summaryrefslogtreecommitdiffstats
path: root/vendor/crossbeam-queue/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/crossbeam-queue/src')
-rw-r--r--vendor/crossbeam-queue/src/array_queue.rs522
-rw-r--r--vendor/crossbeam-queue/src/lib.rs34
-rw-r--r--vendor/crossbeam-queue/src/seg_queue.rs545
3 files changed, 0 insertions, 1101 deletions
diff --git a/vendor/crossbeam-queue/src/array_queue.rs b/vendor/crossbeam-queue/src/array_queue.rs
deleted file mode 100644
index c34f589e7..000000000
--- a/vendor/crossbeam-queue/src/array_queue.rs
+++ /dev/null
@@ -1,522 +0,0 @@
-//! The implementation is based on Dmitry Vyukov's bounded MPMC queue.
-//!
-//! Source:
-//! - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue>
-
-use alloc::boxed::Box;
-use core::cell::UnsafeCell;
-use core::fmt;
-use core::mem::MaybeUninit;
-use core::sync::atomic::{self, AtomicUsize, Ordering};
-
-use crossbeam_utils::{Backoff, CachePadded};
-
-/// A slot in a queue.
-struct Slot<T> {
- /// The current stamp.
- ///
- /// If the stamp equals the tail, this node will be next written to. If it equals head + 1,
- /// this node will be next read from.
- stamp: AtomicUsize,
-
- /// The value in this slot.
- value: UnsafeCell<MaybeUninit<T>>,
-}
-
-/// A bounded multi-producer multi-consumer queue.
-///
-/// This queue allocates a fixed-capacity buffer on construction, which is used to store pushed
-/// elements. The queue cannot hold more elements than the buffer allows. Attempting to push an
-/// element into a full queue will fail. Alternatively, [`force_push`] makes it possible for
-/// this queue to be used as a ring-buffer. Having a buffer allocated upfront makes this queue
-/// a bit faster than [`SegQueue`].
-///
-/// [`force_push`]: ArrayQueue::force_push
-/// [`SegQueue`]: super::SegQueue
-///
-/// # Examples
-///
-/// ```
-/// use crossbeam_queue::ArrayQueue;
-///
-/// let q = ArrayQueue::new(2);
-///
-/// assert_eq!(q.push('a'), Ok(()));
-/// assert_eq!(q.push('b'), Ok(()));
-/// assert_eq!(q.push('c'), Err('c'));
-/// assert_eq!(q.pop(), Some('a'));
-/// ```
-pub struct ArrayQueue<T> {
- /// The head of the queue.
- ///
- /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a
- /// single `usize`. The lower bits represent the index, while the upper bits represent the lap.
- ///
- /// Elements are popped from the head of the queue.
- head: CachePadded<AtomicUsize>,
-
- /// The tail of the queue.
- ///
- /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a
- /// single `usize`. The lower bits represent the index, while the upper bits represent the lap.
- ///
- /// Elements are pushed into the tail of the queue.
- tail: CachePadded<AtomicUsize>,
-
- /// The buffer holding slots.
- buffer: Box<[Slot<T>]>,
-
- /// The queue capacity.
- cap: usize,
-
- /// A stamp with the value of `{ lap: 1, index: 0 }`.
- one_lap: usize,
-}
-
-unsafe impl<T: Send> Sync for ArrayQueue<T> {}
-unsafe impl<T: Send> Send for ArrayQueue<T> {}
-
-impl<T> ArrayQueue<T> {
- /// Creates a new bounded queue with the given capacity.
- ///
- /// # Panics
- ///
- /// Panics if the capacity is zero.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::<i32>::new(100);
- /// ```
- pub fn new(cap: usize) -> ArrayQueue<T> {
- assert!(cap > 0, "capacity must be non-zero");
-
- // Head is initialized to `{ lap: 0, index: 0 }`.
- // Tail is initialized to `{ lap: 0, index: 0 }`.
- let head = 0;
- let tail = 0;
-
- // Allocate a buffer of `cap` slots initialized
- // with stamps.
- let buffer: Box<[Slot<T>]> = (0..cap)
- .map(|i| {
- // Set the stamp to `{ lap: 0, index: i }`.
