diff options
Diffstat (limited to 'vendor/rand-0.7.3')
51 files changed, 11811 insertions, 0 deletions
diff --git a/vendor/rand-0.7.3/.cargo-checksum.json b/vendor/rand-0.7.3/.cargo-checksum.json new file mode 100644 index 000000000..2caa32ef0 --- /dev/null +++ b/vendor/rand-0.7.3/.cargo-checksum.json @@ -0,0 +1 @@ +{"files":{"CHANGELOG.md":"28794454ddd6739a1c0cfc6df90a25af3a6a62827d7f7aaea3ee39440b9ab87b","COPYRIGHT":"90eb64f0279b0d9432accfa6023ff803bc4965212383697eee27a0f426d5f8d5","Cargo.lock":"ee32a72318ee8c6986509e36ae276406b622897cb82324c3f0e39551f0edc2cb","Cargo.toml":"4bc436e4b01131f4809c2d3dbdd3ede6987135d3fb53f718cd4a85cafa240224","LICENSE-APACHE":"aaff376532ea30a0cd5330b9502ad4a4c8bf769c539c87ffe78819d188a18ebf","LICENSE-MIT":"209fbbe0ad52d9235e37badf9cadfe4dbdc87203179c0899e738b39ade42177b","README.md":"cc7af91db7807de40503b3033ea596aeb78a89c0997894ffd0e56c2fb06eab36","SECURITY.md":"b1c8e24e88bd81bb65bad212b1176d18a73f5191ae650a75784954a74acc31d4","benches/generators.rs":"361886b55d31449e7a649518e5a751eff4494cad8f3e247aee741dddd82d99a4","benches/misc.rs":"6fa587fb3bab8502b7dd88805a4255c5fc6b42b8b3f5d8eb727af1b80b0ebe29","benches/seq.rs":"bdc6c92a8cedb5ff41ac028618053eaf5bf4c7be8b16c83c79e9467039381302","benches/weighted.rs":"3649964f75cd6cb4e50134fbb14e09fb995ca6667cb34f99d0bd27a9429de3ea","examples/monte-carlo.rs":"e55087f1e1f48d723ffc49fb107f5846c163a5e0c97206cd43a261cbdf6bb1b4","examples/monty-hall.rs":"c079293ec0633717b4d903c63f9db166c2a0fe6c8ba9a98f084fb4975fccbc07","rustfmt.toml":"a582a93dc6492d36daae52df7800e369887ba0984d68d98f70b99ca870fed268","src/distributions/bernoulli.rs":"fa81935ea2091d43d373bb7f2f579522a5beae33c9aa9598fe8490298753eba7","src/distributions/binomial.rs":"667f4f2cddb7994aa68926dbdda4482c24ce28f9d392d2a439a9eb675bfe04be","src/distributions/cauchy.rs":"bf55d4535960136351938a92254d4429689c20ebba051808c171f818adbb1191","src/distributions/dirichlet.rs":"ef28a435d9fa6b2f8d953613135cf1be7905f3909edd86b65be4e77685dd9c47","src/distributions/exponential.rs":"0419f25e369b66226ecaaf500395bf3b0decc5f90aedba1151553085774129bf","src/distributions/float.rs":"8dc11e2e4ae743e19e7799da02862480f4499789d8c58c47fbeca5f7930d7cb9","src/distributions/gamma.rs":"bfa848d6165e653d6e461e5b92f49bb119c6f9e259ffe7d7b8fbb34234d611d1","src/distributions/integer.rs":"3eb86fe2a1aca9125463cc581245b498d8c23c0f80422e5496582d2763e605fc","src/distributions/mod.rs":"d2a2b3e36f2f8bdeb93ffc1f3032175b6a062f485e6bf78502401aa854c4fb24","src/distributions/normal.rs":"2ef7e174877f7ccb7c4ff5cbce5dc24eaad0cc700fad33a6d3c20b52ed8f4bcb","src/distributions/other.rs":"e0a6f5e2d6699e460267f463c95797781daf347bff9192b7af7630a18885290c","src/distributions/pareto.rs":"2c1fee43a4b408e9da32abec384542a243b96c5303371a63d0fc2f1baaa02c64","src/distributions/poisson.rs":"ec123c26b0029cb96325e2551e6c82c9b7f7a41c933cc3f40f6f6f6ac7990cef","src/distributions/triangular.rs":"4be8ba5eccdda8ab90319325381ff6952caf59261b59a7a6f79f8867ac426249","src/distributions/uniform.rs":"5a1af322eb2b6cca701bd0a14247b4387e78686318fd01f3213d0f3252cbea18","src/distributions/unit_circle.rs":"36d8640cb8b26fcdb1b7d4d6c0b349316117f9300f480304c8a15d9d148f5937","src/distributions/unit_sphere.rs":"4ecc4260d4e4cc3ebea679a29d2ec343a54d56016c37b2632d78e888a92cb584","src/distributions/utils.rs":"6478e01b2bd0de99e917373f3c86db1142ea10c67488691cbc10af29891ac6dc","src/distributions/weibull.rs":"9b5acc5981a44309820d3a1fd3fff17984590aeebb41a1cdf5098890ad1dec04","src/distributions/weighted/alias_method.rs":"6172aad0d461f6816a944dec00aac09e943fd13123ec518184995658538de7ed","src/distributions/weighted/mod.rs":"54386cf92d39c69b38208bc9b0e2f74949512784a43684d63523bee03c1cc8bc","src/distributions/ziggurat_tables.rs":"2994bb821a60681e0d7a2bb45fcdcbea1040aa775c9aab2c80a7161d753d1ad0","src/lib.rs":"588e35ffc5c859b588d99de6d331251939440383b09da92b1017ddced19a3f41","src/prelude.rs":"cb49fcfc4f0d3b6eaa43c00a667dd3456e6a321e98eee17320ec4a703d6faf4b","src/rngs/adapter/mod.rs":"851918de58eda79c0cb3f2c0756fb756a7769f35115a77a5ae2025e05b4c1d93","src/rngs/adapter/read.rs":"c162cd131c9ed4868415360f627aba17046d4acdae6b7cdc9c75a41e60757caa","src/rngs/adapter/reseeding.rs":"93d2fbf62d1a5765437c4360b94a2df69921fb9cd5b704c4c2023f53eb15ee03","src/rngs/entropy.rs":"a7a07e1f23c45332994eb0b76d250f68a2394048ab6fe3c6691fef719e30fb42","src/rngs/mock.rs":"d1ac752afa589bc3925067f98fe6c13223bda6c3e22b85abe22e4cd60e22bf90","src/rngs/mod.rs":"9ae5e9aa965d3393ef90983ab85834599432c9fc2c1d40de1b9237ab3fc91eb1","src/rngs/small.rs":"8cc5d1ae357554181b4c5fa978e95b667147c251f8431881da66b97ff584224c","src/rngs/std.rs":"82117975ada00199c8ca3677fc4e00bb8b574c50cd321e04b37d0c7542fa0b30","src/rngs/thread.rs":"ccb98ead28d49f6e35d6e50150cbd89579409fcfd792565aceb03e716447de9b","src/seq/index.rs":"4f2566bd9c189fc68a68fc1ad913c6efe3d3ea0699b1b1e110df9d51725c5b3d","src/seq/mod.rs":"26707ad8595093746852799c1d2eee159b69044abfedfcbfe26263a25f8035fa"},"package":"6a6b1679d49b24bbfe0c803429aa1874472f50d9b363131f0e89fc356b544d03"}
