summaryrefslogtreecommitdiffstats
path: root/vendor/datafrog/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/datafrog/src')
-rw-r--r--vendor/datafrog/src/join.rs180
-rw-r--r--vendor/datafrog/src/lib.rs567
-rw-r--r--vendor/datafrog/src/map.rs13
-rw-r--r--vendor/datafrog/src/test.rs195
-rw-r--r--vendor/datafrog/src/treefrog.rs661
5 files changed, 1616 insertions, 0 deletions
diff --git a/vendor/datafrog/src/join.rs b/vendor/datafrog/src/join.rs
new file mode 100644
index 000000000..94270af77
--- /dev/null
+++ b/vendor/datafrog/src/join.rs
@@ -0,0 +1,180 @@
+//! Join functionality.
+
+use super::{Relation, Variable};
+use std::cell::Ref;
+use std::ops::Deref;
+
+/// Implements `join`. Note that `input1` must be a variable, but
+/// `input2` can be either a variable or a relation. This is necessary
+/// because relations have no "recent" tuples, so the fn would be a
+/// guaranteed no-op if both arguments were relations. See also
+/// `join_into_relation`.
+pub(crate) fn join_into<'me, Key: Ord, Val1: Ord, Val2: Ord, Result: Ord>(
+ input1: &Variable<(Key, Val1)>,
+ input2: impl JoinInput<'me, (Key, Val2)>,
+ output: &Variable<Result>,
+ mut logic: impl FnMut(&Key, &Val1, &Val2) -> Result,
+) {
+ let mut results = Vec::new();
+
+ let recent1 = input1.recent();
+ let recent2 = input2.recent();
+
+ {
+ // scoped to let `closure` drop borrow of `results`.
+
+ let mut closure = |k: &Key, v1: &Val1, v2: &Val2| results.push(logic(k, v1, v2));
+
+ for batch2 in input2.stable().iter() {
+ join_helper(&recent1, &batch2, &mut closure);
+ }
+
+ for batch1 in input1.stable().iter() {
+ join_helper(&batch1, &recent2, &mut closure);
+ }
+
+ join_helper(&recent1, &recent2, &mut closure);
+ }
+
+ output.insert(Relation::from_vec(results));
+}
+
+/// Join, but for two relations.
+pub(crate) fn join_into_relation<'me, Key: Ord, Val1: Ord, Val2: Ord, Result: Ord>(
+ input1: &Relation<(Key, Val1)>,
+ input2: &Relation<(Key, Val2)>,
+ mut logic: impl FnMut(&Key, &Val1, &Val2) -> Result,
+) -> Relation<Result> {
+ let mut results = Vec::new();
+
+ join_helper(&input1.elements, &input2.elements, |k, v1, v2| {
+ results.push(logic(k, v1, v2));
+ });
+
+ Relation::from_vec(results)
+}
+
+/// Moves all recent tuples from `input1` that are not present in `input2` into `output`.
+pub(crate) fn antijoin<'me, Key: Ord, Val: Ord, Result: Ord>(
+ input1: impl JoinInput<'me, (Key, Val)>,
+ input2: &Relation<Key>,
+ mut logic: impl FnMut(&Key, &Val) -> Result,
+) -> Relation<Result> {
+ let mut tuples2 = &input2[..];
+
+ let results = input1
+ .recent()
+ .iter()
+ .filter(|(ref key, _)| {
+ tuples2 = gallop(tuples2, |k| k < key);
+ tuples2.first() != Some(key)
+ })
+ .map(|(ref key, ref val)| logic(key, val))
+ .collect::<Vec<_>>();
+
+ Relation::from_vec(results)
+}
+
+fn join_helper<K: Ord, V1, V2>(
+ mut slice1: &[(K, V1)],
+ mut slice2: &[(K, V2)],
+ mut result: impl FnMut(&K, &V1, &V2),
+) {
+ while !slice1.is_empty() && !slice2.is_empty() {
+ use std::cmp::Ordering;
+
+ // If the keys match produce tuples, else advance the smaller key until they might.
+ match slice1[0].0.cmp(&slice2[0].0) {
+ Ordering::Less => {
+ slice1 = gallop(slice1, |x| x.0 < slice2[0].0);
+ }
+ Ordering::Equal => {
+ // Determine the number of matching keys in each slice.
+ let count1 = slice1.iter().take_while(|x| x.0 == slice1[0].0).count();
+ let count2 = slice2.iter().take_while(|x| x.0 == slice2[0].0).count();
+
+ // Produce results from the cross-product of matches.
+ for index1 in 0..count1 {
+ for s2 in slice2[..count2].iter() {
+ result(&slice1[0].0, &slice1[index1].1, &s2.1);
+ }
+ }
+
+ // Advance slices past this key.
+ slice1 = &slice1[count1..];
+ slice2 = &slice2[count2..];
+ }
+ Ordering::Greater => {
+ slice2 = gallop(slice2, |x| x.0 < slice1[0].0);
+ }
+ }
+ }
+}
+
+pub(crate) fn gallop<T>(mut slice: &[T], mut cmp: impl FnMut(&T) -> bool) -> &[T] {
+ // if empty slice, or already >= element, return
+ if !slice.is_empty() && cmp(&slice[0]) {
+ let mut step = 1;
+ while step < slice.len() && cmp(&slice[step]) {
+ slice = &slice[step..];
+ step <<= 1;
+ }
+
+ step >>= 1;
+ while step > 0 {
+ if step < slice.len() && cmp(&slice[step]) {
+ slice = &slice[step..];
+ }
+ step >>= 1;
+ }
+
+ slice = &slice[1..]; // advance one, as we always stayed < value
+ }
+
+ slice
+}
+
+/// An input that can be used with `from_join`; either a `Variable` or a `Relation`.
+pub trait JoinInput<'me, Tuple: Ord>: Copy {
+ /// If we are on iteration N of the loop, these are the tuples
+ /// added on iteration N-1. (For a `Relation`, this is always an
+ /// empty slice.)
+ type RecentTuples: Deref<Target = [Tuple]>;
+
+ /// If we are on iteration N of the loop, these are the tuples
+ /// added on iteration N - 2 or before. (For a `Relation`, this is
+ /// just `self`.)
+ type StableTuples: Deref<Target = [Relation<Tuple>]>;
+
+ /// Get the set of recent tuples.
+ fn recent(self) -> Self::RecentTuples;
+
+ /// Get the set of stable tuples.
+ fn stable(self) -> Self::StableTuples;
+}
+
+impl<'me, Tuple: Ord> JoinInput<'me, Tuple> for &'me Variable<Tuple> {
+ type RecentTuples = Ref<'me, [Tuple]>;
+ type StableTuples = Ref<'me, [Relation<Tuple>]>;
+
+ fn recent(self) -> Self::RecentTuples {
+ Ref::map(self.recent.borrow(), |r| &r.elements[..])
+ }
+
+ fn stable(self) -> Self::StableTuples {
+ Ref::map(self.stable.borrow(), |v| &v[..])
+ }
+}
+
+impl<'me, Tuple: Ord> JoinInput<'me, Tuple> for &'me Relation<Tuple> {
+ type RecentTuples = &'me [Tuple];
+ type StableTuples = &'me [Relation<Tuple>];
+
+ fn recent(self) -> Self::RecentTuples {
+ &[]
+ }
+
+ fn stable(self) -> Self::StableTuples {
+ std::slice::from_ref(self)
+ }
+}
diff --git a/vendor/datafrog/src/lib.rs b/vendor/datafrog/src/lib.rs
new file mode 100644
index 000000000..d2f93239e
--- /dev/null
+++ b/vendor/datafrog/src/lib.rs
@@ -0,0 +1,567 @@
+//! A lightweight Datalog engine in Rust
+//!