- Slot {
- stamp: AtomicUsize::new(i),
- value: UnsafeCell::new(MaybeUninit::uninit()),
- }
- })
- .collect();
-
- // One lap is the smallest power of two greater than `cap`.
- let one_lap = (cap + 1).next_power_of_two();
-
- ArrayQueue {
- buffer,
- cap,
- one_lap,
- head: CachePadded::new(AtomicUsize::new(head)),
- tail: CachePadded::new(AtomicUsize::new(tail)),
- }
- }
-
- fn push_or_else<F>(&self, mut value: T, f: F) -> Result<(), T>
- where
- F: Fn(T, usize, usize, &Slot<T>) -> Result<T, T>,
- {
- let backoff = Backoff::new();
- let mut tail = self.tail.load(Ordering::Relaxed);
-
- loop {
- // Deconstruct the tail.
- let index = tail & (self.one_lap - 1);
- let lap = tail & !(self.one_lap - 1);
-
- let new_tail = if index + 1 < self.cap {
- // Same lap, incremented index.
- // Set to `{ lap: lap, index: index + 1 }`.
- tail + 1
- } else {
- // One lap forward, index wraps around to zero.
- // Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
- lap.wrapping_add(self.one_lap)
- };
-
- // Inspect the corresponding slot.
- debug_assert!(index < self.buffer.len());
- let slot = unsafe { self.buffer.get_unchecked(index) };
- let stamp = slot.stamp.load(Ordering::Acquire);
-
- // If the tail and the stamp match, we may attempt to push.
- if tail == stamp {
- // Try moving the tail.
- match self.tail.compare_exchange_weak(
- tail,
- new_tail,
- Ordering::SeqCst,
- Ordering::Relaxed,
- ) {
- Ok(_) => {
- // Write the value into the slot and update the stamp.
- unsafe {
- slot.value.get().write(MaybeUninit::new(value));
- }
- slot.stamp.store(tail + 1, Ordering::Release);
- return Ok(());
- }
- Err(t) => {
- tail = t;
- backoff.spin();
- }
- }
- } else if stamp.wrapping_add(self.one_lap) == tail + 1 {
- atomic::fence(Ordering::SeqCst);
- value = f(value, tail, new_tail, slot)?;
- backoff.spin();
- tail = self.tail.load(Ordering::Relaxed);
- } else {
- // Snooze because we need to wait for the stamp to get updated.
- backoff.snooze();
- tail = self.tail.load(Ordering::Relaxed);
- }
- }
- }
-
- /// Attempts to push an element into the queue.
- ///
- /// If the queue is full, the element is returned back as an error.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::new(1);
- ///
- /// assert_eq!(q.push(10), Ok(()));
- /// assert_eq!(q.push(20), Err(20));
- /// ```
- pub fn push(&self, value: T) -> Result<(), T> {
- self.push_or_else(value, |v, tail, _, _| {
- let head = self.head.load(Ordering::Relaxed);
-
- // If the head lags one lap behind the tail as well...
- if head.wrapping_add(self.one_lap) == tail {
- // ...then the queue is full.
- Err(v)
- } else {
- Ok(v)
- }
- })
- }
-
- /// Pushes an element into the queue, replacing the oldest element if necessary.
- ///
- /// If the queue is full, the oldest element is replaced and returned,
- /// otherwise `None` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::new(2);
- ///
- /// assert_eq!(q.force_push(10), None);
- /// assert_eq!(q.force_push(20), None);
- /// assert_eq!(q.force_push(30), Some(10));
- /// assert_eq!(q.pop(), Some(20));
- /// ```
- pub fn force_push(&self, value: T) -> Option<T> {
- self.push_or_else(value, |v, tail, new_tail, slot| {
- let head = tail.wrapping_sub(self.one_lap);
- let new_head = new_tail.wrapping_sub(self.one_lap);
-
- // Try moving the head.
- if self
- .head
- .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Relaxed)
- .is_ok()
- {
- // Move the tail.
- self.tail.store(new_tail, Ordering::SeqCst);
-
- // Swap the previous value.
