diff options
Diffstat (limited to 'vendor/minimal-lexical/src/slow.rs')
-rw-r--r-- | vendor/minimal-lexical/src/slow.rs | 403 |
1 files changed, 403 insertions, 0 deletions
diff --git a/vendor/minimal-lexical/src/slow.rs b/vendor/minimal-lexical/src/slow.rs new file mode 100644 index 000000000..59d526ba4 --- /dev/null +++ b/vendor/minimal-lexical/src/slow.rs @@ -0,0 +1,403 @@ +//! Slow, fallback cases where we cannot unambiguously round a float. +//! +//! This occurs when we cannot determine the exact representation using +//! both the fast path (native) cases nor the Lemire/Bellerophon algorithms, +//! and therefore must fallback to a slow, arbitrary-precision representation. + +#![doc(hidden)] + +use crate::bigint::{Bigint, Limb, LIMB_BITS}; +use crate::extended_float::{extended_to_float, ExtendedFloat}; +use crate::num::Float; +use crate::number::Number; +use crate::rounding::{round, round_down, round_nearest_tie_even}; +use core::cmp; + +// ALGORITHM +// --------- + +/// Parse the significant digits and biased, binary exponent of a float. +/// +/// This is a fallback algorithm that uses a big-integer representation +/// of the float, and therefore is considerably slower than faster +/// approximations. However, it will always determine how to round +/// the significant digits to the nearest machine float, allowing +/// use to handle near half-way cases. +/// +/// Near half-way cases are halfway between two consecutive machine floats. +/// For example, the float `16777217.0` has a bitwise representation of +/// `100000000000000000000000 1`. Rounding to a single-precision float, +/// the trailing `1` is truncated. Using round-nearest, tie-even, any +/// value above `16777217.0` must be rounded up to `16777218.0`, while +/// any value before or equal to `16777217.0` must be rounded down +/// to `16777216.0`. These near-halfway conversions therefore may require +/// a large number of digits to unambiguously determine how to round. +#[inline] +pub fn slow<'a, F, Iter1, Iter2>( + num: Number, + fp: ExtendedFloat, + integer: Iter1, + fraction: Iter2, +) -> ExtendedFloat +where + F: Float, + Iter1: Iterator<Item = &'a u8> + Clone, + Iter2: Iterator<Item = &'a u8> + Clone, +{ + // Ensure our preconditions are valid: + // 1. The significant digits are not shifted into place. + debug_assert!(fp.mant & (1 << 63) != 0); + + // This assumes the sign bit has already been parsed, and we're + // starting with the integer digits, and the float format has been + // correctly validated. + let sci_exp = scientific_exponent(&num); + + // We have 2 major algorithms we use for this: + // 1. An algorithm with a finite number of digits and a positive exponent. + // 2. An algorithm with a finite number of digits and a negative exponent. + let (bigmant, digits) = parse_mantissa(integer, fraction, F::MAX_DIGITS); + let exponent = sci_exp + 1 - digits as i32; + if exponent >= 0 { + positive_digit_comp::<F>(bigmant, exponent) + } else { + negative_digit_comp::<F>(bigmant, fp, exponent) + } +} + +/// Generate the significant digits with a positive exponent relative to mantissa. +pub fn positive_digit_comp<F: Float>(mut bigmant: Bigint, exponent: i32) -> ExtendedFloat { + // Simple, we just need to multiply by the power of the radix. + // Now, we can calculate the mantissa and the exponent from this. + // The binary exponent is the binary exponent for the mantissa + // shifted to the hidden bit. + bigmant.pow(10, exponent as u32).unwrap(); + + // Get the exact representation of the float from the big integer. + // hi64 checks **all** the remaining bits after the mantissa, + // so it will check if **any** truncated digits exist. + let (mant, is_truncated) = bigmant.hi64(); + let exp = bigmant.bit_length() as i32 - 64 + F::EXPONENT_BIAS; + let mut fp = ExtendedFloat { + mant, + exp, + }; + + // Shift the digits into position and determine if we need to round-up. + round::<F, _>(&mut fp, |f, s| { + round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| { + is_above || (is_halfway && is_truncated) || (is_odd && is_halfway) + }); + }); + fp +} + +/// Generate the significant digits with a negative exponent relative to mantissa. +/// +/// This algorithm is quite simple: we have the significant digits `m1 * b^N1`, +/// where `m1` is the bigint mantissa, `b` is the radix, and `N1` is the radix +/// exponent. We then calculate the theoretical representation of `b+h`, which +/// is `m2 * 2^N2`, where `m2` is the bigint mantissa and `N2` is the binary +/// exponent. If we had infinite, efficient floating precision, this would be +/// equal to `m1 / b^-N1` and then compare