+//! The intended design is that one has static `Relation` types that are sets
+//! of tuples, and `Variable` types that represent monotonically increasing
+//! sets of tuples.
+//!
+//! The types are mostly wrappers around `Vec<Tuple>` indicating sorted-ness,
+//! and the intent is that this code can be dropped in the middle of an otherwise
+//! normal Rust program, run to completion, and then the results extracted as
+//! vectors again.
+
+#![forbid(missing_docs)]
+
+use std::cell::RefCell;
+use std::cmp::Ordering;
+use std::iter::FromIterator;
+use std::rc::Rc;
+
+mod join;
+mod map;
+mod test;
+mod treefrog;
+pub use crate::join::JoinInput;
+pub use crate::treefrog::{
+ extend_anti::ExtendAnti,
+ extend_with::ExtendWith,
+ filter_anti::FilterAnti,
+ filter_with::FilterWith,
+ filters::{PrefixFilter, ValueFilter},
+ Leaper, Leapers, RelationLeaper,
+};
+
+/// A static, ordered list of key-value pairs.
+///
+/// A relation represents a fixed set of key-value pairs. In many places in a
+/// Datalog computation we want to be sure that certain relations are not able
+/// to vary (for example, in antijoins).
+#[derive(Clone)]
+pub struct Relation<Tuple: Ord> {
+ /// Sorted list of distinct tuples.
+ pub elements: Vec<Tuple>,
+}
+
+impl<Tuple: Ord> Relation<Tuple> {
+ /// Merges two relations into their union.
+ pub fn merge(self, other: Self) -> Self {
+ let Relation {
+ elements: mut elements1,
+ } = self;
+ let Relation {
+ elements: mut elements2,
+ } = other;
+
+ // If one of the element lists is zero-length, we don't need to do any work
+ if elements1.is_empty() {
+ return Relation {
+ elements: elements2,
+ };
+ }
+
+ if elements2.is_empty() {
+ return Relation {
+ elements: elements1,
+ };
+ }
+
+ // Make sure that elements1 starts with the lower element
+ // Will not panic since both collections must have at least 1 element at this point
+ if elements1[0] > elements2[0] {
+ std::mem::swap(&mut elements1, &mut elements2);
+ }
+
+ // Fast path for when all the new elements are after the exiting ones
+ if elements1[elements1.len() - 1] < elements2[0] {
+ elements1.extend(elements2.into_iter());
+ // println!("fast path");
+ return Relation {
+ elements: elements1,
+ };
+ }
+
+ let mut elements = Vec::with_capacity(elements1.len() + elements2.len());
+ let mut elements1 = elements1.drain(..);
+ let mut elements2 = elements2.drain(..).peekable();
+
+ elements.push(elements1.next().unwrap());
+ if elements.first() == elements2.peek() {
+ elements2.next();
+ }
+
+ for elem in elements1 {
+ while elements2.peek().map(|x| x.cmp(&elem)) == Some(Ordering::Less) {
+ elements.push(elements2.next().unwrap());
+ }
+ if elements2.peek().map(|x| x.cmp(&elem)) == Some(Ordering::Equal) {
+ elements2.next();
+ }
+ elements.push(elem);
+ }
+
+ // Finish draining second list
+ elements.extend(elements2);
+
+ Relation { elements }
+ }
+
+ /// Creates a `Relation` from the elements of the `iterator`.
+ ///
+ /// Same as the `from_iter` method from `std::iter::FromIterator` trait.
+ pub fn from_iter<I>(iterator: I) -> Self
+ where
+ I: IntoIterator<Item = Tuple>,
+ {
+ iterator.into_iter().collect()
+ }
+
+ /// Creates a `Relation` using the `leapjoin` logic;
+ /// see [`Variable::from_leapjoin`]
+ pub fn from_leapjoin<'leap, SourceTuple: Ord, Val: Ord + 'leap>(
+ source: &Relation<SourceTuple>,
+ leapers: impl Leapers<'leap, SourceTuple, Val>,
+ logic: impl FnMut(&SourceTuple, &Val) -> Tuple,
+ ) -> Self {
+ treefrog::leapjoin(&source.elements, leapers, logic)
+ }
+
+ /// Creates a `Relation` by joining the values from `input1` and
+ /// `input2` and then applying `logic`. Like
+ /// [`Variable::from_join`] except for use where the inputs are
+ /// not varying across iterations.
+ pub fn from_join<Key: Ord, Val1: Ord, Val2: Ord>(
+ input1: &Relation<(Key, Val1)>,
+ input2: &Relation<(Key, Val2)>,
+ logic: impl FnMut(&Key, &Val1, &Val2) -> Tuple,
+ ) -> Self {
+ join::join_into_relation(input1, input2, logic)
+ }
+
+ /// Creates a `Relation` by removing all values from `input1` that
+ /// share a key with `input2`, and then transforming the resulting
+ /// tuples with the `logic` closure. Like
+ /// [`Variable::from_antijoin`] except for use where the inputs
+ /// are not varying across iterations.
+ pub fn from_antijoin<Key: Ord, Val1: Ord>(
+ input1: &Relation<(Key, Val1)>,
+ input2: &Relation<Key>,
+ logic: impl FnMut(&Key, &Val1) -> Tuple,
+ ) -> Self {
+ join::antijoin(input1, input2, logic)
+ }
+
+ /// Construct a new relation by mapping another one. Equivalent to
+ /// creating an iterator but perhaps more convenient. Analogous to
+ /// `Variable::from_map`.
+ pub fn from_map<T2: Ord>(input: &Relation<T2>, logic: impl FnMut(&T2) -> Tuple) -> Self {
+ input.iter().map(logic).collect()
+ }
+
+ /// Creates a `Relation` from a vector of tuples.
+ pub fn from_vec(mut elements: Vec<Tuple>) -> Self {
+ elements.sort();
+ elements.dedup();
+ Relation { elements }
+ }
+}
+
+impl<Tuple: Ord> From<Vec<Tuple>> for Relation<Tuple> {
+ fn from(iterator: Vec<Tuple>) -> Self {
+ Self::from_vec(iterator)
+ }
+}
+
+impl<Tuple: Ord> FromIterator<Tuple> for Relation<Tuple> {
+ fn from_iter<I>(iterator: I) -> Self
+ where
+ I: IntoIterator<Item = Tuple>,
+ {
+ Relation::from_vec(iterator.into_iter().collect())
+ }
+}
+
+impl<'tuple, Tuple: 'tuple + Copy + Ord> FromIterator<&'tuple Tuple> for Relation<Tuple> {
+ fn from_iter<I>(iterator: I) -> Self
+ where
+ I: IntoIterator<Item = &'tuple Tuple>,
+ {
+ Relation::from_vec(iterator.into_iter().cloned().collect())
+ }
+}
+
+impl<Tuple: Ord> std::ops::Deref for Relation<Tuple> {
+ type Target = [Tuple];
+ fn deref(&self) -> &Self::Target {
+ &self.elements[..]
+ }
+}
+
+/// An iterative context for recursive evaluation.
+///
+/// An `Iteration` tracks monotonic variables, and monitors their progress.
