diff options
Diffstat (limited to '')
-rw-r--r-- | vendor/itertools/src/groupbylazy.rs | 571 |
1 files changed, 571 insertions, 0 deletions
diff --git a/vendor/itertools/src/groupbylazy.rs b/vendor/itertools/src/groupbylazy.rs new file mode 100644 index 000000000..91c52ea59 --- /dev/null +++ b/vendor/itertools/src/groupbylazy.rs @@ -0,0 +1,571 @@ +use std::cell::{Cell, RefCell}; +use alloc::vec::{self, Vec}; + +/// A trait to unify FnMut for GroupBy with the chunk key in IntoChunks +trait KeyFunction<A> { + type Key; + fn call_mut(&mut self, arg: A) -> Self::Key; +} + +impl<'a, A, K, F: ?Sized> KeyFunction<A> for F + where F: FnMut(A) -> K +{ + type Key = K; + #[inline] + fn call_mut(&mut self, arg: A) -> Self::Key { + (*self)(arg) + } +} + + +/// ChunkIndex acts like the grouping key function for IntoChunks +#[derive(Debug)] +struct ChunkIndex { + size: usize, + index: usize, + key: usize, +} + +impl ChunkIndex { + #[inline(always)] + fn new(size: usize) -> Self { + ChunkIndex { + size, + index: 0, + key: 0, + } + } +} + +impl<'a, A> KeyFunction<A> for ChunkIndex { + type Key = usize; + #[inline(always)] + fn call_mut(&mut self, _arg: A) -> Self::Key { + if self.index == self.size { + self.key += 1; + self.index = 0; + } + self.index += 1; + self.key + } +} + + +struct GroupInner<K, I, F> + where I: Iterator +{ + key: F, + iter: I, + current_key: Option<K>, + current_elt: Option<I::Item>, + /// flag set if iterator is exhausted + done: bool, + /// Index of group we are currently buffering or visiting + top_group: usize, + /// Least index for which we still have elements buffered + oldest_buffered_group: usize, + /// Group index for `buffer[0]` -- the slots + /// bottom_group..oldest_buffered_group are unused and will be erased when + /// that range is large enough. + bottom_group: usize, + /// Buffered groups, from `bottom_group` (index 0) to `top_group`. + buffer: Vec<vec::IntoIter<I::Item>>, + /// index of last group iter that was dropped, usize::MAX == none + dropped_group: usize, +} + +impl<K, I, F> GroupInner<K, I, F> + where I: Iterator, + F: for<'a> KeyFunction<&'a I::Item, Key=K>, + K: PartialEq, +{ + /// `client`: Index of group that requests next element + #[inline(always)] + fn step(&mut self, client: usize) -> Option<I::Item> { + /* + println!("client={}, bottom_group={}, oldest_buffered_group={}, top_group={}, buffers=[{}]", + client, self.bottom_group, self.oldest_buffered_group, + self.top_group, + self.buffer.iter().map(|elt| elt.len()).format(", ")); + */ + if client < self.oldest_buffered_group { + None + } else if client < self.top_group || + (client == self.top_group && + self.buffer.len() > self.top_group - self.bottom_group) + { + self.lookup_buffer(client) + } else if self.done { + None + } else if self.top_group == client { + self.step_current() + } else { + self.step_buffering(client) + } + } + + #[inline(never)] + fn lookup_buffer(&mut self, client: usize) -> Option<I::Item> { + // if `bufidx` doesn't exist in self.buffer, it might be empty + let bufidx = client - self.bottom_group; + if client < self.oldest_buffered_group { + return None; + } + let elt = self.buffer.get_mut(bufidx).and_then(|queue| queue.next()); + if elt.is_none() && client == self.oldest_buffered_group { + // FIXME: VecDeque is unfortunately not zero allocation when empty, + // so we do this job manually. + // `bottom_group..oldest_buffered_group` is unused, and if it's large enough, erase it. + self.oldest_buffered_group += 1; + // skip forward further empty queues too + while self.buffer.get(self.oldest_buffered_group - self.bottom_group) + .map_or(false, |buf| buf.len() == 0) + { + self.oldest_buffered_group += 1; + } + + let nclear = self.oldest_buffered_group - self.bottom_group; + if nclear > 0 && nclear >= self.buffer.len() / 2 { + let mut i = 0; + self.buffer.retain(|buf| { + i += 1; + debug_assert!