summaryrefslogtreecommitdiffstats
path: root/vendor/minimal-lexical/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/minimal-lexical/src')
-rw-r--r--vendor/minimal-lexical/src/bellerophon.rs391
-rw-r--r--vendor/minimal-lexical/src/bigint.rs788
-rw-r--r--vendor/minimal-lexical/src/extended_float.rs24
-rw-r--r--vendor/minimal-lexical/src/fpu.rs98
-rw-r--r--vendor/minimal-lexical/src/heapvec.rs190
-rw-r--r--vendor/minimal-lexical/src/lemire.rs225
-rw-r--r--vendor/minimal-lexical/src/lib.rs68
-rw-r--r--vendor/minimal-lexical/src/libm.rs1238
-rw-r--r--vendor/minimal-lexical/src/mask.rs60
-rw-r--r--vendor/minimal-lexical/src/num.rs308
-rw-r--r--vendor/minimal-lexical/src/number.rs83
-rw-r--r--vendor/minimal-lexical/src/parse.rs201
-rw-r--r--vendor/minimal-lexical/src/rounding.rs131
-rw-r--r--vendor/minimal-lexical/src/slow.rs403
-rw-r--r--vendor/minimal-lexical/src/stackvec.rs308
-rw-r--r--vendor/minimal-lexical/src/table.rs11
-rw-r--r--vendor/minimal-lexical/src/table_bellerophon.rs119
-rw-r--r--vendor/minimal-lexical/src/table_lemire.rs676
-rw-r--r--vendor/minimal-lexical/src/table_small.rs90
19 files changed, 5412 insertions, 0 deletions
diff --git a/vendor/minimal-lexical/src/bellerophon.rs b/vendor/minimal-lexical/src/bellerophon.rs
new file mode 100644
index 000000000..86a2023d0
--- /dev/null
+++ b/vendor/minimal-lexical/src/bellerophon.rs
@@ -0,0 +1,391 @@
+//! An implementation of Clinger's Bellerophon algorithm.
+//!
+//! This is a moderate path algorithm that uses an extended-precision
+//! float, represented in 80 bits, by calculating the bits of slop
+//! and determining if those bits could prevent unambiguous rounding.
+//!
+//! This algorithm requires less static storage than the Lemire algorithm,
+//! and has decent performance, and is therefore used when non-decimal,
+//! non-power-of-two strings need to be parsed. Clinger's algorithm
+//! is described in depth in "How to Read Floating Point Numbers Accurately.",
+//! available online [here](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf).
+//!
+//! This implementation is loosely based off the Golang implementation,
+//! found [here](https://github.com/golang/go/blob/b10849fbb97a2244c086991b4623ae9f32c212d0/src/strconv/extfloat.go).
+//! This code is therefore subject to a 3-clause BSD license.
+
+#![cfg(feature = "compact")]
+#![doc(hidden)]
+
+use crate::extended_float::ExtendedFloat;
+use crate::mask::{lower_n_halfway, lower_n_mask};
+use crate::num::Float;
+use crate::number::Number;
+use crate::rounding::{round, round_nearest_tie_even};
+use crate::table::BASE10_POWERS;
+
+// ALGORITHM
+// ---------
+
+/// Core implementation of the Bellerophon algorithm.
+///
+/// Create an extended-precision float, scale it to the proper radix power,
+/// calculate the bits of slop, and return the representation. The value
+/// will always be guaranteed to be within 1 bit, rounded-down, of the real
+/// value. If a negative exponent is returned, this represents we were
+/// unable to unambiguously round the significant digits.
+///
+/// This has been modified to return a biased, rather than unbiased exponent.
+pub fn bellerophon<F: Float>(num: &Number) -> ExtendedFloat {
+ let fp_zero = ExtendedFloat {
+ mant: 0,
+ exp: 0,
+ };
+ let fp_inf = ExtendedFloat {
+ mant: 0,
+ exp: F::INFINITE_POWER,
+ };
+
+ // Early short-circuit, in case of literal 0 or infinity.
+ // This allows us to avoid narrow casts causing numeric overflow,
+ // and is a quick check for any radix.
+ if num.mantissa == 0 || num.exponent <= -0x1000 {
+ return fp_zero;
+ } else if num.exponent >= 0x1000 {
+ return fp_inf;
+ }
+
+ // Calculate our indexes for our extended-precision multiplication.
+ // This narrowing cast is safe, since exponent must be in a valid range.
+ let exponent = num.exponent as i32 + BASE10_POWERS.bias;
+ let small_index = exponent % BASE10_POWERS.step;
+ let large_index = exponent / BASE10_POWERS.step;
+
+ if exponent < 0 {
+ // Guaranteed underflow (assign 0).
+ return fp_zero;
+ }
+ if large_index as usize >= BASE10_POWERS.large.len() {
+ // Overflow (assign infinity)
+ return fp_inf;
+ }
+
+ // Within the valid exponent range, multiply by the large and small
+ // exponents and return the resulting value.
+
+ // Track errors to as a factor of unit in last-precision.
+ let mut errors: u32 = 0;
+ if num.many_digits {
+ errors += error_halfscale();
+ }
+
+ // Multiply by the small power.
+ // Check if we can directly multiply by an integer, if not,
+ // use extended-precision multiplication.
+ let mut fp = ExtendedFloat {
+ mant: num.mantissa,
+ exp: 0,
+ };
+ match fp.mant.overflowing_mul(BASE10_POWERS.get_small_int(small_index as usize)) {
+ // Overflow, multiplication unsuccessful, go slow path.
+ (_, true) => {
+ normalize(&mut fp);
+ fp = mul(&fp, &BASE10_POWERS.get_small(small_index as usize));
+ errors += error_halfscale();
+ },
+ // No overflow, multiplication successful.
+ (mant, false) => {
+ fp.mant = mant;
+ normalize(&mut fp);
+ },
+ }
+
+ // Multiply by the large power.
+ fp = mul(&fp, &BASE10_POWERS.get_large(large_index as usize));
+ if errors > 0 {
+ errors += 1;
+ }
+ errors += error_halfscale();
+
+ // Normalize the floating point (and the errors).
+ let shift = normalize(&mut fp);
+ errors <<= shift;
+ fp.exp += F::EXPONENT_BIAS;
+
+ // Check for literal overflow, even with halfway cases.
+ if -fp.exp + 1 > 65 {
+ return fp_zero;
+ }
+
+ // Too many errors accumulated, return an error.
+ if !error_is_accurate::<F>(errors, &fp) {
+ // Bias the exponent so we know it's invalid.
+ fp.exp += F::INVALID_FP;
+ return fp;
+ }
+
+ // Check if we have a literal 0 or overflow here.
+ // If we have an exponent of -63, we can still have a valid shift,
+ // giving a case where we have too many errors and need to round-up.
+ if -fp.exp + 1 == 65 {
+ // Have more than 64 bits below the minimum exponent, must be 0.
+ return fp_zero;
+ }
+
+ round::<F, _>(&mut fp, |f, s| {
+ round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| {
+ is_above || (is_odd && is_halfway)
+ });
+ });
+ fp
+}
+
+// ERRORS
+// ------
+
+// Calculate if the errors in calculating the extended-precision float.
+//
+// Specifically, we want to know if we are close to a halfway representation,
+// or halfway between `b` and `b+1`, or `b+h`. The halfway representation
+// has the form:
+// SEEEEEEEHMMMMMMMMMMMMMMMMMMMMMMM100...
+// where:
+// S = Sign Bit
+// E = Exponent Bits
+// H = Hidden Bit
+// M = Mantissa Bits
+//
+// The halfway representation has a bit set 1-after the mantissa digits,
+// and no bits set immediately afterward, making it impossible to
+// round between `b` and `b+1` with this representation.
+
+/// Get the full error scale.
+#[inline(always)]
+const fn error_scale() -> u32 {
+ 8
+}
+
+/// Get the half error scale.
+#[inline(always)]
+const fn error_halfscale() -> u32 {
+ error_scale() / 2
+}
+
+/// Determine if the number of errors is tolerable for float precision.
+fn error_is_accurate<F: Float>(errors: u32, fp: &ExtendedFloat) -> bool {
+ // Check we can't have a literal 0 denormal float.
+ debug_assert!(fp.exp >= -64);
+
+ // Determine if extended-precision float is a good approximation.
+ // If the error has affected too many units, the float will be
+ // inaccurate, or if the representation is too close to halfway
+ // that any operations could affect this halfway representation.
+ // See the documentation for dtoa for more information.
+
+ // This is always a valid u32, since `fp.exp >= -64`
+ // will always be positive and the significand size is {23, 52}.
+ let mantissa_shift = 64 - F::MANTISSA_SIZE - 1;
+
+ // The unbiased exponent checks is `unbiased_exp <= F::MANTISSA_SIZE
+ // - F::EXPONENT_BIAS -64 + 1`, or `biased_exp <= F::MANTISSA_SIZE - 63`,
+ // or `biased_exp <= mantissa_shift`.
+ let extrabits = match fp.exp <= -mantissa_shift {
+ // Denormal, since shifting to the hidden bit still has a negative exponent.
+ // The unbiased check calculation for bits is `1 - F::EXPONENT_BIAS - unbiased_exp`,
+ // or `1 - biased_exp`.
+ true => 1 - fp.exp,
+ false => 64 - F::MANTISSA_SIZE - 1,
+ };
+
+ // Our logic is as follows: we want to determine if the actual
+ // mantissa and the errors during calculation differ significantly
+ // from the rounding point. The rounding point for round-nearest
+ // is the halfway point, IE, this when the truncated bits start
+ // with b1000..., while the rounding point for the round-toward
+ // is when the truncated bits are equal to 0.
+ // To do so, we can check whether the rounding point +/- the error
+ // are >/< the actual lower n bits.
+ //
+ // For whether we need to use signed or unsigned types for this
+ // analysis, see this example, using u8 rather than u64 to simplify
+ // things.
+ //
+ // # Comparisons
+ // cmp1 = (halfway - errors) < extra
+ // cmp1 = extra < (halfway + errors)
+ //
+ // # Large Extrabits, Low Errors
+ //
+ // extrabits = 8
+ // halfway = 0b10000000
+ // extra = 0b10000010
+ // errors = 0b00000100
+ // halfway - errors = 0b01111100
+ // halfway + errors = 0b10000100
+ //
+ // Unsigned:
+ // halfway - errors = 124
+ // halfway + errors = 132
+ // extra = 130
+ // cmp1 = true
+ // cmp2 = true
+ // Signed:
+ // halfway - errors = 124
+ // halfway + errors = -124
+ // extra = -126
+ // cmp1 = false
+ // cmp2 = true
+ //
+ // # Conclusion
+ //
+ // Since errors will always be small, and since we want to detect
+ // if the representation is accurate, we need to use an **unsigned**
+ // type for comparisons.
+ let maskbits = extrabits as u64;
+ let errors = errors as u64;
+
+ // Round-to-nearest, need to use the halfway point.
+ if extrabits > 64 {
+ // Underflow, we have a shift larger than the mantissa.
+ // Representation is valid **only** if the value is close enough
+ // overflow to the next bit within errors. If it overflows,
+ // the representation is **not** valid.
+ !fp.mant.overflowing_add(errors).1
+ } else {
+ let mask = lower_n_mask(maskbits);
+ let extra = fp.mant & mask;
+
+ // Round-to-nearest, need to check if we're close to halfway.
+ // IE, b10100 | 100000, where `|` signifies the truncation point.
+ let halfway = lower_n_halfway(maskbits);
+ let cmp1 = halfway.wrapping_sub(errors) < extra;
+ let cmp2 = extra < halfway.wrapping_add(errors);
+
+ // If both comparisons are true, we have significant rounding error,
+ // and the value cannot be exactly represented. Otherwise, the
+ // representation is valid.
+ !(cmp1 && cmp2)
+ }
+}
+
+// MATH
+// ----
+
+/// Normalize float-point number.
+///
+/// Shift the mantissa so the number of leading zeros is 0, or the value
+/// itself is 0.
+///
+/// Get the number of bytes shifted.
+pub fn normalize(fp: &mut ExtendedFloat) -> i32 {
+ // Note:
+ // Using the ctlz intrinsic via leading_zeros is way faster (~10x)
+ // than shifting 1-bit at a time, via while loop, and also way
+ // faster (~2x) than an unrolled loop that checks at 32, 16, 4,
+ // 2, and 1 bit.
+ //
+ // Using a modulus of pow2 (which will get optimized to a bitwise
+ // and with 0x3F or faster) is slightly slower than an if/then,
+ // however, removing the if/then will likely optimize more branched
+ // code as it removes conditional logic.
+
+ // Calculate the number of leading zeros, and then zero-out
+ // any overflowing bits, to avoid shl overflow when self.mant == 0.
+ if fp.mant != 0 {
+ let shift = fp.mant.leading_zeros() as i32;
+ fp.mant <<= shift;
+ fp.exp -= shift;
+ shift
+ } else {
+ 0
+ }
+}
+
+/// Multiply two normalized extended-precision floats, as if by `a*b`.
+///
+/// The precision is maximal when the numbers are normalized, however,
+/// decent precision will occur as long as both values have high bits
+/// set. The result is not normalized.
+///
+/// Algorithm:
+/// 1. Non-signed multiplication of mantissas (requires 2x as many bits as input).
+/// 2. Normalization of the result (not done here).
+/// 3. Addition of exponents.
+pub fn mul(x: &ExtendedFloat, y: &ExtendedFloat) -> ExtendedFloat {
+ // Logic check, values must be decently normalized prior to multiplication.
+ debug_assert!(x.mant >> 32 != 0);
+ debug_assert!(y.mant >> 32 != 0);
+
+ // Extract high-and-low masks.
+ // Mask is u32::MAX for older Rustc versions.
+ const LOMASK: u64 = 0xffff_ffff;
+ let x1 = x.mant >> 32;
+ let x0 = x.mant & LOMASK;
+ let y1 = y.mant >> 32;
+ let y0 = y.mant & LOMASK;
+
+ // Get our products
+ let x1_y0 = x1 * y0;
+ let x0_y1 = x0 * y1;
+ let x0_y0 = x0 * y0;
+ let x1_y1 = x1 * y1;
+
+ let mut tmp = (x1_y0 & LOMASK) + (x0_y1 & LOMASK) + (x0_y0 >> 32);
+ // round up
+ tmp += 1 << (32 - 1);
+
+ ExtendedFloat {
+ mant: x1_y1 + (x1_y0 >> 32) + (x0_y1 >> 32) + (tmp >> 32),
+ exp: x.exp + y.exp + 64,
+ }
+}
+
+// POWERS
+// ------
+
+/// Precalculated powers of base N for the Bellerophon algorithm.
+pub struct BellerophonPowers {
+ // Pre-calculated small powers.
+ pub small: &'static [u64],
+ // Pre-calculated large powers.
+ pub large: &'static [u64],
+ /// Pre-calculated small powers as 64-bit integers
+ pub small_int: &'static [u64],
+ // Step between large powers and number of small powers.
+ pub step: i32,
+ // Exponent bias for the large powers.
+ pub bias: i32,
+ /// ceil(log2(radix)) scaled as a multiplier.
+ pub log2: i64,
+ /// Bitshift for the log2 multiplier.
+ pub log2_shift: i32,
+}
+
+/// Allow indexing of values without bounds checking
+impl BellerophonPowers {
+ #[inline]
+ pub fn get_small(&self, index: usize) -> ExtendedFloat {
+ let mant = self.small[index];
+ let exp = (1 - 64) + ((self.log2 * index as i64) >> self.log2_shift);
+ ExtendedFloat {
+ mant,
+ exp: exp as i32,
+ }
+ }
+
+ #[inline]
+ pub fn get_large(&self, index: usize) -> ExtendedFloat {
+ let mant = self.large[index];
+ let biased_e = index as i64 * self.step as i64 - self.bias as i64;
+ let exp = (1 - 64) + ((self.log2 * biased_e) >> self.log2_shift);
+ ExtendedFloat {
+ mant,
+ exp: exp as i32,
+ }
+ }
+
+ #[inline]
+ pub fn get_small_int(&self, index: usize) -> u64 {
+ self.small_int[index]
+ }
+}
diff --git a/vendor/minimal-lexical/src/bigint.rs b/vendor/minimal-lexical/src/bigint.rs
new file mode 100644
index 000000000..d1d5027a1
--- /dev/null
+++ b/vendor/minimal-lexical/src/bigint.rs
@@ -0,0 +1,788 @@
+//! A simple big-integer type for slow path algorithms.
+//!
+//! This includes minimal stackvector for use in big-integer arithmetic.
+
+#![doc(hidden)]
+
+#[cfg(feature = "alloc")]
+use crate::heapvec::HeapVec;
+use crate::num::Float;
+#[cfg(not(feature = "alloc"))]
+use crate::stackvec::StackVec;
+#[cfg(not(feature = "compact"))]
+use crate::table::{LARGE_POW5, LARGE_POW5_STEP};
+use core::{cmp, ops, ptr};
+
+/// Number of bits in a Bigint.
+///
+/// This needs to be at least the number of bits required to store
+/// a Bigint, which is `log2(radix**digits)`.
+/// ≅ 3600 for base-10, rounded-up.
+pub const BIGINT_BITS: usize = 4000;
+
+/// The number of limbs for the bigint.
+pub const BIGINT_LIMBS: usize = BIGINT_BITS / LIMB_BITS;
+
+#[cfg(feature = "alloc")]
+pub type VecType = HeapVec;
+
+#[cfg(not(feature = "alloc"))]
+pub type VecType = StackVec;
+
+/// Storage for a big integer type.
+///
+/// This is used for algorithms when we have a finite number of digits.
+/// Specifically, it stores all the significant digits scaled to the
+/// proper exponent, as an integral type, and then directly compares
+/// these digits.
+///
+/// This requires us to store the number of significant bits, plus the
+/// number of exponent bits (required) since we scale everything
+/// to the same exponent.
+#[derive(Clone, PartialEq, Eq)]
+pub struct Bigint {
+ /// Significant digits for the float, stored in a big integer in LE order.
+ ///
+ /// This is pretty much the same number of digits for any radix, since the
+ /// significant digits balances out the zeros from the exponent:
+ /// 1. Decimal is 1091 digits, 767 mantissa digits + 324 exponent zeros.
+ /// 2. Base 6 is 1097 digits, or 680 mantissa digits + 417 exponent zeros.
+ /// 3. Base 36 is 1086 digits, or 877 mantissa digits + 209 exponent zeros.
+ ///
+ /// However, the number of bytes required is larger for large radixes:
+ /// for decimal, we need `log2(10**1091) ≅ 3600`, while for base 36
+ /// we need `log2(36**1086) ≅ 5600`. Since we use uninitialized data,
+ /// we avoid a major performance hit from the large buffer size.
+ pub data: VecType,
+}
+
+#[allow(clippy::new_without_default)]
+impl Bigint {
+ /// Construct a bigint representing 0.
+ #[inline(always)]
+ pub fn new() -> Self {
+ Self {
+ data: VecType::new(),
+ }
+ }
+
+ /// Construct a bigint from an integer.
+ #[inline(always)]
+ pub fn from_u64(value: u64) -> Self {
+ Self {
+ data: VecType::from_u64(value),
+ }
+ }
+
+ #[inline(always)]
+ pub fn hi64(&self) -> (u64, bool) {
+ self.data.hi64()
+ }
+
+ /// Multiply and assign as if by exponentiation by a power.
+ #[inline]
+ pub fn pow(&mut self, base: u32, exp: u32) -> Option<()> {
+ debug_assert!(base == 2 || base == 5 || base == 10);
+ if base % 5 == 0 {
+ pow(&mut self.data, exp)?;
+ }
+ if base % 2 == 0 {
+ shl(&mut self.data, exp as usize)?;
+ }
+ Some(())
+ }
+
+ /// Calculate the bit-length of the big-integer.
+ #[inline]
+ pub fn bit_length(&self) -> u32 {
+ bit_length(&self.data)
+ }
+}
+
+impl ops::MulAssign<&Bigint> for Bigint {
+ fn mul_assign(&mut self, rhs: &Bigint) {
+ self.data *= &rhs.data;
+ }
+}
+
+/// REVERSE VIEW
+
+/// Reverse, immutable view of a sequence.
+pub struct ReverseView<'a, T: 'a> {
+ inner: &'a [T],
+}
+
+impl<'a, T> ops::Index<usize> for ReverseView<'a, T> {
+ type Output = T;
+
+ #[inline]
+ fn index(&self, index: usize) -> &T {
+ let len = self.inner.len();
+ &(*self.inner)[len - index - 1]
+ }
+}
+
+/// Create a reverse view of the vector for indexing.
+#[inline]
+pub fn rview(x: &[Limb]) -> ReverseView<Limb> {
+ ReverseView {
+ inner: x,
+ }
+}
+
+// COMPARE
+// -------
+
+/// Compare `x` to `y`, in little-endian order.
+#[inline]
+pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering {
+ match x.len().cmp(&y.len()) {
+ cmp::Ordering::Equal => {
+ let iter = x.iter().rev().zip(y.iter().rev());
+ for (&xi, yi) in iter {
+ match xi.cmp(yi) {
+ cmp::Ordering::Equal => (),
+ ord => return ord,
+ }
+ }
+ // Equal case.
+ cmp::Ordering::Equal
+ },
+ ord => ord,
+ }
+}
+
+// NORMALIZE
+// ---------
+
+/// Normalize the integer, so any leading zero values are removed.
+#[inline]
+pub fn normalize(x: &mut VecType) {
+ // We don't care if this wraps: the index is bounds-checked.
+ while let Some(&value) = x.get(x.len().wrapping_sub(1)) {
+ if value == 0 {
+ unsafe { x.set_len(x.len() - 1) };
+ } else {
+ break;
+ }
+ }
+}
+
+/// Get if the big integer is normalized.
+#[inline]
+#[allow(clippy::match_like_matches_macro)]
+pub fn is_normalized(x: &[Limb]) -> bool {
+ // We don't care if this wraps: the index is bounds-checked.
+ match x.get(x.len().wrapping_sub(1)) {
+ Some(&0) => false,
+ _ => true,
+ }
+}
+
+// FROM
+// ----
+
+/// Create StackVec from u64 value.
+#[inline(always)]
+#[allow(clippy::branches_sharing_code)]
+pub fn from_u64(x: u64) -> VecType {
+ let mut vec = VecType::new();
+ debug_assert!(vec.capacity() >= 2);
+ if LIMB_BITS == 32 {
+ vec.try_push(x as Limb).unwrap();
+ vec.try_push((x >> 32) as Limb).unwrap();
+ } else {
+ vec.try_push(x as Limb).unwrap();
+ }
+ vec.normalize();
+ vec
+}
+
+// HI
+// --
+
+/// Check if any of the remaining bits are non-zero.
+///
+/// # Safety
+///
+/// Safe as long as `rindex <= x.len()`.
+#[inline]
+pub fn nonzero(x: &[Limb], rindex: usize) -> bool {
+ debug_assert!(rindex <= x.len());
+
+ let len = x.len();
+ let slc = &x[..len - rindex];
+ slc.iter().rev().any(|&x| x != 0)
+}
+
+// These return the high X bits and if the bits were truncated.
+
+/// Shift 32-bit integer to high 64-bits.
+#[inline]
+pub fn u32_to_hi64_1(r0: u32) -> (u64, bool) {
+ u64_to_hi64_1(r0 as u64)
+}
+
+/// Shift 2 32-bit integers to high 64-bits.
+#[inline]
+pub fn u32_to_hi64_2(r0: u32, r1: u32) -> (u64, bool) {
+ let r0 = (r0 as u64) << 32;
+ let r1 = r1 as u64;
+ u64_to_hi64_1(r0 | r1)
+}
+
+/// Shift 3 32-bit integers to high 64-bits.
+#[inline]
+pub fn u32_to_hi64_3(r0: u32, r1: u32, r2: u32) -> (u64, bool) {
+ let r0 = r0 as u64;
+ let r1 = (r1 as u64) << 32;
+ let r2 = r2 as u64;
+ u64_to_hi64_2(r0, r1 | r2)
+}
+
+/// Shift 64-bit integer to high 64-bits.
+#[inline]
+pub fn u64_to_hi64_1(r0: u64) -> (u64, bool) {
+ let ls = r0.leading_zeros();
+ (r0 << ls, false)
+}
+
+/// Shift 2 64-bit integers to high 64-bits.
+#[inline]
+pub fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) {
+ let ls = r0.leading_zeros();
+ let rs = 64 - ls;
+ let v = match ls {
+ 0 => r0,
+ _ => (r0 << ls) | (r1 >> rs),
+ };
+ let n = r1 << ls != 0;
+ (v, n)
+}
+
+/// Extract the hi bits from the buffer.
+macro_rules! hi {
+ // # Safety
+ //
+ // Safe as long as the `stackvec.len() >= 1`.
+ (@1 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
+ $fn($rview[0] as $t)
+ }};
+
+ // # Safety
+ //
+ // Safe as long as the `stackvec.len() >= 2`.
+ (@2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
+ let r0 = $rview[0] as $t;
+ let r1 = $rview[1] as $t;
+ $fn(r0, r1)
+ }};
+
+ // # Safety
+ //
+ // Safe as long as the `stackvec.len() >= 2`.
+ (@nonzero2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
+ let (v, n) = hi!(@2 $self, $rview, $t, $fn);
+ (v, n || nonzero($self, 2 ))
+ }};
+
+ // # Safety
+ //
+ // Safe as long as the `stackvec.len() >= 3`.
+ (@3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
+ let r0 = $rview[0] as $t;
+ let r1 = $rview[1] as $t;
+ let r2 = $rview[2] as $t;
+ $fn(r0, r1, r2)
+ }};
+
+ // # Safety
+ //
+ // Safe as long as the `stackvec.len() >= 3`.
+ (@nonzero3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{
+ let (v, n) = hi!(@3 $self, $rview, $t, $fn);
+ (v, n || nonzero($self, 3))
+ }};
+}
+
+/// Get the high 64 bits from the vector.
+#[inline(always)]
+pub fn hi64(x: &[Limb]) -> (u64, bool) {
+ let rslc = rview(x);
+ // SAFETY: the buffer must be at least length bytes long.
+ match x.len() {
+ 0 => (0, false),
+ 1 if LIMB_BITS == 32 => hi!(@1 x, rslc, u32, u32_to_hi64_1),
+ 1 => hi!(@1 x, rslc, u64, u64_to_hi64_1),
+ 2 if LIMB_BITS == 32 => hi!(@2 x, rslc, u32, u32_to_hi64_2),
+ 2 => hi!(@2 x, rslc, u64, u64_to_hi64_2),
+ _ if LIMB_BITS == 32 => hi!(@nonzero3 x, rslc, u32, u32_to_hi64_3),
+ _ => hi!(@nonzero2 x, rslc, u64, u64_to_hi64_2),
+ }
+}
+
+// POWERS
+// ------
+
+/// MulAssign by a power of 5.
+///
+/// Theoretically...
