0d1993fffcf9aae96f9256307bed3c4916545aaebd1cf1d2df1807fa","libm/src/math/exp10.rs":"2e136c6ecedd8e57a6c31796f57fae4546fcfd8bc6be66c836f553df9c74b907","libm/src/math/exp10f.rs":"9a3ce506ec587066a355ab74e0eb69a03a214ac405718087ae9772365050b20b","libm/src/math/exp2.rs":"94a9304a2ce3bc81f6d2aefd3cde6faa30f13260d46cb13692863cdea1c9a3a1","libm/src/math/exp2f.rs":"785f2630accd35118ec07bf60273e219ed91a215b956b1552eeea5bc2a708cc8","libm/src/math/expf.rs":"ec14c18f891a9e37735ec39e6fc2e9bf674a2c2e083f22e2533b481177359c98","libm/src/math/expm1.rs":"124069f456c8ad331f265c7509d9e223b2a300e461bbfd3d6adfdcdd2ee5b8ac","libm/src/math/expm1f.rs":"18e2116d31ea8410051cc709b9d04b754b0e3ba6758ee1bf0b48749f4999b840","libm/src/math/expo2.rs":"4f4f9fecfccb43f30c2784aa7c0bb656754a52b8ab431f7d1b551c673ab133f1","libm/src/math/fabs.rs":"e6c7db39f98508098cdf64ac0c2f53866c466149a7490afb9fe22b44c4dd81b3","libm/src/math/fabsf.rs":"83a1f5f4d9ca899ba2b701d7332e18b40258b83e111db4c5d8fab2cc1be58aa3","libm/src/math/fdim.rs":"8ec091996005207297c2389ae563e1b18dbc6a9eac951de29a976c5cd7bc32a7","libm/src/math/fdimf.rs":"c7f3f2269834d55be26b6580ddc07c42531577955fa4de35bad1e2a361085614","libm/src/math/fenv.rs":"916ae11e4763588518d64dee82afb41be9d1ee38ecc0679c821d4e7e22cd3dc5","libm/src/math/floor.rs":"5050804cae173af6775c0678d6c1aafb5ca2b744bc8a2f50d9d03b95dcee1fb0","libm/src/math/floorf.rs":"c903e0c57bc60a888c513eb7a873a87a4759ba68fc791b6b931652f8ee74cc03","libm/src/math/fma.rs":"d4995977bb2362efa5986002c904b28a63e0210c85758af37f9ef80278d46a07","libm/src/math/fmaf.rs":"1db6ee0d47ddbdb441cfe167edf89b431239f5805708fd0376cf5c01349a4bd6","libm/src/math/fmax.rs":"f6c8e96a8b1a170648d2fa3513e7b6b459085d708c839869f82e305fe58fac37","libm/src/math/fmaxf.rs":"dff0025433232e8a5ec7bd54d847ccf596d762ea4e35f5c54fbaac9404d732fd","libm/src/math/fmin.rs":"95b6cb66ca0e0e22276f0bf88dbe8fb69796a69a196a7491bd4802efbcf2e298","libm/src/math/fminf.rs":"304bc839b15ea3d84e68d2af9f40524ec120d30a36a667b22fcb98a6c258f4c7","libm/src/math/fmod.rs":"a1c0550fc7df8164733d914e222ff0966a2ab886d6e75a1098f24fe0283ae227","libm/src/math/fmodf.rs":"ee51ed092c0eeb8195f35735ff725cfd46612e0d689a7c483538bd92fbe61828","libm/src/math/frexp.rs":"28af70026922a8ab979744c7ad4d8faba6079c4743b7eeb6d14c983a982fbbcc","libm/src/math/frexpf.rs":"2e2593ae8002ba420809ebfaf737ef001cdc912354be3d978a8c0cb930350d4d","libm/src/math/hypot.rs":"841131c4a0cea75bc8a86e29f3f6d0815a61fc99731c9984651ce83d3050d218","libm/src/math/hypotf.rs":"5f317323edc2eb699580fe54b074b7e570a7734d51a0a149c0b49b54470a836c","libm/src/math/ilogb.rs":"d178ad7ca3439f82d565962b143f20448e45b2e2c51357b127abaec683297e32","libm/src/math/ilogbf.rs":"00f2b1b0496e21c6a42d68aea74d7156fa2ff0a735741b9051f3ca1cf0f57586","libm/src/math/j0.rs":"9572b6396c489927d332d0e717920e61ec0618e5e9c31f7eeeec70f5e4abab06","libm/src/math/j0f.rs":"802c8254bded9b3afb6eea8b9af240038a5a4a5d811396729f69ca509e3e7d87","libm/src/math/j1.rs":"97b1af1611fa3d110c2b349ee8e4176100132ea1391b619086b47ac