- let old = unsafe { slot.value.get().replace(MaybeUninit::new(v)).assume_init() };
-
- // Update the stamp.
- slot.stamp.store(tail + 1, Ordering::Release);
-
- Err(old)
- } else {
- Ok(v)
- }
- })
- .err()
- }
-
- /// Attempts to pop an element from the queue.
- ///
- /// If the queue is empty, `None` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::new(1);
- /// assert_eq!(q.push(10), Ok(()));
- ///
- /// assert_eq!(q.pop(), Some(10));
- /// assert!(q.pop().is_none());
- /// ```
- pub fn pop(&self) -> Option<T> {
- let backoff = Backoff::new();
- let mut head = self.head.load(Ordering::Relaxed);
-
- loop {
- // Deconstruct the head.
- let index = head & (self.one_lap - 1);
- let lap = head & !(self.one_lap - 1);
-
- // Inspect the corresponding slot.
- debug_assert!(index < self.buffer.len());
- let slot = unsafe { self.buffer.get_unchecked(index) };
- let stamp = slot.stamp.load(Ordering::Acquire);
-
- // If the the stamp is ahead of the head by 1, we may attempt to pop.
- if head + 1 == stamp {
- let new = if index + 1 < self.cap {
- // Same lap, incremented index.
- // Set to `{ lap: lap, index: index + 1 }`.
- head + 1
- } else {
- // One lap forward, index wraps around to zero.
- // Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
- lap.wrapping_add(self.one_lap)
- };
-
- // Try moving the head.
- match self.head.compare_exchange_weak(
- head,
- new,
- Ordering::SeqCst,
- Ordering::Relaxed,
- ) {
- Ok(_) => {
- // Read the value from the slot and update the stamp.
- let msg = unsafe { slot.value.get().read().assume_init() };
- slot.stamp
- .store(head.wrapping_add(self.one_lap), Ordering::Release);
- return Some(msg);
- }
- Err(h) => {
- head = h;
- backoff.spin();
- }
- }
- } else if stamp == head {
- atomic::fence(Ordering::SeqCst);
- let tail = self.tail.load(Ordering::Relaxed);
-
- // If the tail equals the head, that means the channel is empty.
- if tail == head {
- return None;
- }
-
- backoff.spin();
- head = self.head.load(Ordering::Relaxed);
- } else {
- // Snooze because we need to wait for the stamp to get updated.
- backoff.snooze();
- head = self.head.load(Ordering::Relaxed);
- }
- }
- }
-
- /// Returns the capacity of the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::<i32>::new(100);
- ///
- /// assert_eq!(q.capacity(), 100);
- /// ```
- pub fn capacity(&self) -> usize {
- self.cap
- }
-
- /// Returns `true` if the queue is empty.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::new(100);
- ///
- /// assert!(q.is_empty());
- /// q.push(1).unwrap();
- /// assert!(!q.is_empty());
- /// ```
- pub fn is_empty(&self) -> bool {
- let head = self.head.load(Ordering::SeqCst);
- let tail = self.tail.load(Ordering::SeqCst);
-
- // Is the tail lagging one lap behind head?
- // Is the tail equal to the head?
- //
- // Note: If the head changes just before we load the tail, that means there was a moment
- // when the channel was not empty, so it is safe to just return `false`.
- tail == head
- }
-
- /// Returns `true` if the queue is full.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::new(1);
- ///
- /// assert!(!q.is_full());
- /// q.push(1).unwrap();
- /// assert!(q.is_full());
- /// ```
- pub fn is_full(&self) -> bool {
- let tail = self.tail.load(Ordering::SeqCst);
- let head = self.head.load(Ordering::SeqCst);
-
- // Is the head lagging one lap behind tail?
- //
- // Note: If the tail changes just before we load the head, that means there was a moment
- // when the queue was not full, so it is safe to just return `false`.
- head.wrapping_add(self.one_lap) == tail
- }
-
- /// Returns the number of elements in the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::ArrayQueue;
- ///
- /// let q = ArrayQueue::new(100);
- /// assert_eq!(q.len(), 0);
- ///
- /// q.push(10).unwrap();
- /// assert_eq!(q.len(), 1);
- ///
- /// q.push(20).unwrap();
- /// assert_eq!(q.len(), 2);
- /// ```
- pub fn len(&self) -> usize {
- loop {
- // Load the tail, then load the head.
