summaryrefslogtreecommitdiffstats
path: root/vendor/generic-array-0.12.4/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--vendor/generic-array-0.12.4/src/lib.rs632
1 files changed, 0 insertions, 632 deletions
diff --git a/vendor/generic-array-0.12.4/src/lib.rs b/vendor/generic-array-0.12.4/src/lib.rs
deleted file mode 100644
index e98e8fd58..000000000
--- a/vendor/generic-array-0.12.4/src/lib.rs
+++ /dev/null
@@ -1,632 +0,0 @@
-//! This crate implements a structure that can be used as a generic array type.use
-//! Core Rust array types `[T; N]` can't be used generically with
-//! respect to `N`, so for example this:
-//!
-//! ```{should_fail}
-//! struct Foo<T, N> {
-//! data: [T; N]
-//! }
-//! ```
-//!
-//! won't work.
-//!
-//! **generic-array** exports a `GenericArray<T,N>` type, which lets
-//! the above be implemented as:
-//!
-//! ```
-//! # use generic_array::{ArrayLength, GenericArray};
-//! struct Foo<T, N: ArrayLength<T>> {
-//! data: GenericArray<T,N>
-//! }
-//! ```
-//!
-//! The `ArrayLength<T>` trait is implemented by default for
-//! [unsigned integer types](../typenum/uint/index.html) from
-//! [typenum](../typenum/index.html).
-//!
-//! For ease of use, an `arr!` macro is provided - example below:
-//!
-//! ```
-//! # #[macro_use]
-//! # extern crate generic_array;
-//! # extern crate typenum;
-//! # fn main() {
-//! let array = arr![u32; 1, 2, 3];
-//! assert_eq!(array[2], 3);
-//! # }
-//! ```
-
-#![deny(missing_docs)]
-#![no_std]
-
-#[cfg(feature = "serde")]
-extern crate serde;
-
-#[cfg(test)]
-extern crate bincode;
-
-pub extern crate typenum;
-
-mod hex;
-mod impls;
-
-#[cfg(feature = "serde")]
-pub mod impl_serde;
-
-use core::iter::FromIterator;
-use core::marker::PhantomData;
-use core::mem::ManuallyDrop;
-use core::ops::{Deref, DerefMut};
-use core::{mem, ptr, slice};
-use typenum::bit::{B0, B1};
-use typenum::uint::{UInt, UTerm, Unsigned};
-
-#[cfg_attr(test, macro_use)]
-pub mod arr;
-pub mod functional;
-pub mod iter;
-pub mod sequence;
-
-use functional::*;
-pub use iter::GenericArrayIter;
-use sequence::*;
-
-/// Trait making `GenericArray` work, marking types to be used as length of an array
-pub unsafe trait ArrayLength<T>: Unsigned {
- /// Associated type representing the array type for the number
- type ArrayType;
-}
-
-unsafe impl<T> ArrayLength<T> for UTerm {
- #[doc(hidden)]
- type ArrayType = ();
-}
-
-/// Internal type used to generate a struct of appropriate size
-#[allow(dead_code)]
-#[repr(C)]
-#[doc(hidden)]
-pub struct GenericArrayImplEven<T, U> {
- parent1: U,
- parent2: U,
- _marker: PhantomData<T>,
-}
-
-impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
- fn clone(&self) -> GenericArrayImplEven<T, U> {
- GenericArrayImplEven {
- parent1: self.parent1.clone(),
- parent2: self.parent2.clone(),
- _marker: PhantomData,
- }
- }
-}
-
-impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}
-
-/// Internal type used to generate a struct of appropriate size
-#[allow(dead_code)]
-#[repr(C)]
-#[doc(hidden)]
-pub struct GenericArrayImplOdd<T, U> {
- parent1: U,
- parent2: U,
- data: T,
-}
-
-impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
- fn clone(&self) -> GenericArrayImplOdd<T, U> {
- GenericArrayImplOdd {
- parent1: self.parent1.clone(),
- parent2: self.parent2.clone(),
- data: self.data.clone(),
- }
- }
-}
-
-impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}
-
-unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B0> {
- #[doc(hidden)]
- type ArrayType = GenericArrayImplEven<T, N::ArrayType>;
-}
-
-unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B1> {
- #[doc(hidden)]
- type ArrayType = GenericArrayImplOdd<T, N::ArrayType>;
-}
-
-/// Struct representing a generic array - `GenericArray<T, N>` works like [T; N]
-#[allow(dead_code)]
-pub struct GenericArray<T, U: ArrayLength<T>> {
- data: U::ArrayType,
-}
-
-unsafe impl<T: Send, N: ArrayLength<T>> Send for GenericArray<T, N> {}
-unsafe impl<T: Sync, N: ArrayLength<T>> Sync for GenericArray<T, N> {}
-
-impl<T, N> Deref for GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- type Target = [T];
-
- #[inline(always)]
- fn deref(&self) -> &[T] {
- unsafe { slice::from_raw_parts(self as *const Self as *const T, N::to_usize()) }
- }
-}
-
-impl<T, N> DerefMut for GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- #[inline(always)]
- fn deref_mut(&mut self) -> &mut [T] {
- unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::to_usize()) }
- }
-}
-
-/// Creates an array one element at a time using a mutable iterator
-/// you can write to with `ptr::write`.