+///
+/// Use an exponentiation by squaring method, since it reduces the time
+/// complexity of the multiplication to ~`O(log(n))` for the squaring,
+/// and `O(n*m)` for the result. Since `m` is typically a lower-order
+/// factor, this significantly reduces the number of multiplications
+/// we need to do. Iteratively multiplying by small powers follows
+/// the nth triangular number series, which scales as `O(p^2)`, but
+/// where `p` is `n+m`. In short, it scales very poorly.
+///
+/// Practically....
+///
+/// Exponentiation by Squaring:
+/// running 2 tests
+/// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78)
+/// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007)
+///
+/// Exponentiation by Iterative Small Powers:
+/// running 2 tests
+/// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31)
+/// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47)
+///
+/// Exponentiation by Iterative Large Powers (of 2):
+/// running 2 tests
+/// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31)
+/// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47)
+///
+/// The following benchmarks were run on `1 * 5^300`, using native `pow`,
+/// a version with only small powers, and one with pre-computed powers
+/// of `5^(3 * max_exp)`, rather than `5^(5 * max_exp)`.
+///
+/// However, using large powers is crucial for good performance for higher
+/// powers.
+/// pow/default time: [426.20 ns 427.96 ns 429.89 ns]
+/// pow/small time: [2.9270 us 2.9411 us 2.9565 us]
+/// pow/large:3 time: [838.51 ns 842.21 ns 846.27 ns]
+///
+/// Even using worst-case scenarios, exponentiation by squaring is
+/// significantly slower for our workloads. Just multiply by small powers,
+/// in simple cases, and use precalculated large powers in other cases.
+///
+/// Furthermore, using sufficiently big large powers is also crucial for
+/// performance. This is a tradeoff of binary size and performance, and
+/// using a single value at ~`5^(5 * max_exp)` seems optimal.
+pub fn pow(x: &mut VecType, mut exp: u32) -> Option<()> {
+ // Minimize the number of iterations for large exponents: just
+ // do a few steps with a large powers.
+ #[cfg(not(feature = "compact"))]
+ {
+ while exp >= LARGE_POW5_STEP {
+ large_mul(x, &LARGE_POW5)?;
+ exp -= LARGE_POW5_STEP;
+ }
+ }
+
+ // Now use our pre-computed small powers iteratively.
+ // This is calculated as `⌊log(2^BITS - 1, 5)⌋`.
+ let small_step = if LIMB_BITS == 32 {
+ 13
+ } else {
+ 27
+ };
+ let max_native = (5 as Limb).pow(small_step);
+ while exp >= small_step {
+ small_mul(x, max_native)?;
+ exp -= small_step;
+ }
+ if exp != 0 {
+ // SAFETY: safe, since `exp < small_step`.
+ let small_power = unsafe { f64::int_pow_fast_path(exp as usize, 5) };
+ small_mul(x, small_power as Limb)?;
+ }
+ Some(())
+}
+
+// SCALAR
+// ------
+
+/// Add two small integers and return the resulting value and if overflow happens.
+#[inline(always)]
+pub fn scalar_add(x: Limb, y: Limb) -> (Limb, bool) {
+ x.overflowing_add(y)
+}
+
+/// Multiply two small integers (with carry) (and return the overflow contribution).
+///
+/// Returns the (low, high) components.
+#[inline(always)]
+pub fn scalar_mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) {
+ // Cannot overflow, as long as wide is 2x as wide. This is because
+ // the following is always true:
+ // `Wide::MAX - (Narrow::MAX * Narrow::MAX) >= Narrow::MAX`
+ let z: Wide = (x as Wide) * (y as Wide) + (carry as Wide);
+ (z as Limb, (z >> LIMB_BITS) as Limb)
+}
+
+// SMALL
+// -----
+
+/// Add small integer to bigint starting from offset.
+#[inline]
+pub fn small_add_from(x: &mut VecType, y: Limb, start: usize) -> Option<()> {
+ let mut index = start;
+ let mut carry = y;
+ while carry != 0 && index < x.len() {
+ let result = scalar_add(x[index], carry);
+ x[index] = result.0;
+ carry = result.1 as Limb;
+ index += 1;
+ }
+ // If we carried past all the elements, add to the end of the buffer.
+ if carry != 0 {
+ x.try_push(carry)?;
+ }
+ Some(())
+}
+
+/// Add small integer to bigint.
+#[inline(always)]
+pub fn small_add(x: &mut VecType, y: Limb) -> Option<()> {
+ small_add_from(x, y, 0)
+}
+
+/// Multiply bigint by small integer.
+#[inline]
+pub fn small_mul(x: &mut VecType, y: Limb) -> Option<()> {
+ let mut carry = 0;
+ for xi in x.iter_mut() {
+ let result = scalar_mul(*xi, y, carry);
+ *xi = result.0;
+ carry = result.1;
+ }
+ // If we carried past all the elements, add to the end of the buffer.
+ if carry != 0 {
+ x.try_push(carry)?;
+ }
+ Some(())
+}
+
+// LARGE
+// -----
+
+/// Add bigint to bigint starting from offset.
+pub fn large_add_from(x: &mut VecType, y: &[Limb], start: usize) -> Option<()> {
+ // The effective x buffer is from `xstart..x.len()`, so we need to treat
+ // that as the current range. If the effective y buffer is longer, need
+ // to resize to that, + the start index.
+ if y.len() > x.len().saturating_sub(start) {
+ // Ensure we panic if we can't extend the buffer.
+ // This avoids any unsafe behavior afterwards.
+ x.try_resize(y.len() + start, 0)?;
+ }
+
+ // Iteratively add elements from y to x.
+ let mut carry = false;
+ for (index, &yi) in y.iter().enumerate() {
+ // We panicked in `try_resize` if this wasn't true.
+ let xi = x.get_mut(start + index).unwrap();
+
+ // Only one op of the two ops can overflow, since we added at max
+ // Limb::max_value() + Limb::max_value(). Add the previous carry,
+ // and store the current carry for the next.
+ let result = scalar_add(*xi, yi);
+ *xi = result.0;
+ let mut tmp = result.1;
+ if carry {
+ let result = scalar_add(*xi, 1);
+ *xi = result.0;
+ tmp |= result.1;
+ }
+ carry = tmp;
+ }
+
+ // Handle overflow.
+ if carry {
+ small_add_from(x, 1, y.len() + start)?;
+ }
+ Some(())
+}
+
+/// Add bigint to bigint.
+#[inline(always)]
+pub fn large_add(x: &mut VecType, y: &[Limb]) -> Option<()> {
+ large_add_from(x, y, 0)
+}
+
+/// Grade-school multiplication algorithm.
+///
+/// Slow, naive algorithm, using limb-bit bases and just shifting left for
+/// each iteration. This could be optimized with numerous other algorithms,
+/// but it's extremely simple, and works in O(n*m) time, which is fine
+/// by me. Each iteration, of which there are `m` iterations, requires
+/// `n` multiplications, and `n` additions, or grade-school multiplication.
+///
+/// Don't use Karatsuba multiplication, since out implementation seems to
+/// be slower asymptotically, which is likely just due to the small sizes
+/// we deal with here. For example, running on the following data:
+///
+/// ```text
+/// const SMALL_X: &[u32] = &[
+/// 766857581, 3588187092, 1583923090, 2204542082, 1564708913, 2695310100, 3676050286,
+/// 1022770393, 468044626, 446028186
+/// ];
+/// const SMALL_Y: &[u32] = &[
+/// 3945492125, 3250752032, 1282554898, 1708742809, 1131807209, 3171663979, 1353276095,
+/// 1678845844, 2373924447, 3640713171
+/// ];
+/// const LARGE_X: &[u32] = &[
+/// 3647536243, 2836434412, 2154401029, 1297917894, 137240595, 790694805, 2260404854,
+/// 3872698172, 690585094, 99641546, 3510774932, 1672049983, 2313458559, 2017623719,
+/// 638180197, 1140936565, 1787190494, 1797420655, 14113450, 2350476485, 3052941684,
+/// 1993594787, 2901001571, 4156930025, 1248016552, 848099908, 2660577483, 4030871206,
+/// 692169593, 2835966319, 1781364505, 4266390061, 1813581655, 4210899844, 2137005290,
+/// 2346701569, 3715571980, 3386325356, 1251725092, 2267270902, 474686922, 2712200426,
+/// 197581715, 3087636290, 1379224439, 1258285015, 3230794403, 2759309199, 1494932094,
+/// 326310242
+/// ];
+/// const LARGE_Y: &[u32] = &[
+/// 1574249566, 868970575, 76716509, 3198027972, 1541766986, 1095120699, 3891610505,
+/// 2322545818, 1677345138, 865101357, 2650232883, 2831881215, 3985005565, 2294283760,
+/// 3468161605, 393539559, 3665153349, 1494067812, 106699483, 2596454134, 797235106,
+/// 705031740, 1209732933, 2732145769, 4122429072, 141002534, 790195010, 4014829800,
+/// 1303930792, 3649568494, 308065964, 1233648836, 2807326116, 79326486, 1262500691,
+/// 621809229, 2258109428, 3819258501, 171115668, 1139491184, 2979680603, 1333372297,
+/// 1657496603, 2790845317, 4090236532, 4220374789, 601876604, 1828177209, 2372228171,
+/// 2247372529
+/// ];
+/// ```
+///
+/// We get the following results:
+
+/// ```text
+/// mul/small:long time: [220.23 ns 221.47 ns 222.81 ns]
+/// Found 4 outliers among 100 measurements (4.00%)
+/// 2 (2.00%) high mild
+/// 2 (2.00%) high severe
+/// mul/small:karatsuba time: [233.88 ns 234.63 ns 235.44 ns]
+/// Found 11 outliers among 100 measurements (11.00%)
+/// 8 (8.00%) high mild
+/// 3 (3.00%) high severe
+/// mul/large:long time: [1.9365 us 1.9455 us 1.9558 us]
+/// Found 12 outliers among 100 measurements (12.00%)
+/// 7 (7.00%) high mild
+/// 5 (5.00%) high severe
+/// mul/large:karatsuba time: [4.4250 us 4.4515 us 4.4812 us]
+/// ```
+///
+/// In short, Karatsuba multiplication is never worthwhile for out use-case.
+pub fn long_mul(x: &[Limb], y: &[Limb]) -> Option<VecType> {
+ // Using the immutable value, multiply by all the scalars in y, using
+ // the algorithm defined above. Use a single buffer to avoid
+ // frequent reallocations. Handle the first case to avoid a redundant
+ // addition, since we know y.len() >= 1.
+ let mut z = VecType::try_from(x)?;
+ if !y.is_empty() {
+ let y0 = y[0];
+ small_mul(&mut z, y0)?;
+
+ for (index, &yi) in y.iter().enumerate().skip(1) {
+ if yi != 0 {
+ let mut zi = VecType::try_from(x)?;
+ small_mul(&mut zi, yi)?;
+ large_add_from(&mut z, &zi, index)?;
+ }
+ }
+ }
+
+ z.normalize();
+ Some(z)
+}
+
+/// Multiply bigint by bigint using grade-school multiplication algorithm.
+#[inline(always)]
+pub fn large_mul(x: &mut VecType, y: &[Limb]) -> Option<()> {
+ // Karatsuba multiplication never makes sense, so just use grade school
+ // multiplication.
+ if y.len() == 1 {
+ // SAFETY: safe since `y.len() == 1`.
+ small_mul(x, y[0])?;
+ } else {
+ *x = long_mul(y, x)?;
+ }
+ Some(())
+}
+
+// SHIFT
+// -----
+
+/// Shift-left `n` bits inside a buffer.
+#[inline]
+pub fn shl_bits(x: &mut VecType, n: usize) -> Option<()> {
+ debug_assert!(n != 0);
+
+ // Internally, for each item, we shift left by n, and add the previous
+ // right shifted limb-bits.
+ // For example, we transform (for u8) shifted left 2, to:
+ // b10100100 b01000010
+ // b10 b10010001 b00001000
+ debug_assert!(n < LIMB_BITS);
+ let rshift = LIMB_BITS - n;
+ let lshift = n;
+ let mut prev: Limb = 0;
+ for xi in x.iter_mut() {
+ let tmp = *xi;
+ *xi <<= lshift;
+ *xi |= prev >> rshift;
+ prev = tmp;
+ }
+
+ // Always push the carry, even if it creates a non-normal result.
+ let carry = prev >> rshift;
+ if carry != 0 {
+ x.try_push(carry)?;
+ }
+
+ Some(())
+}
+
+/// Shift-left `n` limbs inside a buffer.
+#[inline]
+pub fn shl_limbs(x: &mut VecType, n: usize) -> Option<()> {
+ debug_assert!(n != 0);
+ if n + x.len() > x.capacity() {
+ None
+ } else if !x.is_empty() {
+ let len = n + x.len();
+ // SAFE: since x is not empty, and `x.len() + n <= x.capacity()`.
+ unsafe {
+ // Move the elements.
+ let src = x.as_ptr();
+ let dst = x.as_mut_ptr().add(n);
+ ptr::copy(src, dst, x.len());
+ // Write our 0s.
+ ptr::write_bytes(x.as_mut_ptr(), 0, n);
+ x.set_len(len);
+ }
+ Some(())
+ } else {
+ Some(())
+ }
+}
+
+/// Shift-left buffer by n bits.
+#[inline]
+pub fn shl(x: &mut VecType, n: usize) -> Option<()> {
+ let rem = n % LIMB_BITS;
+ let div = n / LIMB_BITS;
+ if rem != 0 {
+ shl_bits(x, rem)?;
+ }
+ if div != 0 {
+ shl_limbs(x, div)?;
+ }
+ Some(())
+}
+
+/// Get number of leading zero bits in the storage.
+#[inline]
+pub fn leading_zeros(x: &[Limb]) -> u32 {
+ let length = x.len();
+ // wrapping_sub is fine, since it'll just return None.
+ if let Some(&value) = x.get(length.wrapping_sub(1)) {
+ value.leading_zeros()
+ } else {
+ 0
+ }
+}
+
+/// Calculate the bit-length of the big-integer.
+#[inline]
+pub fn bit_length(x: &[Limb]) -> u32 {
+ let nlz = leading_zeros(x);
+ LIMB_BITS as u32 * x.len() as u32 - nlz
+}
+
+// LIMB
+// ----
+
+// Type for a single limb of the big integer.
+//
+// A limb is analogous to a digit in base10, except, it stores 32-bit
+// or 64-bit numbers instead. We want types where 64-bit multiplication
+// is well-supported by the architecture, rather than emulated in 3
+// instructions. The quickest way to check this support is using a
+// cross-compiler for numerous architectures, along with the following
+// source file and command:
+//
+// Compile with `gcc main.c -c -S -O3 -masm=intel`
+//
+// And the source code is:
+// ```text
+// #include <stdint.h>
+//
+// struct i128 {
+// uint64_t hi;
+// uint64_t lo;
+// };
+//
+// // Type your code here, or load an example.
+// struct i128 square(uint64_t x, uint64_t y) {
+// __int128 prod = (__int128)x * (__int128)y;
+// struct i128 z;
+// z.hi = (uint64_t)(prod >> 64);
+// z.lo = (uint64_t)prod;
+// return z;
+// }
+// ```
+//
+// If the result contains `call __multi3`, then the multiplication
+// is emulated by the compiler. Otherwise, it's natively supported.
+//
+// This should be all-known 64-bit platforms supported by Rust.
+// https://forge.rust-lang.org/platform-support.html
+//
+// # Supported
+//
+// Platforms where native 128-bit multiplication is explicitly supported:
+// - x86_64 (Supported via `MUL`).
+// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from).
+// - s390x (Supported via `MLGR`).
+//
+// # Efficient
+//
+// Platforms where native 64-bit multiplication is supported and
+// you can extract hi-lo for 64-bit multiplications.
+// - aarch64 (Requires `UMULH` and `MUL` to capture high and low bits).
+// - powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits).
+// - riscv64 (Requires `MUL` and `MULH` to capture high and low bits).
+//
+// # Unsupported
+//
+// Platforms where native 128-bit multiplication is not supported,
+// requiring software emulation.
+// sparc64 (`UMUL` only supports double-word arguments).
+// sparcv9 (Same as sparc64).
+//
+// These tests are run via `xcross`, my own library for C cross-compiling,
+// which supports numerous targets (far in excess of Rust's tier 1 support,
+// or rust-embedded/cross's list). xcross may be found here:
+// https://github.com/Alexhuszagh/xcross
+//
+// To compile for the given target, run:
+// `xcross gcc main.c -c -S -O3 --target $target`
+//
+// All 32-bit architectures inherently do not have support. That means
+// we can essentially look for 64-bit architectures that are not SPARC.
+
+#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
+pub type Limb = u64;
+#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
+pub type Wide = u128;
+#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
+pub const LIMB_BITS: usize = 64;
+
+#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
+pub type Limb = u32;
+#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
+pub type Wide = u64;
+#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
+pub const LIMB_BITS: usize = 32;
diff --git a/vendor/minimal-lexical/src/extended_float.rs b/vendor/minimal-lexical/src/extended_float.rs
new file mode 100644
index 000000000..7397e199c
--- /dev/null
+++ b/vendor/minimal-lexical/src/extended_float.rs
@@ -0,0 +1,24 @@
+// FLOAT TYPE
+
+#![doc(hidden)]
+
+use crate::num::Float;
+
+/// Extended precision floating-point type.
+///
+/// Private implementation, exposed only for testing purposes.
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub struct ExtendedFloat {
+ /// Mantissa for the extended-precision float.
+ pub mant: u64,
+ /// Binary exponent for the extended-precision float.
+ pub exp: i32,
+}
+
+/// Converts an `ExtendedFloat` to the closest machine float type.
+#[inline(always)]
+pub fn extended_to_float<F: Float>(x: ExtendedFloat) -> F {
+ let mut word = x.mant;
+ word |= (x.exp as u64) << F::MANTISSA_SIZE;
+ F::from_bits(word)
+}
diff --git a/vendor/minimal-lexical/src/fpu.rs b/vendor/minimal-lexical/src/fpu.rs
new file mode 100644
index 000000000..42059a080
--- /dev/null
+++ b/vendor/minimal-lexical/src/fpu.rs
@@ -0,0 +1,98 @@
+//! Platform-specific, assembly instructions to avoid
+//! intermediate rounding on architectures with FPUs.
+//!
+//! This is adapted from the implementation in the Rust core library,
+//! the original implementation can be [here](https://github.com/rust-lang/rust/blob/master/library/core/src/num/dec2flt/fpu.rs).
+//!
+//! It is therefore also subject to a Apache2.0/MIT license.
+
+#![cfg(feature = "nightly")]
+#![doc(hidden)]
+
+pub use fpu_precision::set_precision;
+
+// On x86, the x87 FPU is used for float operations if the SSE/SSE2 extensions are not available.
+// The x87 FPU operates with 80 bits of precision by default, which means that operations will
+// round to 80 bits causing double rounding to happen when values are eventually represented as
+// 32/64 bit float values. To overcome this, the FPU control word can be set so that the
+// computations are performed in the desired precision.
+#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+mod fpu_precision {
+ use core::mem::size_of;
+
+ /// A structure used to preserve the original value of the FPU control word, so that it can be
+ /// restored when the structure is dropped.
+ ///
+ /// The x87 FPU is a 16-bits register whose fields are as follows:
+ ///
+ /// | 12-15 | 10-11 | 8-9 | 6-7 | 5 | 4 | 3 | 2 | 1 | 0 |
+ /// |------:|------:|----:|----:|---:|---:|---:|---:|---:|---:|
+ /// | | RC | PC | | PM | UM | OM | ZM | DM | IM |
+ ///
+ /// The documentation for all of the fields is available in the IA-32 Architectures Software
+ /// Developer's Manual (Volume 1).
+ ///
+ /// The only field which is relevant for the following code is PC, Precision Control. This
+ /// field determines the precision of the operations performed by the FPU. It can be set to:
+ /// - 0b00, single precision i.e., 32-bits
+ /// - 0b10, double precision i.e., 64-bits
+ /// - 0b11, double extended precision i.e., 80-bits (default state)
+ /// The 0b01 value is reserved and should not be used.
+ pub struct FPUControlWord(u16);
+
+ fn set_cw(cw: u16) {
+ // SAFETY: the `fldcw` instruction has been audited to be able to work correctly with
+ // any `u16`
+ unsafe {
+ asm!(
+ "fldcw word ptr [{}]",
+ in(reg) &cw,
+ options(nostack),
+ )
+ }
+ }
+
+ /// Sets the precision field of the FPU to `T` and returns a `FPUControlWord`.
+ pub fn set_precision<T>() -> FPUControlWord {
+ let mut cw = 0_u16;
+
+ // Compute the value for the Precision Control field that is appropriate for `T`.
+ let cw_precision = match size_of::<T>() {
+ 4 => 0x0000, // 32 bits
+ 8 => 0x0200, // 64 bits
+ _ => 0x0300, // default, 80 bits
+ };
+
+ // Get the original value of the control word to restore it later, when the
+ // `FPUControlWord` structure is dropped
+ // SAFETY: the `fnstcw` instruction has been audited to be able to work correctly with
+ // any `u16`
+ unsafe {
+ asm!(
+ "fnstcw word ptr [{}]",
+ in(reg) &mut cw,
+ options(nostack),
+ )
+ }
+
+ // Set the control word to the desired precision. This is achieved by masking away the old
+ // precision (bits 8 and 9, 0x300) and replacing it with the precision flag computed above.
+ set_cw((cw & 0xFCFF) | cw_precision);
+
+ FPUControlWord(cw)
+ }
+
+ impl Drop for FPUControlWord {
+ fn drop(&mut self) {
+ set_cw(self.0)
+ }
+ }
+}
+
+// In most architectures, floating point operations have an explicit bit size, therefore the
+// precision of the computation is determined on a per-operation basis.
+#[cfg(any(not(target_arch = "x86"), target_feature = "sse2"))]
+mod fpu_precision {
+ pub fn set_precision<T>() {
+ }
+}
diff --git a/vendor/minimal-lexical/src/heapvec.rs b/vendor/minimal-lexical/src/heapvec.rs
new file mode 100644
index 000000000..035926018
--- /dev/null
+++ b/vendor/minimal-lexical/src/heapvec.rs
@@ -0,0 +1,190 @@
+//! Simple heap-allocated vector.
+
+#![cfg(feature = "alloc")]
+#![doc(hidden)]
+
+use crate::bigint;
+#[cfg(not(feature = "std"))]
+use alloc::vec::Vec;
+use core::{cmp, ops};
+#[cfg(feature = "std")]
+use std::vec::Vec;
+
+/// Simple heap vector implementation.
+#[derive(Clone)]
+pub struct HeapVec {
+ /// The heap-allocated buffer for the elements.
+ data: Vec<bigint::Limb>,
+}
+
+#[allow(clippy::new_without_default)]
+impl HeapVec {
+ /// Construct an empty vector.
+ #[inline]
+ pub fn new() -> Self {
+ Self {
+ data: Vec::with_capacity(bigint::BIGINT_LIMBS),
+ }
+ }
+
+ /// Construct a vector from an existing slice.
+ #[inline]
+ pub fn try_from(x: &[bigint::Limb]) -> Option<Self> {
+ let mut vec = Self::new();
+ vec.try_extend(x)?;
+ Some(vec)
+ }
+
+ /// Sets the length of a vector.
+ ///
+ /// This will explicitly set the size of the vector, without actually
+ /// modifying its buffers, so it is up to the caller to ensure that the
+ /// vector is actually the specified size.
+ ///
+ /// # Safety
+ ///
+ /// Safe as long as `len` is less than `self.capacity()` and has been initialized.
+ #[inline]
+ pub unsafe fn set_len(&mut self, len: usize) {
+ debug_assert!(len <= bigint::BIGINT_LIMBS);
+ unsafe { self.data.set_len(len) };
+ }
+
+ /// The number of elements stored in the vector.
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.data.len()
+ }
+
+ /// If the vector is empty.
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// The number of items the vector can hold.
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.data.capacity()
+ }
+
+ /// Append an item to the vector.
+ #[inline]
+ pub fn try_push(&mut self, value: bigint::Limb) -> Option<()> {
+ self.data.push(value);
+ Some(())
+ }
+
+ /// Remove an item from the end of the vector and return it, or None if empty.
+ #[inline]
+ pub fn pop(&mut self) -> Option<bigint::Limb> {
+ self.data.pop()
+ }
+
+ /// Copy elements from a slice and append them to the vector.
+ #[inline]
+ pub fn try_extend(&mut self, slc: &[bigint::Limb]) -> Option<()> {
+ self.data.extend_from_slice(slc);
+ Some(())
+ }
+
+ /// Try to resize the buffer.
+ ///
+ /// If the new length is smaller than the current length, truncate
+ /// the input. If it's larger, then append elements to the buffer.
+ #[inline]
+ pub fn try_resize(&mut self, len: usize, value: bigint::Limb) -> Option<()> {
+ self.data.resize(len, value);
+ Some(())
+ }
+
+ // HI
+
+ /// Get the high 64 bits from the vector.
+ #[inline(always)]
+ pub fn hi64(&self) -> (u64, bool) {
+ bigint::hi64(&self.data)
+ }
+
+ // FROM
+
+ /// Create StackVec from u64 value.
+ #[inline(always)]
+ pub fn from_u64(x: u64) -> Self {
+ bigint::from_u64(x)
+ }
+
+ // MATH
+
+ /// Normalize the integer, so any leading zero values are removed.
+ #[inline]
+ pub fn normalize(&mut self) {
+ bigint::normalize(self)
+ }
+
+ /// Get if the big integer is normalized.
+ #[inline]
+ pub fn is_normalized(&self) -> bool {
+ bigint::is_normalized(self)
+ }
+
+ /// AddAssign small integer.
+ #[inline]
+ pub fn add_small(&mut self, y: bigint::Limb) -> Option<()> {
+ bigint::small_add(self, y)
+ }
+
+ /// MulAssign small integer.
+ #[inline]
+ pub fn mul_small(&mut self, y: bigint::Limb) -> Option<()> {
+ bigint::small_mul(self, y)
+ }
+}
+
+impl PartialEq for HeapVec {
+ #[inline]
+ #[allow(clippy::op_ref)]
+ fn eq(&self, other: &Self) -> bool {
+ use core::ops::Deref;
+ self.len() == other.len() && self.deref() == other.deref()
+ }
+}
+
+impl Eq for HeapVec {
+}
+
+impl cmp::PartialOrd for HeapVec {
+ #[inline]
+ fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
+ Some(bigint::compare(self, other))
+ }
+}
+
+impl cmp::Ord for HeapVec {
+ #[inline]
+ fn cmp(&self, other: &Self) -> cmp::Ordering {
+ bigint::compare(self, other)
+ }
+}
+
+impl ops::Deref for HeapVec {
+ type Target = [bigint::Limb];
+ #[inline]
+ fn deref(&self) -> &[bigint::Limb] {
+ &self.data
+ }
+}
+
+impl ops::DerefMut for HeapVec {
+ #[inline]
+ fn deref_mut(&mut self) -> &mut [bigint::Limb] {
+ &mut self.data
+ }
+}
+
+impl ops::MulAssign<&[bigint::Limb]> for HeapVec {
+ #[inline]
+ fn mul_assign(&mut self, rhs: &[bigint::Limb]) {
+ bigint::large_mul(self, rhs).unwrap();
+ }
+}
diff --git a/vendor/minimal-lexical/src/lemire.rs b/vendor/minimal-lexical/src/lemire.rs
new file mode 100644
index 000000000..99b1ae705
--- /dev/null
+++ b/vendor/minimal-lexical/src/lemire.rs
@@ -0,0 +1,225 @@
+//! Implementation of the Eisel-Lemire algorithm.
