diff options
Diffstat (limited to 'vendor/hashbrown-0.12.3/src/raw')
-rw-r--r-- | vendor/hashbrown-0.12.3/src/raw/alloc.rs | 73 | ||||
-rw-r--r-- | vendor/hashbrown-0.12.3/src/raw/bitmask.rs | 122 | ||||
-rw-r--r-- | vendor/hashbrown-0.12.3/src/raw/generic.rs | 154 | ||||
-rw-r--r-- | vendor/hashbrown-0.12.3/src/raw/mod.rs | 2460 | ||||
-rw-r--r-- | vendor/hashbrown-0.12.3/src/raw/sse2.rs | 146 |
5 files changed, 0 insertions, 2955 deletions
diff --git a/vendor/hashbrown-0.12.3/src/raw/alloc.rs b/vendor/hashbrown-0.12.3/src/raw/alloc.rs deleted file mode 100644 index ba09ea9de..000000000 --- a/vendor/hashbrown-0.12.3/src/raw/alloc.rs +++ /dev/null @@ -1,73 +0,0 @@ -pub(crate) use self::inner::{do_alloc, Allocator, Global}; - -#[cfg(feature = "nightly")] -mod inner { - use crate::alloc::alloc::Layout; - pub use crate::alloc::alloc::{Allocator, Global}; - use core::ptr::NonNull; - - #[allow(clippy::map_err_ignore)] - pub fn do_alloc<A: Allocator>(alloc: &A, layout: Layout) -> Result<NonNull<u8>, ()> { - match alloc.allocate(layout) { - Ok(ptr) => Ok(ptr.as_non_null_ptr()), - Err(_) => Err(()), - } - } - - #[cfg(feature = "bumpalo")] - unsafe impl Allocator for crate::BumpWrapper<'_> { - #[inline] - fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, core::alloc::AllocError> { - match self.0.try_alloc_layout(layout) { - Ok(ptr) => Ok(NonNull::slice_from_raw_parts(ptr, layout.size())), - Err(_) => Err(core::alloc::AllocError), - } - } - #[inline] - unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {} - } -} - -#[cfg(not(feature = "nightly"))] -mod inner { - use crate::alloc::alloc::{alloc, dealloc, Layout}; - use core::ptr::NonNull; - - #[allow(clippy::missing_safety_doc)] // not exposed outside of this crate - pub unsafe trait Allocator { - fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()>; - unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout); - } - - #[derive(Copy, Clone)] - pub struct Global; - unsafe impl Allocator for Global { - #[inline] - fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()> { - unsafe { NonNull::new(alloc(layout)).ok_or(()) } - } - #[inline] - unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { - dealloc(ptr.as_ptr(), layout); - } - } - impl Default for Global { - #[inline] - fn default() -> Self { - Global - } - } - - pub fn do_alloc<A: Allocator>(alloc: &A, layout: Layout) -> Result<NonNull<u8>, ()> { - alloc.allocate(layout) - } - - #[cfg(feature = "bumpalo")] - unsafe impl Allocator for crate::BumpWrapper<'_> { - #[allow(clippy::map_err_ignore)] - fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()> { - self.0.try_alloc_layout(layout).map_err(|_| ()) - } - unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {} - } -} diff --git a/vendor/hashbrown-0.12.3/src/raw/bitmask.rs b/vendor/hashbrown-0.12.3/src/raw/bitmask.rs deleted file mode 100644 index 7d4f9fc38..000000000 --- a/vendor/hashbrown-0.12.3/src/raw/bitmask.rs +++ /dev/null @@ -1,122 +0,0 @@ -use super::imp::{BitMaskWord, BITMASK_MASK, BITMASK_STRIDE}; -#[cfg(feature = "nightly")] -use core::intrinsics; - -/// A bit mask which contains the result of a `Match` operation on a `Group` and -/// allows iterating through them. -/// -/// The bit mask is arranged so that low-order bits represent lower memory -/// addresses for group match results. -/// -/// For implementation reasons, the bits in the set may be sparsely packed, so -/// that there is only one bit-per-byte used (the high bit, 7). If this is the -/// case, `BITMASK_STRIDE` will be 8 to indicate a divide-by-8 should be -/// performed on counts/indices to normalize this difference. `BITMASK_MASK` is -/// similarly a mask of all the actually-used bits. -#[derive(Copy, Clone)] -pub struct BitMask(pub BitMaskWord); - -#[allow(clippy::use_self)] -impl BitMask { - /// Returns a new `BitMask` with all bits inverted. - #[inline] - #[must_use] - pub fn invert(self) -> Self { - BitMask(self.0 ^ BITMASK_MASK) - } - - /// Flip the bit in the mask for the entry at the given index. - /// - /// Returns the bit's previous state. - #[inline] - #[allow(clippy::cast_ptr_alignment)] - #[cfg(feature = "raw")] - pub unsafe fn flip(&mut self, index: usize) -> bool { - // NOTE: The + BITMASK_STRIDE - 1 is to set the high bit. - let mask = 1 << (index * BITMASK_STRIDE + BITMASK_STRIDE - 1); - self.0 ^= mask; - // The bit was set if the bit is now 0. - self.0 & mask == 0 - } - - /// Returns a new `BitMask` with the lowest bit removed. - #[inline] - #[must_use] - pub fn remove_lowest_bit(self) -> Self { - BitMask(self.0 & (self.0 - 1)) - } - /// Returns whether the `BitMask` has at least one set bit. - #[inline] - pub fn any_bit_set(self) -> bool { - self.0 != 0 - } - - /// Returns the first set bit in the `BitMask`, if there is one. - #[inline] - pub fn lowest_set_bit(self) -> Option<usize> { - if self.0 == 0 { - None - } else { - Some(unsafe { self.lowest_set_bit_nonzero() }) - } - } - - /// Returns the first set bit in the `BitMask`, if there is one. The - /// bitmask must not be empty. - #[inline] - #[cfg(feature = "nightly")] - pub unsafe fn lowest_set_bit_nonzero(self) -> usize { - intrinsics::cttz_nonzero(self.0) as usize / BITMASK_STRIDE - } - #[inline] - #[cfg(not(feature = "nightly"))] - pub unsafe fn lowest_set_bit_nonzero(self) -> usize { - self.trailing_zeros() - } - - /// Returns the number of trailing zeroes in the `BitMask`. - #[inline] - pub fn trailing_zeros(self) -> usize { - // ARM doesn't have a trailing_zeroes instruction, and instead uses - // reverse_bits (RBIT) + leading_zeroes (CLZ). However older ARM - // versions (pre-ARMv7) don't have RBIT and need to emulate it - // instead. Since we only have 1 bit set in each byte on ARM, we can - // use swap_bytes (REV) + leading_zeroes instead. - if cfg!(target_arch = "arm") && BITMASK_STRIDE % 8 == 0 { - self.0.swap_bytes().leading_zeros() as usize / BITMASK_STRIDE - } else { - self.0.trailing_zeros() as usize / BITMASK_STRIDE - } - } - - /// Returns the number of leading zeroes in the `BitMask`. - #[inline] - pub fn leading_zeros(self) -> usize { - self.0.leading_zeros() as usize / BITMASK_STRIDE - } -} - -impl IntoIterator for BitMask { - type Item = usize; - type IntoIter = BitMaskIter; - - #[inline] - fn into_iter(self) -> BitMaskIter { - BitMaskIter(self) - } -} - -/// Iterator over the contents of a `BitMask`, returning the indices of set -/// bits. -pub struct BitMaskIter(BitMask); - -impl Iterator for BitMaskIter { - type Item = usize; - - #[inline] - fn next(&mut self) -> Option<usize> { - let bit = self.0.lowest_set_bit()?; - self.0 = self.0.remove_lowest_bit(); - Some(bit) - } -} diff --git a/vendor/hashbrown-0.12.3/src/raw/generic.rs b/vendor/hashbrown-0.12.3/src/raw/generic.rs deleted file mode 100644 index b4d31e62c..000000000 --- a/vendor/hashbrown-0.12.3/src/raw/generic.rs +++ /dev/null @@ -1,154 +0,0 @@ -use super::bitmask::BitMask; -use super::EMPTY; -use core::{mem, ptr}; - -// Use the native word size as the group size. Using a 64-bit group size on -// a 32-bit architecture will just end up being more expensive because -// shifts and multiplies will need to be emulated. -#[cfg(any( - target_pointer_width = "64", - target_arch = "aarch64", - target_arch = "x86_64", - target_arch = "wasm32", -))] -type GroupWord = u64; -#[cfg(all( - target_pointer_width = "32", - not(target_arch = "aarch64"), - not(target_arch = "x86_64"), - not(target_arch = "wasm32"), -))] -type GroupWord = u32; - -pub type BitMaskWord = GroupWord; -pub const BITMASK_STRIDE: usize = 8; -// We only care about the highest bit of each byte for the mask. -#[allow(clippy::cast_possible_truncation, clippy::unnecessary_cast)] -pub const BITMASK_MASK: BitMaskWord = 0x8080_8080_8080_8080_u64 as GroupWord; - -/// Helper function to replicate a byte across a `GroupWord`. -#[inline] -fn repeat(byte: u8) -> GroupWord { - GroupWord::from_ne_bytes([byte; Group::WIDTH]) -} - -/// Abstraction over a group of control bytes which can be scanned in -/// parallel. -/// -/// This implementation uses a word-sized integer. -#[derive(Copy, Clone)] -pub struct Group(GroupWord); - -// We perform all operations in the native endianness, and convert to -// little-endian just before creating a BitMask. The can potentially -// enable the compiler to eliminate unnecessary byte swaps if we are -// only checking whether a BitMask is empty. -#[allow(clippy::use_self)] -impl Group { - /// Number of bytes in the group. - pub const WIDTH: usize = mem::size_of::<Self>(); - - /// Returns a full group of empty bytes, suitable for use as the initial - /// value for an empty hash table. - /// - /// This is guaranteed to be aligned to the group size. - #[inline] - pub const fn static_empty() -> &'static [u8; Group::WIDTH] { - #[repr(C)] - struct AlignedBytes { - _align: [Group; 0], - bytes: [u8; Group::WIDTH], - } - const ALIGNED_BYTES: AlignedBytes = AlignedBytes { - _align: [], - bytes: [EMPTY; Group::WIDTH], - }; - &ALIGNED_BYTES.bytes - } - - /// Loads a group of bytes starting at the given address. - #[inline] - #[allow(clippy::cast_ptr_alignment)] // unaligned load - pub unsafe fn load(ptr: *const u8) -> Self { - Group(ptr::read_unaligned(ptr.cast())) - } - - /// Loads a group of bytes starting at the given address, which must be - /// aligned to `mem::align_of::<Group>()`. - #[inline] - #[allow(clippy::cast_ptr_alignment)] - pub unsafe fn load_aligned(ptr: *const u8) -> Self { - // FIXME: use align_offset once it stabilizes - debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); - Group(ptr::read(ptr.cast())) - } - - /// Stores the group of bytes to the given address, which must be - /// aligned to `mem::align_of::<Group>()`. - #[inline] - #[allow(clippy::cast_ptr_alignment)] - pub unsafe fn store_aligned(self, ptr: *mut u8) { - // FIXME: use align_offset once it stabilizes - debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); - ptr::write(ptr.cast(), self.0); - } - - /// Returns a `BitMask` indicating all bytes in the group which *may* - /// have the given value. - /// - /// This function may return a false positive in certain cases where - /// the byte in the group differs from the searched value only in its - /// lowest bit. This is fine because: - /// - This never happens for `EMPTY` and `DELETED`, only full entries. - /// - The check for key equality will catch these. - /// - This only happens if there is at least 1 true match. - /// - The chance of this happening is very low (< 1% chance per byte). - #[inline] - pub fn match_byte(self, byte: u8) -> BitMask { - // This algorithm is derived from - // https://graphics.stanford.edu/~seander/bithacks.html##ValueInWord - let cmp = self.0 ^ repeat(byte); - BitMask((cmp.wrapping_sub(repeat(0x01)) & !cmp & repeat(0x80)).to_le()) - } - - /// Returns a `BitMask` indicating all bytes in the group which are - /// `EMPTY`. - #[inline] - pub fn match_empty(self) -> BitMask { - // If the high bit is set, then the byte must be either: - // 1111_1111 (EMPTY) or 1000_0000 (DELETED). - // So we can just check if the top two bits are 1 by ANDing them. - BitMask((self.0 & (self.0 << 1) & repeat(0x80)).to_le()) - } - - /// Returns a `BitMask` indicating all bytes in the group which are - /// `EMPTY` or `DELETED`. - #[inline] - pub