+/// It can inform the user if they have ceased changing, at which point the
+/// computation should be done.
+pub struct Iteration {
+ variables: Vec<Box<dyn VariableTrait>>,
+}
+
+impl Iteration {
+ /// Create a new iterative context.
+ pub fn new() -> Self {
+ Iteration {
+ variables: Vec::new(),
+ }
+ }
+ /// Reports whether any of the monitored variables have changed since
+ /// the most recent call.
+ pub fn changed(&mut self) -> bool {
+ let mut result = false;
+ for variable in self.variables.iter_mut() {
+ if variable.changed() {
+ result = true;
+ }
+ }
+ result
+ }
+ /// Creates a new named variable associated with the iterative context.
+ pub fn variable<Tuple: Ord + 'static>(&mut self, name: &str) -> Variable<Tuple> {
+ let variable = Variable::new(name);
+ self.variables.push(Box::new(variable.clone()));
+ variable
+ }
+ /// Creates a new named variable associated with the iterative context.
+ ///
+ /// This variable will not be maintained distinctly, and may advertise tuples as
+ /// recent multiple times (perhaps unboundedly many times).
+ pub fn variable_indistinct<Tuple: Ord + 'static>(&mut self, name: &str) -> Variable<Tuple> {
+ let mut variable = Variable::new(name);
+ variable.distinct = false;
+ self.variables.push(Box::new(variable.clone()));
+ variable
+ }
+}
+
+/// A type that can report on whether it has changed.
+trait VariableTrait {
+ /// Reports whether the variable has changed since it was last asked.
+ fn changed(&mut self) -> bool;
+}
+
+/// An monotonically increasing set of `Tuple`s.
+///
+/// There are three stages in the lifecycle of a tuple:
+///
+/// 1. A tuple is added to `self.to_add`, but is not yet visible externally.
+/// 2. Newly added tuples are then promoted to `self.recent` for one iteration.
+/// 3. After one iteration, recent tuples are moved to `self.tuples` for posterity.
+///
+/// Each time `self.changed()` is called, the `recent` relation is folded into `tuples`,
+/// and the `to_add` relations are merged, potentially deduplicated against `tuples`, and
+/// then made `recent`. This way, across calls to `changed()` all added tuples are in
+/// `recent` at least once and eventually all are in `tuples`.
+///
+/// A `Variable` may optionally be instructed not to de-duplicate its tuples, for reasons
+/// of performance. Such a variable cannot be relied on to terminate iterative computation,
+/// and it is important that any cycle of derivations have at least one de-duplicating
+/// variable on it.
+pub struct Variable<Tuple: Ord> {
+ /// Should the variable be maintained distinctly.
+ distinct: bool,
+ /// A useful name for the variable.
+ name: String,
+ /// A list of relations whose union are the accepted tuples.
+ pub stable: Rc<RefCell<Vec<Relation<Tuple>>>>,
+ /// A list of recent tuples, still to be processed.
+ pub recent: Rc<RefCell<Relation<Tuple>>>,
+ /// A list of future tuples, to be introduced.
+ to_add: Rc<RefCell<Vec<Relation<Tuple>>>>,
+}
+
+// Operator implementations.
+impl<Tuple: Ord> Variable<Tuple> {
+ /// Adds tuples that result from joining `input1` and `input2` --
+ /// each of the inputs must be a set of (Key, Value) tuples. Both
+ /// `input1` and `input2` must have the same type of key (`K`) but
+ /// they can have distinct value types (`V1` and `V2`
+ /// respectively). The `logic` closure will be invoked for each
+ /// key that appears in both inputs; it is also given the two
+ /// values, and from those it should construct the resulting
+ /// value.
+ ///
+ /// Note that `input1` must be a variable, but `input2` can be a
+ /// relation or a variable. Therefore, you cannot join two
+ /// relations with this method. This is not because the result
+ /// would be wrong, but because it would be inefficient: the
+ /// result from such a join cannot vary across iterations (as
+ /// relations are fixed), so you should prefer to invoke `insert`
+ /// on a relation created by `Relation::from_join` instead.
+ ///
+ /// # Examples
+ ///
+ /// This example starts a collection with the pairs (x, x+1) and (x+1, x) for x in 0 .. 10.
+ /// It then adds pairs (y, z) for which (x, y) and (x, z) are present. Because the initial
+ /// pairs are symmetric, this should result in all pairs (x, y) for x and y in 0 .. 11.
+ ///
+ /// ```
+ /// use datafrog::{Iteration, Relation};
+ ///
+ /// let mut iteration = Iteration::new();
+ /// let variable = iteration.variable::<(usize, usize)>("source");
+ /// variable.extend((0 .. 10).map(|x| (x, x + 1)));
+ /// variable.extend((0 .. 10).map(|x| (x + 1, x)));
+ ///
+ /// while iteration.changed() {
+ /// variable.from_join(&variable, &variable, |&key, &val1, &val2| (val1, val2));
+ /// }
+ ///
+ /// let result = variable.complete();
+ /// assert_eq!(result.len(), 121);
+ /// ```
+ pub fn from_join<'me, K: Ord, V1: Ord, V2: Ord>(
+ &self,
+ input1: &'me Variable<(K, V1)>,
+ input2: impl JoinInput<'me, (K, V2)>,
+ logic: impl FnMut(&K, &V1, &V2) -> Tuple,
+ ) {
+ join::join_into(input1, input2, self, logic)
+ }
+
+ /// Adds tuples from `input1` whose key is not present in `input2`.
+ ///
+ /// Note that `input1` must be a variable: if you have a relation
+ /// instead, you can use `Relation::from_antijoin` and then
+ /// `Variable::insert`. Note that the result will not vary during
+ /// the iteration.
+ ///
+ /// # Examples
+ ///
+ /// This example starts a collection with the pairs (x, x+1) for x in 0 .. 10. It then
+ /// adds any pairs (x+1,x) for which x is not a multiple of three. That excludes four
+ /// pairs (for 0, 3, 6, and 9) which should leave us with 16 total pairs.
+ ///
+ /// ```
+ /// use datafrog::{Iteration, Relation};
+ ///
+ /// let mut iteration = Iteration::new();
+ /// let variable = iteration.variable::<(usize, usize)>("source");
+ /// variable.extend((0 .. 10).map(|x| (x, x + 1)));
+ ///
+ /// let relation: Relation<_> = (0 .. 10).filter(|x| x % 3 == 0).collect();
+ ///
+ /// while iteration.changed() {
+ /// variable.from_antijoin(&variable, &relation, |&key, &val| (val, key));
+ /// }
+ ///
+ /// let result = variable.complete();
+ /// assert_eq!(result.len(), 16);
+ /// ```
+ pub fn from_antijoin<K: Ord, V: Ord>(
+ &self,
+ input1: &Variable<(K, V)>,
+ input2: &Relation<K>,
+ logic: impl FnMut(&K, &V) -> Tuple,
+ ) {
+ self.insert(join::antijoin(input1, input2, logic))
+ }
+
+ /// Adds tuples that result from mapping `input`.
+ ///
+ /// # Examples
+ ///
+ /// This example starts a collection with the pairs (x, x) for x in 0 .. 10. It then
+ /// repeatedly adds any pairs (x, z) for (x, y) in the collection, where z is the Collatz
+ /// step for y: it is y/2 if y is even, and 3*y + 1 if y is odd. This produces all of the
+ /// pairs (x, y) where x visits y as part of its Collatz journey.