+//!
+//! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust),
+//! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust.
+
+#![cfg(not(feature = "compact"))]
+#![doc(hidden)]
+
+use crate::extended_float::ExtendedFloat;
+use crate::num::Float;
+use crate::number::Number;
+use crate::table::{LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE};
+
+/// Ensure truncation of digits doesn't affect our computation, by doing 2 passes.
+#[inline]
+pub fn lemire<F: Float>(num: &Number) -> ExtendedFloat {
+ // If significant digits were truncated, then we can have rounding error
+ // only if `mantissa + 1` produces a different result. We also avoid
+ // redundantly using the Eisel-Lemire algorithm if it was unable to
+ // correctly round on the first pass.
+ let mut fp = compute_float::<F>(num.exponent, num.mantissa);
+ if num.many_digits && fp.exp >= 0 && fp != compute_float::<F>(num.exponent, num.mantissa + 1) {
+ // Need to re-calculate, since the previous values are rounded
+ // when the slow path algorithm expects a normalized extended float.
+ fp = compute_error::<F>(num.exponent, num.mantissa);
+ }
+ fp
+}
+
+/// Compute a float using an extended-precision representation.
+///
+/// Fast conversion of a the significant digits and decimal exponent
+/// a float to a extended representation with a binary float. This
+/// algorithm will accurately parse the vast majority of cases,
+/// and uses a 128-bit representation (with a fallback 192-bit
+/// representation).
+///
+/// This algorithm scales the exponent by the decimal exponent
+/// using pre-computed powers-of-5, and calculates if the
+/// representation can be unambiguously rounded to the nearest
+/// machine float. Near-halfway cases are not handled here,
+/// and are represented by a negative, biased binary exponent.
+///
+/// The algorithm is described in detail in "Daniel Lemire, Number Parsing
+/// at a Gigabyte per Second" in section 5, "Fast Algorithm", and
+/// section 6, "Exact Numbers And Ties", available online:
+/// <https://arxiv.org/abs/2101.11408.pdf>.
+pub fn compute_float<F: Float>(q: i32, mut w: u64) -> ExtendedFloat {
+ let fp_zero = ExtendedFloat {
+ mant: 0,
+ exp: 0,
+ };
+ let fp_inf = ExtendedFloat {
+ mant: 0,
+ exp: F::INFINITE_POWER,
+ };
+
+ // Short-circuit if the value can only be a literal 0 or infinity.
+ if w == 0 || q < F::SMALLEST_POWER_OF_TEN {
+ return fp_zero;
+ } else if q > F::LARGEST_POWER_OF_TEN {
+ return fp_inf;
+ }
+ // Normalize our significant digits, so the most-significant bit is set.
+ let lz = w.leading_zeros() as i32;
+ w <<= lz;
+ let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3);
+ if lo == 0xFFFF_FFFF_FFFF_FFFF {
+ // If we have failed to approximate w x 5^-q with our 128-bit value.
+ // Since the addition of 1 could lead to an overflow which could then
+ // round up over the half-way point, this can lead to improper rounding
+ // of a float.
+ //
+ // However, this can only occur if q ∈ [-27, 55]. The upper bound of q
+ // is 55 because 5^55 < 2^128, however, this can only happen if 5^q > 2^64,
+ // since otherwise the product can be represented in 64-bits, producing
+ // an exact result. For negative exponents, rounding-to-even can
+ // only occur if 5^-q < 2^64.
+ //
+ // For detailed explanations of rounding for negative exponents, see
+ // <https://arxiv.org/pdf/2101.11408.pdf#section.9.1>. For detailed
+ // explanations of rounding for positive exponents, see
+ // <https://arxiv.org/pdf/2101.11408.pdf#section.8>.
+ let inside_safe_exponent = (q >= -27) && (q <= 55);
+ if !inside_safe_exponent {
+ return compute_error_scaled::<F>(q, hi, lz);
+ }
+ }
+ let upperbit = (hi >> 63) as i32;
+ let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_SIZE - 3);
+ let mut power2 = power(q) + upperbit - lz - F::MINIMUM_EXPONENT;
+ if power2 <= 0 {
+ if -power2 + 1 >= 64 {
+ // Have more than 64 bits below the minimum exponent, must be 0.
+ return fp_zero;
+ }
+ // Have a subnormal value.
+ mantissa >>= -power2 + 1;
+ mantissa += mantissa & 1;
+ mantissa >>= 1;
+ power2 = (mantissa >= (1_u64 << F::MANTISSA_SIZE)) as i32;
+ return ExtendedFloat {
+ mant: mantissa,
+ exp: power2,
+ };
+ }
+ // Need to handle rounding ties. Normally, we need to round up,
+ // but if we fall right in between and and we have an even basis, we
+ // need to round down.
+ //
+ // This will only occur if:
+ // 1. The lower 64 bits of the 128-bit representation is 0.
+ // IE, 5^q fits in single 64-bit word.
+ // 2. The least-significant bit prior to truncated mantissa is odd.
+ // 3. All the bits truncated when shifting to mantissa bits + 1 are 0.
+ //
+ // Or, we may fall between two floats: we are exactly halfway.
+ if lo <= 1
+ && q >= F::MIN_EXPONENT_ROUND_TO_EVEN
+ && q <= F::MAX_EXPONENT_ROUND_TO_EVEN
+ && mantissa & 3 == 1
+ && (mantissa << (upperbit + 64 - F::MANTISSA_SIZE - 3)) == hi
+ {
+ // Zero the lowest bit, so we don't round up.
+ mantissa &= !1_u64;
+ }
+ // Round-to-even, then shift the significant digits into place.
+ mantissa += mantissa & 1;
+ mantissa >>= 1;
+ if mantissa >= (2_u64 << F::MANTISSA_SIZE) {
+ // Rounding up overflowed, so the carry bit is set. Set the
+ // mantissa to 1 (only the implicit, hidden bit is set) and
+ // increase the exponent.
+ mantissa = 1_u64 << F::MANTISSA_SIZE;
+ power2 += 1;
+ }
+ // Zero out the hidden bit.
+ mantissa &= !(1_u64 << F::MANTISSA_SIZE);
+ if power2 >= F::INFINITE_POWER {
+ // Exponent is above largest normal value, must be infinite.
+ return fp_inf;
+ }
+ ExtendedFloat {
+ mant: mantissa,
+ exp: power2,
+ }
+}
+
+/// Fallback algorithm to calculate the non-rounded representation.
+/// This calculates the extended representation, and then normalizes
+/// the resulting representation, so the high bit is set.
+#[inline]
+pub fn compute_error<F: Float>(q: i32, mut w: u64) -> ExtendedFloat {
+ let lz = w.leading_zeros() as i32;
+ w <<= lz;
+ let hi = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3).1;
+ compute_error_scaled::<F>(q, hi, lz)
+}
+
+/// Compute the error from a mantissa scaled to the exponent.
+#[inline]
+pub fn compute_error_scaled<F: Float>(q: i32, mut w: u64, lz: i32) -> ExtendedFloat {
+ // Want to normalize the float, but this is faster than ctlz on most architectures.
+ let hilz = (w >> 63) as i32 ^ 1;
+ w <<= hilz;
+ let power2 = power(q as i32) + F::EXPONENT_BIAS - hilz - lz - 62;
+
+ ExtendedFloat {
+ mant: w,
+ exp: power2 + F::INVALID_FP,
+ }
+}
+
+/// Calculate a base 2 exponent from a decimal exponent.
+/// This uses a pre-computed integer approximation for
+/// log2(10), where 217706 / 2^16 is accurate for the
+/// entire range of non-finite decimal exponents.
+#[inline]
+fn power(q: i32) -> i32 {
+ (q.wrapping_mul(152_170 + 65536) >> 16) + 63
+}
+
+#[inline]
+fn full_multiplication(a: u64, b: u64) -> (u64, u64) {
+ let r = (a as u128) * (b as u128);
+ (r as u64, (r >> 64) as u64)
+}
+
+// This will compute or rather approximate w * 5**q and return a pair of 64-bit words
+// approximating the result, with the "high" part corresponding to the most significant
+// bits and the low part corresponding to the least significant bits.
+fn compute_product_approx(q: i32, w: u64, precision: usize) -> (u64, u64) {
+ debug_assert!(q >= SMALLEST_POWER_OF_FIVE);
+ debug_assert!(q <= LARGEST_POWER_OF_FIVE);
+ debug_assert!(precision <= 64);
+
+ let mask = if precision < 64 {
+ 0xFFFF_FFFF_FFFF_FFFF_u64 >> precision
+ } else {
+ 0xFFFF_FFFF_FFFF_FFFF_u64
+ };
+
+ // 5^q < 2^64, then the multiplication always provides an exact value.
+ // That means whenever we need to round ties to even, we always have
+ // an exact value.
+ let index = (q - SMALLEST_POWER_OF_FIVE) as usize;
+ let (lo5, hi5) = POWER_OF_FIVE_128[index];
+ // Only need one multiplication as long as there is 1 zero but
+ // in the explicit mantissa bits, +1 for the hidden bit, +1 to
+ // determine the rounding direction, +1 for if the computed
+ // product has a leading zero.
+ let (mut first_lo, mut first_hi) = full_multiplication(w, lo5);
+ if first_hi & mask == mask {
+ // Need to do a second multiplication to get better precision
+ // for the lower product. This will always be exact
+ // where q is < 55, since 5^55 < 2^128. If this wraps,
+ // then we need to need to round up the hi product.
+ let (_, second_hi) = full_multiplication(w, hi5);
+ first_lo = first_lo.wrapping_add(second_hi);
+ if second_hi > first_lo {
+ first_hi += 1;
+ }
+ }
+ (first_lo, first_hi)
+}
diff --git a/vendor/minimal-lexical/src/lib.rs b/vendor/minimal-lexical/src/lib.rs
new file mode 100644
index 000000000..75f923475
--- /dev/null
+++ b/vendor/minimal-lexical/src/lib.rs
@@ -0,0 +1,68 @@
+//! Fast, minimal float-parsing algorithm.
+//!
+//! minimal-lexical has a simple, high-level API with a single
+//! exported function: [`parse_float`].
+//!
+//! [`parse_float`] expects a forward iterator for the integer
+//! and fraction digits, as well as a parsed exponent as an [`i32`].
+//!
+//! For more examples, please see [simple-example](https://github.com/Alexhuszagh/minimal-lexical/blob/master/examples/simple.rs).
+//!
+//! EXAMPLES
+//! --------
+//!
+//! ```
+//! extern crate minimal_lexical;
+//!
+//! // Let's say we want to parse "1.2345".
+//! // First, we need an external parser to extract the integer digits ("1"),
+//! // the fraction digits ("2345"), and then parse the exponent to a 32-bit
+//! // integer (0).
+//! // Warning:
+//! // --------
+//! // Please note that leading zeros must be trimmed from the integer,
+//! // and trailing zeros must be trimmed from the fraction. This cannot
+//! // be handled by minimal-lexical, since we accept iterators.
+//! let integer = b"1";
+//! let fraction = b"2345";
+//! let float: f64 = minimal_lexical::parse_float(integer.iter(), fraction.iter(), 0);
+//! println!("float={:?}", float); // 1.235
+//! ```
+//!
+//! [`parse_float`]: fn.parse_float.html
+//! [`i32`]: https://doc.rust-lang.org/stable/std/primitive.i32.html
+
+// FEATURES
+
+// We want to have the same safety guarantees as Rust core,
+// so we allow unused unsafe to clearly document safety guarantees.
+#![allow(unused_unsafe)]
+#![cfg_attr(feature = "lint", warn(unsafe_op_in_unsafe_fn))]
+#![cfg_attr(not(feature = "std"), no_std)]
+
+#[cfg(all(feature = "alloc", not(feature = "std")))]
+extern crate alloc;
+
+pub mod bellerophon;
+pub mod bigint;
+pub mod extended_float;
+pub mod fpu;
+pub mod heapvec;
+pub mod lemire;
+pub mod libm;
+pub mod mask;
+pub mod num;
+pub mod number;
+pub mod parse;
+pub mod rounding;
+pub mod slow;
+pub mod stackvec;
+pub mod table;
+
+mod table_bellerophon;
+mod table_lemire;
+mod table_small;
+
+// API
+pub use self::num::Float;
+pub use self::parse::parse_float;
diff --git a/vendor/minimal-lexical/src/libm.rs b/vendor/minimal-lexical/src/libm.rs
new file mode 100644
index 000000000..c9f93d36a
--- /dev/null
+++ b/vendor/minimal-lexical/src/libm.rs
@@ -0,0 +1,1238 @@
+//! A small number of math routines for floats and doubles.
+//!
+//! These are adapted from libm, a port of musl libc's libm to Rust.
+//! libm can be found online [here](https://github.com/rust-lang/libm),
+//! and is similarly licensed under an Apache2.0/MIT license
+
+#![cfg(all(not(feature = "std"), feature = "compact"))]
+#![doc(hidden)]
+
+/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/// # Safety
+///
+/// Safe if `index < array.len()`.
+macro_rules! i {
+ ($array:ident, $index:expr) => {
+ // SAFETY: safe if `index < array.len()`.
+ unsafe { *$array.get_unchecked($index) }
+ };
+}
+
+pub fn powf(x: f32, y: f32) -> f32 {
+ const BP: [f32; 2] = [1.0, 1.5];
+ const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */
+ const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */
+ const TWO24: f32 = 16777216.0; /* 0x4b800000 */
+ const HUGE: f32 = 1.0e30;
+ const TINY: f32 = 1.0e-30;
+ const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */
+ const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */
+ const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */
+ const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */
+ const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */
+ const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */
+ const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */
+ const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
+ const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */
+ const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */
+ const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */
+ const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */
+ const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */
+ const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */
+ const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */
+ const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */
+ const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */
+ const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */
+ const IVLN2: f32 = 1.4426950216e+00;
+ const IVLN2_H: f32 = 1.4426879883e+00;
+ const IVLN2_L: f32 = 7.0526075433e-06;
+
+ let mut z: f32;
+ let mut ax: f32;
+ let z_h: f32;
+ let z_l: f32;
+ let mut p_h: f32;
+ let mut p_l: f32;
+ let y1: f32;
+ let mut t1: f32;
+ let t2: f32;
+ let mut r: f32;
+ let s: f32;
+ let mut sn: f32;
+ let mut t: f32;
+ let mut u: f32;
+ let mut v: f32;
+ let mut w: f32;
+ let i: i32;
+ let mut j: i32;
+ let mut k: i32;
+ let mut yisint: i32;
+ let mut n: i32;
+ let hx: i32;
+ let hy: i32;
+ let mut ix: i32;
+ let iy: i32;
+ let mut is: i32;
+
+ hx = x.to_bits() as i32;
+ hy = y.to_bits() as i32;
+
+ ix = hx & 0x7fffffff;
+ iy = hy & 0x7fffffff;
+
+ /* x**0 = 1, even if x is NaN */
+ if iy == 0 {
+ return 1.0;
+ }
+
+ /* 1**y = 1, even if y is NaN */
+ if hx == 0x3f800000 {
+ return 1.0;
+ }
+
+ /* NaN if either arg is NaN */
+ if ix > 0x7f800000 || iy > 0x7f800000 {
+ return x + y;
+ }
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if hx < 0 {
+ if iy >= 0x4b800000 {
+ yisint = 2; /* even integer y */
+ } else if iy >= 0x3f800000 {
+ k = (iy >> 23) - 0x7f; /* exponent */
+ j = iy >> (23 - k);
+ if (j << (23 - k)) == iy {
+ yisint = 2 - (j & 1);
+ }
+ }
+ }
+
+ /* special value of y */
+ if iy == 0x7f800000 {
+ /* y is +-inf */
+ if ix == 0x3f800000 {
+ /* (-1)**+-inf is 1 */
+ return 1.0;
+ } else if ix > 0x3f800000 {
+ /* (|x|>1)**+-inf = inf,0 */
+ return if hy >= 0 {
+ y
+ } else {
+ 0.0
+ };
+ } else {
+ /* (|x|<1)**+-inf = 0,inf */
+ return if hy >= 0 {
+ 0.0
+ } else {
+ -y
+ };
+ }
+ }
+ if iy == 0x3f800000 {
+ /* y is +-1 */
+ return if hy >= 0 {
+ x
+ } else {
+ 1.0 / x
+ };
+ }
+
+ if hy == 0x40000000 {
+ /* y is 2 */
+ return x * x;
+ }
+
+ if hy == 0x3f000000
+ /* y is 0.5 */
+ && hx >= 0
+ {
+ /* x >= +0 */
+ return sqrtf(x);
+ }
+
+ ax = fabsf(x);
+ /* special value of x */
+ if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 {
+ /* x is +-0,+-inf,+-1 */
+ z = ax;
+ if hy < 0 {
+ /* z = (1/|x|) */
+ z = 1.0 / z;
+ }
+
+ if hx < 0 {
+ if ((ix - 0x3f800000) | yisint) == 0 {
+ z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+ } else if yisint == 1 {
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ }
+ return z;
+ }
+
+ sn = 1.0; /* sign of result */
+ if hx < 0 {
+ if yisint == 0 {
+ /* (x<0)**(non-int) is NaN */
+ return (x - x) / (x - x);
+ }
+
+ if yisint == 1 {
+ /* (x<0)**(odd int) */
+ sn = -1.0;
+ }
+ }
+
+ /* |y| is HUGE */
+ if iy > 0x4d000000 {
+ /* if |y| > 2**27 */
+ /* over/underflow if x is not close to one */
+ if ix < 0x3f7ffff8 {
+ return if hy < 0 {
+ sn * HUGE * HUGE
+ } else {
+ sn * TINY * TINY
+ };
+ }
+
+ if ix > 0x3f800007 {
+ return if hy > 0 {
+ sn * HUGE * HUGE
+ } else {
+ sn * TINY * TINY
+ };
+ }
+
+ /* now |1-x| is TINY <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax - 1.; /* t has 20 trailing zeros */
+ w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25));
+ u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */
+ v = t * IVLN2_L - w * IVLN2;
+ t1 = u + v;
+ is = t1.to_bits() as i32;
+ t1 = f32::from_bits(is as u32 & 0xfffff000);
+ t2 = v - (t1 - u);
+ } else {
+ let mut s2: f32;
+ let mut s_h: f32;
+ let s_l: f32;
+ let mut t_h: f32;
+ let mut t_l: f32;
+
+ n = 0;
+ /* take care subnormal number */
+ if ix < 0x00800000 {
+ ax *= TWO24;
+ n -= 24;
+ ix = ax.to_bits() as i32;
+ }
+ n += ((ix) >> 23) - 0x7f;
+ j = ix & 0x007fffff;
+ /* determine interval */
+ ix = j | 0x3f800000; /* normalize ix */
+ if j <= 0x1cc471 {
+ /* |x|<sqrt(3/2) */
+ k = 0;
+ } else if j < 0x5db3d7 {
+ /* |x|<sqrt(3) */
+ k = 1;
+ } else {
+ k = 0;
+ n += 1;
+ ix -= 0x00800000;
+ }
+ ax = f32::from_bits(ix as u32);
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
+ v = 1.0 / (ax + i!(BP, k as usize));
+ s = u * v;
+ s_h = s;
+ is = s_h.to_bits() as i32;
+ s_h = f32::from_bits(is as u32 & 0xfffff000);
+ /* t_h=ax+bp[k] High */
+ is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32;
+ t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21));
+ t_l = ax - (t_h - i!(BP, k as usize));
+ s_l = v * ((u - s_h * t_h) - s_h * t_l);
+ /* compute log(ax) */
+ s2 = s * s;
+ r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+ r += s_l * (s_h + s);
+ s2 = s_h * s_h;
+ t_h = 3.0 + s2 + r;
+ is = t_h.to_bits() as i32;
+ t_h = f32::from_bits(is as u32 & 0xfffff000);
+ t_l = r - ((t_h - 3.0) - s2);
+ /* u+v = s*(1+...) */
+ u = s_h * t_h;
+ v = s_l * t_h + t_l * s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u + v;
+ is = p_h.to_bits() as i32;
+ p_h = f32::from_bits(is as u32 & 0xfffff000);
+ p_l = v - (p_h - u);
+ z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = n as f32;
+ t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t;
+ is = t1.to_bits() as i32;
+ t1 = f32::from_bits(is as u32 & 0xfffff000);
+ t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
+ };
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ is = y.to_bits() as i32;
+ y1 = f32::from_bits(is as u32 & 0xfffff000);
+ p_l = (y - y1) * t1 + y * t2;
+ p_h = y1 * t1;
+ z = p_l + p_h;
+ j = z.to_bits() as i32;
+ if j > 0x43000000 {
+ /* if z > 128 */
+ return sn * HUGE * HUGE; /* overflow */
+ } else if j == 0x43000000 {
+ /* if z == 128 */
+ if p_l + OVT > z - p_h {
+ return sn * HUGE * HUGE; /* overflow */
+ }
+ } else if (j & 0x7fffffff) > 0x43160000 {
+ /* z < -150 */
+ // FIXME: check should be (uint32_t)j > 0xc3160000
+ return sn * TINY * TINY; /* underflow */
+ } else if j as u32 == 0xc3160000
+ /* z == -150 */
+ && p_l <= z - p_h
+ {
+ return sn * TINY * TINY; /* underflow */
+ }
+
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j & 0x7fffffff;
+ k = (i >> 23) - 0x7f;
+ n = 0;
+ if i > 0x3f000000 {
+ /* if |z| > 0.5, set n = [z+0.5] */
+ n = j + (0x00800000 >> (k + 1));
+ k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */
+ t = f32::from_bits(n as u32 & !(0x007fffff >> k));
+ n = ((n & 0x007fffff) | 0x00800000) >> (23 - k);
+ if j < 0 {
+ n = -n;
+ }
+ p_h -= t;
+ }
+ t = p_l + p_h;
+ is = t.to_bits() as i32;
+ t = f32::from_bits(is as u32 & 0xffff8000);
+ u = t * LG2_H;
+ v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+ z = u + v;
+ w = v - (z - u);
+ t = z * z;
+ t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ r = (z * t1) / (t1 - 2.0) - (w + z * w);
+ z = 1.0 - (r - z);
+ j = z.to_bits() as i32;
+ j += n << 23;
+ if (j >> 23) <= 0 {
+ /* subnormal output */
+ z = scalbnf(z, n);
+ } else {
+ z = f32::from_bits(j as u32);
+ }
+ sn * z
+}
+
+/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+pub fn sqrtf(x: f32) -> f32 {
+ #[cfg(target_feature = "sse")]
+ {
+ // Note: This path is unlikely since LLVM will usually have already
+ // optimized sqrt calls into hardware instructions if sse is available,
+ // but if someone does end up here they'll apprected the speed increase.
+ #[cfg(target_arch = "x86")]
+ use core::arch::x86::*;
+ #[cfg(target_arch = "x86_64")]
+ use core::arch::x86_64::*;
+ // SAFETY: safe, since `_mm_set_ss` takes a 32-bit float, and returns
+ // a 128-bit type with the lowest 32-bits as `x`, `_mm_sqrt_ss` calculates
+ // the sqrt of this 128-bit vector, and `_mm_cvtss_f32` extracts the lower
+ // 32-bits as a 32-bit float.
+ unsafe {
+ let m = _mm_set_ss(x);
+ let m_sqrt = _mm_sqrt_ss(m);
+ _mm_cvtss_f32(m_sqrt)
+ }
+ }
+ #[cfg(not(target_feature = "sse"))]
+ {
+ const TINY: f32 = 1.0e-30;
+
+ let mut z: f32;
+ let sign: i32 = 0x80000000u32 as i32;
+ let mut ix: i32;
+ let mut s: i32;
+ let mut q: i32;
+ let mut m: i32;
+ let mut t: i32;
+ let mut i: i32;
+ let mut r: u32;
+
+ ix = x.to_bits() as i32;
+
+ /* take care of Inf and NaN */
+ if (ix as u32 & 0x7f800000) == 0x7f800000 {
+ return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+ }
+
+ /* take care of zero */
+ if ix <= 0 {
+ if (ix & !sign) == 0 {
+ return x; /* sqrt(+-0) = +-0 */
+ }
+ if ix < 0 {
+ return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
+ }
+ }
+
+ /* normalize x */
+ m = ix >> 23;
+ if m == 0 {
+ /* subnormal x */
+ i = 0;
+ while ix & 0x00800000 == 0 {
+ ix <<= 1;
+ i = i + 1;
+ }
+ m -= i - 1;
+ }
+ m -= 127; /* unbias exponent */
+ ix = (ix & 0x007fffff) | 0x00800000;
+ if m & 1 == 1 {
+ /* odd m, double x to make it even */
+ ix += ix;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix += ix;
+ q = 0;
+ s = 0;
+ r = 0x01000000; /* r = moving bit from right to left */
+
+ while r != 0 {
+ t = s + r as i32;
+ if t <= ix {
+ s = t + r as i32;
+ ix -= t;
+ q += r as i32;
+ }
+ ix += ix;
+ r >>= 1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if ix != 0 {
+ z = 1.0 - TINY; /* raise inexact flag */
+ if z >= 1.0 {
+ z = 1.0 + TINY;
+ if z > 1.0 {
+ q += 2;
+ } else {
+ q += q & 1;
+ }
+ }
+ }
+
+ ix = (q >> 1) + 0x3f000000;
+ ix += m << 23;
+ f32::from_bits(ix as u32)
+ }
+}
+
+/// Absolute value (magnitude) (f32)
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+pub fn fabsf(x: f32) -> f32 {
+ f32::from_bits(x.to_bits() & 0x7fffffff)
+}
+
+pub fn scalbnf(mut x: f32, mut n: i32) -> f32 {
+ let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
+ let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126
+ let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
+
+ if n > 127 {
+ x *= x1p127;
+ n -= 127;
+ if n > 127 {
+ x *= x1p127;
+ n -= 127;
+ if n > 127 {
+ n = 127;
+ }
+ }
+ } else if n < -126 {
+ x *= x1p_126 * x1p24;
+ n += 126 - 24;
+ if n < -126 {
+ x *= x1p_126 * x1p24;
+ n += 126 - 24;
+ if n < -126 {
+ n = -126;
+ }
+ }
+ }
+ x * f32::from_bits(((0x7f + n) as u32) << 23)
+}
+
+/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+// pow(x,y) return x**y
+//
+// n
+// Method: Let x = 2 * (1+f)
+// 1. Compute and return log2(x) in two pieces:
+// log2(x) = w1 + w2,
+// where w1 has 53-24 = 29 bit trailing zeros.