fn match_empty_or_deleted(self) -> BitMask { - // A byte is EMPTY or DELETED iff the high bit is set - BitMask((self.0 & repeat(0x80)).to_le()) - } - - /// Returns a `BitMask` indicating all bytes in the group which are full. - #[inline] - pub fn match_full(self) -> BitMask { - self.match_empty_or_deleted().invert() - } - - /// Performs the following transformation on all bytes in the group: - /// - `EMPTY => EMPTY` - /// - `DELETED => EMPTY` - /// - `FULL => DELETED` - #[inline] - pub fn convert_special_to_empty_and_full_to_deleted(self) -> Self { - // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111 - // and high_bit = 0 (FULL) to 1000_0000 - // - // Here's this logic expanded to concrete values: - // let full = 1000_0000 (true) or 0000_0000 (false) - // !1000_0000 + 1 = 0111_1111 + 1 = 1000_0000 (no carry) - // !0000_0000 + 0 = 1111_1111 + 0 = 1111_1111 (no carry) - let full = !self.0 & repeat(0x80); - Group(!full + (full >> 7)) - } -} diff --git a/vendor/hashbrown-0.12.3/src/raw/mod.rs b/vendor/hashbrown-0.12.3/src/raw/mod.rs deleted file mode 100644 index 211b818a5..000000000 --- a/vendor/hashbrown-0.12.3/src/raw/mod.rs +++ /dev/null @@ -1,2460 +0,0 @@ -use crate::alloc::alloc::{handle_alloc_error, Layout}; -use crate::scopeguard::{guard, ScopeGuard}; -use crate::TryReserveError; -use core::iter::FusedIterator; -use core::marker::PhantomData; -use core::mem; -use core::mem::ManuallyDrop; -use core::mem::MaybeUninit; -use core::ptr::NonNull; -use core::{hint, ptr}; - -cfg_if! { - // Use the SSE2 implementation if possible: it allows us to scan 16 buckets - // at once instead of 8. We don't bother with AVX since it would require - // runtime dispatch and wouldn't gain us much anyways: the probability of - // finding a match drops off drastically after the first few buckets. - // - // I attempted an implementation on ARM using NEON instructions, but it - // turns out that most NEON instructions have multi-cycle latency, which in - // the end outweighs any gains over the generic implementation. - if #[cfg(all( - target_feature = "sse2", - any(target_arch = "x86", target_arch = "x86_64"), - not(miri) - ))] { - mod sse2; - use sse2 as imp; - } else { - #[path = "generic.rs"] - mod generic; - use generic as imp; - } -} - -mod alloc; -pub(crate) use self::alloc::{do_alloc, Allocator, Global}; - -mod bitmask; - -use self::bitmask::{BitMask, BitMaskIter}; -use self::imp::Group; - -// Branch prediction hint. This is currently only available on nightly but it -// consistently improves performance by 10-15%. -#[cfg(feature = "nightly")] -use core::intrinsics::{likely, unlikely}; - -// On stable we can use #[cold] to get a equivalent effect: this attributes -// suggests that the function is unlikely to be called -#[cfg(not(feature = "nightly"))] -#[inline] -#[cold] -fn cold() {} - -#[cfg(not(feature = "nightly"))] -#[inline] -fn likely(b: bool) -> bool { - if !b { - cold(); - } - b -} -#[cfg(not(feature = "nightly"))] -#[inline] -fn unlikely(b: bool) -> bool { - if b { - cold(); - } - b -} - -#[inline] -unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize { - to.offset_from(from) as usize -} - -/// Whether memory allocation errors should return an error or abort. -#[derive(Copy, Clone)] -enum Fallibility { - Fallible, - Infallible, -} - -impl Fallibility { - /// Error to return on capacity overflow. - #[cfg_attr(feature = "inline-more", inline)] - fn capacity_overflow(self) -> TryReserveError { - match self { - Fallibility::Fallible => TryReserveError::CapacityOverflow, - Fallibility::Infallible => panic!("Hash table capacity overflow"), - } - } - - /// Error to return on allocation error. - #[cfg_attr(feature = "inline-more", inline)] - fn alloc_err(self, layout: Layout) -> TryReserveError { - match self { - Fallibility::Fallible => TryReserveError::AllocError { layout }, - Fallibility::Infallible => handle_alloc_error(layout), - } - } -} - -/// Control byte value for an empty bucket. -const EMPTY: u8 = 0b1111_1111; - -/// Control byte value for a deleted bucket. -const DELETED: u8 = 0b1000_0000; - -/// Checks whether a control byte represents a full bucket (top bit is clear). -#[inline] -fn is_full(ctrl: u8) -> bool { - ctrl & 0x80 == 0 -} - -/// Checks whether a control byte represents a special value (top bit is set). -#[inline] -fn is_special(ctrl: u8) -> bool { - ctrl & 0x80 != 0 -} - -/// Checks whether a special control value is EMPTY (just check 1 bit). -#[inline] -fn special_is_empty(ctrl: u8) -> bool { - debug_assert!(is_special(ctrl)); - ctrl & 0x01 != 0 -} - -/// Primary hash function, used to select the initial bucket to probe from. -#[inline] -#[allow(clippy::cast_possible_truncation)] -fn h1(hash: u64) -> usize { - // On 32-bit platforms we simply ignore the higher hash bits. - hash as usize -} - -/// Secondary hash function, saved in the low 7 bits of the control byte. -#[inline] -#[allow(clippy::cast_possible_truncation)] -fn h2(hash: u64) -> u8 { - // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit - // value, some hash functions (such as FxHash) produce a usize result - // instead, which means that the top 32 bits are 0 on 32-bit platforms. - let hash_len = usize::min(mem::size_of::<usize>(), mem::size_of::<u64>()); - let top7 = hash >> (hash_len * 8 - 7); - (top7 & 0x7f) as u8 // truncation -} - -/// Probe sequence based on triangular numbers, which is guaranteed (since our -/// table size is a power of two) to visit every group of elements exactly once. -/// -/// A triangular probe has us jump by 1 more group every time. So first we -/// jump by 1 group (meaning we just continue our linear scan), then 2 groups -/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. -/// -/// Proof that the probe will visit every group in the table: -/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/> -struct ProbeSeq { - pos: usize, - stride: usize, -} - -impl ProbeSeq { - #[inline] - fn move_next(&mut self, bucket_mask: usize) { - // We should have found an empty bucket by now and ended the probe. - debug_assert!( - self.stride <= bucket_mask, - "Went past end of probe sequence" - ); - - self.stride += Group::WIDTH; - self.pos += self.stride; - self.pos &= bucket_mask; - } -} - -/// Returns the number of buckets needed to hold the given number of items, -/// taking the maximum load factor into account. -/// -/// Returns `None` if an overflow occurs. -// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258 -#[cfg_attr(target_os = "emscripten", inline(never))] -#[cfg_attr(not(target_os = "emscripten"), inline)] -fn capacity_to_buckets(cap: usize) -> Option<usize> { - debug_assert_ne!(cap, 0); - - // For small tables we require at least 1 empty bucket so that lookups are - // guaranteed to terminate if an element doesn't exist in the table. - if cap < 8 { - // We don't bother with a table size of 2 buckets since that can only - // hold a single element. Instead we skip directly to a 4 bucket table - // which can hold 3 elements. - return Some(if cap < 4 { 4 } else { 8 }); - } - - // Otherwise require 1/8 buckets to be empty (87.5% load) - // - // Be careful when modifying this, calculate_layout relies on the - // overflow check here. - let adjusted_cap = cap.checked_mul(8)? / 7; - - // Any overflows will have been caught by the checked_mul. Also, any - // rounding errors from the division above will be cleaned up by - // next_power_of_two (which can't overflow because of the previous division). - Some(adjusted_cap.next_power_of_two()) -} - -/// Returns the maximum effective capacity for the given bucket mask, taking -/// the maximum load factor into account. -#[inline] -fn bucket_mask_to_capacity(bucket_mask: usize) -> usize { - if bucket_mask < 8 { - // For tables with 1/2/4/8 buckets, we always reserve one empty slot. - // Keep in mind that the bucket mask is one less than the bucket count. - bucket_mask - } else { - // For larger tables we reserve 12.5% of the slots as empty. - ((bucket_mask + 1) / 8) * 7 - } -} - -/// Helper which allows the max calculation for ctrl_align to be statically computed for each T -/// while keeping the rest of `calculate_layout_for` independent of `T` -#[derive(Copy, Clone)] -struct TableLayout { - size: usize, - ctrl_align: usize, -} - -impl TableLayout { - #[inline] - fn new<T>() -> Self { - let layout = Layout::new::<T>(); - Self { - size: layout.size(), - ctrl_align: usize::max(layout.align(), Group::WIDTH), - } - } - - #[inline] - fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> { - debug_assert!(buckets.is_power_of_two()); - - let TableLayout { size, ctrl_align } = self; - // Manual layout calculation since Layout methods are not yet stable. - let ctrl_offset = - size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1); - let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?; - - Some(( - unsafe { Layout::from_size_align_unchecked(len, ctrl_align) }, - ctrl_offset, - )) - } -} - -/// Returns a Layout which describes the allocation required for a hash table, -/// and the offset of the control bytes in the allocation. -/// (the offset is also one past last element of buckets) -/// -/// Returns `None` if an overflow occurs. -#[cfg_attr(feature = "inline-more", inline)] -fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> { - TableLayout::new::<T>().calculate_layout_for(buckets) -} - -/// A reference to a hash table bucket containing a `T`. -/// -/// This is usually just a pointer to the element itself. However if the element -/// is a ZST, then we instead track the index of the element in the table so -/// that `erase` works properly. -pub struct Bucket<T> { - // Actually it is pointer to next element than element itself - // this is needed to maintain pointer arithmetic invariants - // keeping direct pointer to element introduces difficulty. - // Using `NonNull` for variance and niche layout - ptr: NonNull<T>, -} - -// This Send impl is needed for rayon support. This is safe since Bucket is -// never exposed in a public API. -unsafe impl<T> Send for Bucket<T> {} - -impl<T> Clone for Bucket<T> { - #[inline] - fn clone(&self) -> Self { - Self { ptr: self.ptr } - } -} - -impl<T> Bucket<T> { - #[inline] - unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self { - let ptr = if mem::size_of::<T>() == 0 { - // won't overflow because index must be less than length - (index + 1) as *mut T - } else { - base.as_ptr().sub(index) - }; - Self { - ptr: NonNull::new_unchecked(ptr), - } - } - #[inline] - unsafe fn to_base_index(&self, base: NonNull<T>) -> usize { - if mem::size_of::<T>() == 0 { - self.ptr.as_ptr() as usize - 1 - } else { - offset_from(base.as_ptr(), self.ptr.as_ptr()) - } - } - #[inline] - pub fn as_ptr(&self) -> *mut T { - if mem::size_of::<T>() == 0 { - // Just return an arbitrary ZST pointer which is properly aligned - mem::align_of::<T>() as *mut T - } else { - unsafe { self.ptr.as_ptr().sub(1) } - } - } - #[inline] - unsafe fn next_n(&self, offset: usize) -> Self { - let ptr = if mem::size_of::<T>() == 0 { - (self.ptr.as_ptr() as usize + offset) as *mut T - } else { - self.ptr.as_ptr().sub(offset) - }; - Self { - ptr: NonNull::new_unchecked(ptr), - } - } - #[cfg_attr(feature = "inline-more", inline)] - pub unsafe fn