it to `m2 * 2^N2`. +/// +/// Since we cannot divide and keep precision, we must multiply the other: +/// if we want to do `m1 / b^-N1 >= m2 * 2^N2`, we can do +/// `m1 >= m2 * b^-N1 * 2^N2` Going to the decimal case, we can show and example +/// and simplify this further: `m1 >= m2 * 2^N2 * 10^-N1`. Since we can remove +/// a power-of-two, this is `m1 >= m2 * 2^(N2 - N1) * 5^-N1`. Therefore, if +/// `N2 - N1 > 0`, we need have `m1 >= m2 * 2^(N2 - N1) * 5^-N1`, otherwise, +/// we have `m1 * 2^(N1 - N2) >= m2 * 5^-N1`, where the resulting exponents +/// are all positive. +/// +/// This allows us to compare both floats using integers efficiently +/// without any loss of precision. +#[allow(clippy::comparison_chain)] +pub fn negative_digit_comp<F: Float>( + bigmant: Bigint, + mut fp: ExtendedFloat, + exponent: i32, +) -> ExtendedFloat { + // Ensure our preconditions are valid: + // 1. The significant digits are not shifted into place. + debug_assert!(fp.mant & (1 << 63) != 0); + + // Get the significant digits and radix exponent for the real digits. + let mut real_digits = bigmant; + let real_exp = exponent; + debug_assert!(real_exp < 0); + + // Round down our extended-precision float and calculate `b`. + let mut b = fp; + round::<F, _>(&mut b, round_down); + let b = extended_to_float::<F>(b); + + // Get the significant digits and the binary exponent for `b+h`. + let theor = bh(b); + let mut theor_digits = Bigint::from_u64(theor.mant); + let theor_exp = theor.exp; + + // We need to scale the real digits and `b+h` digits to be the same + // order. We currently have `real_exp`, in `radix`, that needs to be + // shifted to `theor_digits` (since it is negative), and `theor_exp` + // to either `theor_digits` or `real_digits` as a power of 2 (since it + // may be positive or negative). Try to remove as many powers of 2 + // as possible. All values are relative to `theor_digits`, that is, + // reflect the power you need to multiply `theor_digits` by. + // + // Both are on opposite-sides of equation, can factor out a + // power of two. + // + // Example: 10^-10, 2^-10 -> ( 0, 10, 0) + // Example: 10^-10, 2^-15 -> (-5, 10, 0) + // Example: 10^-10, 2^-5 -> ( 5, 10, 0) + // Example: 10^-10, 2^5 -> (15, 10, 0) + let binary_exp = theor_exp - real_exp; + let halfradix_exp = -real_exp; + if halfradix_exp != 0 { + theor_digits.pow(5, halfradix_exp as u32).unwrap(); + } + if binary_exp > 0 { + theor_digits.pow(2, binary_exp as u32).unwrap(); + } else if binary_exp < 0 { + real_digits.pow(2, (-binary_exp) as u32).unwrap(); + } + + // Compare our theoretical and real digits and round nearest, tie even. + let ord = real_digits.data.cmp(&theor_digits.data); + round::<F, _>(&mut fp, |f, s| { + round_nearest_tie_even(f, s, |is_odd, _, _| { + // Can ignore `is_halfway` and `is_above`, since those were + // calculates using less significant digits. + match ord { + cmp::Ordering::Greater => true, + cmp::Ordering::Less => false, + cmp::Ordering::Equal if is_odd => true, + cmp::Ordering::Equal => false, + } + }); + }); + fp +} + +/// Add a digit to the temporary value. +macro_rules! add_digit { + ($c:ident, $value:ident, $counter:ident, $count:ident) => {{ + let digit = $c - b'0'; + $value *= 10 as Limb; + $value += digit as Limb; + + // Increment our counters. + $counter += 1; + $count += 1; + }}; +} + +/// Add a temporary value to our mantissa. +macro_rules! add_temporary { + // Multiply by the small power and add the native value. + (@mul $result:ident, $power:expr, $value:expr) => { + $result.data.mul_small($power).unwrap(); + $result.data.add_small($value).unwrap(); + }; + + // # Safety + // + // Safe is `counter <= step`, or smaller than the table size. + ($format:ident, $result:ident, $counter:ident, $value:ident) => { + if $counter != 0 { + // SAFETY: safe, since `counter <= step`, or smaller than the table size. + let small_power = unsafe { f64::int_pow_fast_path($counter, 10) }; + add_temporary!(@mul $result, small_power as Limb, $value); + $counter = 0; + $value = 0; + } + }; + + // Add a temporary where we won't read the counter results internally. + // + // # Safety + // + // Safe is `counter <= step`, or smaller than the table size. + (@end $format:ident, $result:ident, $counter:ident, $value:ident) => { + if $counter != 0 { + // SAFETY: safe, since `counter <= step`, or smaller than the table size. + let small_power = unsafe { f64::int_pow_fast_path($counter, 10) }; + add_temporary!(@mul $result, small_power as Limb, $value); + } + }; + + // Add the maximum native value. + (@max $format:ident, $result:ident, $counter:ident, $value:ident, $max:ident) => { + add_temporary!