+// 2. Perform y*log2(x) = n+y' by simulating muti-precision
+// arithmetic, where |y'|<=0.5.
+// 3. Return x**y = 2**n*exp(y'*log2)
+//
+// Special cases:
+// 1. (anything) ** 0 is 1
+// 2. 1 ** (anything) is 1
+// 3. (anything except 1) ** NAN is NAN
+// 4. NAN ** (anything except 0) is NAN
+// 5. +-(|x| > 1) ** +INF is +INF
+// 6. +-(|x| > 1) ** -INF is +0
+// 7. +-(|x| < 1) ** +INF is +0
+// 8. +-(|x| < 1) ** -INF is +INF
+// 9. -1 ** +-INF is 1
+// 10. +0 ** (+anything except 0, NAN) is +0
+// 11. -0 ** (+anything except 0, NAN, odd integer) is +0
+// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero
+// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero
+// 14. -0 ** (+odd integer) is -0
+// 15. -0 ** (-odd integer) is -INF, raise divbyzero
+// 16. +INF ** (+anything except 0,NAN) is +INF
+// 17. +INF ** (-anything except 0,NAN) is +0
+// 18. -INF ** (+odd integer) is -INF
+// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
+// 20. (anything) ** 1 is (anything)
+// 21. (anything) ** -1 is 1/(anything)
+// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+// 23. (-anything except 0 and inf) ** (non-integer) is NAN
+//
+// Accuracy:
+// pow(x,y) returns x**y nearly rounded. In particular
+// pow(integer,integer)
+// always returns the correct integer provided it is
+// representable.
+//
+// Constants :
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+
+pub fn powd(x: f64, y: f64) -> f64 {
+ const BP: [f64; 2] = [1.0, 1.5];
+ const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
+ const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
+ const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
+ const HUGE: f64 = 1.0e300;
+ const TINY: f64 = 1.0e-300;
+
+ // poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
+ const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
+ const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
+ const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
+ const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
+ const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
+ const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
+ const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
+ const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
+ const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
+ const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
+ const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
+ const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
+ const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
+ const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
+ const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
+ const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
+ const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
+ const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
+ const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
+ const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
+ const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
+
+ let t1: f64;
+ let t2: f64;
+
+ let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
+ let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
+
+ let mut ix: i32 = (hx & 0x7fffffff) as i32;
+ let iy: i32 = (hy & 0x7fffffff) as i32;
+
+ /* x**0 = 1, even if x is NaN */
+ if ((iy as u32) | ly) == 0 {
+ return 1.0;
+ }
+
+ /* 1**y = 1, even if y is NaN */
+ if hx == 0x3ff00000 && lx == 0 {
+ return 1.0;
+ }
+
+ /* NaN if either arg is NaN */
+ if ix > 0x7ff00000
+ || (ix == 0x7ff00000 && lx != 0)
+ || iy > 0x7ff00000
+ || (iy == 0x7ff00000 && ly != 0)
+ {
+ return x + y;
+ }
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ let mut yisint: i32 = 0;
+ let mut k: i32;
+ let mut j: i32;
+ if hx < 0 {
+ if iy >= 0x43400000 {
+ yisint = 2; /* even integer y */
+ } else if iy >= 0x3ff00000 {
+ k = (iy >> 20) - 0x3ff; /* exponent */
+
+ if k > 20 {
+ j = (ly >> (52 - k)) as i32;
+
+ if (j << (52 - k)) == (ly as i32) {
+ yisint = 2 - (j & 1);
+ }
+ } else if ly == 0 {
+ j = iy >> (20 - k);
+
+ if (j << (20 - k)) == iy {
+ yisint = 2 - (j & 1);
+ }
+ }
+ }
+ }
+
+ if ly == 0 {
+ /* special value of y */
+ if iy == 0x7ff00000 {
+ /* y is +-inf */
+
+ return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
+ /* (-1)**+-inf is 1 */
+ 1.0
+ } else if ix >= 0x3ff00000 {
+ /* (|x|>1)**+-inf = inf,0 */
+ if hy >= 0 {
+ y
+ } else {
+ 0.0
+ }
+ } else {
+ /* (|x|<1)**+-inf = 0,inf */
+ if hy >= 0 {
+ 0.0
+ } else {
+ -y
+ }
+ };
+ }
+
+ if iy == 0x3ff00000 {
+ /* y is +-1 */
+ return if hy >= 0 {
+ x
+ } else {
+ 1.0 / x
+ };
+ }
+
+ if hy == 0x40000000 {
+ /* y is 2 */
+ return x * x;
+ }
+
+ if hy == 0x3fe00000 {
+ /* y is 0.5 */
+ if hx >= 0 {
+ /* x >= +0 */
+ return sqrtd(x);
+ }
+ }
+ }
+
+ let mut ax: f64 = fabsd(x);
+ if lx == 0 {
+ /* special value of x */
+ if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
+ /* x is +-0,+-inf,+-1 */
+ let mut z: f64 = ax;
+
+ if hy < 0 {
+ /* z = (1/|x|) */
+ z = 1.0 / z;
+ }
+
+ if hx < 0 {
+ if ((ix - 0x3ff00000) | yisint) == 0 {
+ z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+ } else if yisint == 1 {
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ }
+
+ return z;
+ }
+ }
+
+ let mut s: f64 = 1.0; /* sign of result */
+ if hx < 0 {
+ if yisint == 0 {
+ /* (x<0)**(non-int) is NaN */
+ return (x - x) / (x - x);
+ }
+
+ if yisint == 1 {
+ /* (x<0)**(odd int) */
+ s = -1.0;
+ }
+ }
+
+ /* |y| is HUGE */
+ if iy > 0x41e00000 {
+ /* if |y| > 2**31 */
+ if iy > 0x43f00000 {
+ /* if |y| > 2**64, must o/uflow */
+ if ix <= 0x3fefffff {
+ return if hy < 0 {
+ HUGE * HUGE
+ } else {
+ TINY * TINY
+ };
+ }
+
+ if ix >= 0x3ff00000 {
+ return if hy > 0 {
+ HUGE * HUGE
+ } else {
+ TINY * TINY
+ };
+ }
+ }
+
+ /* over/underflow if x is not close to one */
+ if ix < 0x3fefffff {
+ return if hy < 0 {
+ s * HUGE * HUGE
+ } else {
+ s * TINY * TINY
+ };
+ }
+ if ix > 0x3ff00000 {
+ return if hy > 0 {
+ s * HUGE * HUGE
+ } else {
+ s * TINY * TINY
+ };
+ }
+
+ /* now |1-x| is TINY <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
+ let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
+ let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
+ let v: f64 = t * IVLN2_L - w * IVLN2;
+ t1 = with_set_low_word(u + v, 0);
+ t2 = v - (t1 - u);
+ } else {
+ // double ss,s2,s_h,s_l,t_h,t_l;
+ let mut n: i32 = 0;
+
+ if ix < 0x00100000 {
+ /* take care subnormal number */
+ ax *= TWO53;
+ n -= 53;
+ ix = get_high_word(ax) as i32;
+ }
+
+ n += (ix >> 20) - 0x3ff;
+ j = ix & 0x000fffff;
+
+ /* determine interval */
+ let k: i32;
+ ix = j | 0x3ff00000; /* normalize ix */
+ if j <= 0x3988E {
+ /* |x|<sqrt(3/2) */
+ k = 0;
+ } else if j < 0xBB67A {
+ /* |x|<sqrt(3) */
+ k = 1;
+ } else {
+ k = 0;
+ n += 1;
+ ix -= 0x00100000;
+ }
+ ax = with_set_high_word(ax, ix as u32);
+
+ /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
+ let v: f64 = 1.0 / (ax + i!(BP, k as usize));
+ let ss: f64 = u * v;
+ let s_h = with_set_low_word(ss, 0);
+
+ /* t_h=ax+bp[k] High */
+ let t_h: f64 = with_set_high_word(
+ 0.0,
+ ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
+ );
+ let t_l: f64 = ax - (t_h - i!(BP, k as usize));
+ let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
+
+ /* compute log(ax) */
+ let s2: f64 = ss * ss;
+ let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+ r += s_l * (s_h + ss);
+ let s2: f64 = s_h * s_h;
+ let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
+ let t_l: f64 = r - ((t_h - 3.0) - s2);
+
+ /* u+v = ss*(1+...) */
+ let u: f64 = s_h * t_h;
+ let v: f64 = s_l * t_h + t_l * ss;
+
+ /* 2/(3log2)*(ss+...) */
+ let p_h: f64 = with_set_low_word(u + v, 0);
+ let p_l = v - (p_h - u);
+ let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
+ let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
+
+ /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ let t: f64 = n as f64;
+ t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
+ t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
+ }
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ let y1: f64 = with_set_low_word(y, 0);
+ let p_l: f64 = (y - y1) * t1 + y * t2;
+ let mut p_h: f64 = y1 * t1;
+ let z: f64 = p_l + p_h;
+ let mut j: i32 = (z.to_bits() >> 32) as i32;
+ let i: i32 = z.to_bits() as i32;
+ // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
+
+ if j >= 0x40900000 {
+ /* z >= 1024 */
+ if (j - 0x40900000) | i != 0 {
+ /* if z > 1024 */
+ return s * HUGE * HUGE; /* overflow */
+ }
+
+ if p_l + OVT > z - p_h {
+ return s * HUGE * HUGE; /* overflow */
+ }
+ } else if (j & 0x7fffffff) >= 0x4090cc00 {
+ /* z <= -1075 */
+ // FIXME: instead of abs(j) use unsigned j
+
+ if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
+ /* z < -1075 */
+ return s * TINY * TINY; /* underflow */
+ }
+
+ if p_l <= z - p_h {
+ return s * TINY * TINY; /* underflow */
+ }
+ }
+
+ /* compute 2**(p_h+p_l) */
+ let i: i32 = j & (0x7fffffff as i32);
+ k = (i >> 20) - 0x3ff;
+ let mut n: i32 = 0;
+
+ if i > 0x3fe00000 {
+ /* if |z| > 0.5, set n = [z+0.5] */
+ n = j + (0x00100000 >> (k + 1));
+ k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
+ let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
+ n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
+ if j < 0 {
+ n = -n;
+ }
+ p_h -= t;
+ }
+
+ let t: f64 = with_set_low_word(p_l + p_h, 0);
+ let u: f64 = t * LG2_H;
+ let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+ let mut z: f64 = u + v;
+ let w: f64 = v - (z - u);
+ let t: f64 = z * z;
+ let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
+ z = 1.0 - (r - z);
+ j = get_high_word(z) as i32;
+ j += n << 20;
+
+ if (j >> 20) <= 0 {
+ /* subnormal output */
+ z = scalbnd(z, n);
+ } else {
+ z = with_set_high_word(z, j as u32);
+ }
+
+ s * z
+}
+
+/// Absolute value (magnitude) (f64)
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+pub fn fabsd(x: f64) -> f64 {
+ f64::from_bits(x.to_bits() & (u64::MAX / 2))
+}
+
+pub fn scalbnd(x: f64, mut n: i32) -> f64 {
+ let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
+ let x1p53 = f64::from_bits(0x4340000000000000); // 0x1p53 === 2 ^ 53
+ let x1p_1022 = f64::from_bits(0x0010000000000000); // 0x1p-1022 === 2 ^ (-1022)
+
+ let mut y = x;
+
+ if n > 1023 {
+ y *= x1p1023;
+ n -= 1023;
+ if n > 1023 {
+ y *= x1p1023;
+ n -= 1023;
+ if n > 1023 {
+ n = 1023;
+ }
+ }
+ } else if n < -1022 {
+ /* make sure final n < -53 to avoid double
+ rounding in the subnormal range */
+ y *= x1p_1022 * x1p53;
+ n += 1022 - 53;
+ if n < -1022 {
+ y *= x1p_1022 * x1p53;
+ n += 1022 - 53;
+ if n < -1022 {
+ n = -1022;
+ }
+ }
+ }
+ y * f64::from_bits(((0x3ff + n) as u64) << 52)
+}
+
+/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* sqrt(x)
+ * Return correctly rounded sqrt.
+ * ------------------------------------------
+ * | Use the hardware sqrt if you have one |
+ * ------------------------------------------
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * 1. Normalization
+ * Scale x to y in [1,4) with even powers of 2:
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
+ * sqrt(x) = 2^k * sqrt(y)
+ * 2. Bit by bit computation
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+ * i 0
+ * i+1 2
+ * s = 2*q , and y = 2 * ( y - q ). (1)
+ * i i i i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
+ *
+ * -(i+1) 2
+ * (q + 2 ) <= y. (2)
+ * i
+ * -(i+1)
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
+ * i+1 i i+1 i
+ *
+ * With some algebraic manipulation, it is not difficult to see
+ * that (2) is equivalent to
+ * -(i+1)
+ * s + 2 <= y (3)
+ * i i
+ *
+ * The advantage of (3) is that s and y can be computed by
+ * i i
+ * the following recurrence formula:
+ * if (3) is false
+ *
+ * s = s , y = y ; (4)
+ * i+1 i i+1 i
+ *
+ * otherwise,
+ * -i -(i+1)
+ * s = s + 2 , y = y - s - 2 (5)
+ * i+1 i i+1 i i
+ *
+ * One may easily use induction to prove (4) and (5).
+ * Note. Since the left hand side of (3) contain only i+2 bits,
+ * it does not necessary to do a full (53-bit) comparison
+ * in (3).
+ * 3. Final rounding
+ * After generating the 53 bits result, we compute one more bit.
+ * Together with the remainder, we can decide whether the
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ * (it will never equal to 1/2ulp).
+ * The rounding mode can be detected by checking whether
+ * huge + tiny is equal to huge, and whether huge - tiny is
+ * equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ * sqrt(+-0) = +-0 ... exact
+ * sqrt(inf) = inf
+ * sqrt(-ve) = NaN ... with invalid signal
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
+ */
+
+pub fn sqrtd(x: f64) -> f64 {
+ #[cfg(target_feature = "sse2")]
+ {
+ // Note: This path is unlikely since LLVM will usually have already
+ // optimized sqrt calls into hardware instructions if sse2 is available,
+ // but if someone does end up here they'll apprected the speed increase.
+ #[cfg(target_arch = "x86")]
+ use core::arch::x86::*;
+ #[cfg(target_arch = "x86_64")]
+ use core::arch::x86_64::*;
+ // SAFETY: safe, since `_mm_set_sd` takes a 64-bit float, and returns
+ // a 128-bit type with the lowest 64-bits as `x`, `_mm_sqrt_ss` calculates
+ // the sqrt of this 128-bit vector, and `_mm_cvtss_f64` extracts the lower
+ // 64-bits as a 64-bit float.
+ unsafe {
+ let m = _mm_set_sd(x);
+ let m_sqrt = _mm_sqrt_pd(m);
+ _mm_cvtsd_f64(m_sqrt)
+ }
+ }
+ #[cfg(not(target_feature = "sse2"))]
+ {
+ use core::num::Wrapping;
+
+ const TINY: f64 = 1.0e-300;
+
+ let mut z: f64;
+ let sign: Wrapping<u32> = Wrapping(0x80000000);
+ let mut ix0: i32;
+ let mut s0: i32;
+ let mut q: i32;
+ let mut m: i32;
+ let mut t: i32;
+ let mut i: i32;
+ let mut r: Wrapping<u32>;
+ let mut t1: Wrapping<u32>;
+ let mut s1: Wrapping<u32>;
+ let mut ix1: Wrapping<u32>;
+ let mut q1: Wrapping<u32>;
+
+ ix0 = (x.to_bits() >> 32) as i32;
+ ix1 = Wrapping(x.to_bits() as u32);
+
+ /* take care of Inf and NaN */
+ if (ix0 & 0x7ff00000) == 0x7ff00000 {
+ return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+ }
+ /* take care of zero */
+ if ix0 <= 0 {
+ if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
+ return x; /* sqrt(+-0) = +-0 */
+ }
+ if ix0 < 0 {
+ return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
+ }
+ }
+ /* normalize x */
+ m = ix0 >> 20;
+ if m == 0 {
+ /* subnormal x */
+ while ix0 == 0 {
+ m -= 21;
+ ix0 |= (ix1 >> 11).0 as i32;
+ ix1 <<= 21;
+ }
+ i = 0;
+ while (ix0 & 0x00100000) == 0 {
+ i += 1;
+ ix0 <<= 1;
+ }
+ m -= i - 1;
+ ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
+ ix1 = ix1 << i as usize;
+ }
+ m -= 1023; /* unbias exponent */
+ ix0 = (ix0 & 0x000fffff) | 0x00100000;
+ if (m & 1) == 1 {
+ /* odd m, double x to make it even */
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ q = 0; /* [q,q1] = sqrt(x) */
+ q1 = Wrapping(0);
+ s0 = 0;
+ s1 = Wrapping(0);
+ r = Wrapping(0x00200000); /* r = moving bit from right to left */
+
+ while r != Wrapping(0) {
+ t = s0 + r.0 as i32;
+ if t <= ix0 {
+ s0 = t + r.0 as i32;
+ ix0 -= t;
+ q += r.0 as i32;
+ }
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ r = sign;
+ while r != Wrapping(0) {
+ t1 = s1 + r;
+ t = s0;
+ if t < ix0 || (t == ix0 && t1 <= ix1) {
+ s1 = t1 + r;
+ if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
+ s0 += 1;
+ }
+ ix0 -= t;
+ if ix1 < t1 {
+ ix0 -= 1;
+ }
+ ix1 -= t1;
+ q1 += r;
+ }
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if (ix0 as u32 | ix1.0) != 0 {
+ z = 1.0 - TINY; /* raise inexact flag */
+ if z >= 1.0 {
+ z = 1.0 + TINY;
+ if q1.0 == 0xffffffff {
+ q1 = Wrapping(0);
+ q += 1;
+ } else if z > 1.0 {
+ if q1.0 == 0xfffffffe {
+ q += 1;
+ }
+ q1 += Wrapping(2);
+ } else {
+ q1 += q1 & Wrapping(1);
+ }
+ }
+ }
+ ix0 = (q >> 1) + 0x3fe00000;
+ ix1 = q1 >> 1;
+ if (q & 1) == 1 {
+ ix1 |= sign;
+ }
+ ix0 += m << 20;
+ f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
+ }
+}
+
+#[inline]
+fn get_high_word(x: f64) -> u32 {
+ (x.to_bits() >> 32) as u32
+}
+
+#[inline]
+fn with_set_high_word(f: f64, hi: u32) -> f64 {
+ let mut tmp = f.to_bits();
+ tmp &= 0x00000000_ffffffff;
+ tmp |= (hi as u64) << 32;
+ f64::from_bits(tmp)
+}
+
+#[inline]
+fn with_set_low_word(f: f64, lo: u32) -> f64 {
+ let mut tmp = f.to_bits();
+ tmp &= 0xffffffff_00000000;
+ tmp |= lo as u64;
+ f64::from_bits(tmp)
+}
diff --git a/vendor/minimal-lexical/src/mask.rs b/vendor/minimal-lexical/src/mask.rs
new file mode 100644
index 000000000..1957c8be0
--- /dev/null
+++ b/vendor/minimal-lexical/src/mask.rs
@@ -0,0 +1,60 @@
+//! Utilities to generate bitmasks.
+
+#![doc(hidden)]
+
+/// Generate a bitwise mask for the lower `n` bits.
+///
+/// # Examples
+///
+/// ```rust
+/// # use minimal_lexical::mask::lower_n_mask;
+/// # pub fn main() {
+/// assert_eq!(lower_n_mask(2), 0b11);
+/// # }
+/// ```
+#[inline]
+pub fn lower_n_mask(n: u64) -> u64 {
+ debug_assert!(n <= 64, "lower_n_mask() overflow in shl.");
+
+ match n == 64 {
+ // u64::MAX for older Rustc versions.
+ true => 0xffff_ffff_ffff_ffff,
+ false => (1 << n) - 1,
+ }
+}
+
+/// Calculate the halfway point for the lower `n` bits.
+///
+/// # Examples
+///
+/// ```rust
+/// # use minimal_lexical::mask::lower_n_halfway;
+/// # pub fn main() {
+/// assert_eq!(lower_n_halfway(2), 0b10);
+/// # }
+/// ```
+#[inline]
+pub fn lower_n_halfway(n: u64) -> u64 {
+ debug_assert!(n <= 64, "lower_n_halfway() overflow in shl.");
+
+ match n == 0 {
+ true => 0,
+ false => nth_bit(n - 1),
+ }
+}
+
+/// Calculate a scalar factor of 2 above the halfway point.
+///
+/// # Examples
+///
+/// ```rust
+/// # use minimal_lexical::mask::nth_bit;
+/// # pub fn main() {
+/// assert_eq!(nth_bit(2), 0b100);
+/// # }
+/// ```
+#[inline]
+pub fn nth_bit(n: u64) -> u64 {
+ debug_assert!(n < 64, "nth_bit() overflow in shl.");
+ 1 << n
+}
diff --git a/vendor/minimal-lexical/src/num.rs b/vendor/minimal-lexical/src/num.rs
new file mode 100644
index 000000000..9f682b9cb
--- /dev/null
+++ b/vendor/minimal-lexical/src/num.rs
@@ -0,0 +1,308 @@
+//! Utilities for Rust numbers.
+
+#![doc(hidden)]
+
+#[cfg(all(not(feature = "std"), feature = "compact"))]
+use crate::libm::{powd, powf};
+#[cfg(not(feature = "compact"))]
+use crate::table::{SMALL_F32_POW10, SMALL_F64_POW10, SMALL_INT_POW10, SMALL_INT_POW5};
+#[cfg(not(feature = "compact"))]
+use core::hint;
+use core::ops;
+
+/// Generic floating-point type, to be used in generic code for parsing.
+///
+/// Although the trait is part of the public API, the trait provides methods
+/// and constants that are effectively non-public: they may be removed
+/// at any time without any breaking changes.
+pub trait Float:
+ Sized
+ + Copy
+ + PartialEq
+ + PartialOrd
+ + Send
+ + Sync
+ + ops::Add<Output = Self>
+ + ops::AddAssign
+ + ops::Div<Output = Self>
+ + ops::DivAssign
+ + ops::Mul<Output = Self>
+ + ops::MulAssign
+ + ops::Rem<Output = Self>
+ + ops::RemAssign
+ + ops::Sub<Output = Self>
+ + ops::SubAssign
+ + ops::Neg<Output = Self>
+{
+ /// Maximum number of digits that can contribute in the mantissa.
+ ///
+ /// We can exactly represent a float in radix `b` from radix 2 if
+ /// `b` is divisible by 2. This function calculates the exact number of
+ /// digits required to exactly represent that float.
+ ///
+ /// According to the "Handbook of Floating Point Arithmetic",
+ /// for IEEE754, with emin being the min exponent, p2 being the
+ /// precision, and b being the radix, the number of digits follows as:
+ ///
+ /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
+ ///
+ /// For f32, this follows as:
+ /// emin = -126
+ /// p2 = 24
+ ///
+ /// For f64, this follows as:
+ /// emin = -1022
+ /// p2 = 53
+ ///
+ /// In Python:
+ /// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))`
+ ///
+ /// This was used to calculate the maximum number of digits for [2, 36].
+ const MAX_DIGITS: usize;
+
+ // MASKS
+
+ /// Bitmask for the sign bit.
+ const SIGN_MASK: u64;
+ /// Bitmask for the exponent, including the hidden bit.
+ const EXPONENT_MASK: u64;
+ /// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction.
+ const HIDDEN_BIT_MASK: u64;
+ /// Bitmask for the mantissa (fraction), excluding the hidden bit.
+ const MANTISSA_MASK: u64;
+
+ // PROPERTIES
+
+ /// Size of the significand (mantissa) without hidden bit.
+ const MANTISSA_SIZE: i32;
+ /// Bias of the exponet
+ const EXPONENT_BIAS: i32;
+ /// Exponent portion of a denormal float.
+ const DENORMAL_EXPONENT: i32;
+ /// Maximum exponent value in float.
+ const MAX_EXPONENT: i32;
+
+ // ROUNDING
+
+ /// Mask to determine if a full-carry occurred (1 in bit above hidden bit).
+ const CARRY_MASK: u64;
+
+ /// Bias for marking an invalid extended float.
+ // Value is `i16::MIN`, using hard-coded constants for older Rustc versions.
+ const INVALID_FP: i32 = -0x8000;
+
+ // Maximum mantissa for the fast-path (`1 << 53` for f64).
+ const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE;
+
+ // Largest exponent value `(1 << EXP_BITS) - 1`.
+ const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS;
+
+ // Round-to-even only happens for negative values of q
+ // when q ≥ −4 in the 64-bit case and when q ≥ −17 in
+ // the 32-bitcase.
+ //
+ // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
+ // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
+ // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
+ //
+ // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
+ // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
+ // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
+ // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
+ // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
+ //
+ // Thus we have that we only need to round ties to even when
+ // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
+ // (in the 32-bit case). In both cases,the power of five(5^|q|)
+ // fits in a 64-bit word.
+ const MIN_EXPONENT_ROUND_TO_EVEN: i32;
+ const MAX_EXPONENT_ROUND_TO_EVEN: i32;
+
+ /// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`.
+ const MINIMUM_EXPONENT: i32;
+
+ /// Smallest decimal exponent for a non-zero value.
+ const SMALLEST_POWER_OF_TEN: i32;
+
+ /// Largest decimal exponent for a non-infinite value.
+ const LARGEST_POWER_OF_TEN: i32;
+
+ /// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_SIZE+1)/log2(10)⌋`
+ const MIN_EXPONENT_FAST_PATH: i32;
+
+ /// Maximum exponent that for a fast path case, or `⌊(MANTISSA_SIZE+1)/log2(5)⌋`
+ const MAX_EXPONENT_FAST_PATH: i32;
+
+ /// Maximum exponent that can be represented for a disguised-fast path case.
+ /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_SIZE+1)/log2(10)⌋`
+ const MAX_EXPONENT_DISGUISED_FAST_PATH: i32;
+
+ /// Convert 64-bit integer to float.
+ fn from_u64(u: u64) -> Self;
+
+ // Re-exported methods from std.
+ fn from_bits(u: u64) -> Self;
+ fn to_bits(self) -> u64;
+
+ /// Get a small power-of-radix for fast-path multiplication.
+ ///
+ /// # Safety
+ ///
+ /// Safe as long as the exponent is smaller than the table size.
+ unsafe fn pow_fast_path(exponent: usize) -> Self;
+
+ /// Get a small, integral power-of-radix for fast-path multiplication.
+ ///
+ /// # Safety
+ ///
+ /// Safe as long as the exponent is smaller than the table size.
+ #[inline(always)]
+ unsafe fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 {
+ // SAFETY: safe as long as the exponent is smaller than the radix table.
+ #[cfg(not(feature = "compact"))]
+ return match radix {
+ 5 => unsafe { *SMALL_INT_POW5.get_unchecked(exponent) },
+ 10 => unsafe { *SMALL_INT_POW10.get_unchecked(exponent) },
+ _ => unsafe { hint::unreachable_unchecked() },
+ };
+
+ #[cfg(feature = "compact")]
+ return (radix as u64).pow(exponent as u32);
+ }
+
+ /// Returns true if the float is a denormal.