-///
-/// Incremenent the position while iterating to mark off created elements,
-/// which will be dropped if `into_inner` is not called.
-#[doc(hidden)]
-pub struct ArrayBuilder<T, N: ArrayLength<T>> {
- array: ManuallyDrop<GenericArray<T, N>>,
- position: usize,
-}
-
-impl<T, N: ArrayLength<T>> ArrayBuilder<T, N> {
- #[doc(hidden)]
- #[inline]
- pub unsafe fn new() -> ArrayBuilder<T, N> {
- ArrayBuilder {
- array: ManuallyDrop::new(mem::uninitialized()),
- position: 0,
- }
- }
-
- /// Creates a mutable iterator for writing to the array using `ptr::write`.
- ///
- /// Increment the position value given as a mutable reference as you iterate
- /// to mark how many elements have been created.
- #[doc(hidden)]
- #[inline]
- pub unsafe fn iter_position(&mut self) -> (slice::IterMut<T>, &mut usize) {
- (self.array.iter_mut(), &mut self.position)
- }
-
- /// When done writing (assuming all elements have been written to),
- /// get the inner array.
- #[doc(hidden)]
- #[inline]
- pub unsafe fn into_inner(self) -> GenericArray<T, N> {
- let array = ptr::read(&self.array);
-
- mem::forget(self);
-
- ManuallyDrop::into_inner(array)
- }
-}
-
-impl<T, N: ArrayLength<T>> Drop for ArrayBuilder<T, N> {
- fn drop(&mut self) {
- for value in &mut self.array[..self.position] {
- unsafe {
- ptr::drop_in_place(value);
- }
- }
- }
-}
-
-/// Consumes an array.
-///
-/// Increment the position while iterating and any leftover elements
-/// will be dropped if position does not go to N
-#[doc(hidden)]
-pub struct ArrayConsumer<T, N: ArrayLength<T>> {
- array: ManuallyDrop<GenericArray<T, N>>,
- position: usize,
-}
-
-impl<T, N: ArrayLength<T>> ArrayConsumer<T, N> {
- #[doc(hidden)]
- #[inline]
- pub unsafe fn new(array: GenericArray<T, N>) -> ArrayConsumer<T, N> {
- ArrayConsumer {
- array: ManuallyDrop::new(array),
- position: 0,
- }
- }
-
- /// Creates an iterator and mutable reference to the internal position
- /// to keep track of consumed elements.