drop(&self) { - self.as_ptr().drop_in_place(); - } - #[inline] - pub unsafe fn read(&self) -> T { - self.as_ptr().read() - } - #[inline] - pub unsafe fn write(&self, val: T) { - self.as_ptr().write(val); - } - #[inline] - pub unsafe fn as_ref<'a>(&self) -> &'a T { - &*self.as_ptr() - } - #[inline] - pub unsafe fn as_mut<'a>(&self) -> &'a mut T { - &mut *self.as_ptr() - } - #[cfg(feature = "raw")] - #[inline] - pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) { - self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1); - } -} - -/// A raw hash table with an unsafe API. -pub struct RawTable<T, A: Allocator + Clone = Global> { - table: RawTableInner<A>, - // Tell dropck that we own instances of T. - marker: PhantomData<T>, -} - -/// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless -/// of how many different key-value types are used. -struct RawTableInner<A> { - // Mask to get an index from a hash value. The value is one less than the - // number of buckets in the table. - bucket_mask: usize, - - // [Padding], T1, T2, ..., Tlast, C1, C2, ... - // ^ points here - ctrl: NonNull<u8>, - - // Number of elements that can be inserted before we need to grow the table - growth_left: usize, - - // Number of elements in the table, only really used by len() - items: usize, - - alloc: A, -} - -impl<T> RawTable<T, Global> { - /// Creates a new empty hash table without allocating any memory. - /// - /// In effect this returns a table with exactly 1 bucket. However we can - /// leave the data pointer dangling since that bucket is never written to - /// due to our load factor forcing us to always have at least 1 free bucket. - #[inline] - pub const fn new() -> Self { - Self { - table: RawTableInner::new_in(Global), - marker: PhantomData, - } - } - - /// Attempts to allocate a new hash table with at least enough capacity - /// for inserting the given number of elements without reallocating. - #[cfg(feature = "raw")] - pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> { - Self::try_with_capacity_in(capacity, Global) - } - - /// Allocates a new hash table with at least enough capacity for inserting - /// the given number of elements without reallocating. - pub fn with_capacity(capacity: usize) -> Self { - Self::with_capacity_in(capacity, Global) - } -} - -impl<T, A: Allocator + Clone> RawTable<T, A> { - /// Creates a new empty hash table without allocating any memory, using the - /// given allocator. - /// - /// In effect this returns a table with exactly 1 bucket. However we can - /// leave the data pointer dangling since that bucket is never written to - /// due to our load factor forcing us to always have at least 1 free bucket. - #[inline] - pub fn new_in(alloc: A) -> Self { - Self { - table: RawTableInner::new_in(alloc), - marker: PhantomData, - } - } - - /// Allocates a new hash table with the given number of buckets. - /// - /// The control bytes are left uninitialized. - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn new_uninitialized( - alloc: A, - buckets: usize, - fallibility: Fallibility, - ) -> Result<Self, TryReserveError> { - debug_assert!(buckets.is_power_of_two()); - - Ok(Self { - table: RawTableInner::new_uninitialized( - alloc, - TableLayout::new::<T>(), - buckets, - fallibility, - )?, - marker: PhantomData, - }) - } - - /// Attempts to allocate a new hash table with at least enough capacity - /// for inserting the given number of elements without reallocating. - fn fallible_with_capacity( - alloc: A, - capacity: usize, - fallibility: Fallibility, - ) -> Result<Self, TryReserveError> { - Ok(Self { - table: RawTableInner::fallible_with_capacity( - alloc, - TableLayout::new::<T>(), - capacity, - fallibility, - )?, - marker: PhantomData, - }) - } - - /// Attempts to allocate a new hash table using the given allocator, with at least enough - /// capacity for inserting the given number of elements without reallocating. - #[cfg(feature = "raw")] - pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { - Self::fallible_with_capacity(alloc, capacity, Fallibility::Fallible) - } - - /// Allocates a new hash table using the given allocator, with at least enough capacity for - /// inserting the given number of elements without reallocating. - pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { - // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. - match Self::fallible_with_capacity(alloc, capacity, Fallibility::Infallible) { - Ok(capacity) => capacity, - Err(_) => unsafe { hint::unreachable_unchecked() }, - } - } - - /// Returns a reference to the underlying allocator. - #[inline] - pub fn allocator(&self) -> &A { - &self.table.alloc - } - - /// Deallocates the table without dropping any entries. - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn free_buckets(&mut self) { - self.table.free_buckets(TableLayout::new::<T>()); - } - - /// Returns pointer to one past last element of data table. - #[inline] - pub unsafe fn data_end(&self) -> NonNull<T> { - NonNull::new_unchecked(self.table.ctrl.as_ptr().cast()) - } - - /// Returns pointer to start of data table. - #[inline] - #[cfg(feature = "nightly")] - pub unsafe fn data_start(&self) -> *mut T { - self.data_end().as_ptr().wrapping_sub(self.buckets()) - } - - /// Returns the index of a bucket from a `Bucket`. - #[inline] - pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize { - bucket.to_base_index(self.data_end()) - } - - /// Returns a pointer to an element in the table. - #[inline] - pub unsafe fn bucket(&self, index: usize) -> Bucket<T> { - debug_assert_ne!(self.table.bucket_mask, 0); - debug_assert!(index < self.buckets()); - Bucket::from_base_index(self.data_end(), index) - } - - /// Erases an element from the table without dropping it. - #[cfg_attr(feature = "inline-more", inline)] - #[deprecated(since = "0.8.1", note = "use erase or remove instead")] - pub unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) { - let index = self.bucket_index(item); - self.table.erase(index); - } - - /// Erases an element from the table, dropping it in place. - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::needless_pass_by_value)] - #[allow(deprecated)] - pub unsafe fn erase(&mut self, item: Bucket<T>) { - // Erase the element from the table first since drop might panic. - self.erase_no_drop(&item); - item.drop(); - } - - /// Finds and erases an element from the table, dropping it in place. - /// Returns true if an element was found. - #[cfg(feature = "raw")] - #[cfg_attr(feature = "inline-more", inline)] - pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool { - // Avoid `Option::map` because it bloats LLVM IR. - if let Some(bucket) = self.find(hash, eq) { - unsafe { - self.erase(bucket); - } - true - } else { - false - } - } - - /// Removes an element from the table, returning it. - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::needless_pass_by_value)] - #[allow(deprecated)] - pub unsafe fn remove(&mut self, item: Bucket<T>) -> T { - self.erase_no_drop(&item); - item.read() - } - - /// Finds and removes an element from the table, returning it. - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.find(hash, eq) { - Some(bucket) => Some(unsafe { self.remove(bucket) }), - None => None, - } - } - - /// Marks all table buckets as empty without dropping their contents. - #[cfg_attr(feature = "inline-more", inline)] - pub fn clear_no_drop(&mut self) { - self.table.clear_no_drop(); - } - - /// Removes all elements from the table without freeing the backing memory. - #[cfg_attr(feature = "inline-more", inline)] - pub fn clear(&mut self) { - // Ensure that the table is reset even if one of the drops panic - let mut self_ = guard(self, |self_| self_.clear_no_drop()); - unsafe { - self_.drop_elements(); - } - } - - unsafe fn drop_elements(&mut self) { - if mem::needs_drop::<T>() && !self.is_empty() { - for item in self.iter() { - item.drop(); - } - } - } - - /// Shrinks the table to fit `max(self.len(), min_size)` elements. - #[cfg_attr(feature = "inline-more", inline)] - pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) { - // Calculate the minimal number of elements that we need to reserve - // space for. - let min_size = usize::max(self.table.items, min_size); - if min_size == 0 { - *self = Self::new_in(self.table.alloc.clone()); - return; - } - - // Calculate the number of buckets that we need for this number of - // elements. If the calculation overflows then the requested bucket - // count must be larger than what we have right and nothing needs to be - // done. - let min_buckets = match capacity_to_buckets(min_size) { - Some(buckets) => buckets, - None => return, - }; - - // If we have more buckets than we need, shrink the table. - if min_buckets < self.buckets() { - // Fast path if the table is empty - if self.table.items == 0 { - *self = Self::with_capacity_in(min_size, self.table.alloc.clone()); - } else { - // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. - if self - .resize(min_size, hasher, Fallibility::Infallible) - .is_err() - { - unsafe { hint::unreachable_unchecked() } - } - } - } - } - - /// Ensures that at least `additional` items can be inserted into the table - /// without reallocation. - #[cfg_attr(feature = "inline-more", inline)] - pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) { - if additional > self.table.growth_left { - // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. - if self - .reserve_rehash(additional, hasher, Fallibility::Infallible) - .is_err() - { - unsafe { hint::unreachable_unchecked() } - } - } - } - - /// Tries to ensure that at least `additional` items can be inserted into - /// the table without reallocation. - #[cfg_attr(feature = "inline-more", inline)] - pub fn try_reserve( - &mut self, - additional: usize, - hasher: impl Fn(&T) -> u64, - ) -> Result<(), TryReserveError> { - if additional > self.table.growth_left { - self.reserve_rehash(additional, hasher, Fallibility::Fallible) - } else { - Ok(()) - } - } - - /// Out-of-line slow path for `reserve` and `try_reserve`. - #[cold] - #[inline(never)] - fn reserve_rehash( - &mut self, - additional: usize, - hasher: impl Fn(&T) -> u64, - fallibility: Fallibility, - ) -> Result<(), TryReserveError> { - unsafe { - self.table.reserve_rehash_inner( - additional, - &|table, index| hasher(table.bucket::<T>(index).as_ref()), - fallibility, - TableLayout::new::<T>(), - if mem::needs_drop::<T>() { - Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) - } else { - None - }, - ) - } - } - - /// Allocates a new table of a different size and moves the contents of the - /// current table into it. - fn resize( - &mut self, - capacity: usize, - hasher: impl Fn(&T) -> u64, - fallibility: Fallibility, - ) -> Result<(), TryReserveError> { - unsafe { - self.table.resize_inner( - capacity, - &|table, index| hasher(table.bucket::<T>(index).as_ref()), - fallibility, - TableLayout::new::<T>(), - ) - } - } - - /// Inserts a new element into the table, and returns its raw bucket. - /// - /// This does not check if the given element already exists in the table. - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> { - unsafe { - let mut index = self.table.find_insert_slot(hash); - - // We can avoid growing the table once we have reached our load - // factor if we are