063b81803","libm/src/math/j1f.rs":"9c9b128752e8ea2e7d81b637ba84907ab54a545e7602c49167b313743927930b","libm/src/math/jn.rs":"847d122334e5707ad9627146cddccc082a1f2f5bcd3e5ef54399013a7007ce88","libm/src/math/jnf.rs":"4045076f7d1a1b89882ed60d4dd60a4cbbc66b85cfb90491378c8015effcc476","libm/src/math/k_cos.rs":"f34a69e44d6b8901b03b578a75972f438ab20a7b98a0903fc1903d6fde3899be","libm/src/math/k_cosf.rs":"8f7117ff21cebf8e890a5bcfd7ea858a94172f4172b79a66d53824c2cb0888b1","libm/src/math/k_expo2.rs":"eb4ca9e6a525b7ea6da868c3cb136896682cc46f8396ba2a2ebc3ae9e9ba54b0","libm/src/math/k_expo2f.rs":"d51ad5df61cb5d1258bdb90c52bfed4572bb446a9337de9c04411ed9454ae0cb","libm/src/math/k_sin.rs":"14b2aba6ca07150c92768b5a72acaf5cde6a11d6619e14896512a7ba242e289a","libm/src/math/k_sinf.rs":"2775fcc710807164e6f37a4f8da3c8143cd5f16e19ce7c31c5591522151d7a96","libm/src/math/k_tan.rs":"a72beae4ccd9631eeeb61d6365bbeecae81c8411f3120a999c515cca0d5ea5c5","libm/src/math/k_tanf.rs":"6a794be56fa4b2f60452b9bab19af01c388f174560acbf829a351378ea39495d","libm/src/math/ldexp.rs":"b647f0096e80e4d926d8dd18d294c892ee2cb1778effe2c5e1b2664ae5cb1a4e","libm/src/math/ldexpf.rs":"98743fad2cd97a7be496f40ba3157ac1438fce0d0c25d5ab90c3b8c71c3fd0ed","libm/src/math/lgamma.rs":"0edd18e4f96bfcbe8b1b5af3eeca5208cd6d2d479dfa5ad117c9dfeccecf614f","libm/src/math/lgamma_r.rs":"f44a37aeccd56559ef784ae8edf217d14ad5cc2d910f0a65e70ffc86d7dc23dd","libm/src/math/lgammaf.rs":"967845357758b868a571857ec001f9f9154001110b8e97c08b6d10586bed9c49","libm/src/math/lgammaf_r.rs":"7143016d60e11fa235d53968125e57231b1104ce52149b5e1eed39629e0d1ff0","libm/src/math/log.rs":"b5e0c5f30d9e94351488732801be3107c12b854c3f95ad37e256dd88eeca408f","libm/src/math/log10.rs":"3425ff8be001fd1646ba15e254eb6ef4bdc6ccaf0cbee27ddf1fa84e04178b90","libm/src/math/log10f.rs":"fee4f71879bc4c99259e68c0c641364901629fb29a8ebddfcc0d090102cceddd","libm/src/math/log1p.rs":"9cf400852f165e6be19b97036ae9521fb9ca857d0a9a91c117d9123221622185","libm/src/math/log1pf.rs":"2716e6d2afa271996b7c8f47fd9e4952c88f4c1fd8c07c3e8ce8c62794bf71d8","libm/src/math/log2.rs":"dbbbfbaaa8aa6a4dbefea554ea3983090a9691228b011910c751f6adca912c40","libm/src/math/log2f.rs":"92a90350d8edce21c31c285c3e620fca7c62a2366008921715945c2c73b5b79f","libm/src/math/logf.rs":"845342cffc34d3db1f5ec12d8e5b773cd5a79056e28662fcb9bcd80207596f50","libm/src/math/mod.rs":"d694260529d51d0bc17f88ad557d852b9bb0bc3f7466cf7f62b679dc95ebba42","libm/src/math/modf.rs":"d012ed5a708ef52b6d1313c22a46cadaf5764dde1220816e3df2f03a0fcc60ae","libm/src/math/modff.rs":"f8f1e4c27a85d2cdb3c8e74439d59ef64aa543b948f22c23227d02d8388d61c2","libm/src/math/nextafter.rs":"3282e7eef214a32736fb6928d490198ad394b26b402b45495115b104839eebfe","libm/src/math/nextafterf.rs":"0937dc8a8155c19842c12181e741cec1f7df1f7a00cee81fcb2475e2842761b7","libm/src/math/pow.rs":"17c38297c5bf99accd915f292b777f8716ecf328916297c8bb9dfde6fd8ce522","libm/src/math/powf.rs":"2c423a0ea57fdc4e20f3533f744c6e6288c998b4de8f2914fafaa0e78be81b04","libm/src