- ///
- /// Increment the position as you iterate to mark off consumed elements
- #[doc(hidden)]
- #[inline]
- pub unsafe fn iter_position(&mut self) -> (slice::Iter<T>, &mut usize) {
- (self.array.iter(), &mut self.position)
- }
-}
-
-impl<T, N: ArrayLength<T>> Drop for ArrayConsumer<T, N> {
- fn drop(&mut self) {
- for value in &mut self.array[self.position..N::to_usize()] {
- unsafe {
- ptr::drop_in_place(value);
- }
- }
- }
-}
-
-impl<'a, T: 'a, N> IntoIterator for &'a GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- type IntoIter = slice::Iter<'a, T>;
- type Item = &'a T;
-
- fn into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter {
- self.as_slice().iter()
- }
-}
-
-impl<'a, T: 'a, N> IntoIterator for &'a mut GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- type IntoIter = slice::IterMut<'a, T>;
- type Item = &'a mut T;
-
- fn into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter {
- self.as_mut_slice().iter_mut()
- }
-}
-
-impl<T, N> FromIterator<T> for GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- fn from_iter<I>(iter: I) -> GenericArray<T, N>
- where
- I: IntoIterator<Item = T>,
- {
- unsafe {
- let mut destination = ArrayBuilder::new();
-
- {
- let (destination_iter, position) = destination.iter_position();
-
- for (src, dst) in iter.into_iter().zip(destination_iter) {
- ptr::write(dst, src);
-
- *position += 1;
- }
- }
-
- if destination.position < N::to_usize() {
- from_iter_length_fail(destination.position, N::to_usize());
- }
-
- destination.into_inner()
- }
- }
-}
-
-#[inline(never)]
-#[cold]
-fn from_iter_length_fail(length: usize, expected: usize) -> ! {
- panic!(
- "GenericArray::from_iter received {} elements but expected {}",
- length, expected
- );
-}
-
-unsafe impl<T, N> GenericSequence<T> for GenericArray<T, N>
-where
- N: ArrayLength<T>,
- Self: IntoIterator<Item = T>,
-{
- type Length = N;
- type Sequence = Self;
-
- fn generate<F>(mut f: F) -> GenericArray<T, N>
- where
- F: FnMut(usize) -> T,
- {
- unsafe {
- let mut destination = ArrayBuilder::new();
-
- {
- let (destination_iter, position) = destination.iter_position();
-
- for (i, dst) in destination_iter.enumerate() {
- ptr::write(dst, f(i));
-
- *position += 1;
- }
- }
-
- destination.into_inner()
- }
- }
-
- #[doc(hidden)]
- fn inverted_zip<B, U, F>(
- self,
- lhs: GenericArray<B, Self::Length>,
- mut f: F,
- ) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
- where
- GenericArray<B, Self::Length>:
- GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
- Self: MappedGenericSequence<T, U>,
- Self::Length: ArrayLength<B> + ArrayLength<U>,
- F: FnMut(B, Self::Item) -> U,
- {
- unsafe {
- let mut left = ArrayConsumer::new(lhs);
- let mut right = ArrayConsumer::new(self);
-
- let (left_array_iter, left_position) = left.iter_position();
- let (right_array_iter, right_position) = right.iter_position();
-
- FromIterator::from_iter(left_array_iter.zip(right_array_iter).map(|(l, r)| {
- let left_value = ptr::read(l);
- let right_value = ptr::read(r);
-
- *left_position += 1;
- *right_position += 1;
-
- f(left_value, right_value)
- }))
- }
- }
-
- #[doc(hidden)]
- fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
- where
- Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
- Self: MappedGenericSequence<T, U>,
- Self::Length: ArrayLength<B> + ArrayLength<U>,
- F: FnMut(Lhs::Item, Self::Item) -> U,
- {
- unsafe {
- let mut right = ArrayConsumer::new(self);
-
- let (right_array_iter, right_position) = right.iter_position();
-
- FromIterator::from_iter(
- lhs.into_iter()
- .zip(right_array_iter)
- .map(|(left_value, r)| {
- let right_value = ptr::read(r);
-
- *right_position += 1;
-
- f(left_value, right_value)
- }),
- )
- }
- }
-}
-
-unsafe impl<T, U, N> MappedGenericSequence<T, U> for GenericArray<T, N>
-where
- N: ArrayLength<T> + ArrayLength<U>,
- GenericArray<U, N>: GenericSequence<U, Length = N>,
-{
- type Mapped = GenericArray<U, N>;
-}
-
-unsafe impl<T, N> FunctionalSequence<T> for GenericArray<T, N>
-where
- N: ArrayLength<T>,
- Self: GenericSequence<T, Item = T, Length = N>,
-{
- fn map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U>
- where
- Self::Length: ArrayLength<U>,
- Self: MappedGenericSequence<T, U>,
- F: FnMut(T) -> U,
- {
- unsafe {
- let mut source = ArrayConsumer::new(self);
-
- let (array_iter, position) = source.iter_position();
-
- FromIterator::from_iter(array_iter.map(|src| {
- let value = ptr::read(src);
-
- *position += 1;
-
- f(value)
- }))
- }
- }
-
- #[inline]
- fn zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U>
- where
- Self: MappedGenericSequence<T, U>,
- Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>,
- Self::Length: ArrayLength<B> + ArrayLength<U>,
- Rhs: GenericSequence<B, Length = Self::Length>,
- F: FnMut(T, Rhs::Item) -> U,
- {
- rhs.inverted_zip(self, f)
- }
-
- fn fold<U, F>(self, init: U, mut f: F) -> U
- where
- F: FnMut(U, T) -> U,
- {
- unsafe {
- let mut source = ArrayConsumer::new(self);
-
- let (array_iter, position) = source.iter_position();
-
- array_iter.fold(init, |acc, src| {
- let value = ptr::read(src);
-
- *position += 1;
-
- f(acc, value)
- })
- }
- }
-}
-
-impl<T, N> GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- /// Extracts a slice containing the entire array.