replacing a tombstone. This works since the - // number of EMPTY slots does not change in this case. - let old_ctrl = *self.table.ctrl(index); - if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) { - self.reserve(1, hasher); - index = self.table.find_insert_slot(hash); - } - - self.table.record_item_insert_at(index, old_ctrl, hash); - - let bucket = self.bucket(index); - bucket.write(value); - bucket - } - } - - /// Attempts to insert a new element without growing the table and return its raw bucket. - /// - /// Returns an `Err` containing the given element if inserting it would require growing the - /// table. - /// - /// This does not check if the given element already exists in the table. - #[cfg(feature = "raw")] - #[cfg_attr(feature = "inline-more", inline)] - pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result<Bucket<T>, T> { - unsafe { - match self.table.prepare_insert_no_grow(hash) { - Ok(index) => { - let bucket = self.bucket(index); - bucket.write(value); - Ok(bucket) - } - Err(()) => Err(value), - } - } - } - - /// Inserts a new element into the table, and returns a mutable reference to it. - /// - /// This does not check if the given element already exists in the table. - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T { - unsafe { self.insert(hash, value, hasher).as_mut() } - } - - /// Inserts a new element into the table, without growing the table. - /// - /// There must be enough space in the table to insert the new element. - /// - /// This does not check if the given element already exists in the table. - #[cfg_attr(feature = "inline-more", inline)] - #[cfg(any(feature = "raw", feature = "rustc-internal-api"))] - pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> { - let (index, old_ctrl) = self.table.prepare_insert_slot(hash); - let bucket = self.table.bucket(index); - - // If we are replacing a DELETED entry then we don't need to update - // the load counter. - self.table.growth_left -= special_is_empty(old_ctrl) as usize; - - bucket.write(value); - self.table.items += 1; - bucket - } - - /// Temporary removes a bucket, applying the given function to the removed - /// element and optionally put back the returned value in the same bucket. - /// - /// Returns `true` if the bucket still contains an element - /// - /// This does not check if the given bucket is actually occupied. - #[cfg_attr(feature = "inline-more", inline)] - pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool - where - F: FnOnce(T) -> Option<T>, - { - let index = self.bucket_index(&bucket); - let old_ctrl = *self.table.ctrl(index); - debug_assert!(is_full(old_ctrl)); - let old_growth_left = self.table.growth_left; - let item = self.remove(bucket); - if let Some(new_item) = f(item) { - self.table.growth_left = old_growth_left; - self.table.set_ctrl(index, old_ctrl); - self.table.items += 1; - self.bucket(index).write(new_item); - true - } else { - false - } - } - - /// Searches for an element in the table. - #[inline] - pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> { - let result = self.table.find_inner(hash, &mut |index| unsafe { - eq(self.bucket(index).as_ref()) - }); - - // Avoid `Option::map` because it bloats LLVM IR. - match result { - Some(index) => Some(unsafe { self.bucket(index) }), - None => None, - } - } - - /// Gets a reference to an element in the table. - #[inline] - pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.find(hash, eq) { - Some(bucket) => Some(unsafe { bucket.as_ref() }), - None => None, - } - } - - /// Gets a mutable reference to an element in the table. - #[inline] - pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.find(hash, eq) { - Some(bucket) => Some(unsafe { bucket.as_mut() }), - None => None, - } - } - - /// Attempts to get mutable references to `N` entries in the table at once. - /// - /// Returns an array of length `N` with the results of each query. - /// - /// At most one mutable reference will be returned to any entry. `None` will be returned if any - /// of the hashes are duplicates. `None` will be returned if the hash is not found. - /// - /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to - /// the `i`th key to be looked up. - pub fn get_many_mut<const N: usize>( - &mut self, - hashes: [u64; N], - eq: impl FnMut(usize, &T) -> bool, - ) -> Option<[&'_ mut T; N]> { - unsafe { - let ptrs = self.get_many_mut_pointers(hashes, eq)?; - - for (i, &cur) in ptrs.iter().enumerate() { - if ptrs[..i].iter().any(|&prev| ptr::eq::<T>(prev, cur)) { - return None; - } - } - // All bucket are distinct from all previous buckets so we're clear to return the result - // of the lookup. - - // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. - Some(mem::transmute_copy(&ptrs)) - } - } - - pub unsafe fn get_many_unchecked_mut<const N: usize>( - &mut self, - hashes: [u64; N], - eq: impl FnMut(usize, &T) -> bool, - ) -> Option<[&'_ mut T; N]> { - let ptrs = self.get_many_mut_pointers(hashes, eq)?; - Some(mem::transmute_copy(&ptrs)) - } - - unsafe fn get_many_mut_pointers<const N: usize>( - &mut self, - hashes: [u64; N], - mut eq: impl FnMut(usize, &T) -> bool, - ) -> Option<[*mut T; N]> { - // TODO use `MaybeUninit::uninit_array` here instead once that's stable. - let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit(); - let outs_ptr = outs.as_mut_ptr(); - - for (i, &hash) in hashes.iter().enumerate() { - let cur = self.find(hash, |k| eq(i, k))?; - *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut(); - } - - // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. - Some(outs.assume_init()) - } - - /// Returns the number of elements the map can hold without reallocating. - /// - /// This number is a lower bound; the table might be able to hold - /// more, but is guaranteed to be able to hold at least this many. - #[inline] - pub fn capacity(&self) -> usize { - self.table.items + self.table.growth_left - } - - /// Returns the number of elements in the table. - #[inline] - pub fn len(&self) -> usize { - self.table.items - } - - /// Returns `true` if the table contains no elements. - #[inline] - pub fn is_empty(&self) -> bool { - self.len() == 0 - } - - /// Returns the number of buckets in the table. - #[inline] - pub fn buckets(&self) -> usize { - self.table.bucket_mask + 1 - } - - /// Returns an iterator over every element in the table. It is up to - /// the caller to ensure that the `RawTable` outlives the `RawIter`. - /// Because we cannot make the `next` method unsafe on the `RawIter` - /// struct, we have to make the `iter` method unsafe. - #[inline] - pub unsafe fn iter(&self) -> RawIter<T> { - let data = Bucket::from_base_index(self.data_end(), 0); - RawIter { - iter: RawIterRange::new(self.table.ctrl.as_ptr(), data, self.table.buckets()), - items: self.table.items, - } - } - - /// Returns an iterator over occupied buckets that could match a given hash. - /// - /// `RawTable` only stores 7 bits of the hash value, so this iterator may - /// return items that have a hash value different than the one provided. You - /// should always validate the returned values before using them. - /// - /// It is up to the caller to ensure that the `RawTable` outlives the - /// `RawIterHash`. Because we cannot make the `next` method unsafe on the - /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe. - #[cfg_attr(feature = "inline-more", inline)] - #[cfg(feature = "raw")] - pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T, A> { - RawIterHash::new(self, hash) - } - - /// Returns an iterator which removes all elements from the table without - /// freeing the memory. - #[cfg_attr(feature = "inline-more", inline)] - pub fn drain(&mut self) -> RawDrain<'_, T, A> { - unsafe { - let iter = self.iter(); - self.drain_iter_from(iter) - } - } - - /// Returns an iterator which removes all elements from the table without - /// freeing the memory. - /// - /// Iteration starts at the provided iterator's current location. - /// - /// It is up to the caller to ensure that the iterator is valid for this - /// `RawTable` and covers all items that remain in the table. - #[cfg_attr(feature = "inline-more", inline)] - pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> { - debug_assert_eq!(iter.len(), self.len()); - RawDrain { - iter, - table: ManuallyDrop::new(mem::replace(self, Self::new_in(self.table.alloc.clone()))), - orig_table: NonNull::from(self), - marker: PhantomData, - } - } - - /// Returns an iterator which consumes all elements from the table. - /// - /// Iteration starts at the provided iterator's current location. - /// - /// It is up to the caller to ensure that the iterator is valid for this - /// `RawTable` and covers all items that remain in the table. - pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> { - debug_assert_eq!(iter.len(), self.len()); - - let alloc = self.table.alloc.clone(); - let allocation = self.into_allocation(); - RawIntoIter { - iter, - allocation, - marker: PhantomData, - alloc, - } - } - - /// Converts the table into a raw allocation. The contents of the table - /// should be dropped using a `RawIter` before freeing the allocation. - #[cfg_attr(feature = "inline-more", inline)] - pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout)> { - let alloc = if self.table.is_empty_singleton() { - None - } else { - // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. - let (layout, ctrl_offset) = match calculate_layout::<T>(self.table.buckets()) { - Some(lco) => lco, - None => unsafe { hint::unreachable_unchecked() }, - }; - Some(( - unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) }, - layout, - )) - }; - mem::forget(self); - alloc - } -} - -unsafe impl<T, A: Allocator + Clone> Send for RawTable<T, A> -where - T: Send, - A: Send, -{ -} -unsafe impl<T, A: Allocator + Clone> Sync for RawTable<T, A> -where - T: Sync, - A: Sync, -{ -} - -impl<A> RawTableInner<A> { - #[inline] - const fn new_in(alloc: A) -> Self { - Self { - // Be careful to cast the entire slice to a raw pointer. - ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) }, - bucket_mask: 0, - items: 0, - growth_left: 0, - alloc, - } - } -} - -impl<A: Allocator + Clone> RawTableInner<A> { - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn new_uninitialized( - alloc: A, - table_layout: TableLayout, - buckets: usize, - fallibility: Fallibility, - ) -> Result<Self, TryReserveError> { - debug_assert!