+ ///
+ /// ```
+ /// use datafrog::{Iteration, Relation};
+ ///
+ /// let mut iteration = Iteration::new();
+ /// let variable = iteration.variable::<(usize, usize)>("source");
+ /// variable.extend((0 .. 10).map(|x| (x, x)));
+ ///
+ /// while iteration.changed() {
+ /// variable.from_map(&variable, |&(key, val)|
+ /// if val % 2 == 0 {
+ /// (key, val/2)
+ /// }
+ /// else {
+ /// (key, 3*val + 1)
+ /// });
+ /// }
+ ///
+ /// let result = variable.complete();
+ /// assert_eq!(result.len(), 74);
+ /// ```
+ pub fn from_map<T2: Ord>(&self, input: &Variable<T2>, logic: impl FnMut(&T2) -> Tuple) {
+ map::map_into(input, self, logic)
+ }
+
+ /// Adds tuples that result from combining `source` with the
+ /// relations given in `leapers`. This operation is very flexible
+ /// and can be used to do a combination of joins and anti-joins.
+ /// The main limitation is that the things being combined must
+ /// consist of one dynamic variable (`source`) and then several
+ /// fixed relations (`leapers`).
+ ///
+ /// The idea is as follows:
+ ///
+ /// - You will be inserting new tuples that result from joining (and anti-joining)
+ /// some dynamic variable `source` of source tuples (`SourceTuple`)
+ /// with some set of values (of type `Val`).
+ /// - You provide these values by combining `source` with a set of leapers
+ /// `leapers`, each of which is derived from a fixed relation. The `leapers`
+ /// should be either a single leaper (of suitable type) or else a tuple of leapers.
+ /// You can create a leaper in one of two ways:
+ /// - Extension: In this case, you have a relation of type `(K, Val)` for some
+ /// type `K`. You provide a closure that maps from `SourceTuple` to the key
+ /// `K`. If you use `relation.extend_with`, then any `Val` values the
+ /// relation provides will be added to the set of values; if you use
+ /// `extend_anti`, then the `Val` values will be removed.
+ /// - Filtering: In this case, you have a relation of type `K` for some
+ /// type `K` and you provide a closure that maps from `SourceTuple` to
+ /// the key `K`. Filters don't provide values but they remove source
+ /// tuples.
+ /// - Finally, you get a callback `logic` that accepts each `(SourceTuple, Val)`
+ /// that was successfully joined (and not filtered) and which maps to the
+ /// type of this variable.
+ pub fn from_leapjoin<'leap, SourceTuple: Ord, Val: Ord + 'leap>(
+ &self,
+ source: &Variable<SourceTuple>,
+ leapers: impl Leapers<'leap, SourceTuple, Val>,
+ logic: impl FnMut(&SourceTuple, &Val) -> Tuple,
+ ) {
+ self.insert(treefrog::leapjoin(&source.recent.borrow(), leapers, logic));
+ }
+}
+
+impl<Tuple: Ord> Clone for Variable<Tuple> {
+ fn clone(&self) -> Self {
+ Variable {
+ distinct: self.distinct,
+ name: self.name.clone(),
+ stable: self.stable.clone(),
+ recent: self.recent.clone(),
+ to_add: self.to_add.clone(),
+ }
+ }
+}
+
+impl<Tuple: Ord> Variable<Tuple> {
+ fn new(name: &str) -> Self {
+ Variable {
+ distinct: true,
+ name: name.to_string(),
+ stable: Rc::new(RefCell::new(Vec::new())),
+ recent: Rc::new(RefCell::new(Vec::new().into())),
+ to_add: Rc::new(RefCell::new(Vec::new())),
+ }
+ }
+
+ /// Inserts a relation into the variable.
+ ///
+ /// This is most commonly used to load initial values into a variable.
+ /// it is not obvious that it should be commonly used otherwise, but
+ /// it should not be harmful.
+ pub fn insert(&self, relation: Relation<Tuple>) {
+ if !relation.is_empty() {
+ self.to_add.borrow_mut().push(relation);
+ }
+ }
+
+ /// Extend the variable with values from the iterator.
+ ///
+ /// This is most commonly used to load initial values into a variable.
+ /// it is not obvious that it should be commonly used otherwise, but
+ /// it should not be harmful.
+ pub fn extend<T>(&self, iterator: impl IntoIterator<Item = T>)
+ where
+ Relation<Tuple>: FromIterator<T>,
+ {
+ self.insert(iterator.into_iter().collect());
+ }
+
+ /// Consumes the variable and returns a relation.
+ ///
+ /// This method removes the ability for the variable to develop, and
+ /// flattens all internal tuples down to one relation. The method
+ /// asserts that iteration has completed, in that `self.recent` and
+ /// `self.to_add` should both be empty.
+ pub fn complete(self) -> Relation<Tuple> {
+ assert!(self.recent.borrow().is_empty());
+ assert!(self.to_add.borrow().is_empty());
+ let mut result: Relation<Tuple> = Vec::new().into();
+ while let Some(batch) = self.stable.borrow_mut().pop() {
+ result = result.merge(batch);
+ }
+ result
+ }
+}
+
+impl<Tuple: Ord> VariableTrait for Variable<Tuple> {
+ fn changed(&mut self) -> bool {
+ // 1. Merge self.recent into self.stable.
+ if !self.recent.borrow().is_empty() {
+ let mut recent =
+ ::std::mem::replace(&mut (*self.recent.borrow_mut()), Vec::new().into());
+ while self
+ .stable
+ .borrow()
+ .last()
+ .map(|x| x.len() <= 2 * recent.len())
+ == Some(true)
+ {
+ let last = self.stable.borrow_mut().pop().unwrap();
+ recent = recent.merge(last);
+ }
+ self.stable.borrow_mut().push(recent);
+ }
+
+ // 2. Move self.to_add into self.recent.
+ let to_add = self.to_add.borrow_mut().pop();
+ if let Some(mut to_add) = to_add {
+ while let Some(to_add_more) = self.to_add.borrow_mut().pop() {
+ to_add = to_add.merge(to_add_more);
+ }
+ // 2b. Restrict `to_add` to tuples not in `self.stable`.
+ if self.distinct {
+ for batch in self.stable.borrow().iter() {
+ let mut slice = &batch[..];
+ // Only gallop if the slice is relatively large.
+ if slice.len() > 4 * to_add.elements.len() {
+ to_add.elements.retain(|x| {
+ slice = join::gallop(slice, |y| y < x);
+ slice.is_empty() || &slice[0] != x
+ });
+ } else {
+ to_add.elements.retain(|x| {
+ while !slice.is_empty() && &slice[0] < x {
+ slice = &slice[1..];
+ }
+ slice.is_empty() || &slice[0] != x
+ });
+ }
+ }
+ }
+ *self.recent.borrow_mut() = to_add;
+ }
+
+ // let mut total = 0;
+ // for tuple in self.stable.borrow().iter() {
+ // total += tuple.len();
+ // }
+
+ // println!("Variable\t{}\t{}\t{}", self.name, total, self.recent.borrow().len());
+
+ !self.recent.borrow().is_empty()
+ }
+}
+
+// impl<Tuple: Ord> Drop for Variable<Tuple> {
+// fn drop(&mut self) {
+// let mut total = 0;
+// for batch in self.stable.borrow().iter() {
+// total += batch.len();
+// }
+// println!("FINAL: {:?}\t{:?}", self.name, total);
+// }
+// }
diff --git a/vendor/datafrog/src/map.rs b/vendor/datafrog/src/map.rs
new file mode 100644
index 000000000..1a8c10128
--- /dev/null
+++ b/vendor/datafrog/src/map.rs
@@ -0,0 +1,13 @@
+//! Map functionality.