+ #[inline]
+ fn is_denormal(self) -> bool {
+ self.to_bits() & Self::EXPONENT_MASK == 0
+ }
+
+ /// Get exponent component from the float.
+ #[inline]
+ fn exponent(self) -> i32 {
+ if self.is_denormal() {
+ return Self::DENORMAL_EXPONENT;
+ }
+
+ let bits = self.to_bits();
+ let biased_e: i32 = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE) as i32;
+ biased_e - Self::EXPONENT_BIAS
+ }
+
+ /// Get mantissa (significand) component from float.
+ #[inline]
+ fn mantissa(self) -> u64 {
+ let bits = self.to_bits();
+ let s = bits & Self::MANTISSA_MASK;
+ if !self.is_denormal() {
+ s + Self::HIDDEN_BIT_MASK
+ } else {
+ s
+ }
+ }
+}
+
+impl Float for f32 {
+ const MAX_DIGITS: usize = 114;
+ const SIGN_MASK: u64 = 0x80000000;
+ const EXPONENT_MASK: u64 = 0x7F800000;
+ const HIDDEN_BIT_MASK: u64 = 0x00800000;
+ const MANTISSA_MASK: u64 = 0x007FFFFF;
+ const MANTISSA_SIZE: i32 = 23;
+ const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE;
+ const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
+ const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS;
+ const CARRY_MASK: u64 = 0x1000000;
+ const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17;
+ const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10;
+ const MINIMUM_EXPONENT: i32 = -127;
+ const SMALLEST_POWER_OF_TEN: i32 = -65;
+ const LARGEST_POWER_OF_TEN: i32 = 38;
+ const MIN_EXPONENT_FAST_PATH: i32 = -10;
+ const MAX_EXPONENT_FAST_PATH: i32 = 10;
+ const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 17;
+
+ #[inline(always)]
+ unsafe fn pow_fast_path(exponent: usize) -> Self {
+ // SAFETY: safe as long as the exponent is smaller than the radix table.
+ #[cfg(not(feature = "compact"))]
+ return unsafe { *SMALL_F32_POW10.get_unchecked(exponent) };
+
+ #[cfg(feature = "compact")]
+ return powf(10.0f32, exponent as f32);
+ }
+
+ #[inline]
+ fn from_u64(u: u64) -> f32 {
+ u as _
+ }
+
+ #[inline]
+ fn from_bits(u: u64) -> f32 {
+ // Constant is `u32::MAX` for older Rustc versions.
+ debug_assert!(u <= 0xffff_ffff);
+ f32::from_bits(u as u32)
+ }
+
+ #[inline]
+ fn to_bits(self) -> u64 {
+ f32::to_bits(self) as u64
+ }
+}
+
+impl Float for f64 {
+ const MAX_DIGITS: usize = 769;
+ const SIGN_MASK: u64 = 0x8000000000000000;
+ const EXPONENT_MASK: u64 = 0x7FF0000000000000;
+ const HIDDEN_BIT_MASK: u64 = 0x0010000000000000;
+ const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF;
+ const MANTISSA_SIZE: i32 = 52;
+ const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE;
+ const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
+ const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS;
+ const CARRY_MASK: u64 = 0x20000000000000;
+ const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4;
+ const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23;
+ const MINIMUM_EXPONENT: i32 = -1023;
+ const SMALLEST_POWER_OF_TEN: i32 = -342;
+ const LARGEST_POWER_OF_TEN: i32 = 308;
+ const MIN_EXPONENT_FAST_PATH: i32 = -22;
+ const MAX_EXPONENT_FAST_PATH: i32 = 22;
+ const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 37;
+
+ #[inline(always)]
+ unsafe fn pow_fast_path(exponent: usize) -> Self {
+ // SAFETY: safe as long as the exponent is smaller than the radix table.
+ #[cfg(not(feature = "compact"))]
+ return unsafe { *SMALL_F64_POW10.get_unchecked(exponent) };
+
+ #[cfg(feature = "compact")]
+ return powd(10.0f64, exponent as f64);
+ }
+
+ #[inline]
+ fn from_u64(u: u64) -> f64 {
+ u as _
+ }
+
+ #[inline]
+ fn from_bits(u: u64) -> f64 {
+ f64::from_bits(u)
+ }
+
+ #[inline]
+ fn to_bits(self) -> u64 {
+ f64::to_bits(self)
+ }
+}
+
+#[inline(always)]
+#[cfg(all(feature = "std", feature = "compact"))]
+pub fn powf(x: f32, y: f32) -> f32 {
+ x.powf(y)
+}
+
+#[inline(always)]
+#[cfg(all(feature = "std", feature = "compact"))]
+pub fn powd(x: f64, y: f64) -> f64 {
+ x.powf(y)
+}
diff --git a/vendor/minimal-lexical/src/number.rs b/vendor/minimal-lexical/src/number.rs
new file mode 100644
index 000000000..5981f9dd7
--- /dev/null
+++ b/vendor/minimal-lexical/src/number.rs
@@ -0,0 +1,83 @@
+//! Representation of a float as the significant digits and exponent.
+//!
+//! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust),
+//! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust.
+
+#![doc(hidden)]
+
+#[cfg(feature = "nightly")]
+use crate::fpu::set_precision;
+use crate::num::Float;
+
+/// Representation of a number as the significant digits and exponent.
+///
+/// This is only used if the exponent base and the significant digit
+/// radix are the same, since we need to be able to move powers in and
+/// out of the exponent.
+#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
+pub struct Number {
+ /// The exponent of the float, scaled to the mantissa.
+ pub exponent: i32,
+ /// The significant digits of the float.
+ pub mantissa: u64,
+ /// If the significant digits were truncated.
+ pub many_digits: bool,
+}
+
+impl Number {
+ /// Detect if the float can be accurately reconstructed from native floats.
+ #[inline]
+ pub fn is_fast_path<F: Float>(&self) -> bool {
+ F::MIN_EXPONENT_FAST_PATH <= self.exponent
+ && self.exponent <= F::MAX_EXPONENT_DISGUISED_FAST_PATH
+ && self.mantissa <= F::MAX_MANTISSA_FAST_PATH
+ && !self.many_digits
+ }
+
+ /// The fast path algorithmn using machine-sized integers and floats.
+ ///
+ /// This is extracted into a separate function so that it can be attempted before constructing
+ /// a Decimal. This only works if both the mantissa and the exponent
+ /// can be exactly represented as a machine float, since IEE-754 guarantees
+ /// no rounding will occur.
+ ///
+ /// There is an exception: disguised fast-path cases, where we can shift
+ /// powers-of-10 from the exponent to the significant digits.
+ pub fn try_fast_path<F: Float>(&self) -> Option<F> {
+ // The fast path crucially depends on arithmetic being rounded to the correct number of bits
+ // without any intermediate rounding. On x86 (without SSE or SSE2) this requires the precision
+ // of the x87 FPU stack to be changed so that it directly rounds to 64/32 bit.
+ // The `set_precision` function takes care of setting the precision on architectures which
+ // require setting it by changing the global state (like the control word of the x87 FPU).
+ #[cfg(feature = "nightly")]
+ let _cw = set_precision::<F>();
+
+ if self.is_fast_path::<F>() {
+ let max_exponent = F::MAX_EXPONENT_FAST_PATH;
+ Some(if self.exponent <= max_exponent {
+ // normal fast path
+ let value = F::from_u64(self.mantissa);
+ if self.exponent < 0 {
+ // SAFETY: safe, since the `exponent <= max_exponent`.
+ value / unsafe { F::pow_fast_path((-self.exponent) as _) }
+ } else {
+ // SAFETY: safe, since the `exponent <= max_exponent`.
+ value * unsafe { F::pow_fast_path(self.exponent as _) }
+ }
+ } else {
+ // disguised fast path
+ let shift = self.exponent - max_exponent;
+ // SAFETY: safe, since `shift <= (max_disguised - max_exponent)`.
+ let int_power = unsafe { F::int_pow_fast_path(shift as usize, 10) };
+ let mantissa = self.mantissa.checked_mul(int_power)?;
+ if mantissa > F::MAX_MANTISSA_FAST_PATH {
+ return None;
+ }
+ // SAFETY: safe, since the `table.len() - 1 == max_exponent`.
+ F::from_u64(mantissa) * unsafe { F::pow_fast_path(max_exponent as _) }
+ })
+ } else {
+ None
+ }
+ }
+}
diff --git a/vendor/minimal-lexical/src/parse.rs b/vendor/minimal-lexical/src/parse.rs
new file mode 100644
index 000000000..9349699eb
--- /dev/null
+++ b/vendor/minimal-lexical/src/parse.rs
@@ -0,0 +1,201 @@
+//! Parse byte iterators to float.
+
+#![doc(hidden)]
+
+#[cfg(feature = "compact")]
+use crate::bellerophon::bellerophon;
+use crate::extended_float::{extended_to_float, ExtendedFloat};
+#[cfg(not(feature = "compact"))]
+use crate::lemire::lemire;
+use crate::num::Float;
+use crate::number::Number;
+use crate::slow::slow;
+
+/// Try to parse the significant digits quickly.
+///
+/// This attempts a very quick parse, to deal with common cases.
+///
+/// * `integer` - Slice containing the integer digits.
+/// * `fraction` - Slice containing the fraction digits.
+#[inline]
+fn parse_number_fast<'a, Iter1, Iter2>(
+ integer: Iter1,
+ fraction: Iter2,
+ exponent: i32,
+) -> Option<Number>
+where
+ Iter1: Iterator<Item = &'a u8>,
+ Iter2: Iterator<Item = &'a u8>,
+{
+ let mut num = Number::default();
+ let mut integer_count: usize = 0;
+ let mut fraction_count: usize = 0;
+ for &c in integer {
+ integer_count += 1;
+ let digit = c - b'0';
+ num.mantissa = num.mantissa.wrapping_mul(10).wrapping_add(digit as u64);
+ }
+ for &c in fraction {
+ fraction_count += 1;
+ let digit = c - b'0';
+ num.mantissa = num.mantissa.wrapping_mul(10).wrapping_add(digit as u64);
+ }
+
+ if integer_count + fraction_count <= 19 {
+ // Can't overflow, since must be <= 19.
+ num.exponent = exponent.saturating_sub(fraction_count as i32);
+ Some(num)
+ } else {
+ None
+ }
+}
+
+/// Parse the significant digits of the float and adjust the exponent.
+///
+/// * `integer` - Slice containing the integer digits.
+/// * `fraction` - Slice containing the fraction digits.
+#[inline]
+fn parse_number<'a, Iter1, Iter2>(mut integer: Iter1, mut fraction: Iter2, exponent: i32) -> Number
+where
+ Iter1: Iterator<Item = &'a u8> + Clone,
+ Iter2: Iterator<Item = &'a u8> + Clone,
+{
+ // NOTE: for performance, we do this in 2 passes:
+ if let Some(num) = parse_number_fast(integer.clone(), fraction.clone(), exponent) {
+ return num;
+ }
+
+ // Can only add 19 digits.
+ let mut num = Number::default();
+ let mut count = 0;
+ while let Some(&c) = integer.next() {
+ count += 1;
+ if count == 20 {
+ // Only the integer digits affect the exponent.
+ num.many_digits = true;
+ num.exponent = exponent.saturating_add(into_i32(1 + integer.count()));
+ return num;
+ } else {
+ let digit = c - b'0';
+ num.mantissa = num.mantissa * 10 + digit as u64;
+ }
+ }
+
+ // Skip leading fraction zeros.
+ // This is required otherwise we might have a 0 mantissa and many digits.
+ let mut fraction_count: usize = 0;
+ if count == 0 {
+ for &c in &mut fraction {
+ fraction_count += 1;
+ if c != b'0' {
+ count += 1;
+ let digit = c - b'0';
+ num.mantissa = num.mantissa * 10 + digit as u64;
+ break;
+ }
+ }
+ }
+ for c in fraction {
+ fraction_count += 1;
+ count += 1;
+ if count == 20 {
+ num.many_digits = true;
+ // This can't wrap, since we have at most 20 digits.
+ // We've adjusted the exponent too high by `fraction_count - 1`.
+ // Note: -1 is due to incrementing this loop iteration, which we
+ // didn't use.
+ num.exponent = exponent.saturating_sub(fraction_count as i32 - 1);
+ return num;
+ } else {
+ let digit = c - b'0';
+ num.mantissa = num.mantissa * 10 + digit as u64;
+ }
+ }
+
+ // No truncated digits: easy.
+ // Cannot overflow: <= 20 digits.
+ num.exponent = exponent.saturating_sub(fraction_count as i32);
+ num
+}
+
+/// Parse float from extracted float components.
+///
+/// * `integer` - Cloneable, forward iterator over integer digits.
+/// * `fraction` - Cloneable, forward iterator over integer digits.
+/// * `exponent` - Parsed, 32-bit exponent.
+///
+/// # Preconditions
+/// 1. The integer should not have leading zeros.
+/// 2. The fraction should not have trailing zeros.
+/// 3. All bytes in `integer` and `fraction` should be valid digits,
+/// in the range [`b'0', b'9'].
+///
+/// # Panics
+///
+/// Although passing garbage input will not cause memory safety issues,
+/// it is very likely to cause a panic with a large number of digits, or
+/// in debug mode. The big-integer arithmetic without the `alloc` feature
+/// assumes a maximum, fixed-width input, which assumes at maximum a
+/// value of `10^(769 + 342)`, or ~4000 bits of storage. Passing in
+/// nonsensical digits may require up to ~6000 bits of storage, which will
+/// panic when attempting to add it to the big integer. It is therefore
+/// up to the caller to validate this input.
+///
+/// We cannot efficiently remove trailing zeros while only accepting a
+/// forward iterator.
+pub fn parse_float<'a, F, Iter1, Iter2>(integer: Iter1, fraction: Iter2, exponent: i32) -> F
+where
+ F: Float,
+ Iter1: Iterator<Item = &'a u8> + Clone,
+ Iter2: Iterator<Item = &'a u8> + Clone,
+{
+ // Parse the mantissa and attempt the fast and moderate-path algorithms.
+ let num = parse_number(integer.clone(), fraction.clone(), exponent);
+ // Try the fast-path algorithm.
+ if let Some(value) = num.try_fast_path() {
+ return value;
+ }
+
+ // Now try the moderate path algorithm.
+ let mut fp = moderate_path::<F>(&num);
+ if fp.exp < 0 {
+ // Undo the invalid extended float biasing.
+ fp.exp -= F::INVALID_FP;
+ fp = slow::<F, _, _>(num, fp, integer, fraction);
+ }
+
+ // Unable to correctly round the float using the fast or moderate algorithms.
+ // Fallback to a slower, but always correct algorithm. If we have
+ // lossy, we can't be here.
+ extended_to_float::<F>(fp)
+}
+
+/// Wrapper for different moderate-path algorithms.
+/// A return exponent of `-1` indicates an invalid value.
+#[inline]
+pub fn moderate_path<F: Float>(num: &Number) -> ExtendedFloat {
+ #[cfg(not(feature = "compact"))]
+ return lemire::<F>(num);
+
+ #[cfg(feature = "compact")]
+ return bellerophon::<F>(num);
+}
+
+/// Convert usize into i32 without overflow.
+///
+/// This is needed to ensure when adjusting the exponent relative to
+/// the mantissa we do not overflow for comically-long exponents.
+#[inline]
+fn into_i32(value: usize) -> i32 {
+ if value > i32::max_value() as usize {
+ i32::max_value()
+ } else {
+ value as i32
+ }
+}
+
+// Add digit to mantissa.
+#[inline]
+pub fn add_digit(value: u64, digit: u8) -> Option<u64> {
+ value.checked_mul(10)?.checked_add(digit as u64)
+}
diff --git a/vendor/minimal-lexical/src/rounding.rs b/vendor/minimal-lexical/src/rounding.rs
new file mode 100644
index 000000000..7c466dec4
--- /dev/null
+++ b/vendor/minimal-lexical/src/rounding.rs
@@ -0,0 +1,131 @@
+//! Defines rounding schemes for floating-point numbers.
+
+#![doc(hidden)]
+
+use crate::extended_float::ExtendedFloat;
+use crate::mask::{lower_n_halfway, lower_n_mask};
+use crate::num::Float;
+
+// ROUNDING
+// --------
+
+/// Round an extended-precision float to the nearest machine float.
+///
+/// Shifts the significant digits into place, adjusts the exponent,
+/// so it can be easily converted to a native float.
+#[cfg_attr(not(feature = "compact"), inline)]
+pub fn round<F, Cb>(fp: &mut ExtendedFloat, cb: Cb)
+where
+ F: Float,
+ Cb: Fn(&mut ExtendedFloat, i32),
+{
+ let fp_inf = ExtendedFloat {
+ mant: 0,
+ exp: F::INFINITE_POWER,
+ };
+
+ // Calculate our shift in significant digits.
+ let mantissa_shift = 64 - F::MANTISSA_SIZE - 1;
+
+ // Check for a denormal float, if after the shift the exponent is negative.
+ if -fp.exp >= mantissa_shift {
+ // Have a denormal float that isn't a literal 0.
+ // The extra 1 is to adjust for the denormal float, which is
+ // `1 - F::EXPONENT_BIAS`. This works as before, because our
+ // old logic rounded to `F::DENORMAL_EXPONENT` (now 1), and then
+ // checked if `exp == F::DENORMAL_EXPONENT` and no hidden mask
+ // bit was set. Here, we handle that here, rather than later.
+ //
+ // This might round-down to 0, but shift will be at **max** 65,
+ // for halfway cases rounding towards 0.
+ let shift = -fp.exp + 1;
+ debug_assert!(shift <= 65);
+ cb(fp, shift.min(64));
+ // Check for round-up: if rounding-nearest carried us to the hidden bit.
+ fp.exp = (fp.mant >= F::HIDDEN_BIT_MASK) as i32;
+ return;
+ }
+
+ // The float is normal, round to the hidden bit.
+ cb(fp, mantissa_shift);
+
+ // Check if we carried, and if so, shift the bit to the hidden bit.
+ let carry_mask = F::CARRY_MASK;
+ if fp.mant & carry_mask == carry_mask {
+ fp.mant >>= 1;
+ fp.exp += 1;
+ }
+
+ // Handle if we carried and check for overflow again.
+ if fp.exp >= F::INFINITE_POWER {
+ // Exponent is above largest normal value, must be infinite.
+ *fp = fp_inf;
+ return;
+ }
+
+ // Remove the hidden bit.
+ fp.mant &= F::MANTISSA_MASK;
+}
+
+/// Shift right N-bytes and round towards a direction.
+///
+/// Callback should take the following parameters:
+/// 1. is_odd
+/// 1. is_halfway
+/// 1. is_above
+#[cfg_attr(not(feature = "compact"), inline)]
+pub fn round_nearest_tie_even<Cb>(fp: &mut ExtendedFloat, shift: i32, cb: Cb)
+where
+ // is_odd, is_halfway, is_above
+ Cb: Fn(bool, bool, bool) -> bool,
+{
+ // Ensure we've already handled denormal values that underflow.
+ debug_assert!(shift <= 64);
+
+ // Extract the truncated bits using mask.
+ // Calculate if the value of the truncated bits are either above
+ // the mid-way point, or equal to it.
+ //
+ // For example, for 4 truncated bytes, the mask would be 0b1111
+ // and the midway point would be 0b1000.
+ let mask = lower_n_mask(shift as u64);
+ let halfway = lower_n_halfway(shift as u64);
+ let truncated_bits = fp.mant & mask;
+ let is_above = truncated_bits > halfway;
+ let is_halfway = truncated_bits == halfway;
+
+ // Bit shift so the leading bit is in the hidden bit.
+ // This optimixes pretty well:
+ // ```text
+ // mov ecx, esi
+ // shr rdi, cl
+ // xor eax, eax
+ // cmp esi, 64
+ // cmovne rax, rdi
+ // ret
+ // ```
+ fp.mant = match shift == 64 {
+ true => 0,
+ false => fp.mant >> shift,
+ };
+ fp.exp += shift;
+
+ // Extract the last bit after shifting (and determine if it is odd).
+ let is_odd = fp.mant & 1 == 1;
+
+ // Calculate if we need to roundup.
+ // We need to roundup if we are above halfway, or if we are odd
+ // and at half-way (need to tie-to-even). Avoid the branch here.
+ fp.mant += cb(is_odd, is_halfway, is_above) as u64;
+}
+
+/// Round our significant digits into place, truncating them.
+#[cfg_attr(not(feature = "compact"), inline)]
+pub fn round_down(fp: &mut ExtendedFloat, shift: i32) {
+ // Might have a shift greater than 64 if we have an error.
+ fp.mant = match shift == 64 {
+ true => 0,
+ false => fp.mant >> shift,
+ };
+ fp.exp += shift;
+}
diff --git a/vendor/minimal-lexical/src/slow.rs b/vendor/minimal-lexical/src/slow.rs
new file mode 100644
index 000000000..59d526ba4
--- /dev/null
+++ b/vendor/minimal-lexical/src/slow.rs
@@ -0,0 +1,403 @@
+//! Slow, fallback cases where we cannot unambiguously round a float.
+//!
+//! This occurs when we cannot determine the exact representation using
+//! both the fast path (native) cases nor the Lemire/Bellerophon algorithms,
+//! and therefore must fallback to a slow, arbitrary-precision representation.
+
+#![doc(hidden)]
+
+use crate::bigint::{Bigint, Limb, LIMB_BITS};
+use crate::extended_float::{extended_to_float, ExtendedFloat};
+use crate::num::Float;
+use crate::number::Number;
+use crate::rounding::{round, round_down, round_nearest_tie_even};
+use core::cmp;
+
+// ALGORITHM
+// ---------
+
+/// Parse the significant digits and biased, binary exponent of a float.
+///
+/// This is a fallback algorithm that uses a big-integer representation
+/// of the float, and therefore is considerably slower than faster
+/// approximations. However, it will always determine how to round
+/// the significant digits to the nearest machine float, allowing
+/// use to handle near half-way cases.
+///
+/// Near half-way cases are halfway between two consecutive machine floats.
+/// For example, the float `16777217.0` has a bitwise representation of
+/// `100000000000000000000000 1`. Rounding to a single-precision float,
+/// the trailing `1` is truncated. Using round-nearest, tie-even, any
+/// value above `16777217.0` must be rounded up to `16777218.0`, while
+/// any value before or equal to `16777217.0` must be rounded down
+/// to `16777216.0`. These near-halfway conversions therefore may require
+/// a large number of digits to unambiguously determine how to round.
+#[inline]
+pub fn slow<'a, F, Iter1, Iter2>(
+ num: Number,
+ fp: ExtendedFloat,
+ integer: Iter1,
+ fraction: Iter2,
+) -> ExtendedFloat
+where
+ F: Float,
+ Iter1: Iterator<Item = &'a u8> + Clone,
+ Iter2: Iterator<Item = &'a u8> + Clone,
+{
+ // Ensure our preconditions are valid:
+ // 1. The significant digits are not shifted into place.
+ debug_assert!(fp.mant & (1 << 63) != 0);
+
+ // This assumes the sign bit has already been parsed, and we're
+ // starting with the integer digits, and the float format has been
+ // correctly validated.
+ let sci_exp = scientific_exponent(&num);
+
+ // We have 2 major algorithms we use for this:
+ // 1. An algorithm with a finite number of digits and a positive exponent.
+ // 2. An algorithm with a finite number of digits and a negative exponent.
+ let (bigmant, digits) = parse_mantissa(integer, fraction, F::MAX_DIGITS);
+ let exponent = sci_exp + 1 - digits as i32;
+ if exponent >= 0 {
+ positive_digit_comp::<F>(bigmant, exponent)
+ } else {
+ negative_digit_comp::<F>(bigmant, fp, exponent)
+ }
+}
+
+/// Generate the significant digits with a positive exponent relative to mantissa.
+pub fn positive_digit_comp<F: Float>(mut bigmant: Bigint, exponent: i32) -> ExtendedFloat {
+ // Simple, we just need to multiply by the power of the radix.
+ // Now, we can calculate the mantissa and the exponent from this.
+ // The binary exponent is the binary exponent for the mantissa
+ // shifted to the hidden bit.
+ bigmant.pow(10, exponent as u32).unwrap();
+
+ // Get the exact representation of the float from the big integer.
+ // hi64 checks **all** the remaining bits after the mantissa,
+ // so it will check if **any** truncated digits exist.
+ let (mant, is_truncated) = bigmant.hi64();
+ let exp = bigmant.bit_length() as i32 - 64 + F::EXPONENT_BIAS;
+ let mut fp = ExtendedFloat {
+ mant,
+ exp,
+ };
+
+ // Shift the digits into position and determine if we need to round-up.
+ round::<F, _>(&mut fp, |f, s| {
+ round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| {
+ is_above || (is_halfway && is_truncated) || (is_odd && is_halfway)
+ });
+ });
+ fp
+}
+
+/// Generate the significant digits with a negative exponent relative to mantissa.
+///
+/// This algorithm is quite simple: we have the significant digits `m1 * b^N1`,
+/// where `m1` is the bigint mantissa, `b` is the radix, and `N1` is the radix
+/// exponent. We then calculate the theoretical representation of `b+h`, which
+/// is `m2 * 2^N2`, where `m2` is the bigint mantissa and `N2` is the binary
+/// exponent. If we had infinite, efficient floating precision, this would be
+/// equal to `m1 / b^-N1` and then compare it to `m2 * 2^N2`.
+///
+/// Since we cannot divide and keep precision, we must multiply the other:
+/// if we want to do `m1 / b^-N1 >= m2 * 2^N2`, we can do
+/// `m1 >= m2 * b^-N1 * 2^N2` Going to the decimal case, we can show and example
+/// and simplify this further: `m1 >= m2 * 2^N2 * 10^-N1`. Since we can remove
+/// a power-of-two, this is `m1 >= m2 * 2^(N2 - N1) * 5^-N1`. Therefore, if
+/// `N2 - N1 > 0`, we need have `m1 >= m2 * 2^(N2 - N1) * 5^-N1`, otherwise,
+/// we have `m1 * 2^(N1 - N2) >= m2 * 5^-N1`, where the resulting exponents
+/// are all positive.
+///
+/// This allows us to compare both floats using integers efficiently
+/// without any loss of precision.
+#[allow(clippy::comparison_chain)]
+pub fn negative_digit_comp<F: Float>(
+ bigmant: Bigint,
+ mut fp: ExtendedFloat,
+ exponent: i32,
+) -> ExtendedFloat {
+ // Ensure our preconditions are valid:
+ // 1. The significant digits are not shifted into place.
+ debug_assert!(fp.mant & (1 << 63) != 0);
+
+ // Get the significant digits and radix exponent for the real digits.
+ let mut real_digits = bigmant;
+ let real_exp = exponent;
+ debug_assert!(real_exp < 0);
+
+ // Round down our extended-precision float and calculate `b`.