(buckets.is_power_of_two()); - - // Avoid `Option::ok_or_else` because it bloats LLVM IR. - let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) { - Some(lco) => lco, - None => return Err(fallibility.capacity_overflow()), - }; - - // We need an additional check to ensure that the allocation doesn't - // exceed `isize::MAX`. We can skip this check on 64-bit systems since - // such allocations will never succeed anyways. - // - // This mirrors what Vec does in the standard library. - if mem::size_of::<usize>() < 8 && layout.size() > isize::MAX as usize { - return Err(fallibility.capacity_overflow()); - } - - let ptr: NonNull<u8> = match do_alloc(&alloc, layout) { - Ok(block) => block.cast(), - Err(_) => return Err(fallibility.alloc_err(layout)), - }; - - let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset)); - Ok(Self { - ctrl, - bucket_mask: buckets - 1, - items: 0, - growth_left: bucket_mask_to_capacity(buckets - 1), - alloc, - }) - } - - #[inline] - fn fallible_with_capacity( - alloc: A, - table_layout: TableLayout, - capacity: usize, - fallibility: Fallibility, - ) -> Result<Self, TryReserveError> { - if capacity == 0 { - Ok(Self::new_in(alloc)) - } else { - unsafe { - let buckets = - capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?; - - let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?; - result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes()); - - Ok(result) - } - } - } - - /// Searches for an empty or deleted bucket which is suitable for inserting - /// a new element and sets the hash for that slot. - /// - /// There must be at least 1 empty bucket in the table. - #[inline] - unsafe fn prepare_insert_slot(&self, hash: u64) -> (usize, u8) { - let index = self.find_insert_slot(hash); - let old_ctrl = *self.ctrl(index); - self.set_ctrl_h2(index, hash); - (index, old_ctrl) - } - - /// Searches for an empty or deleted bucket which is suitable for inserting - /// a new element. - /// - /// There must be at least 1 empty bucket in the table. - #[inline] - fn find_insert_slot(&self, hash: u64) -> usize { - let mut probe_seq = self.probe_seq(hash); - loop { - unsafe { - let group = Group::load(self.ctrl(probe_seq.pos)); - if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() { - let result = (probe_seq.pos + bit) & self.bucket_mask; - - // In tables smaller than the group width, trailing control - // bytes outside the range of the table are filled with - // EMPTY entries. These will unfortunately trigger a - // match, but once masked may point to a full bucket that - // is already occupied. We detect this situation here and - // perform a second scan starting at the beginning of the - // table. This second scan is guaranteed to find an empty - // slot (due to the load factor) before hitting the trailing - // control bytes (containing EMPTY). - if unlikely(is_full(*self.ctrl(result))) { - debug_assert!(self.bucket_mask < Group::WIDTH); - debug_assert_ne!(probe_seq.pos, 0); - return Group::load_aligned(self.ctrl(0)) - .match_empty_or_deleted() - .lowest_set_bit_nonzero(); - } - - return result; - } - } - probe_seq.move_next(self.bucket_mask); - } - } - - /// Searches for an element in the table. This uses dynamic dispatch to reduce the amount of - /// code generated, but it is eliminated by LLVM optimizations. - #[inline] - fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> { - let h2_hash = h2(hash); - let mut probe_seq = self.probe_seq(hash); - - loop { - let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; - - for bit in group.match_byte(h2_hash) { - let index = (probe_seq.pos + bit) & self.bucket_mask; - - if likely(eq(index)) { - return Some(index); - } - } - - if likely(group.match_empty().any_bit_set()) { - return None; - } - - probe_seq.move_next(self.bucket_mask); - } - } - - #[allow(clippy::mut_mut)] - #[inline] - unsafe fn prepare_rehash_in_place(&mut self) { - // Bulk convert all full control bytes to DELETED, and all DELETED - // control bytes to EMPTY. This effectively frees up all buckets - // containing a DELETED entry. - for i in (0..self.buckets()).step_by(Group::WIDTH) { - let group = Group::load_aligned(self.ctrl(i)); - let group = group.convert_special_to_empty_and_full_to_deleted(); - group.store_aligned(self.ctrl(i)); - } - - // Fix up the trailing control bytes. See the comments in set_ctrl - // for the handling of tables smaller than the group width. - if self.buckets() < Group::WIDTH { - self.ctrl(0) - .copy_to(self.ctrl(Group::WIDTH), self.buckets()); - } else { - self.ctrl(0) - .copy_to(self.ctrl(self.buckets()), Group::WIDTH); - } - } - - #[inline] - unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> { - debug_assert_ne!(self.bucket_mask, 0); - debug_assert!(index < self.buckets()); - Bucket::from_base_index(self.data_end(), index) - } - - #[inline] - unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 { - debug_assert_ne!(self.bucket_mask, 0); - debug_assert!(index < self.buckets()); - let base: *mut u8 = self.data_end().as_ptr(); - base.sub((index + 1) * size_of) - } - - #[inline] - unsafe fn data_end<T>(&self) -> NonNull<T> { - NonNull::new_unchecked(self.ctrl.as_ptr().cast()) - } - - /// Returns an iterator-like object for a probe sequence on the table. - /// - /// This iterator never terminates, but is guaranteed to visit each bucket - /// group exactly once. The loop using `probe_seq` must terminate upon - /// reaching a group containing an empty bucket. - #[inline] - fn probe_seq(&self, hash: u64) -> ProbeSeq { - ProbeSeq { - pos: h1(hash) & self.bucket_mask, - stride: 0, - } - } - - /// Returns the index of a bucket for which a value must be inserted if there is enough rooom - /// in the table, otherwise returns error - #[cfg(feature = "raw")] - #[inline] - unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> { - let index = self.find_insert_slot(hash); - let old_ctrl = *self.ctrl(index); - if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) { - Err(()) - } else { - self.record_item_insert_at(index, old_ctrl, hash); - Ok(index) - } - } - - #[inline] - unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) { - self.growth_left -= usize::from(special_is_empty(old_ctrl)); - self.set_ctrl_h2(index, hash); - self.items += 1; - } - - #[inline] - fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool { - let probe_seq_pos = self.probe_seq(hash).pos; - let probe_index = - |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH; - probe_index(i) == probe_index(new_i) - } - - /// Sets a control byte to the hash, and possibly also the replicated control byte at - /// the end of the array. - #[inline] - unsafe fn set_ctrl_h2(&self, index: usize, hash: u64) { - self.set_ctrl(index, h2(hash)); - } - - #[inline] - unsafe fn replace_ctrl_h2(&self, index: usize, hash: u64) -> u8 { - let prev_ctrl = *self.ctrl(index); - self.set_ctrl_h2(index, hash); - prev_ctrl - } - - /// Sets a control byte, and possibly also the replicated control byte at - /// the end of the array. - #[inline] - unsafe fn set_ctrl(&self, index: usize, ctrl: u8) { - // Replicate the first Group::WIDTH control bytes at the end of - // the array without using a branch: - // - If index >= Group::WIDTH then index == index2. - // - Otherwise index2 == self.bucket_mask + 1 + index. - // - // The very last replicated control byte is never actually read because - // we mask the initial index for unaligned loads, but we write it - // anyways because it makes the set_ctrl implementation simpler. - // - // If there are fewer buckets than Group::WIDTH then this code will - // replicate the buckets at the end of the trailing group. For example - // with 2 buckets and a group size of 4, the control bytes will look - // like this: - // - // Real | Replicated - // --------------------------------------------- - // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] | - // --------------------------------------------- - let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH; - - *self.ctrl(index) = ctrl; - *self.ctrl(index2) = ctrl; - } - - /// Returns a pointer to a control byte. - #[inline] - unsafe fn ctrl(&self, index: usize) -> *mut u8 { - debug_assert!(index < self.num_ctrl_bytes()); - self.ctrl.as_ptr().add(index) - } - - #[inline] - fn buckets(&self) -> usize { - self.bucket_mask + 1 - } - - #[inline] - fn num_ctrl_bytes(&self) -> usize { - self.bucket_mask + 1 + Group::WIDTH - } - - #[inline] - fn is_empty_singleton(&self) -> bool { - self.bucket_mask == 0 - } - - #[allow(clippy::mut_mut)] - #[inline] - unsafe fn prepare_resize( - &self, - table_layout: TableLayout, - capacity: usize, - fallibility: Fallibility, - ) -> Result<crate::scopeguard::ScopeGuard<Self, impl FnMut(&mut Self)>, TryReserveError> { - debug_assert!(self.items <= capacity); - - // Allocate and initialize the new table. - let mut new_table = RawTableInner::fallible_with_capacity( - self.alloc.clone(), - table_layout, - capacity, - fallibility, - )?; - new_table.growth_left -= self.items; - new_table.items = self.items; - - // The hash function may panic, in which case we simply free the new - // table without dropping any elements that may have been copied into - // it. - // - // This guard is also used to free the old table on success, see - // the comment at the bottom of this function. - Ok(guard(new_table, move |self_| { - if !self_.is_empty_singleton() { - self_.free_buckets(table_layout); - } - })) - } - - /// Reserves or rehashes to make room for `additional` more elements. - /// - /// This uses dynamic dispatch to reduce the amount of - /// code generated, but it is eliminated by LLVM optimizations when inlined. - #[allow(clippy::inline_always)] - #[inline(always)] - unsafe fn reserve_rehash_inner( - &mut self, - additional: usize, - hasher: &dyn Fn(&mut Self, usize) -> u64, - fallibility: Fallibility, - layout: TableLayout, - drop: Option<fn(*mut u8)>, - ) -> Result<(), TryReserveError> { - // Avoid `Option::ok_or_else` because it bloats LLVM IR. - let new_items = match self.items.checked_add(additional) { - Some(new_items) => new_items, - None => return Err(fallibility.capacity_overflow()), - }; - let full_capacity = bucket_mask_to_capacity(self.bucket_mask); - if new_items <= full_capacity / 2 { - // Rehash in-place without re-allocating if we have plenty of spare - // capacity that is locked up due to DELETED entries. - self.rehash_in_place(hasher, layout.size, drop); - Ok(()) - } else { - // Otherwise, conservatively resize to at least the next size up - // to avoid churning deletes into frequent rehashes. - self.resize_inner( - usize::max(new_items, full_capacity + 1), - hasher, - fallibility, - layout, - ) - } - } - - /// Allocates a new table of a different size and moves the contents of the - /// current table into it. - /// - /// This uses dynamic dispatch to reduce the amount of - /// code generated, but it is eliminated by LLVM optimizations when inlined. - #[allow(clippy::inline_always)] - #[inline(always)] - unsafe fn resize_inner( - &mut self, - capacity: usize, - hasher: &dyn Fn(&mut Self, usize) -> u64, - fallibility: Fallibility, - layout: TableLayout, - ) -> Result<(), TryReserveError> { - let mut new_table = self.prepare_resize(layout, capacity, fallibility)?; - - // Copy all elements to the new table. - for i in 0..self.buckets() { - if !is_full(*self.ctrl(i)) { - continue; - } - - // This may panic. - let hash = hasher(self, i); - - // We can use a simpler version of insert() here since: - // - there are no DELETED entries. - // - we know there is enough space in the table. - // - all elements are unique. - let (index, _) = new_table.prepare_insert_slot(hash); - - ptr::copy_nonoverlapping( - self.bucket_ptr(i, layout.size), - new_table.bucket_ptr(index, layout.size), - layout.size, - ); - } - - // We successfully copied all elements without panicking. Now replace - // self with the new table. The old table will have its memory freed but - // the items will not be dropped (since they have been moved into the - // new table). - mem::swap(self, &mut new_table); - - Ok(()) - } - - /// Rehashes the contents of the table in place (i.e. without changing