/math/rem_pio2.rs":"3e53234977daf61c89c29c940791714aad2f676a6f38188c7d17543a2aa8806f","libm/src/math/rem_pio2_large.rs":"482f31ff4e4eacf885f6130ae26a1d59f76b382059d6c742f30e5036811d3ca8","libm/src/math/rem_pio2f.rs":"07fb48f6d5cbadfd32ce4124b2b74af98b8391a2a6f36ce2a7d32e4500cb65ac","libm/src/math/remainder.rs":"63865f4370853c476b45bb27a5c54a4072146aa4a626835ae5263871a4e7e5dc","libm/src/math/remainderf.rs":"dd3fa432dbda8f2135428198be7bd69c57f8d13df3f365b12f52bf6a82352ac4","libm/src/math/remquo.rs":"3cc0bf55069f165c4843f2c358b3a27279c01e8cdd99f9057a3f7f31f45408f2","libm/src/math/remquof.rs":"cc749e18ecb7e766b8b8eeabdbf89ac99087d3d587e71e30f690676a3d2c1f9b","libm/src/math/rint.rs":"2c17047bcfd0ccdca8669f7cf70c628154ae4abc142660f30e37f9c073928706","libm/src/math/rintf.rs":"3b54af9eaa1bb6808159ca435246acf6a4e7aebbc344e3f4a4c5636345155897","libm/src/math/round.rs":"f10797ef15dd34a74e912ba8621d60bc0200c87b94308c9de3cc88d7aec4feb4","libm/src/math/roundf.rs":"27e37cfcf82373709e7debf9c0c18f7ed00ae0f5d97a214c388041f7a6996d35","libm/src/math/scalbn.rs":"b5c9d6d4177fe393cbfe1c634d75ce14b754f6cbce87c5bf979a9661491748a2","libm/src/math/scalbnf.rs":"4f198d06db1896386256fb9a5ac5b805b16b836226c18780a475cf18d7c1449c","libm/src/math/sin.rs":"bb483a2138ca779e03a191222636f0c60fd75a77a2a12f263bda4b6aa9136317","libm/src/math/sincos.rs":"1cf62a16c215e367f51078a3ba23a3f257682032a8f3c657293029a886b18d82","libm/src/math/sincosf.rs":"b0f589e6ada8215944d7784f420c6721c90387d799e349ce7676674f3c475e75","libm/src/math/sinf.rs":"dcddac1d56b084cbb8d0e019433c9c5fe2201d9b257a7dcf2f85c9a8f14b79cf","libm/src/math/sinh.rs":"d8ee4c7af883a526f36c1a6da13bb81fba9181b477e2f2538161a2bee97edc35","libm/src/math/sinhf.rs":"d06eb030ba9dbf7094df127262bfe99f149b4db49fa8ab8c15499660f1e46b26","libm/src/math/sqrt.rs":"824570a631c2542ccee68b65e3eb08fe79c037a29bbaaf54da5367e7b236124a","libm/src/math/sqrtf.rs":"4cf418d74f7751d522a642a9a8d6b86ee3472c6aaef44f0eb1bc26f4d8a90985","libm/src/math/tan.rs":"930ecedaadc60f704c2dfa4e15186f59713c1ba7d948529d215223b424827db5","libm/src/math/tanf.rs":"894156a3b107aee08461eb4e7e412fc049aa237d176ae705c6e3e2d7060d94e3","libm/src/math/tanh.rs":"f1f08eb98ed959a17370a7aaf0177be36e3764543424e78feb033ed3f5e8ec98","libm/src/math/tanhf.rs":"74027b0c672a4e64bdef6d7a3069b90caec50e1e7dbb2c12d2828f310502f41e","libm/src/math/tgamma.rs":"c889cfa49bbeb4dbb0941fe9fac3b4da7d5879dcf04a3b9bb6e56de529baf374","libm/src/math/tgammaf.rs":"0737b34777095d0e4d07fe533e8f105082dd4e8ece411bba6ae5993b45b9388c","libm/src/math/trunc.rs":"642264897cc1505e720c8cf313be81aa9fd53aae866644a2e988d01dbc77fd8a","libm/src/math/truncf.rs":"dee3607baf1af0f01deae46e429e097234c50b268eaefebbe716f19f38597900","src/arm.rs":"acf149932aa46a2755cf8cd2eb7d6ae249e46b1e10ad45ce5f924561945d1273","src/arm_linux.rs":"35a4cb7b75015543feb15b0c692da0faf0e6037d3b97a4a18067ba416eae1a70","src/float/add.rs":"3ec32ceaf470a89777b54f9cde61832fdadeade0f4894f268a949e968520bc57","src/float/cmp.rs":"79b1fdc8d5f943c