+
+use super::{Relation, Variable};
+
+pub(crate) fn map_into<T1: Ord, T2: Ord>(
+ input: &Variable<T1>,
+ output: &Variable<T2>,
+ logic: impl FnMut(&T1) -> T2,
+) {
+ let results: Vec<T2> = input.recent.borrow().iter().map(logic).collect();
+
+ output.insert(Relation::from_vec(results));
+}
diff --git a/vendor/datafrog/src/test.rs b/vendor/datafrog/src/test.rs
new file mode 100644
index 000000000..9d5af3561
--- /dev/null
+++ b/vendor/datafrog/src/test.rs
@@ -0,0 +1,195 @@
+#![cfg(test)]
+
+use crate::Iteration;
+use crate::Relation;
+use crate::RelationLeaper;
+use proptest::prelude::*;
+use proptest::{proptest, proptest_helper};
+
+fn inputs() -> impl Strategy<Value = Vec<(u32, u32)>> {
+ prop::collection::vec((0_u32..100, 0_u32..100), 1..500)
+}
+
+/// The original way to use datafrog -- computes reachable nodes from a set of edges
+fn reachable_with_var_join(edges: &[(u32, u32)]) -> Relation<(u32, u32)> {
+ let edges: Relation<_> = edges.iter().collect();
+ let mut iteration = Iteration::new();
+
+ let edges_by_successor = iteration.variable::<(u32, u32)>("edges_invert");
+ edges_by_successor.extend(edges.iter().map(|&(n1, n2)| (n2, n1)));
+
+ let reachable = iteration.variable::<(u32, u32)>("reachable");
+ reachable.insert(edges);
+
+ while iteration.changed() {
+ // reachable(N1, N3) :- edges(N1, N2), reachable(N2, N3).
+ reachable.from_join(&reachable, &edges_by_successor, |&_, &n3, &n1| (n1, n3));
+ }
+
+ reachable.complete()
+}
+
+/// Like `reachable`, but using a relation as an input to `from_join`
+fn reachable_with_relation_join(edges: &[(u32, u32)]) -> Relation<(u32, u32)> {
+ let edges: Relation<_> = edges.iter().collect();
+ let mut iteration = Iteration::new();
+
+ // NB. Changed from `reachable_with_var_join`:
+ let edges_by_successor: Relation<_> = edges.iter().map(|&(n1, n2)| (n2, n1)).collect();
+
+ let reachable = iteration.variable::<(u32, u32)>("reachable");
+ reachable.insert(edges);
+
+ while iteration.changed() {
+ // reachable(N1, N3) :- edges(N1, N2), reachable(N2, N3).
+ reachable.from_join(&reachable, &edges_by_successor, |&_, &n3, &n1| (n1, n3));
+ }
+
+ reachable.complete()
+}
+
+fn reachable_with_leapfrog(edges: &[(u32, u32)]) -> Relation<(u32, u32)> {
+ let edges: Relation<_> = edges.iter().collect();
+ let mut iteration = Iteration::new();
+
+ let edges_by_successor: Relation<_> = edges.iter().map(|&(n1, n2)| (n2, n1)).collect();
+
+ let reachable = iteration.variable::<(u32, u32)>("reachable");
+ reachable.insert(edges);
+
+ while iteration.changed() {
+ // reachable(N1, N3) :- edges(N1, N2), reachable(N2, N3).
+ reachable.from_leapjoin(
+ &reachable,
+ edges_by_successor.extend_with(|&(n2, _)| n2),
+ |&(_, n3), &n1| (n1, n3),
+ );
+ }
+
+ reachable.complete()
+}
+
+/// Computes a join where the values are summed -- uses iteration
+/// variables (the original datafrog technique).
+fn sum_join_via_var(
+ input1_slice: &[(u32, u32)],
+ input2_slice: &[(u32, u32)],
+) -> Relation<(u32, u32)> {
+ let mut iteration = Iteration::new();
+
+ let input1 = iteration.variable::<(u32, u32)>("input1");
+ input1.extend(input1_slice);
+
+ let input2 = iteration.variable::<(u32, u32)>("input1");
+ input2.extend(input2_slice);
+
+ let output = iteration.variable::<(u32, u32)>("output");
+
+ while iteration.changed() {
+ // output(K1, V1 * 100 + V2) :- input1(K1, V1), input2(K1, V2).
+ output.from_join(&input1, &input2, |&k1, &v1, &v2| (k1, v1 * 100 + v2));
+ }
+
+ output.complete()
+}
+
+/// Computes a join where the values are summed -- uses iteration
+/// variables (the original datafrog technique).
+fn sum_join_via_relation(
+ input1_slice: &[(u32, u32)],
+ input2_slice: &[(u32, u32)],
+) -> Relation<(u32, u32)> {
+ let input1: Relation<_> = input1_slice.iter().collect();
+ let input2: Relation<_> = input2_slice.iter().collect();
+ Relation::from_join(&input1, &input2, |&k1, &v1, &v2| (k1, v1 * 100 + v2))
+}
+
+proptest! {
+ #[test]
+ fn reachable_leapfrog_vs_var_join(edges in inputs()) {
+ let reachable1 = reachable_with_var_join(&edges);
+ let reachable2 = reachable_with_leapfrog(&edges);
+ assert_eq!(reachable1.elements, reachable2.elements);
+ }
+
+ #[test]
+ fn reachable_rel_join_vs_var_join(edges in inputs()) {
+ let reachable1 = reachable_with_var_join(&edges);
+ let reachable2 = reachable_with_relation_join(&edges);
+ assert_eq!(reachable1.elements, reachable2.elements);
+ }
+
+ #[test]
+ fn sum_join_from_var_vs_rel((set1, set2) in (inputs(), inputs())) {
+ let output1 = sum_join_via_var(&set1, &set2);
+ let output2 = sum_join_via_relation(&set1, &set2);
+ assert_eq!(output1.elements, output2.elements);
+ }
+
+ /// Test the behavior of `filter_anti` used on its own in a
+ /// leapjoin -- effectively it becomes an "intersection"
+ /// operation.
+ #[test]
+ fn filter_with_on_its_own((set1, set2) in (inputs(), inputs())) {
+ let input1: Relation<(u32, u32)> = set1.iter().collect();
+ let input2: Relation<(u32, u32)> = set2.iter().collect();
+ let intersection1 = Relation::from_leapjoin(
+ &input1,
+ input2.filter_with(|&tuple| tuple),
+ |&tuple, &()| tuple,
+ );
+
+ let intersection2: Relation<(u32, u32)> = input1.elements.iter()
+ .filter(|t| input2.elements.binary_search(&t).is_ok())
+ .collect();
+
+ assert_eq!(intersection1.elements, intersection2.elements);
+ }
+
+ /// Test the behavior of `filter_anti` used on its own in a
+ /// leapjoin -- effectively it becomes a "set minus" operation.