(@mul $result, $max, $value); + $counter = 0; + $value = 0; + }; +} + +/// Round-up a truncated value. +macro_rules! round_up_truncated { + ($format:ident, $result:ident, $count:ident) => {{ + // Need to round-up. + // Can't just add 1, since this can accidentally round-up + // values to a halfway point, which can cause invalid results. + add_temporary!(@mul $result, 10, 1); + $count += 1; + }}; +} + +/// Check and round-up the fraction if any non-zero digits exist. +macro_rules! round_up_nonzero { + ($format:ident, $iter:expr, $result:ident, $count:ident) => {{ + for &digit in $iter { + if digit != b'0' { + round_up_truncated!($format, $result, $count); + return ($result, $count); + } + } + }}; +} + +/// Parse the full mantissa into a big integer. +/// +/// Returns the parsed mantissa and the number of digits in the mantissa. +/// The max digits is the maximum number of digits plus one. +pub fn parse_mantissa<'a, Iter1, Iter2>( + mut integer: Iter1, + mut fraction: Iter2, + max_digits: usize, +) -> (Bigint, usize) +where + Iter1: Iterator<Item = &'a u8> + Clone, + Iter2: Iterator<Item = &'a u8> + Clone, +{ + // Iteratively process all the data in the mantissa. + // We do this via small, intermediate values which once we reach + // the maximum number of digits we can process without overflow, + // we add the temporary to the big integer. + let mut counter: usize = 0; + let mut count: usize = 0; + let mut value: Limb = 0; + let mut result = Bigint::new(); + + // Now use our pre-computed small powers iteratively. + // This is calculated as `⌊log(2^BITS - 1, 10)⌋`. + let step: usize = if LIMB_BITS == 32 { + 9 + } else { + 19 + }; + let max_native = (10 as Limb).pow(step as u32); + + // Process the integer digits. + 'integer: loop { + // Parse a digit at a time, until we reach step. + while counter < step && count < max_digits { + if let Some(&c) = integer.next() { + add_digit!(c, value, counter, count); + } else { + break 'integer; + } + } + + // Check if we've exhausted our max digits. + if count == max_digits { + // Need to check if we're truncated, and round-up accordingly. + // SAFETY: safe since `counter <= step`. + add_temporary!(@end format, result, counter, value); + round_up_nonzero!(format, integer, result, count); + round_up_nonzero!(format, fraction, result, count); + return (result, count); + } else { + // Add our temporary from the loop. + // SAFETY: safe since `counter <= step`. + add_temporary!(@max format, result, counter, value, max_native); + } + } + + // Skip leading fraction zeros. + // Required to get an accurate count. + if count == 0 { + for &c in &mut fraction { + if c != b'0' { + add_digit!(c, value, counter, count); + break; + } + } + } + + // Process the fraction digits. + 'fraction: loop { + // Parse a digit at a time, until we reach step. + while counter < step && count < max_digits { + if let Some(&c) = fraction.next() { + add_digit!(c, value, counter, count); + } else { + break 'fraction; + } + } + + // Check if we've exhausted our max digits. + if count == max_digits { + // SAFETY: safe since `counter <= step`. + add_temporary!(@end format, result, counter, value); + round_up_nonzero!(format, fraction, result, count); + return (result, count); + } else { + // Add our temporary from the loop. + // SAFETY: safe since `counter <= step`. + add_temporary!(@max format, result, counter, value, max_native); + } + } + + // We will always have a remainder, as long as we entered the loop + // once, or counter % step is 0. + // SAFETY: safe since `counter <= step`. + add_temporary!(@end format, result, counter, value); + + (result, count) +} + +// SCALING +// ------- + +/// Calculate the scientific exponent from a `Number` value. +/// Any other attempts would require slowdowns for faster algorithms. +#[inline] +pub fn scientific_exponent(num: &Number) -> i32 { + // Use power reduction to make this faster. + let mut mantissa = num.mantissa; + let mut exponent = num.exponent; + while mantissa >= 10000 { + mantissa /= 10000; + exponent += 4; + } + while mantissa >= 100 { + mantissa /= 100; + exponent += 2; + } + while mantissa >= 10 { + mantissa /= 10; + exponent += 1; + } + exponent as i32 +} + +/// Calculate `b` from a a representation of `b` as a float. +#[inline] +pub fn b<F: Float>(float: F) -> ExtendedFloat { + ExtendedFloat { + mant: float.mantissa(), + exp: float.exponent(), + } +} + +/// Calculate `b+h` from a a representation of `b` as a float. +#[inline] +pub fn bh<F: Float>(float: F) -> ExtendedFloat { + let fp = b(float); + ExtendedFloat { + mant: (fp.mant << 1) + 1, + exp: fp.exp - 1, + } +} |