4ad5ea4ad32623b18f63e17ac3852fbc64a4942228007e1fc","src/float/conv.rs":"e2b5e6fe398f35c7db4af62ba1fd79b39591fe1bfaf304ae825ed3c8cf902d9c","src/float/div.rs":"fe21115ecb1b3330569fd85cb51c650bf80683f152333db988d8e0d564a9ae11","src/float/extend.rs":"180b2e791c58e0526de0a798845c580ce3222c8a15c8665e6e6a4bf5cf1a34aa","src/float/mod.rs":"48d76632575789a6ecf99213b1ed38c21c86ad5a5c3fa33ccb31f77829271b79","src/float/mul.rs":"0d0c1f0c28c149ecadeafd459d3c4c9327e4cfcae2cba479957bb8010ef51a01","src/float/pow.rs":"2ada190738731eb6f24104f8fb8c4d6f03cfb16451536dbee32f2b33db0c4b19","src/float/sub.rs":"c2a87f4628f51d5d908d0f25b5d51ce0599dc559d5a72b20e131261f484d5848","src/float/trunc.rs":"d21d2a2f9a1918b4bbb594691e397972a7c04b74b2acf04016c55693abf6d24b","src/int/addsub.rs":"7ec45ce1ba15b56a5b7129d3e5722c4db764c6545306d3fa9090983bcabd6f17","src/int/leading_zeros.rs":"ccf5e9d098c80034dcf6e38437c9a2eb670fa8043558bbfb574f2293164729a6","src/int/mod.rs":"bab1b77535ceebdebb89fd4e59e7105f8c45347bb638351a626615b24544a0b1","src/int/mul.rs":"bb48d8fd42d8f9f5fe9271d8d0f7a92dbae320bf4346e19d1071eb2093cb8ed9","src/int/sdiv.rs":"ace4cb0ec388a38834e01cab2c5bc87182d31588dfc0b1ae117c11ed0c4781cf","src/int/shift.rs":"3967c28a8d61279546e91958d64745fec63f15aee9175eb0602cc6353830da6c","src/int/specialized_div_rem/asymmetric.rs":"27f5bf70a35109f9d4e4e1ad1e8003aa17da5a1e436bf3e63a493d7528a3a566","src/int/specialized_div_rem/binary_long.rs":"9f1ced81a394f000a21a329683144d68ee431a954136a3634eb55b1ee2cf6d51","src/int/specialized_div_rem/delegate.rs":"9df141af98e391361e25d71ae38d5e845a91d896edd2c041132fd46af8268e85","src/int/specialized_div_rem/mod.rs":"73c98b9f69cc9b101ae4c9081e82d66af1df4a58cf0c9bb2a8c8659265687f12","src/int/specialized_div_rem/norm_shift.rs":"3be7ee0dea545c1f702d9daf67dad2b624bf7b17b075c8b90d3d3f7b53df4c21","src/int/specialized_div_rem/trifecta.rs":"87eef69da255b809fd710b14f2eb3f9f59e3dac625f8564ebc8ba78f9763523b","src/int/udiv.rs":"3732b490a472505411577f008b92f489287745968ce6791665201201377d3475","src/lib.rs":"d0e85291d12a57c61791257e3adefb8f2222e1ba6f9e5cd4cf7fba59d26477f4","src/macros.rs":"de690dffc59a5884ed06c67d38f06c41ed02fcd6318189397a0d4aafbd375ad8","src/math.rs":"d85fc84c46427604e13e1cfd41592770c951b3d906ff50954b5f7dbece5ce397","src/mem/impls.rs":"a8d1c28a77d9b334872abbebfcba3fd1802175bef53c0b545e85242860698780","src/mem/mod.rs":"5034543d963149c14a6823bee32a1fb9dfd950c32153d37f97e9df1dc6c23129","src/mem/x86_64.rs":"9f740891f666acf384159128eef233d9e15c6120da8016370c6f9f05cc29d653","src/probestack.rs":"ef5c07e9b95de7b2b77a937789fcfefd9846274317489ad6d623e377c9888601","src/riscv.rs":"b43ede1713454c3e50b5a011964d336146155026cac6119767c96b70a165f10f","src/x86.rs":"117b50d6725ee0af0a7b3d197ea580655561f66a870ebc450d96af22bf7f39f6","src/x86_64.rs":"4f16bc9fad7757d48a6da3a078c715dd3a22154aadb4f1998d4c1b5d91396f9e"},"package":"989b2c1ca6e90ad06fdc69d1d1862fa28d27a977be6d92ae2fa762cf61fe0b10"}