+ #[test]
+ fn filter_anti_on_its_own((set1, set2) in (inputs(), inputs())) {
+ let input1: Relation<(u32, u32)> = set1.iter().collect();
+ let input2: Relation<(u32, u32)> = set2.iter().collect();
+
+ let difference1 = Relation::from_leapjoin(
+ &input1,
+ input2.filter_anti(|&tuple| tuple),
+ |&tuple, &()| tuple,
+ );
+
+ let difference2: Relation<(u32, u32)> = input1.elements.iter()
+ .filter(|t| input2.elements.binary_search(&t).is_err())
+ .collect();
+
+ assert_eq!(difference1.elements, difference2.elements);
+ }
+}
+
+/// Test that `from_leapjoin` matches against the tuples from an
+/// `extend` that precedes first iteration.
+///
+/// This was always true, but wasn't immediately obvious to me until I
+/// re-read the code more carefully. -nikomatsakis
+#[test]
+fn leapjoin_from_extend() {
+ let doubles: Relation<(u32, u32)> = (0..10).map(|i| (i, i * 2)).collect();
+
+ let mut iteration = Iteration::new();
+
+ let variable = iteration.variable::<(u32, u32)>("variable");
+ variable.extend(Some((2, 2)));
+
+ while iteration.changed() {
+ variable.from_leapjoin(
+ &variable,
+ doubles.extend_with(|&(i, _)| i),
+ |&(i, _), &j| (i, j),
+ );
+ }
+
+ let variable = variable.complete();
+
+ assert_eq!(variable.elements, vec![(2, 2), (2, 4)]);
+}
diff --git a/vendor/datafrog/src/treefrog.rs b/vendor/datafrog/src/treefrog.rs
new file mode 100644
index 000000000..2ad238fd0
--- /dev/null
+++ b/vendor/datafrog/src/treefrog.rs
@@ -0,0 +1,661 @@
+//! Join functionality.
+
+use super::Relation;
+
+/// Performs treefrog leapjoin using a list of leapers.
+pub(crate) fn leapjoin<'leap, Tuple: Ord, Val: Ord + 'leap, Result: Ord>(
+ source: &[Tuple],
+ mut leapers: impl Leapers<'leap, Tuple, Val>,
+ mut logic: impl FnMut(&Tuple, &Val) -> Result,
+) -> Relation<Result> {
+ let mut result = Vec::new(); // temp output storage.
+ let mut values = Vec::new(); // temp value storage.
+
+ for tuple in source {
+ // Determine which leaper would propose the fewest values.
+ let mut min_index = usize::max_value();
+ let mut min_count = usize::max_value();
+ leapers.for_each_count(tuple, |index, count| {
+ if min_count > count {
+ min_count = count;
+ min_index = index;
+ }
+ });
+
+ // We had best have at least one relation restricting values.
+ assert!(min_count < usize::max_value());
+
+ // If there are values to propose:
+ if min_count > 0 {
+ // Push the values that `min_index` "proposes" into `values`.
+ leapers.propose(tuple, min_index, &mut values);
+
+ // Give other leapers a chance to remove values from
+ // anti-joins or filters.
+ leapers.intersect(tuple, min_index, &mut values);
+
+ // Push remaining items into result.
+ for val in values.drain(..) {
+ result.push(logic(tuple, val));
+ }
+ }
+ }
+
+ Relation::from_vec(result)
+}
+
+/// Implemented for a tuple of leapers
+pub trait Leapers<'leap, Tuple, Val> {
+ /// Internal method:
+ fn for_each_count(&mut self, tuple: &Tuple, op: impl FnMut(usize, usize));
+
+ /// Internal method:
+ fn propose(&mut self, tuple: &Tuple, min_index: usize, values: &mut Vec<&'leap Val>);
+
+ /// Internal method:
+ fn intersect(&mut self, tuple: &Tuple, min_index: usize, values: &mut Vec<&'leap Val>);
+}
+
+macro_rules! tuple_leapers {
+ ($($Ty:ident)*) => {
+ #[allow(unused_assignments, non_snake_case)]
+ impl<'leap, Tuple, Val, $($Ty),*> Leapers<'leap, Tuple, Val> for ($($Ty,)*)
+ where
+ $($Ty: Leaper<'leap, Tuple, Val>,)*
+ {
+ fn for_each_count(&mut self, tuple: &Tuple, mut op: impl FnMut(usize, usize)) {
+ let ($($Ty,)*) = self;
+ let mut index = 0;
+ $(
+ let count = $Ty.count(tuple);
+ op(index, count);
+ index += 1;
+ )*
+ }
+
+ fn propose(&mut self, tuple: &Tuple, min_index: usize, values: &mut Vec<&'leap Val>) {
+ let ($($Ty,)*) = self;
+ let mut index = 0;
+ $(
+ if min_index == index {
+ return $Ty.propose(tuple, values);
+ }
+ index += 1;
+ )*
+ panic!("no match found for min_index={}", min_index);
+ }
+
+ fn intersect(&mut self, tuple: &Tuple, min_index: usize, values: &mut Vec<&'leap Val>) {
+ let ($($Ty,)*) = self;
+ let mut index = 0;
+ $(
+ if min_index != index {
+ $Ty.intersect(tuple, values);
+ }
+ index += 1;
+ )*
+ }
+ }
+ }
+}
+
+tuple_leapers!(A B);
+tuple_leapers!(A B C);
+tuple_leapers!(A B C D);
+tuple_leapers!(A B C D E);
+tuple_leapers!(A B C D E F);
+tuple_leapers!(A B C D E F G);
+
+/// Methods to support treefrog leapjoin.
+pub trait Leaper<'leap, Tuple, Val> {
+ /// Estimates the number of proposed values.
+ fn count(&mut self, prefix: &Tuple) -> usize;
+ /// Populates `values` with proposed values.
+ fn propose(&mut self, prefix: &Tuple, values: &mut Vec<&'leap Val>);
+ /// Restricts `values` to proposed values.
+ fn intersect(&mut self, prefix: &Tuple, values: &mut Vec<&'leap Val>);
+}
+
+pub(crate) mod filters {
+ use super::Leaper;
+ use super::Leapers;
+
+ /// A treefrog leaper that tests each of the tuples from the main
+ /// input (the "prefix"). Use like `PrefixFilter::from(|tuple|
+ /// ...)`; if the closure returns true, then the tuple is
+ /// retained, else it will be ignored. This leaper can be used in
+ /// isolation in which case it just acts like a filter on the
+ /// input (the "proposed value" will be `()` type).
+ pub struct PrefixFilter<Tuple, Func: Fn(&Tuple) -> bool> {
+ phantom: ::std::marker::PhantomData<Tuple>,
+ predicate: Func,
+ }
+
+ impl<'leap, Tuple, Func> PrefixFilter<Tuple, Func>
+ where
+ Func: Fn(&Tuple) -> bool,
+ {
+ /// Creates a new filter based on the prefix
+ pub fn from(predicate: Func) -> Self {
+ PrefixFilter {
+ phantom: ::std::marker::PhantomData,
+ predicate,
+ }
+ }
+ }
+
+ impl<'leap, Tuple, Val, Func> Leaper<'leap, Tuple, Val> for PrefixFilter<Tuple, Func>
+ where
+ Func: Fn(&Tuple) -> bool,
+ {
+ /// Estimates the number of proposed values.
+ fn count(&mut self, prefix: &Tuple) -> usize {
+ if (self.predicate)(prefix) {
+ usize::max_value()
+ } else {
+ 0
+ }
+ }
+ /// Populates `values` with proposed values.
+ fn propose(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val>) {
+ panic!("PrefixFilter::propose(): variable apparently unbound");
+ }
+ /// Restricts `values` to proposed values.
+ fn intersect(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val>) {
+ // We can only be here if we returned max_value() above.