- #[inline]
- pub fn as_slice(&self) -> &[T] {
- self.deref()
- }
-
- /// Extracts a mutable slice containing the entire array.
- #[inline]
- pub fn as_mut_slice(&mut self) -> &mut [T] {
- self.deref_mut()
- }
-
- /// Converts slice to a generic array reference with inferred length;
- ///
- /// Length of the slice must be equal to the length of the array.
- #[inline]
- pub fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
- slice.into()
- }
-
- /// Converts mutable slice to a mutable generic array reference
- ///
- /// Length of the slice must be equal to the length of the array.
- #[inline]
- pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
- slice.into()
- }
-}
-
-impl<'a, T, N: ArrayLength<T>> From<&'a [T]> for &'a GenericArray<T, N> {
- /// Converts slice to a generic array reference with inferred length;
- ///
- /// Length of the slice must be equal to the length of the array.
- #[inline]
- fn from(slice: &[T]) -> &GenericArray<T, N> {
- assert_eq!(slice.len(), N::to_usize());
-
- unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
- }
-}
-
-impl<'a, T, N: ArrayLength<T>> From<&'a mut [T]> for &'a mut GenericArray<T, N> {
- /// Converts mutable slice to a mutable generic array reference
- ///
- /// Length of the slice must be equal to the length of the array.
- #[inline]
- fn from(slice: &mut [T]) -> &mut GenericArray<T, N> {
- assert_eq!(slice.len(), N::to_usize());
-
- unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
- }
-}
-
-impl<T: Clone, N> GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- /// Construct a `GenericArray` from a slice by cloning its content
- ///
- /// Length of the slice must be equal to the length of the array
- #[inline]
- pub fn clone_from_slice(list: &[T]) -> GenericArray<T, N> {
- Self::from_exact_iter(list.iter().cloned())
- .expect("Slice must be the same length as the array")
- }
-}
-
-impl<T, N> GenericArray<T, N>
-where
- N: ArrayLength<T>,
-{
- /// Creates a new `GenericArray` instance from an iterator with a known exact size.
- ///
- /// Returns `None` if the size is not equal to the number of elements in the `GenericArray`.
- pub fn from_exact_iter<I>(iter: I) -> Option<Self>
- where
- I: IntoIterator<Item = T>,
- <I as IntoIterator>::IntoIter: ExactSizeIterator,
- {
- let iter = iter.into_iter();
-
- if iter.len() == N::to_usize() {
- unsafe {
- let mut destination = ArrayBuilder::new();
-
- {
- let (destination_iter, position) = destination.iter_position();
-
- for (dst, src) in destination_iter.zip(iter.into_iter()) {
- ptr::write(dst, src);
-
- *position += 1;
- }
- }
-
- Some(destination.into_inner())
- }
- } else {
- None
- }
- }
-}
-
-/// A reimplementation of the `transmute` function, avoiding problems
-/// when the compiler can't prove equal sizes.
-#[inline]
-#[doc(hidden)]
-pub unsafe fn transmute<A, B>(a: A) -> B {
- let b = ::core::ptr::read(&a as *const A as *const B);
- ::core::mem::forget(a);
- b
-}
-
-#[cfg(test)]
-mod test {
- // Compile with:
- // cargo rustc --lib --profile test --release --
- // -C target-cpu=native -C opt-level=3 --emit asm
- // and view the assembly to make sure test_assembly generates
- // SIMD instructions instead of a niave loop.
-
- #[inline(never)]
- pub fn black_box<T>(val: T) -> T {
- use core::{mem, ptr};
-
- let ret = unsafe { ptr::read_volatile(&val) };
- mem::forget(val);
- ret
- }
-
- #[test]
- fn test_assembly() {
- use functional::*;
-
- let a = black_box(arr![i32; 1, 3, 5, 7]);
- let b = black_box(arr![i32; 2, 4, 6, 8]);
-
- let c = (&a).zip(b, |l, r| l + r);
-
- let d = a.fold(0, |a, x| a + x);
-
- assert_eq!(c, arr![i32; 3, 7, 11, 15]);
-
- assert_eq!(d, 16);
- }
-}