- let tail = self.tail.load(Ordering::SeqCst);
- let head = self.head.load(Ordering::SeqCst);
-
- // If the tail didn't change, we've got consistent values to work with.
- if self.tail.load(Ordering::SeqCst) == tail {
- let hix = head & (self.one_lap - 1);
- let tix = tail & (self.one_lap - 1);
-
- return if hix < tix {
- tix - hix
- } else if hix > tix {
- self.cap - hix + tix
- } else if tail == head {
- 0
- } else {
- self.cap
- };
- }
- }
- }
-}
-
-impl<T> Drop for ArrayQueue<T> {
- fn drop(&mut self) {
- // Get the index of the head.
- let hix = self.head.load(Ordering::Relaxed) & (self.one_lap - 1);
-
- // Loop over all slots that hold a message and drop them.
- for i in 0..self.len() {
- // Compute the index of the next slot holding a message.
- let index = if hix + i < self.cap {
- hix + i
- } else {
- hix + i - self.cap
- };
-
- unsafe {
- debug_assert!(index < self.buffer.len());
- let slot = self.buffer.get_unchecked_mut(index);
- let value = &mut *slot.value.get();
- value.as_mut_ptr().drop_in_place();
- }
- }
- }
-}
-
-impl<T> fmt::Debug for ArrayQueue<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.pad("ArrayQueue { .. }")
- }
-}
-
-impl<T> IntoIterator for ArrayQueue<T> {
- type Item = T;
-
- type IntoIter = IntoIter<T>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter { value: self }
- }
-}
-
-#[derive(Debug)]
-pub struct IntoIter<T> {
- value: ArrayQueue<T>,
-}
-
-impl<T> Iterator for IntoIter<T> {
- type Item = T;
-
- fn next(&mut self) -> Option<Self::Item> {
- let value = &mut self.value;
- let head = *value.head.get_mut();
- if value.head.get_mut() != value.tail.get_mut() {
- let index = head & (value.one_lap - 1);
- let lap = head & !(value.one_lap - 1);
- // SAFETY: We have mutable access to this, so we can read without
- // worrying about concurrency. Furthermore, we know this is
- // initialized because it is the value pointed at by `value.head`
- // and this is a non-empty queue.
- let val = unsafe {
- debug_assert!(index < value.buffer.len());
- let slot = value.buffer.get_unchecked_mut(index);
- slot.value.get().read().assume_init()
- };
- let new = if index + 1 < value.cap {
- // Same lap, incremented index.
- // Set to `{ lap: lap, index: index + 1 }`.
- head + 1
- } else {
- // One lap forward, index wraps around to zero.
- // Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
- lap.wrapping_add(value.one_lap)
- };
- *value.head.get_mut() = new;
- Option::Some(val)
- } else {
- Option::None
- }
- }
-}
diff --git a/vendor/crossbeam-queue/src/lib.rs b/vendor/crossbeam-queue/src/lib.rs
deleted file mode 100644
index 846d7c2e1..000000000
--- a/vendor/crossbeam-queue/src/lib.rs
+++ /dev/null
@@ -1,34 +0,0 @@
-//! Concurrent queues.
-//!
-//! This crate provides concurrent queues that can be shared among threads:
-//!
-//! * [`ArrayQueue`], a bounded MPMC queue that allocates a fixed-capacity buffer on construction.
-//! * [`SegQueue`], an unbounded MPMC queue that allocates small buffers, segments, on demand.