+ }
+ }
+
+ impl<'leap, Tuple, Func> Leapers<'leap, Tuple, ()> for PrefixFilter<Tuple, Func>
+ where
+ Func: Fn(&Tuple) -> bool,
+ {
+ fn for_each_count(&mut self, tuple: &Tuple, mut op: impl FnMut(usize, usize)) {
+ if <Self as Leaper<'_, Tuple, ()>>::count(self, tuple) == 0 {
+ op(0, 0)
+ } else {
+ // we will "propose" the `()` value if the predicate applies
+ op(0, 1)
+ }
+ }
+
+ fn propose(&mut self, _: &Tuple, min_index: usize, values: &mut Vec<&'leap ()>) {
+ assert_eq!(min_index, 0);
+ values.push(&());
+ }
+
+ fn intersect(&mut self, _: &Tuple, min_index: usize, values: &mut Vec<&'leap ()>) {
+ assert_eq!(min_index, 0);
+ assert_eq!(values.len(), 1);
+ }
+ }
+
+ /// A treefrog leaper based on a predicate of prefix and value.
+ /// Use like `ValueFilter::from(|tuple, value| ...)`. The closure
+ /// should return true if `value` ought to be retained. The
+ /// `value` will be a value proposed elsewhere by an `extend_with`
+ /// leaper.
+ ///
+ /// This leaper cannot be used in isolation, it must be combined
+ /// with other leapers.
+ pub struct ValueFilter<Tuple, Val, Func: Fn(&Tuple, &Val) -> bool> {
+ phantom: ::std::marker::PhantomData<(Tuple, Val)>,
+ predicate: Func,
+ }
+
+ impl<'leap, Tuple, Val, Func> ValueFilter<Tuple, Val, Func>
+ where
+ Func: Fn(&Tuple, &Val) -> bool,
+ {
+ /// Creates a new filter based on the prefix
+ pub fn from(predicate: Func) -> Self {
+ ValueFilter {
+ phantom: ::std::marker::PhantomData,
+ predicate,
+ }
+ }
+ }
+
+ impl<'leap, Tuple, Val, Func> Leaper<'leap, Tuple, Val> for ValueFilter<Tuple, Val, Func>
+ where
+ Func: Fn(&Tuple, &Val) -> bool,
+ {
+ /// Estimates the number of proposed values.
+ fn count(&mut self, _prefix: &Tuple) -> usize {
+ usize::max_value()
+ }
+ /// Populates `values` with proposed values.
+ fn propose(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val>) {
+ panic!("PrefixFilter::propose(): variable apparently unbound");
+ }
+ /// Restricts `values` to proposed values.
+ fn intersect(&mut self, prefix: &Tuple, values: &mut Vec<&'leap Val>) {
+ values.retain(|val| (self.predicate)(prefix, val));
+ }
+ }
+
+}
+
+/// Extension method for relations.
+pub trait RelationLeaper<Key: Ord, Val: Ord> {
+ /// Extend with `Val` using the elements of the relation.
+ fn extend_with<'leap, Tuple: Ord, Func: Fn(&Tuple) -> Key>(
+ &'leap self,
+ key_func: Func,
+ ) -> extend_with::ExtendWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap;
+ /// Extend with `Val` using the complement of the relation.
+ fn extend_anti<'leap, Tuple: Ord, Func: Fn(&Tuple) -> Key>(
+ &'leap self,
+ key_func: Func,
+ ) -> extend_anti::ExtendAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap;
+ /// Extend with any value if tuple is present in relation.
+ fn filter_with<'leap, Tuple: Ord, Func: Fn(&Tuple) -> (Key, Val)>(
+ &'leap self,
+ key_func: Func,
+ ) -> filter_with::FilterWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap;
+ /// Extend with any value if tuple is absent from relation.
+ fn filter_anti<'leap, Tuple: Ord, Func: Fn(&Tuple) -> (Key, Val)>(
+ &'leap self,
+ key_func: Func,
+ ) -> filter_anti::FilterAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap;
+}
+
+impl<Key: Ord, Val: Ord> RelationLeaper<Key, Val> for Relation<(Key, Val)> {
+ fn extend_with<'leap, Tuple: Ord, Func: Fn(&Tuple) -> Key>(
+ &'leap self,
+ key_func: Func,
+ ) -> extend_with::ExtendWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap,
+ {
+ extend_with::ExtendWith::from(self, key_func)
+ }
+ fn extend_anti<'leap, Tuple: Ord, Func: Fn(&Tuple) -> Key>(
+ &'leap self,
+ key_func: Func,
+ ) -> extend_anti::ExtendAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap,
+ {
+ extend_anti::ExtendAnti::from(self, key_func)
+ }
+ fn filter_with<'leap, Tuple: Ord, Func: Fn(&Tuple) -> (Key, Val)>(
+ &'leap self,
+ key_func: Func,
+ ) -> filter_with::FilterWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap,
+ {
+ filter_with::FilterWith::from(self, key_func)
+ }
+ fn filter_anti<'leap, Tuple: Ord, Func: Fn(&Tuple) -> (Key, Val)>(
+ &'leap self,
+ key_func: Func,
+ ) -> filter_anti::FilterAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: 'leap,
+ Val: 'leap,
+ {
+ filter_anti::FilterAnti::from(self, key_func)
+ }
+}
+
+pub(crate) mod extend_with {
+ use super::{binary_search, Leaper, Leapers, Relation};
+ use crate::join::gallop;
+
+ /// Wraps a Relation<Tuple> as a leaper.
+ pub struct ExtendWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> Key,
+ {
+ relation: &'leap Relation<(Key, Val)>,
+ start: usize,
+ end: usize,
+ key_func: Func,
+ phantom: ::std::marker::PhantomData<Tuple>,
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> ExtendWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> Key,
+ {
+ /// Constructs a ExtendWith from a relation and key and value function.
+ pub fn from(relation: &'leap Relation<(Key, Val)>, key_func: Func) -> Self {
+ ExtendWith {
+ relation,
+ start: 0,
+ end: 0,
+ key_func,
+ phantom: ::std::marker::PhantomData,
+ }
+ }
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> Leaper<'leap, Tuple, Val>
+ for ExtendWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> Key,
+ {
+ fn count(&mut self, prefix: &Tuple) -> usize {
+ let key = (self.key_func)(prefix);
+ self.start = binary_search(&self.relation[..], |x| &x.0 < &key);
+ let slice1 = &self.relation[self.start..];
+ let slice2 = gallop(slice1, |x| &x.0 <= &key);
+ self.end = self.relation.len() - slice2.len();
+ slice1.len() - slice2.len()
+ }
+ fn propose(&mut self, _prefix: &Tuple, values: &mut Vec<&'leap Val>) {
+ let slice = &self.relation[self.start..self.end];
+ values.extend(slice.iter().map(|&(_, ref val)| val));
+ }
+ fn intersect(&mut self, _prefix: &Tuple, values: &mut Vec<&'leap Val>) {
+ let mut slice = &self.relation[self.start..self.end];
+ values.retain(|v| {
+ slice = gallop(slice, |kv| &kv.1 < v);
+ slice.get(0).map(|kv| &kv.1) == Some(v)
+ });
+ }
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> Leapers<'leap, Tuple, Val>
+ for ExtendWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> Key,
+ {
+ fn for_each_count(&mut self, tuple: &Tuple, mut op: impl FnMut(usize, usize)) {
+ op(0, self.count(tuple))
+ }
+
+ fn propose(&mut self, tuple: &Tuple, min_index: usize, values: &mut Vec<&'leap Val>) {
+ assert_eq!(min_index, 0);
+ Leaper::propose(self, tuple, values);
+ }
+
+ fn intersect(&mut self, _: &Tuple, min_index: usize, _: &mut Vec<&'leap Val>) {
+ assert_eq!(min_index, 0);
+ }
+ }
+}
+
+pub(crate) mod extend_anti {
+ use super::{binary_search, Leaper, Relation};
+ use crate::join::gallop;
+
+ /// Wraps a Relation<Tuple> as a leaper.