the - /// allocation). - /// - /// If `hasher` panics then some the table's contents may be lost. - /// - /// This uses dynamic dispatch to reduce the amount of - /// code generated, but it is eliminated by LLVM optimizations when inlined. - #[allow(clippy::inline_always)] - #[cfg_attr(feature = "inline-more", inline(always))] - #[cfg_attr(not(feature = "inline-more"), inline)] - unsafe fn rehash_in_place( - &mut self, - hasher: &dyn Fn(&mut Self, usize) -> u64, - size_of: usize, - drop: Option<fn(*mut u8)>, - ) { - // If the hash function panics then properly clean up any elements - // that we haven't rehashed yet. We unfortunately can't preserve the - // element since we lost their hash and have no way of recovering it - // without risking another panic. - self.prepare_rehash_in_place(); - - let mut guard = guard(self, move |self_| { - if let Some(drop) = drop { - for i in 0..self_.buckets() { - if *self_.ctrl(i) == DELETED { - self_.set_ctrl(i, EMPTY); - drop(self_.bucket_ptr(i, size_of)); - self_.items -= 1; - } - } - } - self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items; - }); - - // At this point, DELETED elements are elements that we haven't - // rehashed yet. Find them and re-insert them at their ideal - // position. - 'outer: for i in 0..guard.buckets() { - if *guard.ctrl(i) != DELETED { - continue; - } - - let i_p = guard.bucket_ptr(i, size_of); - - 'inner: loop { - // Hash the current item - let hash = hasher(*guard, i); - - // Search for a suitable place to put it - let new_i = guard.find_insert_slot(hash); - let new_i_p = guard.bucket_ptr(new_i, size_of); - - // Probing works by scanning through all of the control - // bytes in groups, which may not be aligned to the group - // size. If both the new and old position fall within the - // same unaligned group, then there is no benefit in moving - // it and we can just continue to the next item. - if likely(guard.is_in_same_group(i, new_i, hash)) { - guard.set_ctrl_h2(i, hash); - continue 'outer; - } - - // We are moving the current item to a new position. Write - // our H2 to the control byte of the new position. - let prev_ctrl = guard.replace_ctrl_h2(new_i, hash); - if prev_ctrl == EMPTY { - guard.set_ctrl(i, EMPTY); - // If the target slot is empty, simply move the current - // element into the new slot and clear the old control - // byte. - ptr::copy_nonoverlapping(i_p, new_i_p, size_of); - continue 'outer; - } else { - // If the target slot is occupied, swap the two elements - // and then continue processing the element that we just - // swapped into the old slot. - debug_assert_eq!(prev_ctrl, DELETED); - ptr::swap_nonoverlapping(i_p, new_i_p, size_of); - continue 'inner; - } - } - } - - guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items; - - mem::forget(guard); - } - - #[inline] - unsafe fn free_buckets(&mut self, table_layout: TableLayout) { - // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. - let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) { - Some(lco) => lco, - None => hint::unreachable_unchecked(), - }; - self.alloc.deallocate( - NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)), - layout, - ); - } - - /// Marks all table buckets as empty without dropping their contents. - #[inline] - fn clear_no_drop(&mut self) { - if !self.is_empty_singleton() { - unsafe { - self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes()); - } - } - self.items = 0; - self.growth_left = bucket_mask_to_capacity(self.bucket_mask); - } - - #[inline] - unsafe fn erase(&mut self, index: usize) { - debug_assert!(is_full(*self.ctrl(index))); - let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask; - let empty_before = Group::load(self.ctrl(index_before)).match_empty(); - let empty_after = Group::load(self.ctrl(index)).match_empty(); - - // If we are inside a continuous block of Group::WIDTH full or deleted - // cells then a probe window may have seen a full block when trying to - // insert. We therefore need to keep that block non-empty so that - // lookups will continue searching to the next probe window. - // - // Note that in this context `leading_zeros` refers to the bytes at the - // end of a group, while `trailing_zeros` refers to the bytes at the - // beginning of a group. - let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH { - DELETED - } else { - self.growth_left += 1; - EMPTY - }; - self.set_ctrl(index, ctrl); - self.items -= 1; - } -} - -impl<T: Clone, A: Allocator + Clone> Clone for RawTable<T, A> { - fn clone(&self) -> Self { - if self.table.is_empty_singleton() { - Self::new_in(self.table.alloc.clone()) - } else { - unsafe { - // Avoid `Result::ok_or_else` because it bloats LLVM IR. - let new_table = match Self::new_uninitialized( - self.table.alloc.clone(), - self.table.buckets(), - Fallibility::Infallible, - ) { - Ok(table) => table, - Err(_) => hint::unreachable_unchecked(), - }; - - // If cloning fails then we need to free the allocation for the - // new table. However we don't run its drop since its control - // bytes are not initialized yet. - let mut guard = guard(ManuallyDrop::new(new_table), |new_table| { - new_table.free_buckets(); - }); - - guard.clone_from_spec(self); - - // Disarm the scope guard and return the newly created table. - ManuallyDrop::into_inner(ScopeGuard::into_inner(guard)) - } - } - } - - fn clone_from(&mut self, source: &Self) { - if source.table.is_empty_singleton() { - *self = Self::new_in(self.table.alloc.clone()); - } else { - unsafe { - // Make sure that if any panics occurs, we clear the table and - // leave it in an empty state. - let mut self_ = guard(self, |self_| { - self_.clear_no_drop(); - }); - - // First, drop all our elements without clearing the control - // bytes. If this panics then the scope guard will clear the - // table, leaking any elements that were not dropped yet. - // - // This leak is unavoidable: we can't try dropping more elements - // since this could lead to another panic and abort the process. - self_.drop_elements(); - - // If necessary, resize our table to match the source. - if self_.buckets() != source.buckets() { - // Skip our drop by using ptr::write. - if !self_.table.is_empty_singleton() { - self_.free_buckets(); - } - (&mut **self_ as *mut Self).write( - // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. - match Self::new_uninitialized( - self_.table.alloc.clone(), - source.buckets(), - Fallibility::Infallible, - ) { - Ok(table) => table, - Err(_) => hint::unreachable_unchecked(), - }, - ); - } - - self_.clone_from_spec(source); - - // Disarm the scope guard if cloning was successful. - ScopeGuard::into_inner(self_); - } - } - } -} - -/// Specialization of `clone_from` for `Copy` types -trait RawTableClone { - unsafe fn clone_from_spec(&mut self, source: &Self); -} -impl<T: Clone, A: Allocator + Clone> RawTableClone for RawTable<T, A> { - default_fn! { - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn clone_from_spec(&mut self, source: &Self) { - self.clone_from_impl(source); - } - } -} -#[cfg(feature = "nightly")] -impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> { - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn clone_from_spec(&mut self, source: &Self) { - source - .table - .ctrl(0) - .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); - source - .data_start() - .copy_to_nonoverlapping(self.data_start(), self.table.buckets()); - - self.table.items = source.table.items; - self.table.growth_left = source.table.growth_left; - } -} - -impl<T: Clone, A: Allocator + Clone> RawTable<T, A> { - /// Common code for clone and clone_from. Assumes: - /// - `self.buckets() == source.buckets()`. - /// - Any existing elements have been dropped. - /// - The control bytes are not initialized yet. - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn clone_from_impl(&mut self, source: &Self) { - // Copy the control bytes unchanged. We do this in a single pass - source - .table - .ctrl(0) - .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); - - // The cloning of elements may panic, in which case we need - // to make sure we drop only the elements that have been - // cloned so far. - let mut guard = guard((0, &mut *self), |(index, self_)| { - if mem::needs_drop::<T>() && !self_.is_empty() { - for i in 0..=*index { - if is_full(*self_.table.ctrl(i)) { - self_.bucket(i).drop(); - } - } - } - }); - - for from in source.iter() { - let index = source.bucket_index(&from); - let to = guard.1.bucket(index); - to.write(from.as_ref().clone()); - - // Update the index in case we need to unwind. - guard.0 = index; - } - - // Successfully cloned all items, no need to clean up. - mem::forget(guard); - - self.table.items = source.table.items; - self.table.growth_left = source.table.growth_left; - } - - /// Variant of `clone_from` to use when a hasher is available. - #[cfg(feature = "raw")] - pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) { - // If we have enough capacity in the table, just clear it and insert - // elements one by one. We don't do this if we have the same number of - // buckets as the source since we can just copy the contents directly - // in that case. - if self.table.buckets() != source.table.buckets() - && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len() - { - self.clear(); - - let guard_self = guard(&mut *self, |self_| { - // Clear the partially copied table if a panic occurs, otherwise - // items and growth_left will be out of sync with the contents - // of the table. - self_.clear(); - }); - - unsafe { - for item in source.iter() { - // This may panic. - let item = item.as_ref().clone(); - let hash = hasher(&item); - - // We can use a simpler version of insert() here since: - // - there are no DELETED entries. - // - we know there is enough space in the table. - // - all elements are unique. - let (index, _) = guard_self.table.prepare_insert_slot(hash); - guard_self.bucket(index).write(item); - } - } - - // Successfully cloned all items, no need to clean up. - mem::forget(guard_self); - - self.table.items = source.table.items; - self.table.growth_left -= source.table.items; - } else { - self.clone_from(source); - } - } -} - -impl<T, A: Allocator + Clone + Default> Default for RawTable<T, A> { - #[inline] - fn default() -> Self { - Self::new_in(Default::default()) - } -} - -#[cfg(feature = "nightly")] -unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawTable<T, A> { - #[cfg_attr(feature = "inline-more", inline)] - fn drop(&mut self) { - if !self.table.is_empty_singleton() { - unsafe { - self.drop_elements(); - self.free_buckets(); - } - } - } -} -#[cfg(not(feature = "nightly"))] -impl<T, A: Allocator + Clone> Drop for RawTable<T, A> { - #[cfg_attr(feature = "inline-more", inline)] - fn drop(&mut self) { - if !self.table.is_empty_singleton() { - unsafe { - self.drop_elements(); - self.free_buckets(); - } - } - } -} - -impl<T, A: Allocator + Clone> IntoIterator for RawTable<T, A> { - type Item = T; - type IntoIter = RawIntoIter<T, A>; - - #[cfg_attr(feature = "inline-more", inline)] - fn into_iter(self) -> RawIntoIter<T, A> { - unsafe { - let iter = self.iter(); - self.into_iter_from(iter) - } - } -} - -/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does -/// not track an item count. -pub(crate) struct RawIterRange<T> { - // Mask of full buckets in the current group. Bits are cleared from this - // mask as each element is processed. - current_group: BitMask, - - // Pointer to the buckets for the current group. - data: Bucket<T>, - - // Pointer to the next group of control bytes, - // Must be aligned to the group size. - next_ctrl: *const u8, - - // Pointer one past the last control byte of this range. - end: *const u8, -} - -impl<T> RawIterRange<T> { - /// Returns a `RawIterRange` covering a subset of a table. - /// - /// The control byte address must be aligned to the group size. - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self { - debug_assert_ne!