(buf.len() == 0 || i > nclear); + i > nclear + }); + self.bottom_group = self.oldest_buffered_group; + } + } + elt + } + + /// Take the next element from the iterator, and set the done + /// flag if exhausted. Must not be called after done. + #[inline(always)] + fn next_element(&mut self) -> Option<I::Item> { + debug_assert!(!self.done); + match self.iter.next() { + None => { self.done = true; None } + otherwise => otherwise, + } + } + + + #[inline(never)] + fn step_buffering(&mut self, client: usize) -> Option<I::Item> { + // requested a later group -- walk through the current group up to + // the requested group index, and buffer the elements (unless + // the group is marked as dropped). + // Because the `Groups` iterator is always the first to request + // each group index, client is the next index efter top_group. + debug_assert!(self.top_group + 1 == client); + let mut group = Vec::new(); + + if let Some(elt) = self.current_elt.take() { + if self.top_group != self.dropped_group { + group.push(elt); + } + } + let mut first_elt = None; // first element of the next group + + while let Some(elt) = self.next_element() { + let key = self.key.call_mut(&elt); + match self.current_key.take() { + None => {} + Some(old_key) => if old_key != key { + self.current_key = Some(key); + first_elt = Some(elt); + break; + }, + } + self.current_key = Some(key); + if self.top_group != self.dropped_group { + group.push(elt); + } + } + + if self.top_group != self.dropped_group { + self.push_next_group(group); + } + if first_elt.is_some() { + self.top_group += 1; + debug_assert!(self.top_group == client); + } + first_elt + } + + fn push_next_group(&mut self, group: Vec<I::Item>) { + // When we add a new buffered group, fill up slots between oldest_buffered_group and top_group + while self.top_group - self.bottom_group > self.buffer.len() { + if self.buffer.is_empty() { + self.bottom_group += 1; + self.oldest_buffered_group += 1; + } else { + self.buffer.push(Vec::new().into_iter()); + } + } + self.buffer.push(group.into_iter()); + debug_assert!(self.top_group + 1 - self.bottom_group == self.buffer.len()); + } + + /// This is the immediate case, where we use no buffering + #[inline] + fn step_current(&mut self) -> Option<I::Item> { + debug_assert!(!self.done); + if let elt @ Some(..) = self.current_elt.take() { + return elt; + } + match self.next_element() { + None => None, + Some(elt) => { + let key = self.key.call_mut(&elt); + match self.current_key.take() { + None => {} + Some(old_key) => if old_key != key { + self.current_key = Some(key); + self.current_elt = Some(elt); + self.top_group += 1; + return None; + }, + } + self.current_key = Some(key); + Some(elt) + } + } + } + + /// Request the just started groups' key. + /// + /// `client`: Index of group + /// + /// **Panics** if no group key is available. + fn group_key(&mut self, client: usize) -> K { + // This can only be called after we have just returned the first + // element of a group. + // Perform this by simply buffering one more element, grabbing the + // next key. + debug_assert!(!self.done); + debug_assert!(client == self.top_group); + debug_assert!(self.current_key.is_some()); + debug_assert!