+ let mut b = fp;
+ round::<F, _>(&mut b, round_down);
+ let b = extended_to_float::<F>(b);
+
+ // Get the significant digits and the binary exponent for `b+h`.
+ let theor = bh(b);
+ let mut theor_digits = Bigint::from_u64(theor.mant);
+ let theor_exp = theor.exp;
+
+ // We need to scale the real digits and `b+h` digits to be the same
+ // order. We currently have `real_exp`, in `radix`, that needs to be
+ // shifted to `theor_digits` (since it is negative), and `theor_exp`
+ // to either `theor_digits` or `real_digits` as a power of 2 (since it
+ // may be positive or negative). Try to remove as many powers of 2
+ // as possible. All values are relative to `theor_digits`, that is,
+ // reflect the power you need to multiply `theor_digits` by.
+ //
+ // Both are on opposite-sides of equation, can factor out a
+ // power of two.
+ //
+ // Example: 10^-10, 2^-10 -> ( 0, 10, 0)
+ // Example: 10^-10, 2^-15 -> (-5, 10, 0)
+ // Example: 10^-10, 2^-5 -> ( 5, 10, 0)
+ // Example: 10^-10, 2^5 -> (15, 10, 0)
+ let binary_exp = theor_exp - real_exp;
+ let halfradix_exp = -real_exp;
+ if halfradix_exp != 0 {
+ theor_digits.pow(5, halfradix_exp as u32).unwrap();
+ }
+ if binary_exp > 0 {
+ theor_digits.pow(2, binary_exp as u32).unwrap();
+ } else if binary_exp < 0 {
+ real_digits.pow(2, (-binary_exp) as u32).unwrap();
+ }
+
+ // Compare our theoretical and real digits and round nearest, tie even.
+ let ord = real_digits.data.cmp(&theor_digits.data);
+ round::<F, _>(&mut fp, |f, s| {
+ round_nearest_tie_even(f, s, |is_odd, _, _| {
+ // Can ignore `is_halfway` and `is_above`, since those were
+ // calculates using less significant digits.
+ match ord {
+ cmp::Ordering::Greater => true,
+ cmp::Ordering::Less => false,
+ cmp::Ordering::Equal if is_odd => true,
+ cmp::Ordering::Equal => false,
+ }
+ });
+ });
+ fp
+}
+
+/// Add a digit to the temporary value.
+macro_rules! add_digit {
+ ($c:ident, $value:ident, $counter:ident, $count:ident) => {{
+ let digit = $c - b'0';
+ $value *= 10 as Limb;
+ $value += digit as Limb;
+
+ // Increment our counters.
+ $counter += 1;
+ $count += 1;
+ }};
+}
+
+/// Add a temporary value to our mantissa.
+macro_rules! add_temporary {
+ // Multiply by the small power and add the native value.
+ (@mul $result:ident, $power:expr, $value:expr) => {
+ $result.data.mul_small($power).unwrap();
+ $result.data.add_small($value).unwrap();
+ };
+
+ // # Safety
+ //
+ // Safe is `counter <= step`, or smaller than the table size.
+ ($format:ident, $result:ident, $counter:ident, $value:ident) => {
+ if $counter != 0 {
+ // SAFETY: safe, since `counter <= step`, or smaller than the table size.
+ let small_power = unsafe { f64::int_pow_fast_path($counter, 10) };
+ add_temporary!(@mul $result, small_power as Limb, $value);
+ $counter = 0;
+ $value = 0;
+ }
+ };
+
+ // Add a temporary where we won't read the counter results internally.
+ //
+ // # Safety
+ //
+ // Safe is `counter <= step`, or smaller than the table size.
+ (@end $format:ident, $result:ident, $counter:ident, $value:ident) => {
+ if $counter != 0 {
+ // SAFETY: safe, since `counter <= step`, or smaller than the table size.
+ let small_power = unsafe { f64::int_pow_fast_path($counter, 10) };
+ add_temporary!(@mul $result, small_power as Limb, $value);
+ }
+ };
+
+ // Add the maximum native value.
+ (@max $format:ident, $result:ident, $counter:ident, $value:ident, $max:ident) => {
+ add_temporary!(@mul $result, $max, $value);
+ $counter = 0;
+ $value = 0;
+ };
+}
+
+/// Round-up a truncated value.
+macro_rules! round_up_truncated {
+ ($format:ident, $result:ident, $count:ident) => {{
+ // Need to round-up.
+ // Can't just add 1, since this can accidentally round-up
+ // values to a halfway point, which can cause invalid results.
+ add_temporary!(@mul $result, 10, 1);
+ $count += 1;
+ }};
+}
+
+/// Check and round-up the fraction if any non-zero digits exist.
+macro_rules! round_up_nonzero {
+ ($format:ident, $iter:expr, $result:ident, $count:ident) => {{
+ for &digit in $iter {
+ if digit != b'0' {
+ round_up_truncated!($format, $result, $count);
+ return ($result, $count);
+ }
+ }
+ }};
+}
+
+/// Parse the full mantissa into a big integer.
+///
+/// Returns the parsed mantissa and the number of digits in the mantissa.
+/// The max digits is the maximum number of digits plus one.
+pub fn parse_mantissa<'a, Iter1, Iter2>(
+ mut integer: Iter1,
+ mut fraction: Iter2,
+ max_digits: usize,
+) -> (Bigint, usize)
+where
+ Iter1: Iterator<Item = &'a u8> + Clone,
+ Iter2: Iterator<Item = &'a u8> + Clone,
+{
+ // Iteratively process all the data in the mantissa.
+ // We do this via small, intermediate values which once we reach
+ // the maximum number of digits we can process without overflow,
+ // we add the temporary to the big integer.
+ let mut counter: usize = 0;
+ let mut count: usize = 0;
+ let mut value: Limb = 0;
+ let mut result = Bigint::new();
+
+ // Now use our pre-computed small powers iteratively.
+ // This is calculated as `⌊log(2^BITS - 1, 10)⌋`.
+ let step: usize = if LIMB_BITS == 32 {
+ 9
+ } else {
+ 19
+ };
+ let max_native = (10 as Limb).pow(step as u32);
+
+ // Process the integer digits.
+ 'integer: loop {
+ // Parse a digit at a time, until we reach step.
+ while counter < step && count < max_digits {
+ if let Some(&c) = integer.next() {
+ add_digit!(c, value, counter, count);
+ } else {
+ break 'integer;
+ }
+ }
+
+ // Check if we've exhausted our max digits.
+ if count == max_digits {
+ // Need to check if we're truncated, and round-up accordingly.
+ // SAFETY: safe since `counter <= step`.
+ add_temporary!(@end format, result, counter, value);
+ round_up_nonzero!(format, integer, result, count);
+ round_up_nonzero!(format, fraction, result, count);
+ return (result, count);
+ } else {
+ // Add our temporary from the loop.
+ // SAFETY: safe since `counter <= step`.
+ add_temporary!(@max format, result, counter, value, max_native);
+ }
+ }
+
+ // Skip leading fraction zeros.
+ // Required to get an accurate count.
+ if count == 0 {
+ for &c in &mut fraction {
+ if c != b'0' {
+ add_digit!(c, value, counter, count);
+ break;
+ }
+ }
+ }
+
+ // Process the fraction digits.
+ 'fraction: loop {
+ // Parse a digit at a time, until we reach step.
+ while counter < step && count < max_digits {
+ if let Some(&c) = fraction.next() {
+ add_digit!(c, value, counter, count);
+ } else {
+ break 'fraction;
+ }
+ }
+
+ // Check if we've exhausted our max digits.
+ if count == max_digits {
+ // SAFETY: safe since `counter <= step`.
+ add_temporary!(@end format, result, counter, value);
+ round_up_nonzero!(format, fraction, result, count);
+ return (result, count);
+ } else {
+ // Add our temporary from the loop.
+ // SAFETY: safe since `counter <= step`.
+ add_temporary!(@max format, result, counter, value, max_native);
+ }
+ }
+
+ // We will always have a remainder, as long as we entered the loop
+ // once, or counter % step is 0.
+ // SAFETY: safe since `counter <= step`.
+ add_temporary!(@end format, result, counter, value);
+
+ (result, count)
+}
+
+// SCALING
+// -------
+
+/// Calculate the scientific exponent from a `Number` value.
+/// Any other attempts would require slowdowns for faster algorithms.
+#[inline]
+pub fn scientific_exponent(num: &Number) -> i32 {
+ // Use power reduction to make this faster.
+ let mut mantissa = num.mantissa;
+ let mut exponent = num.exponent;
+ while mantissa >= 10000 {
+ mantissa /= 10000;
+ exponent += 4;
+ }
+ while mantissa >= 100 {
+ mantissa /= 100;
+ exponent += 2;
+ }
+ while mantissa >= 10 {
+ mantissa /= 10;
+ exponent += 1;
+ }
+ exponent as i32
+}
+
+/// Calculate `b` from a a representation of `b` as a float.
+#[inline]
+pub fn b<F: Float>(float: F) -> ExtendedFloat {
+ ExtendedFloat {
+ mant: float.mantissa(),
+ exp: float.exponent(),
+ }
+}
+
+/// Calculate `b+h` from a a representation of `b` as a float.
+#[inline]
+pub fn bh<F: Float>(float: F) -> ExtendedFloat {
+ let fp = b(float);
+ ExtendedFloat {
+ mant: (fp.mant << 1) + 1,
+ exp: fp.exp - 1,
+ }
+}
diff --git a/vendor/minimal-lexical/src/stackvec.rs b/vendor/minimal-lexical/src/stackvec.rs
new file mode 100644
index 000000000..d9bc25955
--- /dev/null
+++ b/vendor/minimal-lexical/src/stackvec.rs
@@ -0,0 +1,308 @@
+//! Simple stack-allocated vector.
+
+#![cfg(not(feature = "alloc"))]
+#![doc(hidden)]
+
+use crate::bigint;
+use core::{cmp, mem, ops, ptr, slice};
+
+/// Simple stack vector implementation.
+#[derive(Clone)]
+pub struct StackVec {
+ /// The raw buffer for the elements.
+ data: [mem::MaybeUninit<bigint::Limb>; bigint::BIGINT_LIMBS],
+ /// The number of elements in the array (we never need more than u16::MAX).
+ length: u16,
+}
+
+#[allow(clippy::new_without_default)]
+impl StackVec {
+ /// Construct an empty vector.
+ #[inline]
+ pub const fn new() -> Self {
+ Self {
+ length: 0,
+ data: [mem::MaybeUninit::uninit(); bigint::BIGINT_LIMBS],
+ }
+ }
+
+ /// Construct a vector from an existing slice.
+ #[inline]
+ pub fn try_from(x: &[bigint::Limb]) -> Option<Self> {
+ let mut vec = Self::new();
+ vec.try_extend(x)?;
+ Some(vec)
+ }
+
+ /// Sets the length of a vector.
+ ///
+ /// This will explicitly set the size of the vector, without actually
+ /// modifying its buffers, so it is up to the caller to ensure that the
+ /// vector is actually the specified size.
+ ///
+ /// # Safety
+ ///
+ /// Safe as long as `len` is less than `BIGINT_LIMBS`.
+ #[inline]
+ pub unsafe fn set_len(&mut self, len: usize) {
+ // Constant is `u16::MAX` for older Rustc versions.
+ debug_assert!(len <= 0xffff);
+ debug_assert!(len <= bigint::BIGINT_LIMBS);
+ self.length = len as u16;
+ }
+
+ /// The number of elements stored in the vector.
+ #[inline]
+ pub const fn len(&self) -> usize {
+ self.length as usize
+ }
+
+ /// If the vector is empty.
+ #[inline]
+ pub const fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// The number of items the vector can hold.
+ #[inline]
+ pub const fn capacity(&self) -> usize {
+ bigint::BIGINT_LIMBS as usize
+ }
+
+ /// Append an item to the vector, without bounds checking.
+ ///
+ /// # Safety
+ ///
+ /// Safe if `self.len() < self.capacity()`.
+ #[inline]
+ pub unsafe fn push_unchecked(&mut self, value: bigint::Limb) {
+ debug_assert!(self.len() < self.capacity());
+ // SAFETY: safe, capacity is less than the current size.
+ unsafe {
+ ptr::write(self.as_mut_ptr().add(self.len()), value);
+ self.length += 1;
+ }
+ }
+
+ /// Append an item to the vector.
+ #[inline]
+ pub fn try_push(&mut self, value: bigint::Limb) -> Option<()> {
+ if self.len() < self.capacity() {
+ // SAFETY: safe, capacity is less than the current size.
+ unsafe { self.push_unchecked(value) };
+ Some(())
+ } else {
+ None
+ }
+ }
+
+ /// Remove an item from the end of a vector, without bounds checking.
+ ///
+ /// # Safety
+ ///
+ /// Safe if `self.len() > 0`.
+ #[inline]
+ pub unsafe fn pop_unchecked(&mut self) -> bigint::Limb {
+ debug_assert!(!self.is_empty());
+ // SAFETY: safe if `self.length > 0`.
+ // We have a trivial drop and copy, so this is safe.
+ self.length -= 1;
+ unsafe { ptr::read(self.as_mut_ptr().add(self.len())) }
+ }
+
+ /// Remove an item from the end of the vector and return it, or None if empty.
+ #[inline]
+ pub fn pop(&mut self) -> Option<bigint::Limb> {
+ if self.is_empty() {
+ None
+ } else {
+ // SAFETY: safe, since `self.len() > 0`.
+ unsafe { Some(self.pop_unchecked()) }
+ }
+ }
+
+ /// Add items from a slice to the vector, without bounds checking.
+ ///
+ /// # Safety
+ ///
+ /// Safe if `self.len() + slc.len() <= self.capacity()`.
+ #[inline]
+ pub unsafe fn extend_unchecked(&mut self, slc: &[bigint::Limb]) {
+ let index = self.len();
+ let new_len = index + slc.len();
+ debug_assert!(self.len() + slc.len() <= self.capacity());
+ let src = slc.as_ptr();
+ // SAFETY: safe if `self.len() + slc.len() <= self.capacity()`.
+ unsafe {
+ let dst = self.as_mut_ptr().add(index);
+ ptr::copy_nonoverlapping(src, dst, slc.len());
+ self.set_len(new_len);
+ }
+ }
+
+ /// Copy elements from a slice and append them to the vector.
+ #[inline]
+ pub fn try_extend(&mut self, slc: &[bigint::Limb]) -> Option<()> {
+ if self.len() + slc.len() <= self.capacity() {
+ // SAFETY: safe, since `self.len() + slc.len() <= self.capacity()`.
+ unsafe { self.extend_unchecked(slc) };
+ Some(())
+ } else {
+ None
+ }
+ }
+
+ /// Truncate vector to new length, dropping any items after `len`.
+ ///
+ /// # Safety
+ ///
+ /// Safe as long as `len <= self.capacity()`.
+ unsafe fn truncate_unchecked(&mut self, len: usize) {
+ debug_assert!(len <= self.capacity());
+ self.length = len as u16;
+ }
+
+ /// Resize the buffer, without bounds checking.
+ ///
+ /// # Safety
+ ///
+ /// Safe as long as `len <= self.capacity()`.
+ #[inline]
+ pub unsafe fn resize_unchecked(&mut self, len: usize, value: bigint::Limb) {
+ debug_assert!(len <= self.capacity());
+ let old_len = self.len();
+ if len > old_len {
+ // We have a trivial drop, so there's no worry here.
+ // Just, don't set the length until all values have been written,
+ // so we don't accidentally read uninitialized memory.
+
+ // SAFETY: safe if `len < self.capacity()`.
+ let count = len - old_len;
+ for index in 0..count {
+ unsafe {
+ let dst = self.as_mut_ptr().add(old_len + index);
+ ptr::write(dst, value);
+ }
+ }
+ self.length = len as u16;
+ } else {
+ // SAFETY: safe since `len < self.len()`.
+ unsafe { self.truncate_unchecked(len) };
+ }
+ }
+
+ /// Try to resize the buffer.
+ ///
+ /// If the new length is smaller than the current length, truncate
+ /// the input. If it's larger, then append elements to the buffer.
+ #[inline]
+ pub fn try_resize(&mut self, len: usize, value: bigint::Limb) -> Option<()> {
+ if len > self.capacity() {
+ None
+ } else {
+ // SAFETY: safe, since `len <= self.capacity()`.
+ unsafe { self.resize_unchecked(len, value) };
+ Some(())
+ }
+ }
+
+ // HI
+
+ /// Get the high 64 bits from the vector.
+ #[inline(always)]
+ pub fn hi64(&self) -> (u64, bool) {
+ bigint::hi64(self)
+ }
+
+ // FROM
+
+ /// Create StackVec from u64 value.
+ #[inline(always)]
+ pub fn from_u64(x: u64) -> Self {
+ bigint::from_u64(x)
+ }
+
+ // MATH
+
+ /// Normalize the integer, so any leading zero values are removed.
+ #[inline]
+ pub fn normalize(&mut self) {
+ bigint::normalize(self)
+ }
+
+ /// Get if the big integer is normalized.
+ #[inline]
+ pub fn is_normalized(&self) -> bool {
+ bigint::is_normalized(self)
+ }
+
+ /// AddAssign small integer.
+ #[inline]
+ pub fn add_small(&mut self, y: bigint::Limb) -> Option<()> {
+ bigint::small_add(self, y)
+ }
+
+ /// MulAssign small integer.
+ #[inline]
+ pub fn mul_small(&mut self, y: bigint::Limb) -> Option<()> {
+ bigint::small_mul(self, y)
+ }
+}
+
+impl PartialEq for StackVec {
+ #[inline]
+ #[allow(clippy::op_ref)]
+ fn eq(&self, other: &Self) -> bool {
+ use core::ops::Deref;
+ self.len() == other.len() && self.deref() == other.deref()
+ }
+}
+
+impl Eq for StackVec {
+}
+
+impl cmp::PartialOrd for StackVec {
+ #[inline]
+ fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
+ Some(bigint::compare(self, other))
+ }
+}
+
+impl cmp::Ord for StackVec {
+ #[inline]
+ fn cmp(&self, other: &Self) -> cmp::Ordering {
+ bigint::compare(self, other)
+ }
+}
+
+impl ops::Deref for StackVec {
+ type Target = [bigint::Limb];
+ #[inline]
+ fn deref(&self) -> &[bigint::Limb] {
+ // SAFETY: safe since `self.data[..self.len()]` must be initialized
+ // and `self.len() <= self.capacity()`.
+ unsafe {
+ let ptr = self.data.as_ptr() as *const bigint::Limb;
+ slice::from_raw_parts(ptr, self.len())
+ }
+ }
+}
+
+impl ops::DerefMut for StackVec {
+ #[inline]
+ fn deref_mut(&mut self) -> &mut [bigint::Limb] {
+ // SAFETY: safe since `self.data[..self.len()]` must be initialized
+ // and `self.len() <= self.capacity()`.
+ unsafe {
+ let ptr = self.data.as_mut_ptr() as *mut bigint::Limb;
+ slice::from_raw_parts_mut(ptr, self.len())
+ }
+ }
+}
+
+impl ops::MulAssign<&[bigint::Limb]> for StackVec {
+ #[inline]
+ fn mul_assign(&mut self, rhs: &[bigint::Limb]) {
+ bigint::large_mul(self, rhs).unwrap();
+ }
+}
diff --git a/vendor/minimal-lexical/src/table.rs b/vendor/minimal-lexical/src/table.rs
new file mode 100644
index 000000000..7b1367e32
--- /dev/null
+++ b/vendor/minimal-lexical/src/table.rs
@@ -0,0 +1,11 @@
+//! Pre-computed tables for parsing float strings.
+
+#![doc(hidden)]
+
+// Re-export all the feature-specific files.
+#[cfg(feature = "compact")]
+pub use crate::table_bellerophon::*;
+#[cfg(not(feature = "compact"))]
+pub use crate::table_lemire::*;
+#[cfg(not(feature = "compact"))]
+pub use crate::table_small::*;
diff --git a/vendor/minimal-lexical/src/table_bellerophon.rs b/vendor/minimal-lexical/src/table_bellerophon.rs
new file mode 100644
index 000000000..f85f8e6fb
--- /dev/null
+++ b/vendor/minimal-lexical/src/table_bellerophon.rs
@@ -0,0 +1,119 @@
+//! Cached exponents for basen values with 80-bit extended floats.
+//!
+//! Exact versions of base**n as an extended-precision float, with both
+//! large and small powers. Use the large powers to minimize the amount
+//! of compounded error. This is used in the Bellerophon algorithm.
+//!
+//! These values were calculated using Python, using the arbitrary-precision
+//! integer to calculate exact extended-representation of each value.
+//! These values are all normalized.
+//!
+//! DO NOT MODIFY: Generated by `etc/bellerophon_table.py`
+
+#![cfg(feature = "compact")]
+#![doc(hidden)]
+
+use crate::bellerophon::BellerophonPowers;
+
+// HIGH LEVEL
+// ----------
+
+pub const BASE10_POWERS: BellerophonPowers = BellerophonPowers {
+ small: &BASE10_SMALL_MANTISSA,
+ large: &BASE10_LARGE_MANTISSA,
+ small_int: &BASE10_SMALL_INT_POWERS,
+ step: BASE10_STEP,
+ bias: BASE10_BIAS,
+ log2: BASE10_LOG2_MULT,
+ log2_shift: BASE10_LOG2_SHIFT,
+};
+
+// LOW-LEVEL
+// ---------
+
+const BASE10_SMALL_MANTISSA: [u64; 10] = [
+ 9223372036854775808, // 10^0
+ 11529215046068469760, // 10^1
+ 14411518807585587200, // 10^2
+ 18014398509481984000, // 10^3
+ 11258999068426240000, // 10^4
+ 14073748835532800000, // 10^5
+ 17592186044416000000, // 10^6
+ 10995116277760000000, // 10^7
+ 13743895347200000000, // 10^8
+ 17179869184000000000, // 10^9
+];
+const BASE10_LARGE_MANTISSA: [u64; 66] = [
+ 11555125961253852697, // 10^-350
+ 13451937075301367670, // 10^-340
+ 15660115838168849784, // 10^-330
+ 18230774251475056848, // 10^-320
+ 10611707258198326947, // 10^-310
+ 12353653155963782858, // 10^-300
+ 14381545078898527261, // 10^-290
+ 16742321987285426889, // 10^-280
+ 9745314011399999080, // 10^-270
+ 11345038669416679861, // 10^-260
+ 13207363278391631158, // 10^-250
+ 15375394465392026070, // 10^-240
+ 17899314949046850752, // 10^-230
+ 10418772551374772303, // 10^-220
+ 12129047596099288555, // 10^-210
+ 14120069793541087484, // 10^-200
+ 16437924692338667210, // 10^-190
+ 9568131466127621947, // 10^-180
+ 11138771039116687545, // 10^-170
+ 12967236152753102995, // 10^-160
+ 15095849699286165408, // 10^-150
+ 17573882009934360870, // 10^-140
+ 10229345649675443343, // 10^-130
+ 11908525658859223294, // 10^-120
+ 13863348470604074297, // 10^-110
+ 16139061738043178685, // 10^-100
+ 9394170331095332911, // 10^-90
+ 10936253623915059621, // 10^-80
+ 12731474852090538039, // 10^-70
+ 14821387422376473014, // 10^-60
+ 17254365866976409468, // 10^-50
+ 10043362776618689222, // 10^-40
+ 11692013098647223345, // 10^-30
+ 13611294676837538538, // 10^-20
+ 15845632502852867518, // 10^-10
+ 9223372036854775808, // 10^0
+ 10737418240000000000, // 10^10
+ 12500000000000000000, // 10^20
+ 14551915228366851806, // 10^30
+ 16940658945086006781, // 10^40
+ 9860761315262647567, // 10^50
+ 11479437019748901445, // 10^60
+ 13363823550460978230, // 10^70
+ 15557538194652854267, // 10^80
+ 18111358157653424735, // 10^90
+ 10542197943230523224, // 10^100
+ 12272733663244316382, // 10^110
+ 14287342391028437277, // 10^120
+ 16632655625031838749, // 10^130
+ 9681479787123295682, // 10^140
+ 11270725851789228247, // 10^150
+ 13120851772591970218, // 10^160
+ 15274681817498023410, // 10^170
+ 17782069995880619867, // 10^180
+ 10350527006597618960, // 10^190
+ 12049599325514420588, // 10^200
+ 14027579833653779454, // 10^210
+ 16330252207878254650, // 10^220
+ 9505457831475799117, // 10^230
+ 11065809325636130661, // 10^240
+ 12882297539194266616, // 10^250
+ 14996968138956309548, // 10^260
+ 17458768723248864463, // 10^270
+ 10162340898095201970, // 10^280
+ 11830521861667747109, // 10^290
+ 13772540099066387756, // 10^300
+];
+const BASE10_SMALL_INT_POWERS: [u64; 10] =
+ [1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000];
+const BASE10_STEP: i32 = 10;
+const BASE10_BIAS: i32 = 350;
+const BASE10_LOG2_MULT: i64 = 217706;
+const BASE10_LOG2_SHIFT: i32 = 16;
diff --git a/vendor/minimal-lexical/src/table_lemire.rs b/vendor/minimal-lexical/src/table_lemire.rs
new file mode 100644
index 000000000..110e1dab2
--- /dev/null
+++ b/vendor/minimal-lexical/src/table_lemire.rs
@@ -0,0 +1,676 @@
+//! Pre-computed tables powers-of-5 for extended-precision representations.
+//!
+//! These tables enable fast scaling of the significant digits
+//! of a float to the decimal exponent, with minimal rounding
+//! errors, in a 128 or 192-bit representation.
+//!
+//! DO NOT MODIFY: Generated by `etc/lemire_table.py`
+//!
+//! This adapted from the Rust implementation, based on the fast-float-rust
+//! implementation, and is similarly subject to an Apache2.0/MIT license.
+
+#![doc(hidden)]
+#![cfg(not(feature = "compact"))]
+
+pub const SMALLEST_POWER_OF_FIVE: i32 = -342;
+pub const LARGEST_POWER_OF_FIVE: i32 = 308;
+pub const N_POWERS_OF_FIVE: usize = (LARGEST_POWER_OF_FIVE - SMALLEST_POWER_OF_FIVE + 1) as usize;
+
+// Use static to avoid long compile times: Rust compiler errors
+// can have the entire table compiled multiple times, and then
+// emit code multiple times, even if it's stripped out in
+// the final binary.