-
-#![doc(test(
- no_crate_inject,
- attr(
- deny(warnings, rust_2018_idioms),
- allow(dead_code, unused_assignments, unused_variables)
- )
-))]
-#![warn(
- missing_docs,
- missing_debug_implementations,
- rust_2018_idioms,
- unreachable_pub
-)]
-#![cfg_attr(not(feature = "std"), no_std)]
-
-#[cfg(not(crossbeam_no_atomic_cas))]
-cfg_if::cfg_if! {
- if #[cfg(feature = "alloc")] {
- extern crate alloc;
-
- mod array_queue;
- mod seg_queue;
-
- pub use self::array_queue::ArrayQueue;
- pub use self::seg_queue::SegQueue;
- }
-}
diff --git a/vendor/crossbeam-queue/src/seg_queue.rs b/vendor/crossbeam-queue/src/seg_queue.rs
deleted file mode 100644
index 1767775d1..000000000
--- a/vendor/crossbeam-queue/src/seg_queue.rs
+++ /dev/null
@@ -1,545 +0,0 @@
-use alloc::boxed::Box;
-use core::cell::UnsafeCell;
-use core::fmt;
-use core::marker::PhantomData;
-use core::mem::MaybeUninit;
-use core::ptr;
-use core::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
-
-use crossbeam_utils::{Backoff, CachePadded};
-
-// Bits indicating the state of a slot:
-// * If a value has been written into the slot, `WRITE` is set.
-// * If a value has been read from the slot, `READ` is set.
-// * If the block is being destroyed, `DESTROY` is set.
-const WRITE: usize = 1;
-const READ: usize = 2;
-const DESTROY: usize = 4;
-
-// Each block covers one "lap" of indices.
-const LAP: usize = 32;
-// The maximum number of values a block can hold.
-const BLOCK_CAP: usize = LAP - 1;
-// How many lower bits are reserved for metadata.
-const SHIFT: usize = 1;
-// Indicates that the block is not the last one.
-const HAS_NEXT: usize = 1;
-
-/// A slot in a block.
-struct Slot<T> {
- /// The value.
- value: UnsafeCell<MaybeUninit<T>>,
-
- /// The state of the slot.
- state: AtomicUsize,
-}
-
-impl<T> Slot<T> {
- /// Waits until a value is written into the slot.
- fn wait_write(&self) {
- let backoff = Backoff::new();
- while self.state.load(Ordering::Acquire) & WRITE == 0 {
- backoff.snooze();
- }
- }
-}
-
-/// A block in a linked list.
-///
-/// Each block in the list can hold up to `BLOCK_CAP` values.
-struct Block<T> {
- /// The next block in the linked list.
- next: AtomicPtr<Block<T>>,
-
- /// Slots for values.
- slots: [Slot<T>; BLOCK_CAP],
-}
-
-impl<T> Block<T> {
- /// Creates an empty block that starts at `start_index`.
- fn new() -> Block<T> {
- // SAFETY: This is safe because:
- // [1] `Block::next` (AtomicPtr) may be safely zero initialized.
- // [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
- // [3] `Slot::value` (UnsafeCell) may be safely zero initialized because it
- // holds a MaybeUninit.
- // [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
- unsafe { MaybeUninit::zeroed().assume_init() }
- }
-
- /// Waits until the next pointer is set.
- fn wait_next(&self) -> *mut Block<T> {
- let backoff = Backoff::new();
- loop {
- let next = self.next.load(Ordering::Acquire);
- if !next.is_null() {
- return next;
- }
- backoff.snooze();
- }
- }
-
- /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
- unsafe fn destroy(this: *mut Block<T>, start: usize) {
- // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
- // begun destruction of the block.
- for i in start..BLOCK_CAP - 1 {
- let slot = (*this).slots.get_unchecked(i);
-
- // Mark the `DESTROY` bit if a thread is still using the slot.
- if slot.state.load(Ordering::Acquire) & READ == 0
- && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
- {
- // If a thread is still using the slot, it will continue destruction of the block.
- return;
- }
- }
-
- // No thread is using the block, now it is safe to destroy it.
- drop(Box::from_raw(this));
- }
-}
-
-/// A position in a queue.
-struct Position<T> {
- /// The index in the queue.
- index: AtomicUsize,
-
- /// The block in the linked list.
- block: AtomicPtr<Block<T>>,
-}
-
-/// An unbounded multi-producer multi-consumer queue.
-///
-/// This queue is implemented as a linked list of segments, where each segment is a small buffer
-/// that can hold a handful of elements. There is no limit to how many elements can be in the queue
-/// at a time. However, since segments need to be dynamically allocated as elements get pushed,
-/// this queue is somewhat slower than [`ArrayQueue`].