(self.current_elt.is_none()); + let old_key = self.current_key.take().unwrap(); + if let Some(elt) = self.next_element() { + let key = self.key.call_mut(&elt); + if old_key != key { + self.top_group += 1; + } + self.current_key = Some(key); + self.current_elt = Some(elt); + } + old_key + } +} + +impl<K, I, F> GroupInner<K, I, F> + where I: Iterator, +{ + /// Called when a group is dropped + fn drop_group(&mut self, client: usize) { + // It's only useful to track the maximal index + if self.dropped_group == !0 || client > self.dropped_group { + self.dropped_group = client; + } + } +} + +/// `GroupBy` is the storage for the lazy grouping operation. +/// +/// If the groups are consumed in their original order, or if each +/// group is dropped without keeping it around, then `GroupBy` uses +/// no allocations. It needs allocations only if several group iterators +/// are alive at the same time. +/// +/// This type implements [`IntoIterator`] (it is **not** an iterator +/// itself), because the group iterators need to borrow from this +/// value. It should be stored in a local variable or temporary and +/// iterated. +/// +/// See [`.group_by()`](crate::Itertools::group_by) for more information. +#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] +pub struct GroupBy<K, I, F> + where I: Iterator, +{ + inner: RefCell<GroupInner<K, I, F>>, + // the group iterator's current index. Keep this in the main value + // so that simultaneous iterators all use the same state. + index: Cell<usize>, +} + +/// Create a new +pub fn new<K, J, F>(iter: J, f: F) -> GroupBy<K, J::IntoIter, F> + where J: IntoIterator, + F: FnMut(&J::Item) -> K, +{ + GroupBy { + inner: RefCell::new(GroupInner { + key: f, + iter: iter.into_iter(), + current_key: None, + current_elt: None, + done: false, + top_group: 0, + oldest_buffered_group: 0, + bottom_group: 0, + buffer: Vec::new(), + dropped_group: !0, + }), + index: Cell::new(0), + } +} + +impl<K, I, F> GroupBy<K, I, F> + where I: Iterator, +{ + /// `client`: Index of group that requests next element + fn step(&self, client: usize) -> Option<I::Item> + where F: FnMut(&I::Item) -> K, + K: PartialEq, + { + self.inner.borrow_mut().step(client) + } + + /// `client`: Index of group + fn drop_group(&self, client: usize) { + self.inner.borrow_mut().drop_group(client) + } +} + +impl<'a, K, I, F> IntoIterator for &'a GroupBy<K, I, F> + where I: Iterator, + I::Item: 'a, + F: FnMut(&I::Item) -> K, + K: PartialEq +{ + type Item = (K, Group<'a, K, I, F>); + type IntoIter = Groups<'a, K, I, F>; + + fn into_iter(self) -> Self::IntoIter { + Groups { parent: self } + } +} + + +/// An iterator that yields the Group iterators. +/// +/// Iterator element type is `(K, Group)`: +/// the group's key `K` and the group's iterator. +/// +/// See [`.group_by()`](crate::Itertools::group_by) for more information. +#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] +pub struct Groups<'a, K: 'a, I: 'a, F: 'a> + where I: Iterator, + I::Item: 'a +{ + parent: &'a GroupBy<K, I, F>, +} + +impl<'a, K, I, F> Iterator for Groups<'a, K, I, F> + where I: Iterator, + I::Item: 'a, + F: FnMut(&I::Item) -> K, + K: PartialEq +{ + type Item = (K, Group<'a, K, I, F>); + + #[inline] + fn next(&mut self) -> Option<Self::Item> { + let index = self.parent.index.get(); + self.parent.index.set(index + 1); + let inner = &mut *self.parent.inner.borrow_mut(); + inner.step(index).map(|elt| { + let key = inner.group_key(index); + (key, Group { + parent: self.parent, + index, + first: Some(elt), + }) + }) + } +} + +/// An iterator for the elements in a single group. +/// +/// Iterator element type is `I::Item`. +pub struct Group<'a, K: 'a, I: 'a, F: 'a> + where I: Iterator, + I::Item: 'a, +{ + parent: &'a GroupBy<K, I, F>, + index: usize, + first: Option<I::Item>, +} + +impl<'a, K, I, F> Drop for Group<'a, K, I, F> + where I: Iterator, + I::Item: 'a, +{ + fn drop(&mut