+#[rustfmt::skip]
+pub static POWER_OF_FIVE_128: [(u64, u64); N_POWERS_OF_FIVE] = [
+ (0xeef453d6923bd65a, 0x113faa2906a13b3f), // 5^-342
+ (0x9558b4661b6565f8, 0x4ac7ca59a424c507), // 5^-341
+ (0xbaaee17fa23ebf76, 0x5d79bcf00d2df649), // 5^-340
+ (0xe95a99df8ace6f53, 0xf4d82c2c107973dc), // 5^-339
+ (0x91d8a02bb6c10594, 0x79071b9b8a4be869), // 5^-338
+ (0xb64ec836a47146f9, 0x9748e2826cdee284), // 5^-337
+ (0xe3e27a444d8d98b7, 0xfd1b1b2308169b25), // 5^-336
+ (0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7), // 5^-335
+ (0xb208ef855c969f4f, 0xbdbd2d335e51a935), // 5^-334
+ (0xde8b2b66b3bc4723, 0xad2c788035e61382), // 5^-333
+ (0x8b16fb203055ac76, 0x4c3bcb5021afcc31), // 5^-332
+ (0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d), // 5^-331
+ (0xd953e8624b85dd78, 0xd71d6dad34a2af0d), // 5^-330
+ (0x87d4713d6f33aa6b, 0x8672648c40e5ad68), // 5^-329
+ (0xa9c98d8ccb009506, 0x680efdaf511f18c2), // 5^-328
+ (0xd43bf0effdc0ba48, 0x212bd1b2566def2), // 5^-327
+ (0x84a57695fe98746d, 0x14bb630f7604b57), // 5^-326
+ (0xa5ced43b7e3e9188, 0x419ea3bd35385e2d), // 5^-325
+ (0xcf42894a5dce35ea, 0x52064cac828675b9), // 5^-324
+ (0x818995ce7aa0e1b2, 0x7343efebd1940993), // 5^-323
+ (0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8), // 5^-322
+ (0xca66fa129f9b60a6, 0xd41a26e077774ef6), // 5^-321
+ (0xfd00b897478238d0, 0x8920b098955522b4), // 5^-320
+ (0x9e20735e8cb16382, 0x55b46e5f5d5535b0), // 5^-319
+ (0xc5a890362fddbc62, 0xeb2189f734aa831d), // 5^-318
+ (0xf712b443bbd52b7b, 0xa5e9ec7501d523e4), // 5^-317
+ (0x9a6bb0aa55653b2d, 0x47b233c92125366e), // 5^-316
+ (0xc1069cd4eabe89f8, 0x999ec0bb696e840a), // 5^-315
+ (0xf148440a256e2c76, 0xc00670ea43ca250d), // 5^-314
+ (0x96cd2a865764dbca, 0x380406926a5e5728), // 5^-313
+ (0xbc807527ed3e12bc, 0xc605083704f5ecf2), // 5^-312
+ (0xeba09271e88d976b, 0xf7864a44c633682e), // 5^-311
+ (0x93445b8731587ea3, 0x7ab3ee6afbe0211d), // 5^-310
+ (0xb8157268fdae9e4c, 0x5960ea05bad82964), // 5^-309
+ (0xe61acf033d1a45df, 0x6fb92487298e33bd), // 5^-308
+ (0x8fd0c16206306bab, 0xa5d3b6d479f8e056), // 5^-307
+ (0xb3c4f1ba87bc8696, 0x8f48a4899877186c), // 5^-306
+ (0xe0b62e2929aba83c, 0x331acdabfe94de87), // 5^-305
+ (0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14), // 5^-304
+ (0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9), // 5^-303
+ (0xdb71e91432b1a24a, 0xc9e82cd9f69d6150), // 5^-302
+ (0x892731ac9faf056e, 0xbe311c083a225cd2), // 5^-301
+ (0xab70fe17c79ac6ca, 0x6dbd630a48aaf406), // 5^-300
+ (0xd64d3d9db981787d, 0x92cbbccdad5b108), // 5^-299
+ (0x85f0468293f0eb4e, 0x25bbf56008c58ea5), // 5^-298
+ (0xa76c582338ed2621, 0xaf2af2b80af6f24e), // 5^-297
+ (0xd1476e2c07286faa, 0x1af5af660db4aee1), // 5^-296
+ (0x82cca4db847945ca, 0x50d98d9fc890ed4d), // 5^-295
+ (0xa37fce126597973c, 0xe50ff107bab528a0), // 5^-294
+ (0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8), // 5^-293
+ (0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a), // 5^-292
+ (0x9faacf3df73609b1, 0x77b191618c54e9ac), // 5^-291
+ (0xc795830d75038c1d, 0xd59df5b9ef6a2417), // 5^-290
+ (0xf97ae3d0d2446f25, 0x4b0573286b44ad1d), // 5^-289
+ (0x9becce62836ac577, 0x4ee367f9430aec32), // 5^-288
+ (0xc2e801fb244576d5, 0x229c41f793cda73f), // 5^-287
+ (0xf3a20279ed56d48a, 0x6b43527578c1110f), // 5^-286
+ (0x9845418c345644d6, 0x830a13896b78aaa9), // 5^-285
+ (0xbe5691ef416bd60c, 0x23cc986bc656d553), // 5^-284
+ (0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8), // 5^-283
+ (0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9), // 5^-282
+ (0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53), // 5^-281
+ (0xe858ad248f5c22c9, 0xd1b3400f8f9cff68), // 5^-280
+ (0x91376c36d99995be, 0x23100809b9c21fa1), // 5^-279
+ (0xb58547448ffffb2d, 0xabd40a0c2832a78a), // 5^-278
+ (0xe2e69915b3fff9f9, 0x16c90c8f323f516c), // 5^-277
+ (0x8dd01fad907ffc3b, 0xae3da7d97f6792e3), // 5^-276
+ (0xb1442798f49ffb4a, 0x99cd11cfdf41779c), // 5^-275
+ (0xdd95317f31c7fa1d, 0x40405643d711d583), // 5^-274
+ (0x8a7d3eef7f1cfc52, 0x482835ea666b2572), // 5^-273
+ (0xad1c8eab5ee43b66, 0xda3243650005eecf), // 5^-272
+ (0xd863b256369d4a40, 0x90bed43e40076a82), // 5^-271
+ (0x873e4f75e2224e68, 0x5a7744a6e804a291), // 5^-270
+ (0xa90de3535aaae202, 0x711515d0a205cb36), // 5^-269
+ (0xd3515c2831559a83, 0xd5a5b44ca873e03), // 5^-268
+ (0x8412d9991ed58091, 0xe858790afe9486c2), // 5^-267
+ (0xa5178fff668ae0b6, 0x626e974dbe39a872), // 5^-266
+ (0xce5d73ff402d98e3, 0xfb0a3d212dc8128f), // 5^-265
+ (0x80fa687f881c7f8e, 0x7ce66634bc9d0b99), // 5^-264
+ (0xa139029f6a239f72, 0x1c1fffc1ebc44e80), // 5^-263
+ (0xc987434744ac874e, 0xa327ffb266b56220), // 5^-262
+ (0xfbe9141915d7a922, 0x4bf1ff9f0062baa8), // 5^-261
+ (0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9), // 5^-260
+ (0xc4ce17b399107c22, 0xcb550fb4384d21d3), // 5^-259
+ (0xf6019da07f549b2b, 0x7e2a53a146606a48), // 5^-258
+ (0x99c102844f94e0fb, 0x2eda7444cbfc426d), // 5^-257
+ (0xc0314325637a1939, 0xfa911155fefb5308), // 5^-256
+ (0xf03d93eebc589f88, 0x793555ab7eba27ca), // 5^-255
+ (0x96267c7535b763b5, 0x4bc1558b2f3458de), // 5^-254
+ (0xbbb01b9283253ca2, 0x9eb1aaedfb016f16), // 5^-253
+ (0xea9c227723ee8bcb, 0x465e15a979c1cadc), // 5^-252
+ (0x92a1958a7675175f, 0xbfacd89ec191ec9), // 5^-251
+ (0xb749faed14125d36, 0xcef980ec671f667b), // 5^-250
+ (0xe51c79a85916f484, 0x82b7e12780e7401a), // 5^-249
+ (0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810), // 5^-248
+ (0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15), // 5^-247
+ (0xdfbdcece67006ac9, 0x67a791e093e1d49a), // 5^-246
+ (0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0), // 5^-245
+ (0xaecc49914078536d, 0x58fae9f773886e18), // 5^-244
+ (0xda7f5bf590966848, 0xaf39a475506a899e), // 5^-243
+ (0x888f99797a5e012d, 0x6d8406c952429603), // 5^-242
+ (0xaab37fd7d8f58178, 0xc8e5087ba6d33b83), // 5^-241
+ (0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64), // 5^-240
+ (0x855c3be0a17fcd26, 0x5cf2eea09a55067f), // 5^-239
+ (0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e), // 5^-238
+ (0xd0601d8efc57b08b, 0xf13b94daf124da26), // 5^-237
+ (0x823c12795db6ce57, 0x76c53d08d6b70858), // 5^-236
+ (0xa2cb1717b52481ed, 0x54768c4b0c64ca6e), // 5^-235
+ (0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09), // 5^-234
+ (0xfe5d54150b090b02, 0xd3f93b35435d7c4c), // 5^-233
+ (0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf), // 5^-232
+ (0xc6b8e9b0709f109a, 0x359ab6419ca1091b), // 5^-231
+ (0xf867241c8cc6d4c0, 0xc30163d203c94b62), // 5^-230
+ (0x9b407691d7fc44f8, 0x79e0de63425dcf1d), // 5^-229
+ (0xc21094364dfb5636, 0x985915fc12f542e4), // 5^-228
+ (0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d), // 5^-227
+ (0x979cf3ca6cec5b5a, 0xa705992ceecf9c42), // 5^-226
+ (0xbd8430bd08277231, 0x50c6ff782a838353), // 5^-225
+ (0xece53cec4a314ebd, 0xa4f8bf5635246428), // 5^-224
+ (0x940f4613ae5ed136, 0x871b7795e136be99), // 5^-223
+ (0xb913179899f68584, 0x28e2557b59846e3f), // 5^-222
+ (0xe757dd7ec07426e5, 0x331aeada2fe589cf), // 5^-221
+ (0x9096ea6f3848984f, 0x3ff0d2c85def7621), // 5^-220
+ (0xb4bca50b065abe63, 0xfed077a756b53a9), // 5^-219
+ (0xe1ebce4dc7f16dfb, 0xd3e8495912c62894), // 5^-218
+ (0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c), // 5^-217
+ (0xb080392cc4349dec, 0xbd8d794d96aacfb3), // 5^-216
+ (0xdca04777f541c567, 0xecf0d7a0fc5583a0), // 5^-215
+ (0x89e42caaf9491b60, 0xf41686c49db57244), // 5^-214
+ (0xac5d37d5b79b6239, 0x311c2875c522ced5), // 5^-213
+ (0xd77485cb25823ac7, 0x7d633293366b828b), // 5^-212
+ (0x86a8d39ef77164bc, 0xae5dff9c02033197), // 5^-211
+ (0xa8530886b54dbdeb, 0xd9f57f830283fdfc), // 5^-210
+ (0xd267caa862a12d66, 0xd072df63c324fd7b), // 5^-209
+ (0x8380dea93da4bc60, 0x4247cb9e59f71e6d), // 5^-208
+ (0xa46116538d0deb78, 0x52d9be85f074e608), // 5^-207
+ (0xcd795be870516656, 0x67902e276c921f8b), // 5^-206
+ (0x806bd9714632dff6, 0xba1cd8a3db53b6), // 5^-205
+ (0xa086cfcd97bf97f3, 0x80e8a40eccd228a4), // 5^-204
+ (0xc8a883c0fdaf7df0, 0x6122cd128006b2cd), // 5^-203
+ (0xfad2a4b13d1b5d6c, 0x796b805720085f81), // 5^-202
+ (0x9cc3a6eec6311a63, 0xcbe3303674053bb0), // 5^-201
+ (0xc3f490aa77bd60fc, 0xbedbfc4411068a9c), // 5^-200
+ (0xf4f1b4d515acb93b, 0xee92fb5515482d44), // 5^-199
+ (0x991711052d8bf3c5, 0x751bdd152d4d1c4a), // 5^-198
+ (0xbf5cd54678eef0b6, 0xd262d45a78a0635d), // 5^-197
+ (0xef340a98172aace4, 0x86fb897116c87c34), // 5^-196
+ (0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0), // 5^-195
+ (0xbae0a846d2195712, 0x8974836059cca109), // 5^-194
+ (0xe998d258869facd7, 0x2bd1a438703fc94b), // 5^-193
+ (0x91ff83775423cc06, 0x7b6306a34627ddcf), // 5^-192
+ (0xb67f6455292cbf08, 0x1a3bc84c17b1d542), // 5^-191
+ (0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93), // 5^-190
+ (0x8e938662882af53e, 0x547eb47b7282ee9c), // 5^-189
+ (0xb23867fb2a35b28d, 0xe99e619a4f23aa43), // 5^-188
+ (0xdec681f9f4c31f31, 0x6405fa00e2ec94d4), // 5^-187
+ (0x8b3c113c38f9f37e, 0xde83bc408dd3dd04), // 5^-186
+ (0xae0b158b4738705e, 0x9624ab50b148d445), // 5^-185
+ (0xd98ddaee19068c76, 0x3badd624dd9b0957), // 5^-184
+ (0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6), // 5^-183
+ (0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c), // 5^-182
+ (0xd47487cc8470652b, 0x7647c3200069671f), // 5^-181
+ (0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073), // 5^-180
+ (0xa5fb0a17c777cf09, 0xf468107100525890), // 5^-179
+ (0xcf79cc9db955c2cc, 0x7182148d4066eeb4), // 5^-178
+ (0x81ac1fe293d599bf, 0xc6f14cd848405530), // 5^-177
+ (0xa21727db38cb002f, 0xb8ada00e5a506a7c), // 5^-176
+ (0xca9cf1d206fdc03b, 0xa6d90811f0e4851c), // 5^-175
+ (0xfd442e4688bd304a, 0x908f4a166d1da663), // 5^-174
+ (0x9e4a9cec15763e2e, 0x9a598e4e043287fe), // 5^-173
+ (0xc5dd44271ad3cdba, 0x40eff1e1853f29fd), // 5^-172
+ (0xf7549530e188c128, 0xd12bee59e68ef47c), // 5^-171
+ (0x9a94dd3e8cf578b9, 0x82bb74f8301958ce), // 5^-170
+ (0xc13a148e3032d6e7, 0xe36a52363c1faf01), // 5^-169
+ (0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1), // 5^-168
+ (0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9), // 5^-167
+ (0xbcb2b812db11a5de, 0x7415d448f6b6f0e7), // 5^-166
+ (0xebdf661791d60f56, 0x111b495b3464ad21), // 5^-165
+ (0x936b9fcebb25c995, 0xcab10dd900beec34), // 5^-164
+ (0xb84687c269ef3bfb, 0x3d5d514f40eea742), // 5^-163
+ (0xe65829b3046b0afa, 0xcb4a5a3112a5112), // 5^-162
+ (0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab), // 5^-161
+ (0xb3f4e093db73a093, 0x59ed216765690f56), // 5^-160
+ (0xe0f218b8d25088b8, 0x306869c13ec3532c), // 5^-159
+ (0x8c974f7383725573, 0x1e414218c73a13fb), // 5^-158
+ (0xafbd2350644eeacf, 0xe5d1929ef90898fa), // 5^-157
+ (0xdbac6c247d62a583, 0xdf45f746b74abf39), // 5^-156
+ (0x894bc396ce5da772, 0x6b8bba8c328eb783), // 5^-155
+ (0xab9eb47c81f5114f, 0x66ea92f3f326564), // 5^-154
+ (0xd686619ba27255a2, 0xc80a537b0efefebd), // 5^-153
+ (0x8613fd0145877585, 0xbd06742ce95f5f36), // 5^-152
+ (0xa798fc4196e952e7, 0x2c48113823b73704), // 5^-151
+ (0xd17f3b51fca3a7a0, 0xf75a15862ca504c5), // 5^-150
+ (0x82ef85133de648c4, 0x9a984d73dbe722fb), // 5^-149
+ (0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba), // 5^-148
+ (0xcc963fee10b7d1b3, 0x318df905079926a8), // 5^-147
+ (0xffbbcfe994e5c61f, 0xfdf17746497f7052), // 5^-146
+ (0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633), // 5^-145
+ (0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0), // 5^-144
+ (0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0), // 5^-143
+ (0x9c1661a651213e2d, 0x6bea10ca65c084e), // 5^-142
+ (0xc31bfa0fe5698db8, 0x486e494fcff30a62), // 5^-141
+ (0xf3e2f893dec3f126, 0x5a89dba3c3efccfa), // 5^-140
+ (0x986ddb5c6b3a76b7, 0xf89629465a75e01c), // 5^-139
+ (0xbe89523386091465, 0xf6bbb397f1135823), // 5^-138
+ (0xee2ba6c0678b597f, 0x746aa07ded582e2c), // 5^-137
+ (0x94db483840b717ef, 0xa8c2a44eb4571cdc), // 5^-136
+ (0xba121a4650e4ddeb, 0x92f34d62616ce413), // 5^-135
+ (0xe896a0d7e51e1566, 0x77b020baf9c81d17), // 5^-134
+ (0x915e2486ef32cd60, 0xace1474dc1d122e), // 5^-133
+ (0xb5b5ada8aaff80b8, 0xd819992132456ba), // 5^-132
+ (0xe3231912d5bf60e6, 0x10e1fff697ed6c69), // 5^-131
+ (0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1), // 5^-130
+ (0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2), // 5^-129
+ (0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde), // 5^-128
+ (0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b), // 5^-127
+ (0xad4ab7112eb3929d, 0x86c16c98d2c953c6), // 5^-126
+ (0xd89d64d57a607744, 0xe871c7bf077ba8b7), // 5^-125
+ (0x87625f056c7c4a8b, 0x11471cd764ad4972), // 5^-124
+ (0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf), // 5^-123
+ (0xd389b47879823479, 0x4aff1d108d4ec2c3), // 5^-122
+ (0x843610cb4bf160cb, 0xcedf722a585139ba), // 5^-121
+ (0xa54394fe1eedb8fe, 0xc2974eb4ee658828), // 5^-120
+ (0xce947a3da6a9273e, 0x733d226229feea32), // 5^-119
+ (0x811ccc668829b887, 0x806357d5a3f525f), // 5^-118
+ (0xa163ff802a3426a8, 0xca07c2dcb0cf26f7), // 5^-117
+ (0xc9bcff6034c13052, 0xfc89b393dd02f0b5), // 5^-116
+ (0xfc2c3f3841f17c67, 0xbbac2078d443ace2), // 5^-115
+ (0x9d9ba7832936edc0, 0xd54b944b84aa4c0d), // 5^-114
+ (0xc5029163f384a931, 0xa9e795e65d4df11), // 5^-113
+ (0xf64335bcf065d37d, 0x4d4617b5ff4a16d5), // 5^-112
+ (0x99ea0196163fa42e, 0x504bced1bf8e4e45), // 5^-111
+ (0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6), // 5^-110
+ (0xf07da27a82c37088, 0x5d767327bb4e5a4c), // 5^-109
+ (0x964e858c91ba2655, 0x3a6a07f8d510f86f), // 5^-108
+ (0xbbe226efb628afea, 0x890489f70a55368b), // 5^-107
+ (0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e), // 5^-106
+ (0x92c8ae6b464fc96f, 0x3b0b8bc90012929d), // 5^-105
+ (0xb77ada0617e3bbcb, 0x9ce6ebb40173744), // 5^-104
+ (0xe55990879ddcaabd, 0xcc420a6a101d0515), // 5^-103
+ (0x8f57fa54c2a9eab6, 0x9fa946824a12232d), // 5^-102
+ (0xb32df8e9f3546564, 0x47939822dc96abf9), // 5^-101
+ (0xdff9772470297ebd, 0x59787e2b93bc56f7), // 5^-100
+ (0x8bfbea76c619ef36, 0x57eb4edb3c55b65a), // 5^-99
+ (0xaefae51477a06b03, 0xede622920b6b23f1), // 5^-98
+ (0xdab99e59958885c4, 0xe95fab368e45eced), // 5^-97
+ (0x88b402f7fd75539b, 0x11dbcb0218ebb414), // 5^-96
+ (0xaae103b5fcd2a881, 0xd652bdc29f26a119), // 5^-95
+ (0xd59944a37c0752a2, 0x4be76d3346f0495f), // 5^-94
+ (0x857fcae62d8493a5, 0x6f70a4400c562ddb), // 5^-93
+ (0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952), // 5^-92
+ (0xd097ad07a71f26b2, 0x7e2000a41346a7a7), // 5^-91
+ (0x825ecc24c873782f, 0x8ed400668c0c28c8), // 5^-90
+ (0xa2f67f2dfa90563b, 0x728900802f0f32fa), // 5^-89
+ (0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9), // 5^-88
+ (0xfea126b7d78186bc, 0xe2f610c84987bfa8), // 5^-87
+ (0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9), // 5^-86
+ (0xc6ede63fa05d3143, 0x91503d1c79720dbb), // 5^-85
+ (0xf8a95fcf88747d94, 0x75a44c6397ce912a), // 5^-84
+ (0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba), // 5^-83
+ (0xc24452da229b021b, 0xfbe85badce996168), // 5^-82
+ (0xf2d56790ab41c2a2, 0xfae27299423fb9c3), // 5^-81
+ (0x97c560ba6b0919a5, 0xdccd879fc967d41a), // 5^-80
+ (0xbdb6b8e905cb600f, 0x5400e987bbc1c920), // 5^-79
+ (0xed246723473e3813, 0x290123e9aab23b68), // 5^-78
+ (0x9436c0760c86e30b, 0xf9a0b6720aaf6521), // 5^-77
+ (0xb94470938fa89bce, 0xf808e40e8d5b3e69), // 5^-76
+ (0xe7958cb87392c2c2, 0xb60b1d1230b20e04), // 5^-75
+ (0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2), // 5^-74
+ (0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3), // 5^-73
+ (0xe2280b6c20dd5232, 0x25c6da63c38de1b0), // 5^-72
+ (0x8d590723948a535f, 0x579c487e5a38ad0e), // 5^-71
+ (0xb0af48ec79ace837, 0x2d835a9df0c6d851), // 5^-70
+ (0xdcdb1b2798182244, 0xf8e431456cf88e65), // 5^-69
+ (0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff), // 5^-68
+ (0xac8b2d36eed2dac5, 0xe272467e3d222f3f), // 5^-67
+ (0xd7adf884aa879177, 0x5b0ed81dcc6abb0f), // 5^-66
+ (0x86ccbb52ea94baea, 0x98e947129fc2b4e9), // 5^-65
+ (0xa87fea27a539e9a5, 0x3f2398d747b36224), // 5^-64
+ (0xd29fe4b18e88640e, 0x8eec7f0d19a03aad), // 5^-63
+ (0x83a3eeeef9153e89, 0x1953cf68300424ac), // 5^-62
+ (0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7), // 5^-61
+ (0xcdb02555653131b6, 0x3792f412cb06794d), // 5^-60
+ (0x808e17555f3ebf11, 0xe2bbd88bbee40bd0), // 5^-59
+ (0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4), // 5^-58
+ (0xc8de047564d20a8b, 0xf245825a5a445275), // 5^-57
+ (0xfb158592be068d2e, 0xeed6e2f0f0d56712), // 5^-56
+ (0x9ced737bb6c4183d, 0x55464dd69685606b), // 5^-55
+ (0xc428d05aa4751e4c, 0xaa97e14c3c26b886), // 5^-54
+ (0xf53304714d9265df, 0xd53dd99f4b3066a8), // 5^-53
+ (0x993fe2c6d07b7fab, 0xe546a8038efe4029), // 5^-52
+ (0xbf8fdb78849a5f96, 0xde98520472bdd033), // 5^-51
+ (0xef73d256a5c0f77c, 0x963e66858f6d4440), // 5^-50
+ (0x95a8637627989aad, 0xdde7001379a44aa8), // 5^-49
+ (0xbb127c53b17ec159, 0x5560c018580d5d52), // 5^-48
+ (0xe9d71b689dde71af, 0xaab8f01e6e10b4a6), // 5^-47
+ (0x9226712162ab070d, 0xcab3961304ca70e8), // 5^-46
+ (0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22), // 5^-45
+ (0xe45c10c42a2b3b05, 0x8cb89a7db77c506a), // 5^-44
+ (0x8eb98a7a9a5b04e3, 0x77f3608e92adb242), // 5^-43
+ (0xb267ed1940f1c61c, 0x55f038b237591ed3), // 5^-42
+ (0xdf01e85f912e37a3, 0x6b6c46dec52f6688), // 5^-41
+ (0x8b61313bbabce2c6, 0x2323ac4b3b3da015), // 5^-40
+ (0xae397d8aa96c1b77, 0xabec975e0a0d081a), // 5^-39
+ (0xd9c7dced53c72255, 0x96e7bd358c904a21), // 5^-38
+ (0x881cea14545c7575, 0x7e50d64177da2e54), // 5^-37
+ (0xaa242499697392d2, 0xdde50bd1d5d0b9e9), // 5^-36
+ (0xd4ad2dbfc3d07787, 0x955e4ec64b44e864), // 5^-35
+ (0x84ec3c97da624ab4, 0xbd5af13bef0b113e), // 5^-34
+ (0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e), // 5^-33
+ (0xcfb11ead453994ba, 0x67de18eda5814af2), // 5^-32
+ (0x81ceb32c4b43fcf4, 0x80eacf948770ced7), // 5^-31
+ (0xa2425ff75e14fc31, 0xa1258379a94d028d), // 5^-30
+ (0xcad2f7f5359a3b3e, 0x96ee45813a04330), // 5^-29
+ (0xfd87b5f28300ca0d, 0x8bca9d6e188853fc), // 5^-28
+ (0x9e74d1b791e07e48, 0x775ea264cf55347e), // 5^-27
+ (0xc612062576589dda, 0x95364afe032a819e), // 5^-26
+ (0xf79687aed3eec551, 0x3a83ddbd83f52205), // 5^-25
+ (0x9abe14cd44753b52, 0xc4926a9672793543), // 5^-24
+ (0xc16d9a0095928a27, 0x75b7053c0f178294), // 5^-23
+ (0xf1c90080baf72cb1, 0x5324c68b12dd6339), // 5^-22
+ (0x971da05074da7bee, 0xd3f6fc16ebca5e04), // 5^-21
+ (0xbce5086492111aea, 0x88f4bb1ca6bcf585), // 5^-20
+ (0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6), // 5^-19
+ (0x9392ee8e921d5d07, 0x3aff322e62439fd0), // 5^-18
+ (0xb877aa3236a4b449, 0x9befeb9fad487c3), // 5^-17
+ (0xe69594bec44de15b, 0x4c2ebe687989a9b4), // 5^-16
+ (0x901d7cf73ab0acd9, 0xf9d37014bf60a11), // 5^-15
+ (0xb424dc35095cd80f, 0x538484c19ef38c95), // 5^-14
+ (0xe12e13424bb40e13, 0x2865a5f206b06fba), // 5^-13
+ (0x8cbccc096f5088cb, 0xf93f87b7442e45d4), // 5^-12
+ (0xafebff0bcb24aafe, 0xf78f69a51539d749), // 5^-11
+ (0xdbe6fecebdedd5be, 0xb573440e5a884d1c), // 5^-10
+ (0x89705f4136b4a597, 0x31680a88f8953031), // 5^-9
+ (0xabcc77118461cefc, 0xfdc20d2b36ba7c3e), // 5^-8
+ (0xd6bf94d5e57a42bc, 0x3d32907604691b4d), // 5^-7
+ (0x8637bd05af6c69b5, 0xa63f9a49c2c1b110), // 5^-6
+ (0xa7c5ac471b478423, 0xfcf80dc33721d54), // 5^-5