(len, 0); - debug_assert_eq!(ctrl as usize % Group::WIDTH, 0); - let end = ctrl.add(len); - - // Load the first group and advance ctrl to point to the next group - let current_group = Group::load_aligned(ctrl).match_full(); - let next_ctrl = ctrl.add(Group::WIDTH); - - Self { - current_group, - data, - next_ctrl, - end, - } - } - - /// Splits a `RawIterRange` into two halves. - /// - /// Returns `None` if the remaining range is smaller than or equal to the - /// group width. - #[cfg_attr(feature = "inline-more", inline)] - #[cfg(feature = "rayon")] - pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) { - unsafe { - if self.end <= self.next_ctrl { - // Nothing to split if the group that we are current processing - // is the last one. - (self, None) - } else { - // len is the remaining number of elements after the group that - // we are currently processing. It must be a multiple of the - // group size (small tables are caught by the check above). - let len = offset_from(self.end, self.next_ctrl); - debug_assert_eq!(len % Group::WIDTH, 0); - - // Split the remaining elements into two halves, but round the - // midpoint down in case there is an odd number of groups - // remaining. This ensures that: - // - The tail is at least 1 group long. - // - The split is roughly even considering we still have the - // current group to process. - let mid = (len / 2) & !(Group::WIDTH - 1); - - let tail = Self::new( - self.next_ctrl.add(mid), - self.data.next_n(Group::WIDTH).next_n(mid), - len - mid, - ); - debug_assert_eq!( - self.data.next_n(Group::WIDTH).next_n(mid).ptr, - tail.data.ptr - ); - debug_assert_eq!(self.end, tail.end); - self.end = self.next_ctrl.add(mid); - debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl); - (self, Some(tail)) - } - } - } - - /// # Safety - /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate - /// after yielding all elements. - #[cfg_attr(feature = "inline-more", inline)] - unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> { - loop { - if let Some(index) = self.current_group.lowest_set_bit() { - self.current_group = self.current_group.remove_lowest_bit(); - return Some(self.data.next_n(index)); - } - - if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end { - return None; - } - - // We might read past self.end up to the next group boundary, - // but this is fine because it only occurs on tables smaller - // than the group size where the trailing control bytes are all - // EMPTY. On larger tables self.end is guaranteed to be aligned - // to the group size (since tables are power-of-two sized). - self.current_group = Group::load_aligned(self.next_ctrl).match_full(); - self.data = self.data.next_n(Group::WIDTH); - self.next_ctrl = self.next_ctrl.add(Group::WIDTH); - } - } -} - -// We make raw iterators unconditionally Send and Sync, and let the PhantomData -// in the actual iterator implementations determine the real Send/Sync bounds. -unsafe impl<T> Send for RawIterRange<T> {} -unsafe impl<T> Sync for RawIterRange<T> {} - -impl<T> Clone for RawIterRange<T> { - #[cfg_attr(feature = "inline-more", inline)] - fn clone(&self) -> Self { - Self { - data: self.data.clone(), - next_ctrl: self.next_ctrl, - current_group: self.current_group, - end: self.end, - } - } -} - -impl<T> Iterator for RawIterRange<T> { - type Item = Bucket<T>; - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<Bucket<T>> { - unsafe { - // SAFETY: We set checker flag to true. - self.next_impl::<true>() - } - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - // We don't have an item count, so just guess based on the range size. - let remaining_buckets = if self.end > self.next_ctrl { - unsafe { offset_from(self.end, self.next_ctrl) } - } else { - 0 - }; - - // Add a group width to include the group we are currently processing. - (0, Some(Group::WIDTH + remaining_buckets)) - } -} - -impl<T> FusedIterator for RawIterRange<T> {} - -/// Iterator which returns a raw pointer to every full bucket in the table. -/// -/// For maximum flexibility this iterator is not bound by a lifetime, but you -/// must observe several rules when using it: -/// - You must not free the hash table while iterating (including via growing/shrinking). -/// - It is fine to erase a bucket that has been yielded by the iterator. -/// - Erasing a bucket that has not yet been yielded by the iterator may still -/// result in the iterator yielding that bucket (unless `reflect_remove` is called). -/// - It is unspecified whether an element inserted after the iterator was -/// created will be yielded by that iterator (unless `reflect_insert` is called). -/// - The order in which the iterator yields bucket is unspecified and may -/// change in the future. -pub struct RawIter<T> { - pub(crate) iter: RawIterRange<T>, - items: usize, -} - -impl<T> RawIter<T> { - /// Refresh the iterator so that it reflects a removal from the given bucket. - /// - /// For the iterator to remain valid, this method must be called once - /// for each removed bucket before `next` is called again. - /// - /// This method should be called _before_ the removal is made. It is not necessary to call this - /// method if you are removing an item that this iterator yielded in the past. - #[cfg(feature = "raw")] - pub fn reflect_remove(&mut self, b: &Bucket<T>) { - self.reflect_toggle_full(b, false); - } - - /// Refresh the iterator so that it reflects an insertion into the given bucket. - /// - /// For the iterator to remain valid, this method must be called once - /// for each insert before `next` is called again. - /// - /// This method does not guarantee that an insertion of a bucket with a greater - /// index than the last one yielded will be reflected in the iterator. - /// - /// This method should be called _after_ the given insert is made. - #[cfg(feature = "raw")] - pub fn reflect_insert(&mut self, b: &Bucket<T>) { - self.reflect_toggle_full(b, true); - } - - /// Refresh the iterator so that it reflects a change to the state of the given bucket. - #[cfg(feature = "raw")] - fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) { - unsafe { - if b.as_ptr() > self.iter.data.as_ptr() { - // The iterator has already passed the bucket's group. - // So the toggle isn't relevant to this iterator. - return; - } - - if self.iter.next_ctrl < self.iter.end - && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr() - { - // The iterator has not yet reached the bucket's group. - // We don't need to reload anything, but we do need to adjust the item count. - - if cfg!(debug_assertions) { - // Double-check that the user isn't lying to us by checking the bucket state. - // To do that, we need to find its control byte. We know that self.iter.data is - // at self.iter.next_ctrl - Group::WIDTH, so we work from there: - let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr()); - let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset); - // This method should be called _before_ a removal, or _after_ an insert, - // so in both cases the ctrl byte should indicate that the bucket is full. - assert!(is_full(*ctrl)); - } - - if is_insert { - self.items += 1; - } else { - self.items -= 1; - } - - return; - } - - // The iterator is at the bucket group that the toggled bucket is in. - // We need to do two things: - // - // - Determine if the iterator already yielded the toggled bucket. - // If it did, we're done. - // - Otherwise, update the iterator cached group so that it won't - // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket. - // We'll also need to update the item count accordingly. - if let Some(index) = self.iter.current_group.lowest_set_bit() { - let next_bucket = self.iter.data.next_n(index); - if b.as_ptr() > next_bucket.as_ptr() { - // The toggled bucket is "before" the bucket the iterator would yield next. We - // therefore don't need to do anything --- the iterator has already passed the - // bucket in question. - // - // The item count must already be correct, since a removal or insert "prior" to - // the iterator's position wouldn't affect the item count. - } else { - // The removed bucket is an upcoming bucket. We need to make sure it does _not_ - // get yielded, and also that it's no longer included in the item count. - // - // NOTE: We can't just reload the group here, both since that might reflect - // inserts we've already passed, and because that might inadvertently unset the - // bits for _other_ removals. If we do that, we'd have to also decrement the - // item count for those other bits that we unset. But the presumably subsequent - // call to reflect for those buckets might _also_ decrement the item count. - // Instead, we _just_ flip the bit for the particular bucket the caller asked - // us to reflect. - let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr()); - let was_full = self.iter.current_group.flip(our_bit); - debug_assert_ne!(was_full, is_insert); - - if is_insert { - self.items += 1; - } else { - self.items -= 1; - } - - if cfg!