self) { + self.parent.drop_group(self.index); + } +} + +impl<'a, K, I, F> Iterator for Group<'a, K, I, F> + where I: Iterator, + I::Item: 'a, + F: FnMut(&I::Item) -> K, + K: PartialEq, +{ + type Item = I::Item; + #[inline] + fn next(&mut self) -> Option<Self::Item> { + if let elt @ Some(..) = self.first.take() { + return elt; + } + self.parent.step(self.index) + } +} + +///// IntoChunks ///// + +/// Create a new +pub fn new_chunks<J>(iter: J, size: usize) -> IntoChunks<J::IntoIter> + where J: IntoIterator, +{ + IntoChunks { + inner: RefCell::new(GroupInner { + key: ChunkIndex::new(size), + iter: iter.into_iter(), + current_key: None, + current_elt: None, + done: false, + top_group: 0, + oldest_buffered_group: 0, + bottom_group: 0, + buffer: Vec::new(), + dropped_group: !0, + }), + index: Cell::new(0), + } +} + + +/// `ChunkLazy` is the storage for a lazy chunking operation. +/// +/// `IntoChunks` behaves just like `GroupBy`: it is iterable, and +/// it only buffers if several chunk iterators are alive at the same time. +/// +/// This type implements [`IntoIterator`] (it is **not** an iterator +/// itself), because the chunk iterators need to borrow from this +/// value. It should be stored in a local variable or temporary and +/// iterated. +/// +/// Iterator element type is `Chunk`, each chunk's iterator. +/// +/// See [`.chunks()`](crate::Itertools::chunks) for more information. +#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] +pub struct IntoChunks<I> + where I: Iterator, +{ + inner: RefCell<GroupInner<usize, I, ChunkIndex>>, + // the chunk iterator's current index. Keep this in the main value + // so that simultaneous iterators all use the same state. + index: Cell<usize>, +} + + +impl<I> IntoChunks<I> + where I: Iterator, +{ + /// `client`: Index of chunk that requests next element + fn step(&self, client: usize) -> Option<I::Item> { + self.inner.borrow_mut().step(client) + } + + /// `client`: Index of chunk + fn drop_group(&self, client: usize) { + self.inner.borrow_mut().drop_group(client) + } +} + +impl<'a, I> IntoIterator for &'a IntoChunks<I> + where I: Iterator, + I::Item: 'a, +{ + type Item = Chunk<'a, I>; + type IntoIter = Chunks<'a, I>; + + fn into_iter(self) -> Self::IntoIter { + Chunks { + parent: self, + } + } +} + + +/// An iterator that yields the Chunk iterators. +/// +/// Iterator element type is `Chunk`. +/// +/// See [`.chunks()`](crate::Itertools::chunks) for more information. +#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] +pub struct Chunks<'a, I: 'a> + where I: Iterator, + I::Item: 'a, +{ + parent: &'a IntoChunks<I>, +} + +impl<'a, I> Iterator for Chunks<'a, I> + where I: Iterator, + I::Item: 'a, +{ + type Item = Chunk<'a, I>; + + #[inline] + fn next(&mut self) -> Option<Self::Item> { + let index = self.parent.index.get(); + self.parent.index.set(index + 1); + let inner = &mut *self.parent.inner.borrow_mut(); + inner.step(index).map(|elt| { + Chunk { + parent: self.parent, + index, + first: Some(elt), + } + }) + } +} + +/// An iterator for the elements in a single chunk. +/// +/// Iterator element type is `I::Item`. +pub struct Chunk<'a, I: 'a> + where I: Iterator, + I::Item: 'a, +{ + parent: &'a IntoChunks<I>, + index: usize, + first: Option<I::Item>, +} + +impl<'a, I> Drop for Chunk<'a, I> + where I: Iterator, + I::Item: 'a, +{ + fn drop(&mut self) { + self.parent.drop_group(self.index); + } +} + +impl<'a, I> Iterator for Chunk<'a, I> + where I: Iterator, + I::Item: 'a, +{ + type Item = I::Item; + #[inline] + fn next(&mut self) -> Option<Self::Item> { + if let elt @ Some(..) = self.first.take() { + return elt; + } + self.parent.step(self.index) + } +} |