\ No newline at end of file diff --git a/vendor/rand-0.7.3/CHANGELOG.md b/vendor/rand-0.7.3/CHANGELOG.md new file mode 100644 index 000000000..b519d4836 --- /dev/null +++ b/vendor/rand-0.7.3/CHANGELOG.md @@ -0,0 +1,598 @@ +# Changelog +All notable changes to this project will be documented in this file. + +The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) +and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). + +A [separate changelog is kept for rand_core](rand_core/CHANGELOG.md). + +You may also find the [Upgrade Guide](https://rust-random.github.io/book/update.html) useful. + +## [0.7.3] - 2020-01-10 +### Fixes +- The `Bernoulli` distribution constructors now reports an error on NaN and on + `denominator == 0`. (#925) +- Use `std::sync::Once` to register fork handler, avoiding possible atomicity violation (#928) +- Fix documentation on the precision of generated floating-point values + +### Changes +- Unix: make libc dependency optional; only use fork protection with std feature (#928) + +### Additions +- Implement `std::error::Error` for `BernoulliError` (#919) + +## [0.7.2] - 2019-09-16 +### Fixes +- Fix dependency on `rand_core` 0.5.1 (#890) + +### Additions +- Unit tests for value stability of distributions added (#888) + +## [0.7.1] - 2019-09-13 +### Yanked +This release was yanked since it depends on `rand_core::OsRng` added in 0.5.1 +but specifies a dependency on version 0.5.0 (#890), causing a broken builds +when updating from `rand 0.7.0` without also updating `rand_core`. + +### Fixes +- Fix `no_std` behaviour, appropriately enable c2-chacha's `std` feature (#844) +- `alloc` feature in `no_std` is available since Rust 1.36 (#856) +- Fix or squelch issues from Clippy lints (#840) + +### Additions +- Add a `no_std` target to CI to continously evaluate `no_std` status (#844) +- `WeightedIndex`: allow adjusting a sub-set of weights (#866) + +## [0.7.0] - 2019-06-28 + +### Fixes +- Fix incorrect pointer usages revealed by Miri testing (#780, #781) +- Fix (tiny!) bias in `Uniform` for 8- and 16-bit ints (#809) + +### Crate +- Bumped MSRV (min supported Rust version) to 1.32.0 +- Updated to Rust Edition 2018 (#823, #824) +- Removed dependence on `rand_xorshift`, `rand_isaac`, `rand_jitter` crates (#759, #765) +- Remove dependency on `winapi` (#724) +- Removed all `build.rs` files (#824) +- Removed code already deprecated in version 0.6 (#757) +- Removed the serde1 feature (It's still available for backwards compatibility, but it does not do anything. #830) +- Many documentation changes + +### rand_core +- Updated to `rand_core` 0.5.0 +- `Error` type redesigned with new API (#800) +- Move `from_entropy` method to `SeedableRng` and remove `FromEntropy` (#800) +- `SeedableRng::from_rng` is now expected to be value-stable (#815) + +### Standard RNGs +- OS interface moved from `rand_os` to new `getrandom` crate (#765, [getrandom](https://github.com/rust-random/getrandom)) +- Use ChaCha for `StdRng` and `ThreadRng` (#792) +- Feature-gate `SmallRng` (#792) +- `ThreadRng` now supports `Copy` (#758) +- Deprecated `EntropyRng` (#765) +- Enable fork protection of ReseedingRng without `std` (#724) + +### Distributions +- Many distributions have been moved to `rand_distr` (#761) +- `Bernoulli::new` constructor now returns a `Result` (#803) +- `Distribution::sample_iter` adjusted for more flexibility (#758) +- Added `distributions::weighted::alias_method::WeightedIndex` for `O(1)` sampling (#692) +- Support sampling `NonZeroU*` types with the `Standard` distribution (#728) +- Optimised `Binomial` distribution sampling (#735, #740, #752) +- Optimised SIMD float sampling (#739) + +### Sequences +- Make results portable across 32- and 64-bit by using `u32` samples for `usize` where possible (#809) + +## [0.6.5] - 2019-01-28 +### Crates +- Update `rand_core` to 0.4 (#703) +- Move `JitterRng` to its own crate (#685) +- Add a wasm-bindgen test crate (#696) + +### Platforms +- Fuchsia: Replaced fuchsia-zircon with fuchsia-cprng + +### Doc +- Use RFC 1946 for doc links (#691) +- Fix some doc links and notes (#711) + +## [0.6.4] - 2019-01-08 +### Fixes +- Move wasm-bindgen shims to correct crate (#686) +- Make `wasm32-unknown-unknown` compile but fail at run-time if missing bindingsg (#686) + +## [0.6.3] - 2019-01-04 +### Fixes +- Make the `std` feature require the optional `rand_os` dependency (#675) +- Re-export the optional WASM dependencies of `rand_os` from `rand` to avoid breakage (#674) + +## [0.6.2] - 2019-01-04 +### Additions +- Add `Default` for `ThreadRng` (#657) +- Move `rngs::OsRng` to `rand_os` sub-crate; clean up code; use as dependency (#643) ##BLOCKER## +- Add `rand_xoshiro` sub-crate, plus benchmarks (#642, #668) + +### Fixes +- Fix bias in `UniformInt::sample_single` (#662) +- Use `autocfg` instead of `rustc_version` for rustc version detection (#664) +- Disable `i128` and `u128` if the `target_os` is `emscripten` (#671: work-around Emscripten limitation) +- CI fixes (#660, #671) + +### Optimisations +- Optimise memory usage of `UnitCircle` and `UnitSphereSurface` distributions (no PR) + +## [0.6.1] - 2018-11-22 +- Support sampling `Duration` also for `no_std` (only since Rust 1.25) (#649) +- Disable default features of `libc` (#647) + +## [0.6.0] - 2018-11-14 + +### Project organisation +- Rand has moved from [rust-lang-nursery](https://github.com/rust-lang-nursery/rand) + to [rust-random](https://github.com/rust-random/rand)! (#578) +- Created [The Rust Random Book](https://rust-random.github.io/book/) + ([source](https://github.com/rust-random/book)) +- Update copyright and licence notices (#591, #611) +- Migrate policy documentation from the wiki (#544) + +### Platforms +- Add fork protection on Unix (#466) +- Added support for wasm-bindgen. (#541, #559, #562, #600) +- Enable `OsRng` for powerpc64, sparc and sparc64 (#609) +- Use `syscall` from `libc` on Linux instead of redefining it (#629) + +### RNGs +- Switch `SmallRng` to use PCG (#623) +- Implement `Pcg32` and `Pcg64Mcg` generators (#632) +- Move ISAAC RNGs to a dedicated crate (#551) +- Move Xorshift RNG to its own crate (#557) +- Move ChaCha and HC128 RNGs to dedicated crates (#607, #636) +- Remove usage of `Rc` from `ThreadRng` (#615) + +### Sampling and distributions +- Implement `Rng.gen_ratio()` and `Bernoulli::new_ratio()` (#491) +- Make `Uniform` strictly respect `f32` / `f64` high/low bounds (#477) +- Allow `gen_range` and `Uniform` to work on non-`Copy` types (#506) +- `Uniform` supports inclusive ranges: `Uniform::from(a..