+ pub struct ExtendAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> Key,
+ {
+ relation: &'leap Relation<(Key, Val)>,
+ key_func: Func,
+ phantom: ::std::marker::PhantomData<Tuple>,
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> ExtendAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> Key,
+ {
+ /// Constructs a ExtendAnti from a relation and key and value function.
+ pub fn from(relation: &'leap Relation<(Key, Val)>, key_func: Func) -> Self {
+ ExtendAnti {
+ relation,
+ key_func,
+ phantom: ::std::marker::PhantomData,
+ }
+ }
+ }
+
+ impl<'leap, Key: Ord, Val: Ord + 'leap, Tuple: Ord, Func> Leaper<'leap, Tuple, Val>
+ for ExtendAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> Key,
+ {
+ fn count(&mut self, _prefix: &Tuple) -> usize {
+ usize::max_value()
+ }
+ fn propose(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val>) {
+ panic!("ExtendAnti::propose(): variable apparently unbound.");
+ }
+ fn intersect(&mut self, prefix: &Tuple, values: &mut Vec<&'leap Val>) {
+ let key = (self.key_func)(prefix);
+ let start = binary_search(&self.relation[..], |x| &x.0 < &key);
+ let slice1 = &self.relation[start..];
+ let slice2 = gallop(slice1, |x| &x.0 <= &key);
+ let mut slice = &slice1[..(slice1.len() - slice2.len())];
+ if !slice.is_empty() {
+ values.retain(|v| {
+ slice = gallop(slice, |kv| &kv.1 < v);
+ slice.get(0).map(|kv| &kv.1) != Some(v)
+ });
+ }
+ }
+ }
+}
+
+pub(crate) mod filter_with {
+
+ use super::{Leaper, Leapers, Relation};
+
+ /// Wraps a Relation<Tuple> as a leaper.
+ pub struct FilterWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ relation: &'leap Relation<(Key, Val)>,
+ key_func: Func,
+ phantom: ::std::marker::PhantomData<Tuple>,
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> FilterWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ /// Constructs a FilterWith from a relation and key and value function.
+ pub fn from(relation: &'leap Relation<(Key, Val)>, key_func: Func) -> Self {
+ FilterWith {
+ relation,
+ key_func,
+ phantom: ::std::marker::PhantomData,
+ }
+ }
+ }
+
+ impl<'leap, Key, Val, Val2, Tuple, Func> Leaper<'leap, Tuple, Val2>
+ for FilterWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ fn count(&mut self, prefix: &Tuple) -> usize {
+ let key_val = (self.key_func)(prefix);
+ if self.relation.binary_search(&key_val).is_ok() {
+ usize::max_value()
+ } else {
+ 0
+ }
+ }
+ fn propose(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val2>) {
+ panic!("FilterWith::propose(): variable apparently unbound.");
+ }
+ fn intersect(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val2>) {
+ // Only here because we didn't return zero above, right?
+ }
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> Leapers<'leap, Tuple, ()>
+ for FilterWith<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ fn for_each_count(&mut self, tuple: &Tuple, mut op: impl FnMut(usize, usize)) {
+ if <Self as Leaper<Tuple, ()>>::count(self, tuple) == 0 {
+ op(0, 0)
+ } else {
+ op(0, 1)
+ }
+ }
+
+ fn propose(&mut self, _: &Tuple, min_index: usize, values: &mut Vec<&'leap ()>) {
+ assert_eq!(min_index, 0);
+ values.push(&());
+ }
+
+ fn intersect(&mut self, _: &Tuple, min_index: usize, values: &mut Vec<&'leap ()>) {
+ assert_eq!(min_index, 0);
+ assert_eq!(values.len(), 1);
+ }
+ }
+}
+
+pub(crate) mod filter_anti {
+
+ use super::{Leaper, Leapers, Relation};
+
+ /// Wraps a Relation<Tuple> as a leaper.
+ pub struct FilterAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ relation: &'leap Relation<(Key, Val)>,
+ key_func: Func,
+ phantom: ::std::marker::PhantomData<Tuple>,
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> FilterAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ /// Constructs a FilterAnti from a relation and key and value function.
+ pub fn from(relation: &'leap Relation<(Key, Val)>, key_func: Func) -> Self {
+ FilterAnti {
+ relation,
+ key_func,
+ phantom: ::std::marker::PhantomData,
+ }
+ }
+ }
+
+ impl<'leap, Key: Ord, Val: Ord + 'leap, Val2, Tuple: Ord, Func> Leaper<'leap, Tuple, Val2>
+ for FilterAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ fn count(&mut self, prefix: &Tuple) -> usize {
+ let key_val = (self.key_func)(prefix);
+ if self.relation.binary_search(&key_val).is_ok() {
+ 0
+ } else {
+ usize::max_value()
+ }
+ }
+ fn propose(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val2>) {
+ panic!("FilterAnti::propose(): variable apparently unbound.");
+ }
+ fn intersect(&mut self, _prefix: &Tuple, _values: &mut Vec<&'leap Val2>) {
+ // Only here because we didn't return zero above, right?
+ }
+ }
+
+ impl<'leap, Key, Val, Tuple, Func> Leapers<'leap, Tuple, ()>
+ for FilterAnti<'leap, Key, Val, Tuple, Func>
+ where
+ Key: Ord + 'leap,
+ Val: Ord + 'leap,
+ Tuple: Ord,
+ Func: Fn(&Tuple) -> (Key, Val),
+ {
+ fn for_each_count(&mut self, tuple: &Tuple, mut op: impl FnMut(usize, usize)) {
+ if <Self as Leaper<Tuple, ()>>::count(self, tuple) == 0 {
+ op(0, 0)
+ } else {
+ op(0, 1)
+ }
+ }
+
+ fn propose(&mut self, _: &Tuple, min_index: usize, values: &mut Vec<&'leap ()>) {
+ // We only get here if `tuple` is *not* a member of `self.relation`
+ assert_eq!(min_index, 0);
+ values.push(&());
+ }
+
+ fn intersect(&mut self, _: &Tuple, min_index: usize, values: &mut Vec<&'leap ()>) {
+ // We only get here if `tuple` is not a member of `self.relation`
+ assert_eq!(min_index, 0);
+ assert_eq!(values.len(), 1);
+ }
+ }
+}
+
+fn binary_search<T>(slice: &[T], mut cmp: impl FnMut(&T) -> bool) -> usize {
+ // we maintain the invariant that `lo` many elements of `slice` satisfy `cmp`.
+ // `hi` is maintained at the first element we know does not satisfy `cmp`.
+
+ let mut hi = slice.len();
+ let mut lo = 0;
+ while lo < hi {
+ let mid = lo + (hi - lo) / 2;
+ if cmp(&slice[mid]) {
+ lo = mid + 1;
+ } else {
+ hi = mid;
+ }
+ }
+ lo
+}