-///
-/// [`ArrayQueue`]: super::ArrayQueue
-///
-/// # Examples
-///
-/// ```
-/// use crossbeam_queue::SegQueue;
-///
-/// let q = SegQueue::new();
-///
-/// q.push('a');
-/// q.push('b');
-///
-/// assert_eq!(q.pop(), Some('a'));
-/// assert_eq!(q.pop(), Some('b'));
-/// assert!(q.pop().is_none());
-/// ```
-pub struct SegQueue<T> {
- /// The head of the queue.
- head: CachePadded<Position<T>>,
-
- /// The tail of the queue.
- tail: CachePadded<Position<T>>,
-
- /// Indicates that dropping a `SegQueue<T>` may drop values of type `T`.
- _marker: PhantomData<T>,
-}
-
-unsafe impl<T: Send> Send for SegQueue<T> {}
-unsafe impl<T: Send> Sync for SegQueue<T> {}
-
-impl<T> SegQueue<T> {
- /// Creates a new unbounded queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::SegQueue;
- ///
- /// let q = SegQueue::<i32>::new();
- /// ```
- pub const fn new() -> SegQueue<T> {
- SegQueue {
- head: CachePadded::new(Position {
- block: AtomicPtr::new(ptr::null_mut()),
- index: AtomicUsize::new(0),
- }),
- tail: CachePadded::new(Position {
- block: AtomicPtr::new(ptr::null_mut()),
- index: AtomicUsize::new(0),
- }),
- _marker: PhantomData,
- }
- }
-
- /// Pushes an element into the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::SegQueue;
- ///
- /// let q = SegQueue::new();
- ///
- /// q.push(10);
- /// q.push(20);
- /// ```
- pub fn push(&self, value: T) {
- let backoff = Backoff::new();
- let mut tail = self.tail.index.load(Ordering::Acquire);
- let mut block = self.tail.block.load(Ordering::Acquire);
- let mut next_block = None;
-
- loop {
- // Calculate the offset of the index into the block.
- let offset = (tail >> SHIFT) % LAP;
-
- // If we reached the end of the block, wait until the next one is installed.
- if offset == BLOCK_CAP {
- backoff.snooze();
- tail = self.tail.index.load(Ordering::Acquire);
- block = self.tail.block.load(Ordering::Acquire);
- continue;
- }
-
- // If we're going to have to install the next block, allocate it in advance in order to
- // make the wait for other threads as short as possible.
- if offset + 1 == BLOCK_CAP && next_block.is_none() {
- next_block = Some(Box::new(Block::<T>::new()));
- }
-
- // If this is the first push operation, we need to allocate the first block.
- if block.is_null() {
- let new = Box::into_raw(Box::new(Block::<T>::new()));
-
- if self
- .tail
- .block
- .compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
- .is_ok()
- {
- self.head.block.store(new, Ordering::Release);
- block = new;
- } else {
- next_block = unsafe { Some(Box::from_raw(new)) };
- tail = self.tail.index.load(Ordering::Acquire);
- block = self.tail.block.load(Ordering::Acquire);
- continue;
- }
- }
-
- let new_tail = tail + (1 << SHIFT);
-
- // Try advancing the tail forward.
- match self.tail.index.compare_exchange_weak(
- tail,
- new_tail,
- Ordering::SeqCst,
- Ordering::Acquire,
- ) {
- Ok(_) => unsafe {
- // If we've reached the end of the block, install the next one.
- if offset + 1 == BLOCK_CAP {
- let next_block = Box::into_raw(next_block.unwrap());
- let next_index = new_tail.wrapping_add(1 << SHIFT);
-
- self.tail.block.store(next_block, Ordering::Release);
- self.tail.index.store(next_index, Ordering::Release);
- (*block).next.store(next_block, Ordering::Release);
- }
-
- // Write the value into the slot.
- let slot = (*block).slots.get_unchecked(offset);
- slot.value.get().write(MaybeUninit::new(value));
- slot.state.fetch_or(WRITE, Ordering::Release);
-
- return;
- },
- Err(t) => {
- tail = t;
- block = self.tail.block.load(Ordering::Acquire);
- backoff.spin();
- }
- }
- }
- }
-
- /// Pops an element from the queue.