(debug_assertions) { - if b.as_ptr() == next_bucket.as_ptr() { - // The removed bucket should no longer be next - debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index)); - } else { - // We should not have changed what bucket comes next. - debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index)); - } - } - } - } else { - // We must have already iterated past the removed item. - } - } - } - - unsafe fn drop_elements(&mut self) { - if mem::needs_drop::<T>() && self.len() != 0 { - for item in self { - item.drop(); - } - } - } -} - -impl<T> Clone for RawIter<T> { - #[cfg_attr(feature = "inline-more", inline)] - fn clone(&self) -> Self { - Self { - iter: self.iter.clone(), - items: self.items, - } - } -} - -impl<T> Iterator for RawIter<T> { - type Item = Bucket<T>; - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<Bucket<T>> { - // Inner iterator iterates over buckets - // so it can do unnecessary work if we already yielded all items. - if self.items == 0 { - return None; - } - - let nxt = unsafe { - // SAFETY: We check number of items to yield using `items` field. - self.iter.next_impl::<false>() - }; - - if nxt.is_some() { - self.items -= 1; - } - - nxt - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - (self.items, Some(self.items)) - } -} - -impl<T> ExactSizeIterator for RawIter<T> {} -impl<T> FusedIterator for RawIter<T> {} - -/// Iterator which consumes a table and returns elements. -pub struct RawIntoIter<T, A: Allocator + Clone = Global> { - iter: RawIter<T>, - allocation: Option<(NonNull<u8>, Layout)>, - marker: PhantomData<T>, - alloc: A, -} - -impl<T, A: Allocator + Clone> RawIntoIter<T, A> { - #[cfg_attr(feature = "inline-more", inline)] - pub fn iter(&self) -> RawIter<T> { - self.iter.clone() - } -} - -unsafe impl<T, A: Allocator + Clone> Send for RawIntoIter<T, A> -where - T: Send, - A: Send, -{ -} -unsafe impl<T, A: Allocator + Clone> Sync for RawIntoIter<T, A> -where - T: Sync, - A: Sync, -{ -} - -#[cfg(feature = "nightly")] -unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawIntoIter<T, A> { - #[cfg_attr(feature = "inline-more", inline)] - fn drop(&mut self) { - unsafe { - // Drop all remaining elements - self.iter.drop_elements(); - - // Free the table - if let Some((ptr, layout)) = self.allocation { - self.alloc.deallocate(ptr, layout); - } - } - } -} -#[cfg(not(feature = "nightly"))] -impl<T, A: Allocator + Clone> Drop for RawIntoIter<T, A> { - #[cfg_attr(feature = "inline-more", inline)] - fn drop(&mut self) { - unsafe { - // Drop all remaining elements - self.iter.drop_elements(); - - // Free the table - if let Some((ptr, layout)) = self.allocation { - self.alloc.deallocate(ptr, layout); - } - } - } -} - -impl<T, A: Allocator + Clone> Iterator for RawIntoIter<T, A> { - type Item = T; - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<T> { - unsafe { Some(self.iter.next()?.read()) } - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - self.iter.size_hint() - } -} - -impl<T, A: Allocator + Clone> ExactSizeIterator for RawIntoIter<T, A> {} -impl<T, A: Allocator + Clone> FusedIterator for RawIntoIter<T, A> {} - -/// Iterator which consumes elements without freeing the table storage. -pub struct RawDrain<'a, T, A: Allocator + Clone = Global> { - iter: RawIter<T>, - - // The table is moved into the iterator for the duration of the drain. This - // ensures that an empty table is left if the drain iterator is leaked - // without dropping. - table: ManuallyDrop<RawTable<T, A>>, - orig_table: NonNull<RawTable<T, A>>, - - // We don't use a &'a mut RawTable<T> because we want RawDrain to be - // covariant over T. - marker: PhantomData<&'a RawTable<T, A>>, -} - -impl<T, A: Allocator + Clone> RawDrain<'_, T, A> { - #[cfg_attr(feature = "inline-more", inline)] - pub fn iter(&self) -> RawIter<T> { - self.iter.clone() - } -} - -unsafe impl<T, A: Allocator + Copy> Send for RawDrain<'_, T, A> -where - T: Send, - A: Send, -{ -} -unsafe impl<T, A: Allocator + Copy> Sync for RawDrain<'_, T, A> -where - T: Sync, - A: Sync, -{ -} - -impl<T, A: Allocator + Clone> Drop for RawDrain<'_, T, A> { - #[cfg_attr(feature = "inline-more", inline)] - fn drop(&mut self) { - unsafe { - // Drop all remaining elements. Note that this may panic. - self.iter.drop_elements(); - - // Reset the contents of the table now that all elements have been - // dropped. - self.table.clear_no_drop(); - - // Move the now empty table back to its original location. - self.orig_table - .as_ptr() - .copy_from_nonoverlapping(&*self.table, 1); - } - } -} - -impl<T, A: Allocator + Clone> Iterator for RawDrain<'_, T, A> { - type Item = T; - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<T> { - unsafe { - let item = self.iter.next()?; - Some(item.read()) - } - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - self.iter.size_hint() - } -} - -impl<T, A: Allocator + Clone> ExactSizeIterator for RawDrain<'_, T, A> {} -impl<T, A: Allocator + Clone> FusedIterator for RawDrain<'_, T, A> {} - -/// Iterator over occupied buckets that could match a given hash. -/// -/// `RawTable` only stores 7 bits of the hash value, so this iterator may return -/// items that have a hash value different than the one provided. You should -/// always validate the returned values before using them. -pub struct RawIterHash<'a, T, A: Allocator + Clone = Global> { - inner: RawIterHashInner<'a, A>, - _marker: PhantomData<T>, -} - -struct RawIterHashInner<'a, A: Allocator + Clone> { - table: &'a RawTableInner<A>, - - // The top 7 bits of the hash. - h2_hash: u8, - - // The sequence of groups to probe in the search. - probe_seq: ProbeSeq, - - group: Group, - - // The elements within the group with a matching h2-hash. - bitmask: BitMaskIter, -} - -impl<'a, T, A: Allocator + Clone> RawIterHash<'a, T, A> { - #[cfg_attr(feature = "inline-more", inline)] - #[cfg(feature = "raw")] - fn new(table: &'a RawTable<T, A>, hash: u64) -> Self { - RawIterHash { - inner: RawIterHashInner::new(&table.table, hash), - _marker: PhantomData, - } - } -} -impl<'a, A: Allocator + Clone> RawIterHashInner<'a, A> { - #[cfg_attr(feature = "inline-more", inline)] - #[cfg(feature = "raw")] - fn new(table: &'a RawTableInner<A>, hash: u64) -> Self { - unsafe { - let h2_hash = h2(hash); - let probe_seq = table.probe_seq(hash); - let group = Group::load(table.ctrl(probe_seq.pos)); - let bitmask = group.match_byte(h2_hash).into_iter(); - - RawIterHashInner { - table, - h2_hash, - probe_seq, - group, - bitmask, - } - } - } -} - -impl<'a, T, A: Allocator + Clone> Iterator for RawIterHash<'a, T, A> { - type Item = Bucket<T>; - - fn next(&mut self) -> Option<Bucket<T>> { - unsafe { - match self.inner.next() { - Some(index) => Some(self.inner.table.bucket(index)), - None => None, - } - } - } -} - -impl<'a, A: Allocator + Clone> Iterator for RawIterHashInner<'a, A> { - type Item = usize; - - fn next(&mut self) -> Option<Self::Item> { - unsafe { - loop { - if let Some(bit) = self.bitmask.next() { - let index = (self.probe_seq.pos + bit) & self.table.bucket_mask; - return Some(index); - } - if likely(self.group.match_empty().any_bit_set()) { - return None; - } - self.probe_seq.move_next(self.table.bucket_mask); - self.group = Group::load(self.table.ctrl(self.probe_seq.pos)); - self.bitmask = self.group.match_byte(self.h2_hash).into_iter(); - } - } - } -} - -#[cfg(test)] -mod test_map { - use super::*; - - fn rehash_in_place<T>(table: &mut RawTable<T>, hasher: impl Fn(&T) -> u64) { - unsafe { - table.table.rehash_in_place( - &|table, index| hasher(table.bucket::<T>(index).as_ref()), - mem::size_of::<T>(), - if mem::needs_drop::<T>() { - Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) - } else { - None - }, - ); - } - } - - #[test] - fn rehash() { - let mut table = RawTable::new(); - let hasher = |i: &u64| *i; - for i in 0..100 { - table.insert(i, i, hasher); - } - - for i in 0..100 { - unsafe { - assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); - } - assert!(table.find(i + 100, |x| *x == i + 100).is_none()); - } - - rehash_in_place(&mut table, hasher); - - for i in 0..100 { - unsafe { - assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); - } - assert!(table.find(i + 100, |x| *x == i + 100).is_none()); - } - } -} diff --git a/vendor/hashbrown-0.12.3/src/raw/sse2.rs b/vendor/hashbrown-0.12.3/src/raw/sse2.rs deleted file mode 100644 index a0bf6da80..000000000 --- a/vendor/hashbrown-0.12.3/src/raw/sse2.rs +++ /dev/null @@ -1,146 +0,0 @@ -use super::bitmask::BitMask; -use super::EMPTY; -use core::mem; - -#[cfg(target_arch = "x86")] -use core::arch::x86; -#[cfg(target_arch = "x86_64")] -use core::arch::x86_64 as x86; - -pub type BitMaskWord = u16; -pub const BITMASK_STRIDE: usize = 1; -pub const BITMASK_MASK: BitMaskWord = 0xffff; - -/// Abstraction over a group of control bytes which can be scanned in -/// parallel. -/// -/// This implementation uses a 128-bit SSE value. -#[derive(Copy, Clone)] -pub struct Group(x86::__m128i); - -// FIXME: https://github.com/rust-lang/rust-clippy/issues/3859 -#[allow(clippy::use_self)] -impl Group { - /// Number of bytes in the group. - pub const WIDTH: usize = mem::size_of::<Self>(); - - /// Returns a full group of empty bytes, suitable for use as the initial - /// value for an empty hash table. - /// - /// This is guaranteed to be aligned to the group size. - #[inline] - #[allow(clippy::items_after_statements)] - pub const fn static_empty() -> &'static [u8; Group::WIDTH] { - #[repr(C)] - struct AlignedBytes { - _align: [Group; 0], - bytes: [u8; Group::WIDTH], - } - const ALIGNED_BYTES: AlignedBytes = AlignedBytes { - _align: [], - bytes: [EMPTY; Group::WIDTH], - }; - &ALIGNED_BYTES.bytes - } - - /// Loads a group of bytes starting at the given address. - #[inline] - #[allow(clippy::cast_ptr_alignment)] // unaligned load - pub unsafe fn load(ptr: *const u8) -> Self { - Group(x86::_mm_loadu_si128(ptr.cast())) - } - - /// Loads a group of bytes starting at the given address, which must be - /// aligned to `mem::align_of::<Group>()`. - #[inline] - #[allow(clippy::cast_ptr_alignment)] - pub unsafe fn load_aligned(ptr: *const u8) -> Self { - // FIXME: use align_offset once it stabilizes - debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); - Group(x86::_mm_load_si128(ptr.cast())) - } - - /// Stores the group of bytes to the given address, which must be - /// aligned to `mem::align_of::<Group>()`. - #[inline] - #[allow(clippy::cast_ptr_alignment)] - pub unsafe fn store_aligned(self, ptr: *mut u8) { - // FIXME: use align_offset once it stabilizes - debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); - x86::_mm_store_si128(ptr.cast(), self.0); - } - - /// Returns a `BitMask` indicating all bytes in the group which have - /// the given value. - #[inline] - pub fn match_byte(self, byte: u8) -> BitMask { - #[allow( - clippy::cast_possible_wrap, // byte: u8 as i8 - // byte: i32 as u16 - // note: _mm_movemask_epi8 returns a 16-bit mask in a i32, the - // upper 16-bits of the i32 are zeroed: - clippy::cast_sign_loss, - clippy::cast_possible_truncation - )] - unsafe { - let cmp = x86::_mm_cmpeq_epi8(self.0, x86::_mm_set1_epi8(byte as i8)); - BitMask(x86::_mm_movemask_epi8(cmp) as u16) - } - } - - /// Returns a `BitMask` indicating all bytes in the group which are - /// `EMPTY`. - #[inline] - pub fn match_empty(self) -> BitMask { - self.match_byte(EMPTY) - } - - /// Returns a `BitMask` indicating all bytes in the group which are - /// `EMPTY` or `DELETED`. - #[inline] - pub fn match_empty_or_deleted(self) -> BitMask { - #[allow( - // byte: i32 as u16 - // note: _mm_movemask_epi8 returns a 16-bit mask in a i32, the - // upper 16-bits of the i32 are zeroed: - clippy::cast_sign_loss, - clippy::cast_possible_truncation - )] - unsafe { - // A byte is EMPTY or DELETED iff the high bit is set - BitMask(x86::_mm_movemask_epi8(self.0) as u16) - } - } - - /// Returns a `BitMask` indicating all bytes in the group which are full. - #[inline] - pub fn match_full(&self) -> BitMask { - self.match_empty_or_deleted().invert() - } - - /// Performs the following transformation on all bytes in the group: - /// - `EMPTY => EMPTY` - /// - `DELETED => EMPTY` - /// - `FULL => DELETED` - #[inline] - pub fn convert_special_to_empty_and_full_to_deleted(self) -> Self { - // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111 - // and high_bit = 0 (FULL) to 1000_0000 - // - // Here's this logic expanded to concrete values: - // let special = 0 > byte = 1111_1111 (true) or 0000_0000 (false) - // 1111_1111 | 1000_0000 = 1111_1111 - // 0000_0000 | 1000_0000 = 1000_0000 - #[allow( - clippy::cast_possible_wrap, // byte: 0x80_u8 as i8 - )] - unsafe { - let zero = x86::_mm_setzero_si128(); - let special = x86::_mm_cmpgt_epi8(zero, self.0); - Group(x86::_mm_or_si128( - special, - x86::_mm_set1_epi8(0x80_u8 as i8), - )) - } - } -} |