=b)`. This is + automatically enabled for Rust >= 1.27. (#566) +- Implement `TrustedLen` and `FusedIterator` for `DistIter` (#620) + +#### New distributions +- Add the `Dirichlet` distribution (#485) +- Added sampling from the unit sphere and circle. (#567) +- Implement the triangular distribution (#575) +- Implement the Weibull distribution (#576) +- Implement the Beta distribution (#574) + +#### Optimisations + +- Optimise `Bernoulli::new` (#500) +- Optimise `char` sampling (#519) +- Optimise sampling of `std::time::Duration` (#583) + +### Sequences +- Redesign the `seq` module (#483, #515) +- Add `WeightedIndex` and `choose_weighted` (#518, #547) +- Optimised and changed return type of the `sample_indices` function. (#479) +- Use `Iterator::size_hint()` to speed up `IteratorRandom::choose` (#593) + +### SIMD +- Support for generating SIMD types (#523, #542, #561, #630) + +### Other +- Revise CI scripts (#632, #635) +- Remove functionality already deprecated in 0.5 (#499) +- Support for `i128` and `u128` is automatically enabled for Rust >= 1.26. This + renders the `i128_support` feature obsolete. It still exists for backwards + compatibility but does not have any effect. This breaks programs using Rand + with `i128_support` on nightlies older than Rust 1.26. (#571) + + +## [0.5.5] - 2018-08-07 +### Documentation +- Fix links in documentation (#582) + + +## [0.5.4] - 2018-07-11 +### Platform support +- Make `OsRng` work via WASM/stdweb for WebWorkers + + +## [0.5.3] - 2018-06-26 +### Platform support +- OpenBSD, Bitrig: fix compilation (broken in 0.5.1) (#530) + + +## [0.5.2] - 2018-06-18 +### Platform support +- Hide `OsRng` and `JitterRng` on unsupported platforms (#512; fixes #503). + + +## [0.5.1] - 2018-06-08 + +### New distributions +- Added Cauchy distribution. (#474, #486) +- Added Pareto distribution. (#495) + +### Platform support and `OsRng` +- Remove blanket Unix implementation. (#484) +- Remove Wasm unimplemented stub. (#484) +- Dragonfly BSD: read from `/dev/random`. (#484) +- Bitrig: use `getentropy` like OpenBSD. (#484) +- Solaris: (untested) use `getrandom` if available, otherwise `/dev/random`. (#484) +- Emscripten, `stdweb`: split the read up in chunks. (#484) +- Emscripten, Haiku: don't do an extra blocking read from `/dev/random`. (#484) +- Linux, NetBSD, Solaris: read in blocking mode on first use in `fill_bytes`. (#484) +- Fuchsia, CloudABI: fix compilation (broken in Rand 0.5). (#484) + + +## [0.5.0] - 2018-05-21 + +### Crate features and organisation +- Minimum Rust version update: 1.22.0. (#239) +- Create a separate `rand_core` crate. (#288) +- Deprecate `rand_derive`. (#256) +- Add `prelude` (and module reorganisation). (#435) +- Add `log` feature. Logging is now available in `JitterRng`, `OsRng`, `EntropyRng` and `ReseedingRng`. (#246) +- Add `serde1` feature for some PRNGs. (#189) +- `stdweb` feature for `OsRng` support on WASM via stdweb. (#272, #336) + +### `Rng` trait +- Split `Rng` in `RngCore` and `Rng` extension trait. + `next_u32`, `next_u64` and `fill_bytes` are now part of `RngCore`. (#265) +- Add `Rng::sample`. (#256) +- Deprecate `Rng::gen_weighted_bool`. (#308) +- Add `Rng::gen_bool`. (#308) +- Remove `Rng::next_f32` and `Rng::next_f64`. (#273) +- Add optimized `Rng::fill` and `Rng::try_fill` methods. (#247) +- Deprecate `Rng::gen_iter`. (#286) +- Deprecate `Rng::gen_ascii_chars`. (#279) + +### `rand_core` crate +- `rand` now depends on new `rand_core` crate (#288) +- `RngCore` and `SeedableRng` are now part of `rand_core`. (#288) +- Add modules to help implementing RNGs `impl` and `le`. (#209, #228) +- Add `Error` and `ErrorKind`. (#225) +- Add `CryptoRng` marker trait. (#273) +- Add `BlockRngCore` trait. (#281) +- Add `BlockRng` and `BlockRng64` wrappers to help implementations. (#281, #325) +- Revise the `SeedableRng` trait. (#233) +- Remove default implementations for `RngCore::next_u64` and `RngCore::fill_bytes`. (#288) +- Add `RngCore::try_fill_bytes`. (#225) + +### Other traits and types +- Add `FromEntropy` trait. (#233, #375) +- Add `SmallRng` wrapper. (#296) +- Rewrite `ReseedingRng` to only work with `BlockRngCore` (substantial performance improvement). (#281) +- Deprecate `weak_rng`. Use `SmallRng` instead. (#296) +- Deprecate `AsciiGenerator`. (#279) + +### Random number generators +- Switch `StdRng` and `thread_rng` to HC-128. (#277) +- `StdRng` must now be created with `from_entropy` instead of `new` +- Change `thread_rng` reseeding threshold to 32 MiB. (#277) +- PRNGs no longer implement `Copy`. (#209) +- `Debug` implementations no longer show internals. (#209) +- Implement `Clone` for `ReseedingRng`, `JitterRng`, OsRng`. (#383, #384) +- Implement serialization for `XorShiftRng`, `IsaacRng` and `Isaac64Rng` under the `serde1` feature. (#189) +- Implement `BlockRngCore` for `ChaChaCore` and `Hc128Core`. (#281) +- All PRNGs are now portable across big- and little-endian architectures. (#209) +- `Isaac64Rng::next_u32` no longer throws away half the results. (#209) +- Add `IsaacRng::new_from_u64` and `Isaac64Rng::new_from_u64`. (#209) +- Add the HC-128 CSPRNG `Hc128Rng`. (#210) +- Change ChaCha20 to have 64-bit counter and 64-bit stream. (#349) +- Changes to `JitterRng` to get its size down from 2112 to 24 bytes. (#251) +- Various performance improvements to all PRNGs. + +### Platform support and `OsRng` +- Add support for CloudABI. (#224) +- Remove support for NaCl. (#225) +- WASM support for `OsRng` via stdweb, behind the `stdweb` feature. (#272, #336) +- Use `getrandom` on more platforms for Linux, and on Android. (#338) +- Use the `SecRandomCopyBytes` interface on macOS. (#322) +- On systems that do not have a syscall interface, only keep a single file descriptor open for `OsRng`. (#239) +- On Unix, first try a single read from `/dev/random`, then `/dev/urandom`. (#338) +- Better error handling and reporting in `OsRng` (using new error type). (#225) +- `OsRng` now uses non-blocking when available. (#225) +- Add `EntropyRng`, which provides `OsRng`, but has `JitterRng` as a fallback. (#235) + +### Distributions +- New `Distribution` trait. (#256) +- Add `Distribution::sample_iter` and `Rng::::sample_iter`. (#361) +- Deprecate `Rand`, `Sample` and `IndependentSample` traits. (#256) +- Add a `Standard` distribution (replaces most `Rand` implementations). (#256) +- Add `Binomial` and `Poisson` distributions. (#96) +- Add `Bernoulli` dsitribution. (#411) +- Add `Alphanumeric` distribution. (#279) +- Remove `Closed01` distribution, add `OpenClosed01`. (#274, #420) +- Rework `Range` type, making it possible to implement it for user types. (#274) +- Rename `Range` to `Uniform`. (#395) +- Add `Uniform::new_inclusive` for inclusive ranges. (#274) +- Use widening multiply method for much faster integer range reduction. (#274) +- `Standard` distribution for `char` uses `Uniform` internally. (#274) +- `Standard` distribution for `bool` uses sign test. (#274) +- Implement `Standard` distribution for `Wrapping<T>`. (#436) +- Implement `Uniform` distribution for `Duration`. (#427) + + +## [0.4.3] - 2018-08-16 +### Fixed +- Use correct syscall number for PowerPC (#589) + + +## [0.4.2] - 2018-01-06 +### Changed +- Use `winapi` on Windows +- Update for Fuchsia OS +- Remove dev-dependency on `log` + + +## [0.4.1] - 2017-12-17 +### Added +- `no_std` support + + +## [0.4.0-pre.0] - 2017-12-11 +### Added +- `JitterRng` added as a high-quality alternative entropy source using the + system timer +- new `seq` module with `sample_iter`, `sample_slice`, etc. +- WASM support via dummy implementations (fail at run-time) +- Additional benchmarks, covering generators and new seq code + +### Changed +- `thread_rng` uses `JitterRng` if seeding from system time fails + (slower but more secure than previous method) + +### Deprecated + - `sample` function deprecated (replaced by `sample_iter`) + + +## [0.3.20] - 2018-01-06 +### Changed +- Remove dev-dependency on `log` +- Update `fuchsia-zircon` dependency to 0.3.2 + + +## [0.3.19] - 2017-12-27 +### Changed +- Require `log <= 0.3.8` for dev builds +- Update `fuchsia-zircon` dependency to 0.3 +- Fix broken links in docs (to unblock compiler docs testing CI) + + +## [0.3.18] - 2017-11-06 +### Changed +- `thread_rng` is seeded from the system time if `OsRng` fails +- `weak_rng` now uses `thread_rng` internally + + +## [0.3.17] - 2017-10-07 +### Changed + - Fuchsia: Magenta was renamed Zircon + +## [0.3.16] - 2017-07-27 +### Added +- Implement Debug for mote non-public types +- implement `Rand` for (i|u)i128 +- Support for Fuchsia + +### Changed +- Add inline attribute to SampleRange::construct_range. + This improves the benchmark for sample in 11% and for shuffle in 16%. +- Use `RtlGenRandom` instead of `CryptGenRandom` + + +## [0.3.15] - 2016-11-26 +### Added +- Add `Rng` trait method `choose_mut` +- Redox support + +### Changed +- Use `arc4rand` for `OsRng` on FreeBSD. +- Use `arc4random(3)` for `OsRng` on OpenBSD. + +### Fixed +- Fix filling buffers 4 GiB or larger with `OsRng::fill_bytes` on Windows + + +## [0.3.14] - 2016-02-13 +### Fixed +- Inline definitions from winapi/advapi32, wich decreases build times + + +## [0.3.13] - 2016-01-09 +### Fixed +- Compatible with Rust 1.7.0-nightly (needed some extra type annotations) + + +## [0.3.12] - 2015-11-09 +### Changed +- Replaced the methods in `next_f32` and `next_f64` with the technique described + Saito & Matsumoto at MCQMC'08. The new method should exhibit a slightly more + uniform distribution. +- Depend on libc 0.2 + +### Fixed +- Fix iterator protocol issue in `rand::sample` + + +## [0.3.11] - 2015-08-31 +### Added +- Implement `Rand` for arrays with n <= 32 + + +## [0.3.10] - 2015-08-17 +### Added +- Support for NaCl platforms + +### Changed +- Allow `Rng` to be `?Sized`, impl for `&mut R` and `Box<R>` where `R: ?Sized + Rng` + + +## [0.3.9] - 2015-06-18 +### Changed +- Use `winapi` for Windows API things + +### Fixed +- Fixed test on stable/nightly +- Fix `getrandom` syscall number for aarch64-unknown-linux-gnu + + +## [0.3.8] - 2015-04-23 +### Changed +- `log` is a dev dependency + +### Fixed +- Fix race condition of atomics in `is_getrandom_available` + + +## [0.3.7] - 2015-04-03 +### Fixed +- Derive Copy/Clone changes + + +## [0.3.6] - 2015-04-02 +### Changed +- Move to stable Rust! + + +## [0.3.5] - 2015-04-01 +### Fixed +- Compatible with Rust master + + +## [0.3.4] - 2015-03-31 +### Added +- Implement Clone for `Weighted` + +### Fixed +- Compatible with Rust master + + +## [0.3.3] - 2015-03-26 +### Fixed +- Fix compile on Windows + + +## [0.3.2] - 2015-03-26 + + +## [0.3.1] - 2015-03-26 +### Fixed +- Fix compile on Windows + + +## [0.3.0] - 2015-03-25 +### Changed +- Update to use log version 0.3.x + + +## [0.2.1] - 2015-03-22 +### Fixed +- Compatible with Rust master +- Fixed iOS compilation + + +## [0.2.0] - 2015-03-06 +### Fixed +- Compatible with Rust master (move from `old_io` to `std::io`) + + +## [0.1.4] - 2015-03-04 +### Fixed +- Compatible with Rust master (use wrapping ops) + + +## [0.1.3] - 2015-02-20 +### Fixed +- Compatible with Rust master + +### Removed +- Removed Copy implementations from RNGs + + +## [0.1.2] - 2015-02-03 +### Added +- Imported functionality from `std::rand`, including: + - `StdRng`, `SeedableRng`, `TreadRng`, `weak_rng()` + - `ReaderRng`: A wrapper around any Reader to treat it as an RNG. +- Imported documentation from `std::rand` +- Imported tests from `std::rand` + + +## [0.1.1] - 2015-02-03 +### Added +- Migrate to a cargo-compatible directory structure. + +### Fixed +- Do not use entropy during `gen_weighted_bool(1)` + + +## [Rust 0.12.0] - 2014-10-09 +### Added +- Impl Rand for tuples of arity 11 and 12 +- Include ChaCha pseudorandom generator +- Add `next_f64` and `next_f32` to Rng +- Implement Clone for PRNGs + +### Changed +- Rename `TaskRng` to `ThreadRng` and `task_rng` to `thread_rng` (since a + runtime is removed from Rust). + +### Fixed +- Improved performance of ISAAC and ISAAC64 by 30% and 12 % respectively, by + informing the optimiser that indexing is never out-of-bounds. + +### Removed +- Removed the Deprecated `choose_option` + + +## [Rust 0.11.0] - 2014-07-02 +### Added +- document when to use `OSRng` in cryptographic context, and explain why we use `/dev/urandom` instead of `/dev/random` +- `Rng::gen_iter()` which will return an infinite stream of random values +- `Rng::gen_ascii_chars()` which will return an infinite stream of random ascii characters + +### Changed +- Now only depends on libcore! +- Remove `Rng.choose()`, rename `Rng.choose_option()` to `.choose()` +- Rename OSRng to OsRng +- The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`, + but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice + structure now has a lifetime associated with it. +- The `sample` method on `Rng` has been moved to a top-level function in the + `rand` module due to its dependence on `Vec`. + +### Removed +- `Rng::gen_vec()` was removed. Previous behavior can be regained with + `rng.gen_iter().take(n).collect()` +- `Rng::gen_ascii_str()` was removed. Previous behavior can be regained with + `rng.gen_ascii_chars().take(n).collect()` +- {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all + relied on being able to use an OSRng for seeding, but this is no longer + available in librand (where these types are defined). To retain the same + functionality, these types now implement the `Rand` trait so they can be + generated with a random seed from another random number generator. This allows + the stdlib to use an OSRng to create seeded instances of these RNGs. +- Rand implementations for `Box<T>` and `@T` were removed. These seemed to be + pretty rare in the codebase, and it allows for librand to not depend on + liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not + supported. +- Remove a slew of old deprecated functions + + +## [Rust 0.10] - 2014-04-03 +### Changed +- replace `Rng.shuffle's` functionality with `.shuffle_mut` +- bubble up IO errors when creating an OSRng + +### Fixed +- Use `fill()` instead of `read()` +- Rewrite OsRng in Rust for windows + +## [0.10-pre] - 2014-03-02 +### Added +- Seperate `rand` out of the standard library diff --git a/vendor/rand-0.7.3/COPYRIGHT b/vendor/rand-0.7.3/COPYRIGHT new file mode 100644 index 000000000..468d907ca --- /dev/null +++ b/vendor/rand-0.7.3/COPYRIGHT @@ -0,0 +1,12 @@ +Copyrights in the Rand project are retained by their contributors. No +copyright assignment is required to contribute to the Rand project. + +For full authorship information, see the version control history. + +Except as otherwise noted (below and/or in individual files), Rand is +licensed under the Apache License, Version 2.0 <LICENSE-APACHE> or +<http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +<LICENSE-MIT> or <http://opensource.org/licenses/MIT>, at your option. + +The Rand project includes code from the Rust project +published under these same licenses. diff --git a/vendor/rand-0.7.3/Cargo.lock b/vendor/rand-0.7.3/Cargo.lock new file mode 100644 index 000000000..a03987b58 --- /dev/null +++ b/vendor/rand-0.7.3/Cargo.lock @@ -0,0 +1,388 @@ +# This file is automatically @generated by Cargo. +# It is not intended for manual editing. +[[package]] +name = "base-x" +version = "0.2.5" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "bumpalo" +version = "2.6.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "c2-chacha" +version = "0.2.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "lazy_static 1.4.0 (registry+https://github.com/rust-lang/crates.io-index)", + "ppv-lite86 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "cfg-if" +version = "0.1.9" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "discard" +version = "1.0.4" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "getrandom" +version = "0.1.12" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "cfg-if 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)", + "libc 0.2.62 (registry+https://github.com/rust-lang/crates.io-index)", + "stdweb 0.4.18 (registry+https://github.com/rust-lang/crates.io-index)", + "wasi 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)", + "wasm-bindgen 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "itoa" +version = "0.4.4" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "lazy_static" +version = "1.4.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "libc" +version = "0.2.62" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "log" +version = "0.4.8" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "cfg-if 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "packed_simd" +version = "0.3.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "cfg-if 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "ppv-lite86" +version = "0.2.5" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "proc-macro2" +version = "0.4.30" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "proc-macro2" +version = "1.0.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "unicode-xid 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "quote" +version = "0.6.13" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "proc-macro2 0.4.30 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "quote" +version = "1.0.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "proc-macro2 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "rand" +version = "0.7.3" +dependencies = [ + "getrandom 0.1.12 (registry+https://github.com/rust-lang/crates.io-index)", + "libc 0.2.62 (registry+https://github.com/rust-lang/crates.io-index)", + "log 0.4.8 (registry+https://github.com/rust-lang/crates.io-index)", + "packed_simd 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)", + "rand_chacha 0.2.1 (registry+https://github.com/rust-lang/crates.io-index)", + "rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)", + "rand_hc 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)", + "rand_pcg 0.2.1 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "rand_chacha" +version = "0.2.