- ///
- /// If the queue is empty, `None` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::SegQueue;
- ///
- /// let q = SegQueue::new();
- ///
- /// q.push(10);
- /// assert_eq!(q.pop(), Some(10));
- /// assert!(q.pop().is_none());
- /// ```
- pub fn pop(&self) -> Option<T> {
- let backoff = Backoff::new();
- let mut head = self.head.index.load(Ordering::Acquire);
- let mut block = self.head.block.load(Ordering::Acquire);
-
- loop {
- // Calculate the offset of the index into the block.
- let offset = (head >> SHIFT) % LAP;
-
- // If we reached the end of the block, wait until the next one is installed.
- if offset == BLOCK_CAP {
- backoff.snooze();
- head = self.head.index.load(Ordering::Acquire);
- block = self.head.block.load(Ordering::Acquire);
- continue;
- }
-
- let mut new_head = head + (1 << SHIFT);
-
- if new_head & HAS_NEXT == 0 {
- atomic::fence(Ordering::SeqCst);
- let tail = self.tail.index.load(Ordering::Relaxed);
-
- // If the tail equals the head, that means the queue is empty.
- if head >> SHIFT == tail >> SHIFT {
- return None;
- }
-
- // If head and tail are not in the same block, set `HAS_NEXT` in head.
- if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
- new_head |= HAS_NEXT;
- }
- }
-
- // The block can be null here only if the first push operation is in progress. In that
- // case, just wait until it gets initialized.
- if block.is_null() {
- backoff.snooze();
- head = self.head.index.load(Ordering::Acquire);
- block = self.head.block.load(Ordering::Acquire);
- continue;
- }
-
- // Try moving the head index forward.
- match self.head.index.compare_exchange_weak(
- head,
- new_head,
- Ordering::SeqCst,
- Ordering::Acquire,
- ) {
- Ok(_) => unsafe {
- // If we've reached the end of the block, move to the next one.
- if offset + 1 == BLOCK_CAP {
- let next = (*block).wait_next();
- let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
- if !(*next).next.load(Ordering::Relaxed).is_null() {
- next_index |= HAS_NEXT;
- }
-
- self.head.block.store(next, Ordering::Release);
- self.head.index.store(next_index, Ordering::Release);
- }
-
- // Read the value.
- let slot = (*block).slots.get_unchecked(offset);
- slot.wait_write();
- let value = slot.value.get().read().assume_init();
-
- // Destroy the block if we've reached the end, or if another thread wanted to
- // destroy but couldn't because we were busy reading from the slot.
- if offset + 1 == BLOCK_CAP {
- Block::destroy(block, 0);
- } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
- Block::destroy(block, offset + 1);
- }
-
- return Some(value);
- },
- Err(h) => {
- head = h;
- block = self.head.block.load(Ordering::Acquire);
- backoff.spin();
- }
- }
- }
- }
-
- /// Returns `true` if the queue is empty.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::SegQueue;
- ///
- /// let q = SegQueue::new();
- ///
- /// assert!(q.is_empty());
- /// q.push(1);
- /// assert!(!q.is_empty());
- /// ```
- pub fn is_empty(&self) -> bool {
- let head = self.head.index.load(Ordering::SeqCst);
- let tail = self.tail.index.load(Ordering::SeqCst);
- head >> SHIFT == tail >> SHIFT
- }
-
- /// Returns the number of elements in the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_queue::SegQueue;
- ///
- /// let q = SegQueue::new();
- /// assert_eq!(q.len(), 0);
- ///
- /// q.push(10);
- /// assert_eq!(q.len(), 1);
- ///
- /// q.push(20);
- /// assert_eq!(q.len(), 2);
- /// ```
- pub fn len(&self) -> usize {
- loop {
- // Load the tail index, then load the head index.
- let mut tail = self.tail.index.load(Ordering::SeqCst);
- let mut head = self.head.index.load(Ordering::SeqCst);
-
- // If the tail index didn't change, we've got consistent indices to work with.