\ No newline at end of file diff --git a/vendor/compiler_builtins/Cargo.lock b/vendor/compiler_builtins/Cargo.lock index a498ea0ea..367de55ae 100644 --- a/vendor/compiler_builtins/Cargo.lock +++ b/vendor/compiler_builtins/Cargo.lock @@ -4,13 +4,13 @@ version = 3 [[package]] name = "cc" -version = "1.0.73" +version = "1.0.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "2fff2a6927b3bb87f9595d67196a70493f627687a71d87a0d692242c33f58c11" +checksum = "7db2f146208d7e0fbee761b09cd65a7f51ccc38705d4e7262dad4d73b12a76b1" [[package]] name = "compiler_builtins" -version = "0.1.82" +version = "0.1.84" dependencies = [ "cc", "rustc-std-workspace-core", diff --git a/vendor/compiler_builtins/Cargo.toml b/vendor/compiler_builtins/Cargo.toml index 13ec182df..980d59038 100644 --- a/vendor/compiler_builtins/Cargo.toml +++ b/vendor/compiler_builtins/Cargo.toml @@ -11,7 +11,7 @@ [package] name = "compiler_builtins" -version = "0.1.82" +version = "0.1.84" authors = ["Jorge Aparicio <japaricious@gmail.com>"] links = "compiler-rt" include = [ @@ -65,7 +65,6 @@ default = ["compiler-builtins"] mangled-names = [] mem = [] no-asm = [] -no-lang-items = [] public-test-deps = [] rustc-dep-of-std = [ "compiler-builtins", diff --git a/vendor/compiler_builtins/build.rs b/vendor/compiler_builtins/build.rs index 73952bb9f..3f5dbd3ab 100644 --- a/vendor/compiler_builtins/build.rs +++ b/vendor/compiler_builtins/build.rs @@ -98,7 +98,7 @@ mod c { use std::collections::{BTreeMap, HashSet}; use std::env; - use std::fs::File; + use std::fs::{self, File}; use std::io::Write; use std::path::{Path, PathBuf}; @@ -190,6 +190,21 @@ mod c { cfg.define("VISIBILITY_HIDDEN", None); } + // int_util.c tries to include stdlib.h if `_WIN32` is defined, + // which it is when compiling UEFI targets with clang. This is + // at odds with compiling with `-ffreestanding`, as the header + // may be incompatible or not present. Create a minimal stub + // header to use instead. + if target_os == "uefi" { + let out_dir = PathBuf::from(env::var("OUT_DIR").unwrap()); + let include_dir = out_dir.join("include"); + if !include_dir.exists() { + fs::create_dir(&include_dir).unwrap(); + } + fs::write(include_dir.join("stdlib.h"), "#include <stddef.h>").unwrap(); + cfg.flag(&format!("-I{}", include_dir.to_str().unwrap())); + } + let mut sources = Sources::new(); sources.extend(&[ ("__absvdi2", "absvdi2.c"), @@ -465,7 +480,8 @@ mod c { } // Remove the assembly implementations that won't compile for the target - if llvm_target[0] == "thumbv6m" || llvm_target[0] == "thumbv8m.base" { + if llvm_target[0] == "thumbv6m" || llvm_target[0] == "thumbv8m.base" || target_os == "uefi" + { let mut to_remove = Vec::new(); for (k, v) in sources.map.iter() { if v.ends_with(".S") { diff --git a/vendor/compiler_builtins/libm/src/math/fma.rs b/vendor/compiler_builtins/libm/src/math/fma.rs index 516f9ad3a..f9a86dc60 100644 --- a/vendor/compiler_builtins/libm/src/math/fma.rs +++ b/vendor/compiler_builtins/libm/src/math/fma.rs @@ -126,8 +126,8 @@ pub fn fma(x: f64, y: f64, z: f64) -> f64 { rlo = res; rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64)); if (rhi >> 63) != 0 { - rlo = (-(rlo as i64)) as u64; - rhi = (-(rhi as i64)) as u64 - (rlo != 0) as u64; + rlo = (rlo as i64).wrapping_neg() as u64; + rhi = (rhi as i64).wrapping_neg() as u64 - (rlo != 0) as u64; sign = (sign == 0) as i32; } nonzero = (rhi != 0) as i32; @@ -232,4 +232,12 @@ mod tests { -3991680619069439e277 ); } + + #[test] + fn fma_underflow() { + assert_eq!( + fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), + 0.0, + ); + } } diff --git a/vendor/compiler_builtins/libm/src/math/mod.rs b/vendor/compiler_builtins/libm/src/math/mod.rs index 81bfc53ed..05ebb708c 100644 --- a/vendor/compiler_builtins/libm/src/math/mod.rs +++ b/vendor/compiler_builtins/libm/src/math/mod.rs @@ -170,6 +170,8 @@ mod remainder; mod remainderf; mod remquo; mod remquof; +mod rint; +mod rintf; mod round; mod roundf; mod scalbn; @@ -284,6 +286,8 @@ pub use self::remainder::remainder; pub use self::remainderf::remainderf; pub use self::remquo::remquo; pub use self::remquof::remquof; +pub use self::rint::rint; +pub use self::rintf::rintf; pub use self::round::round; pub use self::roundf::roundf; pub use self::scalbn::scalbn; diff --git a/vendor/compiler_builtins/libm/src/math/rint.rs b/vendor/compiler_builtins/libm/src/math/rint.rs new file mode 100644 index 000000000..0c6025c1f --- /dev/null +++ b/vendor/compiler_builtins/libm/src/math/rint.rs @@ -0,0 +1,48 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn rint(x: f64) -> f64 { + let one_over_e = 1.0 / f64::EPSILON; + let as_u64: u64 = x.to_bits(); + let exponent: u64 = as_u64 >> 52 & 0x7ff; + let is_positive = (as_u64 >> 63) == 0; + if exponent >= 0x3ff + 52 { + x + } else { + let ans = if is_positive { + x + one_over_e - one_over_e + } else { + x - one_over_e + one_over_e + }; + + if ans == 0.0 { + if is_positive { + 0.0 + } else { + -0.0 + } + } else { + ans + } + } +} + +// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 +#[cfg(not(target_arch = "powerpc64"))] +#[cfg(test)] +mod tests { + use super::rint; + + #[test] + fn negative_zero() { + assert_eq!(rint(-0.0_f64).to_bits(), (-0.0_f64).to_bits()); + } + + #[test] + fn sanity_check() { + assert_eq!(rint(-1.0), -1.0); + assert_eq!(rint(2.8), 3.0); + assert_eq!(rint(-0.5), -0.0); + assert_eq!(rint(0.5), 0.0); + assert_eq!(rint(-1.5), -2.0); + assert_eq!(rint(1.5), 2.0); + } +} diff --git a/vendor/compiler_builtins/libm/src/math/rintf.rs b/vendor/compiler_builtins/libm/src/math/rintf.rs new file mode 100644 index 000000000..d427793f7 --- /dev/null +++ b/vendor/compiler_builtins/libm/src/math/rintf.rs @@ -0,0 +1,48 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn rintf(x: f32) -> f32 { + let one_over_e = 1.0 / f32::EPSILON; + let as_u32: u32 = x.to_bits(); + let exponent: u32 = as_u32 >> 23 & 0xff; + let is_positive = (as_u32 >> 31) == 0; + if exponent >= 0x7f + 23 { + x + } else { + let ans = if is_positive { + x + one_over_e - one_over_e + } else { + x - one_over_e + one_over_e + }; + + if ans == 0.0 { + if is_positive { + 0.0 + } else { + -0.0 + } + } else { + ans + } + } +} + +// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 +#[cfg(not(target_arch = "powerpc64"))] +#[cfg(test)] +mod tests { + use super::rintf; + + #[test] + fn negative_zero() { + assert_eq!