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "c2-chacha 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)", + "rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "rand_core" +version = "0.5.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "getrandom 0.1.12 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "rand_hc" +version = "0.2.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "rand_pcg" +version = "0.2.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "rustc_version" +version = "0.2.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "ryu" +version = "1.0.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "semver" +version = "0.9.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "semver-parser 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "semver-parser" +version = "0.7.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "serde" +version = "1.0.100" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "serde_derive" +version = "1.0.100" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "proc-macro2 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)", + "quote 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)", + "syn 1.0.5 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "serde_json" +version = "1.0.40" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "itoa 0.4.4 (registry+https://github.com/rust-lang/crates.io-index)", + "ryu 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)", + "serde 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "sha1" +version = "0.6.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "stdweb" +version = "0.4.18" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "discard 1.0.4 (registry+https://github.com/rust-lang/crates.io-index)", + "rustc_version 0.2.3 (registry+https://github.com/rust-lang/crates.io-index)", + "serde 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)", + "serde_json 1.0.40 (registry+https://github.com/rust-lang/crates.io-index)", + "stdweb-derive 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)", + "stdweb-internal-macros 0.2.7 (registry+https://github.com/rust-lang/crates.io-index)", + "stdweb-internal-runtime 0.1.4 (registry+https://github.com/rust-lang/crates.io-index)", + "wasm-bindgen 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "stdweb-derive" +version = "0.5.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "proc-macro2 0.4.30 (registry+https://github.com/rust-lang/crates.io-index)", + "quote 0.6.13 (registry+https://github.com/rust-lang/crates.io-index)", + "serde 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)", + "serde_derive 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)", + "syn 0.15.44 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "stdweb-internal-macros" +version = "0.2.7" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "base-x 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)", + "proc-macro2 0.4.30 (registry+https://github.com/rust-lang/crates.io-index)", + "quote 0.6.13 (registry+https://github.com/rust-lang/crates.io-index)", + "serde 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)", + "serde_derive 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)", + "serde_json 1.0.40 (registry+https://github.com/rust-lang/crates.io-index)", + "sha1 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)", + "syn 0.15.44 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "stdweb-internal-runtime" +version = "0.1.4" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "syn" +version = "0.15.44" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "proc-macro2 0.4.30 (registry+https://github.com/rust-lang/crates.io-index)", + "quote 0.6.13 (registry+https://github.com/rust-lang/crates.io-index)", + "unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "syn" +version = "1.0.5" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "proc-macro2 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)", + "quote 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)", + "unicode-xid 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "unicode-xid" +version = "0.1.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "unicode-xid" +version = "0.2.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "wasi" +version = "0.7.0" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[[package]] +name = "wasm-bindgen" +version = "0.2.50" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "cfg-if 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)", + "wasm-bindgen-macro 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "wasm-bindgen-backend" +version = "0.2.50" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "bumpalo 2.6.0 (registry+https://github.com/rust-lang/crates.io-index)", + "lazy_static 1.4.0 (registry+https://github.com/rust-lang/crates.io-index)", + "log 0.4.8 (registry+https://github.com/rust-lang/crates.io-index)", + "proc-macro2 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)", + "quote 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)", + "syn 1.0.5 (registry+https://github.com/rust-lang/crates.io-index)", + "wasm-bindgen-shared 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "wasm-bindgen-macro" +version = "0.2.50" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "quote 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)", + "wasm-bindgen-macro-support 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "wasm-bindgen-macro-support" +version = "0.2.50" +source = "registry+https://github.com/rust-lang/crates.io-index" +dependencies = [ + "proc-macro2 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)", + "quote 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)", + "syn 1.0.5 (registry+https://github.com/rust-lang/crates.io-index)", + "wasm-bindgen-backend 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)", + "wasm-bindgen-shared 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)", +] + +[[package]] +name = "wasm-bindgen-shared" +version = "0.2.50" +source = "registry+https://github.com/rust-lang/crates.io-index" + +[metadata] +"checksum base-x 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)" = "76f4eae81729e69bb1819a26c6caac956cc429238388091f98cb6cd858f16443" +"checksum bumpalo 2.6.