- if self.tail.index.load(Ordering::SeqCst) == tail {
- // Erase the lower bits.
- tail &= !((1 << SHIFT) - 1);
- head &= !((1 << SHIFT) - 1);
-
- // Fix up indices if they fall onto block ends.
- if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
- tail = tail.wrapping_add(1 << SHIFT);
- }
- if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
- head = head.wrapping_add(1 << SHIFT);
- }
-
- // Rotate indices so that head falls into the first block.
- let lap = (head >> SHIFT) / LAP;
- tail = tail.wrapping_sub((lap * LAP) << SHIFT);
- head = head.wrapping_sub((lap * LAP) << SHIFT);
-
- // Remove the lower bits.
- tail >>= SHIFT;
- head >>= SHIFT;
-
- // Return the difference minus the number of blocks between tail and head.
- return tail - head - tail / LAP;
- }
- }
- }
-}
-
-impl<T> Drop for SegQueue<T> {
- fn drop(&mut self) {
- let mut head = self.head.index.load(Ordering::Relaxed);
- let mut tail = self.tail.index.load(Ordering::Relaxed);
- let mut block = self.head.block.load(Ordering::Relaxed);
-
- // Erase the lower bits.
- head &= !((1 << SHIFT) - 1);
- tail &= !((1 << SHIFT) - 1);
-
- unsafe {
- // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
- while head != tail {
- let offset = (head >> SHIFT) % LAP;
-
- if offset < BLOCK_CAP {
- // Drop the value in the slot.
- let slot = (*block).slots.get_unchecked(offset);
- let p = &mut *slot.value.get();
- p.as_mut_ptr().drop_in_place();
- } else {
- // Deallocate the block and move to the next one.
- let next = (*block).next.load(Ordering::Relaxed);
- drop(Box::from_raw(block));
- block = next;
- }
-
- head = head.wrapping_add(1 << SHIFT);
- }
-
- // Deallocate the last remaining block.
- if !block.is_null() {
- drop(Box::from_raw(block));
- }
- }
- }
-}
-
-impl<T> fmt::Debug for SegQueue<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.pad("SegQueue { .. }")
- }
-}
-
-impl<T> Default for SegQueue<T> {
- fn default() -> SegQueue<T> {
- SegQueue::new()
- }
-}
-
-impl<T> IntoIterator for SegQueue<T> {
- type Item = T;
-
- type IntoIter = IntoIter<T>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter { value: self }
- }
-}
-
-#[derive(Debug)]
-pub struct IntoIter<T> {
- value: SegQueue<T>,
-}
-
-impl<T> Iterator for IntoIter<T> {
- type Item = T;
-
- fn next(&mut self) -> Option<Self::Item> {
- let value = &mut self.value;
- let head = *value.head.index.get_mut();
- let tail = *value.tail.index.get_mut();
- if head >> SHIFT == tail >> SHIFT {
- None
- } else {
- let block = *value.head.block.get_mut();
- let offset = (head >> SHIFT) % LAP;
-
- // SAFETY: We have mutable access to this, so we can read without
- // worrying about concurrency. Furthermore, we know this is
- // initialized because it is the value pointed at by `value.head`
- // and this is a non-empty queue.
- let item = unsafe {
- let slot = (*block).slots.get_unchecked(offset);
- let p = &mut *slot.value.get();
- p.as_mut_ptr().read()
- };
- if offset + 1 == BLOCK_CAP {
- // Deallocate the block and move to the next one.
- // SAFETY: The block is initialized because we've been reading
- // from it this entire time. We can drop it b/c everything has
- // been read out of it, so nothing is pointing to it anymore.
- unsafe {
- let next = *(*block).next.get_mut();
- drop(Box::from_raw(block));
- *value.head.block.get_mut() = next;
- }
- // The last value in a block is empty, so skip it
- *value.head.index.get_mut() = head.wrapping_add(2 << SHIFT);
- // Double-check that we're pointing to the first item in a block.
- debug_assert_eq!((*value.head.index.get_mut() >> SHIFT) % LAP, 0);
- } else {
- *value.head.index.get_mut() = head.wrapping_add(1 << SHIFT);
- }
- Some(item)
- }
- }
-}