(rintf(-0.0_f32).to_bits(), (-0.0_f32).to_bits()); + } + + #[test] + fn sanity_check() { + assert_eq!(rintf(-1.0), -1.0); + assert_eq!(rintf(2.8), 3.0); + assert_eq!(rintf(-0.5), -0.0); + assert_eq!(rintf(0.5), 0.0); + assert_eq!(rintf(-1.5), -2.0); + assert_eq!(rintf(1.5), 2.0); + } +} diff --git a/vendor/compiler_builtins/src/math.rs b/vendor/compiler_builtins/src/math.rs index 3fc33b127..4ae174891 100644 --- a/vendor/compiler_builtins/src/math.rs +++ b/vendor/compiler_builtins/src/math.rs @@ -46,6 +46,8 @@ no_mangle! { fn fmaxf(x: f32, y: f32) -> f32; fn round(x: f64) -> f64; fn roundf(x: f32) -> f32; + fn rint(x: f64) -> f64; + fn rintf(x: f32) -> f32; fn sin(x: f64) -> f64; fn pow(x: f64, y: f64) -> f64; fn powf(x: f32, y: f32) -> f32; @@ -65,20 +67,6 @@ no_mangle! { fn ldexpf(f: f32, n: i32) -> f32; fn tgamma(x: f64) -> f64; fn tgammaf(x: f32) -> f32; -} - -#[cfg(any( - all( - target_family = "wasm", - target_os = "unknown", - not(target_env = "wasi") - ), - target_os = "xous", - all(target_arch = "x86_64", target_os = "uefi"), - all(target_arch = "xtensa", target_os = "none"), - all(target_vendor = "fortanix", target_env = "sgx") -))] -no_mangle! { fn atan(x: f64) -> f64; fn atan2(x: f64, y: f64) -> f64; fn cosh(x: f64) -> f64; diff --git a/vendor/compiler_builtins/src/riscv.rs b/vendor/compiler_builtins/src/riscv.rs index ee78b9dba..ae361b33a 100644 --- a/vendor/compiler_builtins/src/riscv.rs +++ b/vendor/compiler_builtins/src/riscv.rs @@ -1,6 +1,22 @@ intrinsics! { - // Implementation from gcc + // Ancient Egyptian/Ethiopian/Russian multiplication method + // see https://en.wikipedia.org/wiki/Ancient_Egyptian_multiplication + // + // This is a long-available stock algorithm; e.g. it is documented in + // Knuth's "The Art of Computer Programming" volume 2 (under the section + // "Evaluation of Powers") since at least the 2nd edition (1981). + // + // The main attraction of this method is that it implements (software) + // multiplication atop four simple operations: doubling, halving, checking + // if a value is even/odd, and addition. This is *not* considered to be the + // fastest multiplication method, but it may be amongst the simplest (and + // smallest with respect to code size). + // + // for reference, see also implementation from gcc // https://raw.githubusercontent.com/gcc-mirror/gcc/master/libgcc/config/epiphany/mulsi3.c + // + // and from LLVM (in relatively readable RISC-V assembly): + // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/riscv/int_mul_impl.inc pub extern "C" fn __mulsi3(a: u32, b: u32) -> u32 { let (mut a, mut b) = (a, b); let mut r = 0; |