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ad807f2fc2bf185eeb98ff3a901bd46dc5ad58163d0fa4577ba0d25674d71708" +"checksum c2-chacha 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)" = "7d64d04786e0f528460fc884753cf8dddcc466be308f6026f8e355c41a0e4101" +"checksum cfg-if 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)" = "b486ce3ccf7ffd79fdeb678eac06a9e6c09fc88d33836340becb8fffe87c5e33" +"checksum discard 1.0.4 (registry+https://github.com/rust-lang/crates.io-index)" = "212d0f5754cb6769937f4501cc0e67f4f4483c8d2c3e1e922ee9edbe4ab4c7c0" +"checksum getrandom 0.1.12 (registry+https://github.com/rust-lang/crates.io-index)" = "473a1265acc8ff1e808cd0a1af8cee3c2ee5200916058a2ca113c29f2d903571" +"checksum itoa 0.4.4 (registry+https://github.com/rust-lang/crates.io-index)" = "501266b7edd0174f8530248f87f99c88fbe60ca4ef3dd486835b8d8d53136f7f" +"checksum lazy_static 1.4.0 (registry+https://github.com/rust-lang/crates.io-index)" = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646" +"checksum libc 0.2.62 (registry+https://github.com/rust-lang/crates.io-index)" = "34fcd2c08d2f832f376f4173a231990fa5aef4e99fb569867318a227ef4c06ba" +"checksum log 0.4.8 (registry+https://github.com/rust-lang/crates.io-index)" = "14b6052be84e6b71ab17edffc2eeabf5c2c3ae1fdb464aae35ac50c67a44e1f7" +"checksum packed_simd 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "a85ea9fc0d4ac0deb6fe7911d38786b32fc11119afd9e9d38b84ff691ce64220" +"checksum ppv-lite86 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)" = "e3cbf9f658cdb5000fcf6f362b8ea2ba154b9f146a61c7a20d647034c6b6561b" +"checksum proc-macro2 0.4.30 (registry+https://github.com/rust-lang/crates.io-index)" = "cf3d2011ab5c909338f7887f4fc896d35932e29146c12c8d01da6b22a80ba759" +"checksum proc-macro2 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)" = "e98a83a9f9b331f54b924e68a66acb1bb35cb01fb0a23645139967abefb697e8" +"checksum quote 0.6.13 (registry+https://github.com/rust-lang/crates.io-index)" = "6ce23b6b870e8f94f81fb0a363d65d86675884b34a09043c81e5562f11c1f8e1" +"checksum quote 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "053a8c8bcc71fcce321828dc897a98ab9760bef03a4fc36693c231e5b3216cfe" +"checksum rand_chacha 0.2.1 (registry+https://github.com/rust-lang/crates.io-index)" = "03a2a90da8c7523f554344f921aa97283eadf6ac484a6d2a7d0212fa7f8d6853" +"checksum rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)" = "90bde5296fc891b0cef12a6d03ddccc162ce7b2aff54160af9338f8d40df6d19" +"checksum rand_hc 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ca3129af7b92a17112d59ad498c6f81eaf463253766b90396d39ea7a39d6613c" +"checksum rand_pcg 0.2.1 (registry+https://github.com/rust-lang/crates.io-index)" = "16abd0c1b639e9eb4d7c50c0b8100b0d0f849be2349829c740fe8e6eb4816429" +"checksum rustc_version 0.2.3 (registry+https://github.com/rust-lang/crates.io-index)" = "138e3e0acb6c9fb258b19b67cb8abd63c00679d2851805ea151465464fe9030a" +"checksum ryu 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "c92464b447c0ee8c4fb3824ecc8383b81717b9f1e74ba2e72540aef7b9f82997" +"checksum semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)" = "1d7eb9ef2c18661902cc47e535f9bc51b78acd254da71d375c2f6720d9a40403" +"checksum semver-parser 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "388a1df253eca08550bef6c72392cfe7c30914bf41df5269b68cbd6ff8f570a3" +"checksum serde 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)" = "f4473e8506b213730ff2061073b48fa51dcc66349219e2e7c5608f0296a1d95a" +"checksum serde_derive 1.0.100 (registry+https://github.com/rust-lang/crates.io-index)" = "11e410fde43e157d789fc290d26bc940778ad0fdd47836426fbac36573710dbb" +"checksum serde_json 1.0.40 (registry+https://github.com/rust-lang/crates.io-index)" = "051c49229f282f7c6f3813f8286cc1e3323e8051823fce42c7ea80fe13521704" +"checksum sha1 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)" = "2579985fda508104f7587689507983eadd6a6e84dd35d6d115361f530916fa0d" +"checksum stdweb 0.4.18 (registry+https://github.com/rust-lang/crates.io-index)" = "a68c0ce28cf7400ed022e18da3c4591e14e1df02c70e93573cc59921b3923aeb" +"checksum stdweb-derive 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)" = "0e21ebd9179de08f2300a65454268a17ea3de204627458588c84319c4def3930" +"checksum stdweb-internal-macros 0.2.7 (registry+https://github.com/rust-lang/crates.io-index)" = "e68f7d08b76979a43e93fe043b66d2626e35d41d68b0b85519202c6dd8ac59fa" +"checksum stdweb-internal-runtime 0.1.4 (registry+https://github.com/rust-lang/crates.io-index)" = "d52317523542cc0af5b7e31017ad0f7d1e78da50455e38d5657cd17754f617da" +"checksum syn 0.15.44 (registry+https://github.com/rust-lang/crates.io-index)" = "9ca4b3b69a77cbe1ffc9e198781b7acb0c7365a883670e8f1c1bc66fba79a5c5" +"checksum syn 1.0.5 (registry+https://github.com/rust-lang/crates.io-index)" = "66850e97125af79138385e9b88339cbcd037e3f28ceab8c5ad98e64f0f1f80bf" +"checksum unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)" = "fc72304796d0818e357ead4e000d19c9c174ab23dc11093ac919054d20a6a7fc" +"checksum unicode-xid 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "826e7639553986605ec5979c7dd957c7895e93eabed50ab2ffa7f6128a75097c" +"checksum