+ (0xd1b71758e219652b, 0xd3c36113404ea4a9), // 5^-4
+ (0x83126e978d4fdf3b, 0x645a1cac083126ea), // 5^-3
+ (0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4), // 5^-2
+ (0xcccccccccccccccc, 0xcccccccccccccccd), // 5^-1
+ (0x8000000000000000, 0x0), // 5^0
+ (0xa000000000000000, 0x0), // 5^1
+ (0xc800000000000000, 0x0), // 5^2
+ (0xfa00000000000000, 0x0), // 5^3
+ (0x9c40000000000000, 0x0), // 5^4
+ (0xc350000000000000, 0x0), // 5^5
+ (0xf424000000000000, 0x0), // 5^6
+ (0x9896800000000000, 0x0), // 5^7
+ (0xbebc200000000000, 0x0), // 5^8
+ (0xee6b280000000000, 0x0), // 5^9
+ (0x9502f90000000000, 0x0), // 5^10
+ (0xba43b74000000000, 0x0), // 5^11
+ (0xe8d4a51000000000, 0x0), // 5^12
+ (0x9184e72a00000000, 0x0), // 5^13
+ (0xb5e620f480000000, 0x0), // 5^14
+ (0xe35fa931a0000000, 0x0), // 5^15
+ (0x8e1bc9bf04000000, 0x0), // 5^16
+ (0xb1a2bc2ec5000000, 0x0), // 5^17
+ (0xde0b6b3a76400000, 0x0), // 5^18
+ (0x8ac7230489e80000, 0x0), // 5^19
+ (0xad78ebc5ac620000, 0x0), // 5^20
+ (0xd8d726b7177a8000, 0x0), // 5^21
+ (0x878678326eac9000, 0x0), // 5^22
+ (0xa968163f0a57b400, 0x0), // 5^23
+ (0xd3c21bcecceda100, 0x0), // 5^24
+ (0x84595161401484a0, 0x0), // 5^25
+ (0xa56fa5b99019a5c8, 0x0), // 5^26
+ (0xcecb8f27f4200f3a, 0x0), // 5^27
+ (0x813f3978f8940984, 0x4000000000000000), // 5^28
+ (0xa18f07d736b90be5, 0x5000000000000000), // 5^29
+ (0xc9f2c9cd04674ede, 0xa400000000000000), // 5^30
+ (0xfc6f7c4045812296, 0x4d00000000000000), // 5^31
+ (0x9dc5ada82b70b59d, 0xf020000000000000), // 5^32
+ (0xc5371912364ce305, 0x6c28000000000000), // 5^33
+ (0xf684df56c3e01bc6, 0xc732000000000000), // 5^34
+ (0x9a130b963a6c115c, 0x3c7f400000000000), // 5^35
+ (0xc097ce7bc90715b3, 0x4b9f100000000000), // 5^36
+ (0xf0bdc21abb48db20, 0x1e86d40000000000), // 5^37
+ (0x96769950b50d88f4, 0x1314448000000000), // 5^38
+ (0xbc143fa4e250eb31, 0x17d955a000000000), // 5^39
+ (0xeb194f8e1ae525fd, 0x5dcfab0800000000), // 5^40
+ (0x92efd1b8d0cf37be, 0x5aa1cae500000000), // 5^41
+ (0xb7abc627050305ad, 0xf14a3d9e40000000), // 5^42
+ (0xe596b7b0c643c719, 0x6d9ccd05d0000000), // 5^43
+ (0x8f7e32ce7bea5c6f, 0xe4820023a2000000), // 5^44
+ (0xb35dbf821ae4f38b, 0xdda2802c8a800000), // 5^45
+ (0xe0352f62a19e306e, 0xd50b2037ad200000), // 5^46
+ (0x8c213d9da502de45, 0x4526f422cc340000), // 5^47
+ (0xaf298d050e4395d6, 0x9670b12b7f410000), // 5^48
+ (0xdaf3f04651d47b4c, 0x3c0cdd765f114000), // 5^49
+ (0x88d8762bf324cd0f, 0xa5880a69fb6ac800), // 5^50
+ (0xab0e93b6efee0053, 0x8eea0d047a457a00), // 5^51
+ (0xd5d238a4abe98068, 0x72a4904598d6d880), // 5^52
+ (0x85a36366eb71f041, 0x47a6da2b7f864750), // 5^53
+ (0xa70c3c40a64e6c51, 0x999090b65f67d924), // 5^54
+ (0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d), // 5^55
+ (0x82818f1281ed449f, 0xbff8f10e7a8921a4), // 5^56
+ (0xa321f2d7226895c7, 0xaff72d52192b6a0d), // 5^57
+ (0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490), // 5^58
+ (0xfee50b7025c36a08, 0x2f236d04753d5b4), // 5^59
+ (0x9f4f2726179a2245, 0x1d762422c946590), // 5^60
+ (0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5), // 5^61
+ (0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2), // 5^62
+ (0x9b934c3b330c8577, 0x63cc55f49f88eb2f), // 5^63
+ (0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb), // 5^64
+ (0xf316271c7fc3908a, 0x8bef464e3945ef7a), // 5^65
+ (0x97edd871cfda3a56, 0x97758bf0e3cbb5ac), // 5^66
+ (0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317), // 5^67
+ (0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd), // 5^68
+ (0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a), // 5^69
+ (0xb975d6b6ee39e436, 0xb3e2fd538e122b44), // 5^70
+ (0xe7d34c64a9c85d44, 0x60dbbca87196b616), // 5^71
+ (0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd), // 5^72
+ (0xb51d13aea4a488dd, 0x6babab6398bdbe41), // 5^73
+ (0xe264589a4dcdab14, 0xc696963c7eed2dd1), // 5^74
+ (0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2), // 5^75
+ (0xb0de65388cc8ada8, 0x3b25a55f43294bcb), // 5^76
+ (0xdd15fe86affad912, 0x49ef0eb713f39ebe), // 5^77
+ (0x8a2dbf142dfcc7ab, 0x6e3569326c784337), // 5^78
+ (0xacb92ed9397bf996, 0x49c2c37f07965404), // 5^79
+ (0xd7e77a8f87daf7fb, 0xdc33745ec97be906), // 5^80
+ (0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3), // 5^81
+ (0xa8acd7c0222311bc, 0xc40832ea0d68ce0c), // 5^82
+ (0xd2d80db02aabd62b, 0xf50a3fa490c30190), // 5^83
+ (0x83c7088e1aab65db, 0x792667c6da79e0fa), // 5^84
+ (0xa4b8cab1a1563f52, 0x577001b891185938), // 5^85
+ (0xcde6fd5e09abcf26, 0xed4c0226b55e6f86), // 5^86
+ (0x80b05e5ac60b6178, 0x544f8158315b05b4), // 5^87
+ (0xa0dc75f1778e39d6, 0x696361ae3db1c721), // 5^88
+ (0xc913936dd571c84c, 0x3bc3a19cd1e38e9), // 5^89
+ (0xfb5878494ace3a5f, 0x4ab48a04065c723), // 5^90
+ (0x9d174b2dcec0e47b, 0x62eb0d64283f9c76), // 5^91
+ (0xc45d1df942711d9a, 0x3ba5d0bd324f8394), // 5^92
+ (0xf5746577930d6500, 0xca8f44ec7ee36479), // 5^93
+ (0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb), // 5^94
+ (0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e), // 5^95
+ (0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e), // 5^96
+ (0x95d04aee3b80ece5, 0xbba1f1d158724a12), // 5^97
+ (0xbb445da9ca61281f, 0x2a8a6e45ae8edc97), // 5^98
+ (0xea1575143cf97226, 0xf52d09d71a3293bd), // 5^99
+ (0x924d692ca61be758, 0x593c2626705f9c56), // 5^100
+ (0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c), // 5^101
+ (0xe498f455c38b997a, 0xb6dfb9c0f956447), // 5^102
+ (0x8edf98b59a373fec, 0x4724bd4189bd5eac), // 5^103
+ (0xb2977ee300c50fe7, 0x58edec91ec2cb657), // 5^104
+ (0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed), // 5^105
+ (0x8b865b215899f46c, 0xbd79e0d20082ee74), // 5^106
+ (0xae67f1e9aec07187, 0xecd8590680a3aa11), // 5^107
+ (0xda01ee641a708de9, 0xe80e6f4820cc9495), // 5^108
+ (0x884134fe908658b2, 0x3109058d147fdcdd), // 5^109
+ (0xaa51823e34a7eede, 0xbd4b46f0599fd415), // 5^110
+ (0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a), // 5^111
+ (0x850fadc09923329e, 0x3e2cf6bc604ddb0), // 5^112
+ (0xa6539930bf6bff45, 0x84db8346b786151c), // 5^113
+ (0xcfe87f7cef46ff16, 0xe612641865679a63), // 5^114
+ (0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e), // 5^115
+ (0xa26da3999aef7749, 0xe3be5e330f38f09d), // 5^116
+ (0xcb090c8001ab551c, 0x5cadf5bfd3072cc5), // 5^117
+ (0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6), // 5^118
+ (0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa), // 5^119
+ (0xc646d63501a1511d, 0xb281e1fd541501b8), // 5^120
+ (0xf7d88bc24209a565, 0x1f225a7ca91a4226), // 5^121
+ (0x9ae757596946075f, 0x3375788de9b06958), // 5^122
+ (0xc1a12d2fc3978937, 0x52d6b1641c83ae), // 5^123
+ (0xf209787bb47d6b84, 0xc0678c5dbd23a49a), // 5^124
+ (0x9745eb4d50ce6332, 0xf840b7ba963646e0), // 5^125
+ (0xbd176620a501fbff, 0xb650e5a93bc3d898), // 5^126
+ (0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe), // 5^127
+ (0x93ba47c980e98cdf, 0xc66f336c36b10137), // 5^128
+ (0xb8a8d9bbe123f017, 0xb80b0047445d4184), // 5^129
+ (0xe6d3102ad96cec1d, 0xa60dc059157491e5), // 5^130
+ (0x9043ea1ac7e41392, 0x87c89837ad68db2f), // 5^131
+ (0xb454e4a179dd1877, 0x29babe4598c311fb), // 5^132
+ (0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a), // 5^133
+ (0x8ce2529e2734bb1d, 0x1899e4a65f58660c), // 5^134
+ (0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f), // 5^135
+ (0xdc21a1171d42645d, 0x76707543f4fa1f73), // 5^136
+ (0x899504ae72497eba, 0x6a06494a791c53a8), // 5^137
+ (0xabfa45da0edbde69, 0x487db9d17636892), // 5^138
+ (0xd6f8d7509292d603, 0x45a9d2845d3c42b6), // 5^139
+ (0x865b86925b9bc5c2, 0xb8a2392ba45a9b2), // 5^140
+ (0xa7f26836f282b732, 0x8e6cac7768d7141e), // 5^141
+ (0xd1ef0244af2364ff, 0x3207d795430cd926), // 5^142
+ (0x8335616aed761f1f, 0x7f44e6bd49e807b8), // 5^143
+ (0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6), // 5^144
+ (0xcd036837130890a1, 0x36dba887c37a8c0f), // 5^145
+ (0x802221226be55a64, 0xc2494954da2c9789), // 5^146
+ (0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c), // 5^147
+ (0xc83553c5c8965d3d, 0x6f92829494e5acc7), // 5^148
+ (0xfa42a8b73abbf48c, 0xcb772339ba1f17f9), // 5^149
+ (0x9c69a97284b578d7, 0xff2a760414536efb), // 5^150
+ (0xc38413cf25e2d70d, 0xfef5138519684aba), // 5^151
+ (0xf46518c2ef5b8cd1, 0x7eb258665fc25d69), // 5^152
+ (0x98bf2f79d5993802, 0xef2f773ffbd97a61), // 5^153
+ (0xbeeefb584aff8603, 0xaafb550ffacfd8fa), // 5^154
+ (0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38), // 5^155
+ (0x952ab45cfa97a0b2, 0xdd945a747bf26183), // 5^156
+ (0xba756174393d88df, 0x94f971119aeef9e4), // 5^157
+ (0xe912b9d1478ceb17, 0x7a37cd5601aab85d), // 5^158
+ (0x91abb422ccb812ee, 0xac62e055c10ab33a), // 5^159
+ (0xb616a12b7fe617aa, 0x577b986b314d6009), // 5^160
+ (0xe39c49765fdf9d94, 0xed5a7e85fda0b80b), // 5^161
+ (0x8e41ade9fbebc27d, 0x14588f13be847307), // 5^162
+ (0xb1d219647ae6b31c, 0x596eb2d8ae258fc8), // 5^163
+ (0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb), // 5^164
+ (0x8aec23d680043bee, 0x25de7bb9480d5854), // 5^165
+ (0xada72ccc20054ae9, 0xaf561aa79a10ae6a), // 5^166
+ (0xd910f7ff28069da4, 0x1b2ba1518094da04), // 5^167
+ (0x87aa9aff79042286, 0x90fb44d2f05d0842), // 5^168
+ (0xa99541bf57452b28, 0x353a1607ac744a53), // 5^169
+ (0xd3fa922f2d1675f2, 0x42889b8997915ce8), // 5^170
+ (0x847c9b5d7c2e09b7, 0x69956135febada11), // 5^171
+ (0xa59bc234db398c25, 0x43fab9837e699095), // 5^172
+ (0xcf02b2c21207ef2e, 0x94f967e45e03f4bb), // 5^173
+ (0x8161afb94b44f57d, 0x1d1be0eebac278f5), // 5^174
+ (0xa1ba1ba79e1632dc, 0x6462d92a69731732), // 5^175
+ (0xca28a291859bbf93, 0x7d7b8f7503cfdcfe), // 5^176
+ (0xfcb2cb35e702af78, 0x5cda735244c3d43e), // 5^177
+ (0x9defbf01b061adab, 0x3a0888136afa64a7), // 5^178
+ (0xc56baec21c7a1916, 0x88aaa1845b8fdd0), // 5^179
+ (0xf6c69a72a3989f5b, 0x8aad549e57273d45), // 5^180
+ (0x9a3c2087a63f6399, 0x36ac54e2f678864b), // 5^181
+ (0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd), // 5^182
+ (0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5), // 5^183
+ (0x969eb7c47859e743, 0x9f644ae5a4b1b325), // 5^184
+ (0xbc4665b596706114, 0x873d5d9f0dde1fee), // 5^185
+ (0xeb57ff22fc0c7959, 0xa90cb506d155a7ea), // 5^186
+ (0x9316ff75dd87cbd8, 0x9a7f12442d588f2), // 5^187
+ (0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f), // 5^188
+ (0xe5d3ef282a242e81, 0x8f1668c8a86da5fa), // 5^189
+ (0x8fa475791a569d10, 0xf96e017d694487bc), // 5^190
+ (0xb38d92d760ec4455, 0x37c981dcc395a9ac), // 5^191
+ (0xe070f78d3927556a, 0x85bbe253f47b1417), // 5^192
+ (0x8c469ab843b89562, 0x93956d7478ccec8e), // 5^193
+ (0xaf58416654a6babb, 0x387ac8d1970027b2), // 5^194
+ (0xdb2e51bfe9d0696a, 0x6997b05fcc0319e), // 5^195
+ (0x88fcf317f22241e2, 0x441fece3bdf81f03), // 5^196
+ (0xab3c2fddeeaad25a, 0xd527e81cad7626c3), // 5^197
+ (0xd60b3bd56a5586f1, 0x8a71e223d8d3b074), // 5^198
+ (0x85c7056562757456, 0xf6872d5667844e49), // 5^199
+ (0xa738c6bebb12d16c, 0xb428f8ac016561db), // 5^200
+ (0xd106f86e69d785c7, 0xe13336d701beba52), // 5^201
+ (0x82a45b450226b39c, 0xecc0024661173473), // 5^202
+ (0xa34d721642b06084, 0x27f002d7f95d0190), // 5^203
+ (0xcc20ce9bd35c78a5, 0x31ec038df7b441f4), // 5^204
+ (0xff290242c83396ce, 0x7e67047175a15271), // 5^205
+ (0x9f79a169bd203e41, 0xf0062c6e984d386), // 5^206
+ (0xc75809c42c684dd1, 0x52c07b78a3e60868), // 5^207
+ (0xf92e0c3537826145, 0xa7709a56ccdf8a82), // 5^208
+ (0x9bbcc7a142b17ccb, 0x88a66076400bb691), // 5^209
+ (0xc2abf989935ddbfe, 0x6acff893d00ea435), // 5^210
+ (0xf356f7ebf83552fe, 0x583f6b8c4124d43), // 5^211
+ (0x98165af37b2153de, 0xc3727a337a8b704a), // 5^212
+ (0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c), // 5^213
+ (0xeda2ee1c7064130c, 0x1162def06f79df73), // 5^214
+ (0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8), // 5^215
+ (0xb9a74a0637ce2ee1, 0x6d953e2bd7173692), // 5^216
+ (0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437), // 5^217
+ (0x910ab1d4db9914a0, 0x1d9c9892400a22a2), // 5^218
+ (0xb54d5e4a127f59c8, 0x2503beb6d00cab4b), // 5^219
+ (0xe2a0b5dc971f303a, 0x2e44ae64840fd61d), // 5^220
+ (0x8da471a9de737e24, 0x5ceaecfed289e5d2), // 5^221
+ (0xb10d8e1456105dad, 0x7425a83e872c5f47), // 5^222
+ (0xdd50f1996b947518, 0xd12f124e28f77719), // 5^223
+ (0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f), // 5^224
+ (0xace73cbfdc0bfb7b, 0x636cc64d1001550b), // 5^225
+ (0xd8210befd30efa5a, 0x3c47f7e05401aa4e), // 5^226
+ (0x8714a775e3e95c78, 0x65acfaec34810a71), // 5^227
+ (0xa8d9d1535ce3b396, 0x7f1839a741a14d0d), // 5^228
+ (0xd31045a8341ca07c, 0x1ede48111209a050), // 5^229
+ (0x83ea2b892091e44d, 0x934aed0aab460432), // 5^230
+ (0xa4e4b66b68b65d60, 0xf81da84d5617853f), // 5^231
+ (0xce1de40642e3f4b9, 0x36251260ab9d668e), // 5^232
+ (0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019), // 5^233
+ (0xa1075a24e4421730, 0xb24cf65b8612f81f), // 5^234
+ (0xc94930ae1d529cfc, 0xdee033f26797b627), // 5^235
+ (0xfb9b7cd9a4a7443c, 0x169840ef017da3b1), // 5^236
+ (0x9d412e0806e88aa5, 0x8e1f289560ee864e), // 5^237
+ (0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2), // 5^238
+ (0xf5b5d7ec8acb58a2, 0xae10af696774b1db), // 5^239
+ (0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29), // 5^240
+ (0xbff610b0cc6edd3f, 0x17fd090a58d32af3), // 5^241
+ (0xeff394dcff8a948e, 0xddfc4b4cef07f5b0), // 5^242
+ (0x95f83d0a1fb69cd9, 0x4abdaf101564f98e), // 5^243
+ (0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1), // 5^244
+ (0xea53df5fd18d5513, 0x84c86189216dc5ed), // 5^245
+ (0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4), // 5^246
+ (0xb7118682dbb66a77, 0x3fbc8c33221dc2a1), // 5^247
+ (0xe4d5e82392a40515, 0xfabaf3feaa5334a), // 5^248
+ (0x8f05b1163ba6832d, 0x29cb4d87f2a7400e), // 5^249
+ (0xb2c71d5bca9023f8, 0x743e20e9ef511012), // 5^250
+ (0xdf78e4b2bd342cf6, 0x914da9246b255416), // 5^251
+ (0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e), // 5^252
+ (0xae9672aba3d0c320, 0xa184ac2473b529b1), // 5^253
+ (0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e), // 5^254
+ (0x8865899617fb1871, 0x7e2fa67c7a658892), // 5^255
+ (0xaa7eebfb9df9de8d, 0xddbb901b98feeab7), // 5^256
+ (0xd51ea6fa85785631, 0x552a74227f3ea565), // 5^257
+ (0x8533285c936b35de, 0xd53a88958f87275f), // 5^258
+ (0xa67ff273b8460356, 0x8a892abaf368f137), // 5^259
+ (0xd01fef10a657842c, 0x2d2b7569b0432d85), // 5^260
+ (0x8213f56a67f6b29b, 0x9c3b29620e29fc73), // 5^261
+ (0xa298f2c501f45f42, 0x8349f3ba91b47b8f), // 5^262
+ (0xcb3f2f7642717713, 0x241c70a936219a73), // 5^263
+ (0xfe0efb53d30dd4d7, 0xed238cd383aa0110), // 5^264
+ (0x9ec95d1463e8a506, 0xf4363804324a40aa), // 5^265
+ (0xc67bb4597ce2ce48, 0xb143c6053edcd0d5), // 5^266
+ (0xf81aa16fdc1b81da, 0xdd94b7868e94050a), // 5^267
+ (0x9b10a4e5e9913128, 0xca7cf2b4191c8326), // 5^268
+ (0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0), // 5^269
+ (0xf24a01a73cf2dccf, 0xbc633b39673c8cec), // 5^270
+ (0x976e41088617ca01, 0xd5be0503e085d813), // 5^271
+ (0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18), // 5^272
+ (0xec9c459d51852ba2, 0xddf8e7d60ed1219e), // 5^273
+ (0x93e1ab8252f33b45, 0xcabb90e5c942b503), // 5^274
+ (0xb8da1662e7b00a17, 0x3d6a751f3b936243), // 5^275
+ (0xe7109bfba19c0c9d, 0xcc512670a783ad4), // 5^276
+ (0x906a617d450187e2, 0x27fb2b80668b24c5), // 5^277
+ (0xb484f9dc9641e9da, 0xb1f9f660802dedf6), // 5^278
+ (0xe1a63853bbd26451, 0x5e7873f8a0396973), // 5^279
+ (0x8d07e33455637eb2, 0xdb0b487b6423e1e8), // 5^280
+ (0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62), // 5^281
+ (0xdc5c5301c56b75f7, 0x7641a140cc7810fb), // 5^282
+ (0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d), // 5^283
+ (0xac2820d9623bf429, 0x546345fa9fbdcd44), // 5^284
+ (0xd732290fbacaf133, 0xa97c177947ad4095), // 5^285
+ (0x867f59a9d4bed6c0, 0x49ed8eabcccc485d), // 5^286
+ (0xa81f301449ee8c70, 0x5c68f256bfff5a74), // 5^287
+ (0xd226fc195c6a2f8c, 0x73832eec6fff3111), // 5^288
+ (0x83585d8fd9c25db7, 0xc831fd53c5ff7eab), // 5^289
+ (0xa42e74f3d032f525, 0xba3e7ca8b77f5e55), // 5^290
+ (0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb), // 5^291
+ (0x80444b5e7aa7cf85, 0x7980d163cf5b81b3), // 5^292
+ (0xa0555e361951c366, 0xd7e105bcc332621f), // 5^293
+ (0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7), // 5^294
+ (0xfa856334878fc150, 0xb14f98f6f0feb951), // 5^295
+ (0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3), // 5^296
+ (0xc3b8358109e84f07, 0xa862f80ec4700c8), // 5^297
+ (0xf4a642e14c6262c8, 0xcd27bb612758c0fa), // 5^298
+ (0x98e7e9cccfbd7dbd, 0x8038d51cb897789c), // 5^299
+ (0xbf21e44003acdd2c, 0xe0470a63e6bd56c3), // 5^300
+ (0xeeea5d5004981478, 0x1858ccfce06cac74), // 5^301
+ (0x95527a5202df0ccb, 0xf37801e0c43ebc8), // 5^302
+ (0xbaa718e68396cffd, 0xd30560258f54e6ba), // 5^303
+ (0xe950df20247c83fd, 0x47c6b82ef32a2069), // 5^304
+ (0x91d28b7416cdd27e, 0x4cdc331d57fa5441), // 5^305
+ (0xb6472e511c81471d, 0xe0133fe4adf8e952), // 5^306
+ (0xe3d8f9e563a198e5, 0x58180fddd97723a6), // 5^307
+ (0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648), // 5^308
+];
diff --git a/vendor/minimal-lexical/src/table_small.rs b/vendor/minimal-lexical/src/table_small.rs
new file mode 100644
index 000000000..9da69916f
--- /dev/null
+++ b/vendor/minimal-lexical/src/table_small.rs
@@ -0,0 +1,90 @@
+//! Pre-computed small tables for parsing decimal strings.
+
+#![doc(hidden)]
+#![cfg(not(feature = "compact"))]
+
+/// Pre-computed, small powers-of-5.
+pub const SMALL_INT_POW5: [u64; 28] = [
+ 1,
+ 5,
+ 25,
+ 125,
+ 625,
+ 3125,
+ 15625,
+ 78125,
+ 390625,
+ 1953125,
+ 9765625,
+ 48828125,
+ 244140625,
+ 1220703125,
+ 6103515625,
+ 30517578125,
+ 152587890625,
+ 762939453125,
+ 3814697265625,
+ 19073486328125,
+ 95367431640625,
+ 476837158203125,
+ 2384185791015625,
+ 11920928955078125,
+ 59604644775390625,
+ 298023223876953125,
+ 1490116119384765625,
+ 7450580596923828125,
+];
+
+/// Pre-computed, small powers-of-10.
+pub const SMALL_INT_POW10: [u64; 20] = [
+ 1,
+ 10,
+ 100,
+ 1000,
+ 10000,
+ 100000,
+ 1000000,
+ 10000000,
+ 100000000,
+ 1000000000,
+ 10000000000,
+ 100000000000,
+ 1000000000000,
+ 10000000000000,
+ 100000000000000,
+ 1000000000000000,
+ 10000000000000000,
+ 100000000000000000,
+ 1000000000000000000,
+ 10000000000000000000,
+];
+
+/// Pre-computed, small powers-of-10.
+pub const SMALL_F32_POW10: [f32; 16] =
+ [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 0., 0., 0., 0., 0.];
+
+/// Pre-computed, small powers-of-10.
+pub const SMALL_F64_POW10: [f64; 32] = [
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16,
+ 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 0., 0., 0., 0., 0., 0., 0., 0., 0.,
+];
+
+/// Pre-computed large power-of-5 for 32-bit limbs.
+#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
+pub const LARGE_POW5: [u32; 10] = [
+ 4279965485, 329373468, 4020270615, 2137533757, 4287402176, 1057042919, 1071430142, 2440757623,
+ 381945767, 46164893,
+];
+
+/// Pre-computed large power-of-5 for 64-bit limbs.
+#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
+pub const LARGE_POW5: [u64; 5] = [
+ 1414648277510068013,
+ 9180637584431281687,
+ 4539964771860779200,
+ 10482974169319127550,
+ 198276706040285095,
+];
+
+/// Step for large power-of-5 for 32-bit limbs.
+pub const LARGE_POW5_STEP: u32 = 135;