wasi 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "b89c3ce4ce14bdc6fb6beaf9ec7928ca331de5df7e5ea278375642a2f478570d" +"checksum wasm-bindgen 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)" = "dcddca308b16cd93c2b67b126c688e5467e4ef2e28200dc7dfe4ae284f2faefc" +"checksum wasm-bindgen-backend 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)" = "f805d9328b5fc7e5c6399960fd1889271b9b58ae17bdb2417472156cc9fafdd0" +"checksum wasm-bindgen-macro 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)" = "3ff88201a482abfc63921621f6cb18eb1efd74f136b05e5841e7f8ca434539e9" +"checksum wasm-bindgen-macro-support 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)" = "6a433d89ecdb9f77d46fcf00c8cf9f3467b7de9954d8710c175f61e2e245bb0e" +"checksum wasm-bindgen-shared 0.2.50 (registry+https://github.com/rust-lang/crates.io-index)" = "d41fc1bc3570cdf8d108c15e014045fd45a95bb5eb36605f96a90461fc34027d" diff --git a/vendor/rand-0.7.3/Cargo.toml b/vendor/rand-0.7.3/Cargo.toml new file mode 100644 index 000000000..78a29b0e1 --- /dev/null +++ b/vendor/rand-0.7.3/Cargo.toml @@ -0,0 +1,80 @@ +# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO +# +# When uploading crates to the registry Cargo will automatically +# "normalize" Cargo.toml files for maximal compatibility +# with all versions of Cargo and also rewrite `path` dependencies +# to registry (e.g., crates.io) dependencies +# +# If you believe there's an error in this file please file an +# issue against the rust-lang/cargo repository. If you're +# editing this file be aware that the upstream Cargo.toml +# will likely look very different (and much more reasonable) + +[package] +edition = "2018" +name = "rand" +version = "0.7.3" +authors = ["The Rand Project Developers", "The Rust Project Developers"] +exclude = ["/utils/*", "/.travis.yml", "/appveyor.yml", ".gitignore"] +autobenches = true +description = "Random number generators and other randomness functionality.\n" +homepage = "https://crates.io/crates/rand" +documentation = "https://rust-random.github.io/rand/" +readme = "README.md" +keywords = ["random", "rng"] +categories = ["algorithms", "no-std"] +license = "MIT OR Apache-2.0" +repository = "https://github.com/rust-random/rand" +[package.metadata.docs.rs] +all-features = true +[dependencies.getrandom_package] +version = "0.1.1" +optional = true +package = "getrandom" + +[dependencies.log] +version = "0.4.4" +optional = true + +[dependencies.packed_simd] +version = "0.3" +features = ["into_bits"] +optional = true + +[dependencies.rand_core] +version = "0.5.1" + +[dependencies.rand_pcg] +version = "0.2" +optional = true +[dev-dependencies.rand_hc] +version = "0.2" + +[dev-dependencies.rand_pcg] +version = "0.2" + +[features] +alloc = ["rand_core/alloc"] +default = ["std"] +getrandom = ["getrandom_package", "rand_core/getrandom"] +nightly = ["simd_support"] +serde1 = [] +simd_support = ["packed_simd"] +small_rng = ["rand_pcg"] +std = ["rand_core/std", "rand_chacha/std", "alloc", "getrandom", "libc"] +stdweb = ["getrandom_package/stdweb"] +wasm-bindgen = ["getrandom_package/wasm-bindgen"] +[target."cfg(not(target_os = \"emscripten\"))".dependencies.rand_chacha] +version = "0.2.1" +default-features = false +[target."cfg(target_os = \"emscripten\")".dependencies.rand_hc] +version = "0.2" +[target."cfg(unix)".dependencies.libc] +version = "0.2.22" +optional = true +default-features = false +[badges.appveyor] +repository = "rust-random/rand" + +[badges.travis-ci] +repository = "rust-random/rand" diff --git a/vendor/rand-0.7.3/LICENSE-APACHE b/vendor/rand-0.7.3/LICENSE-APACHE new file mode 100644 index 000000000..17d74680f --- /dev/null +++ b/vendor/rand-0.7.3/LICENSE-APACHE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + https://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + +1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + +2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + +3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + +4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + +5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + +6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + +7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + +8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + +9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + +END OF TERMS AND CONDITIONS + +APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + +Copyright [yyyy] [name of copyright owner] + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. diff --git a/vendor/rand-0.7.3/LICENSE-MIT b/vendor/rand-0.7.3/LICENSE-MIT new file mode 100644 index 000000000..d93b5baf3 --- /dev/null +++ b/vendor/rand-0.7.3/LICENSE-MIT @@ -0,0 +1,26 @@ +Copyright 2018 Developers of the Rand project +Copyright (c) 2014 The Rust Project Developers + +Permission is hereby granted, free of charge, to any +person obtaining a copy of this software and associated +documentation files (the "Software"), to deal in the +Software without restriction, including without +limitation the rights to use, copy, modify, merge, +publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software +is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice +shall be included in all copies or substantial portions +of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR +IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. diff --git a/vendor/rand-0.7.3/README.md b/vendor/rand-0.7.3/README.md new file mode 100644 index 000000000..c4bd676a9 --- /dev/null +++ b/vendor/rand-0.7.3/README.md @@ -0,0 +1,126 @@ +# Rand + +[![Build Status](https://travis-ci.org/rust-random/rand.svg?branch=master)](https://travis-ci.org/rust-random/rand) +[![Build Status](https://ci.appveyor.com/api/projects/status/github/rust-random/rand?svg=true)](https://ci.appveyor.com/project/rust-random/rand) +[![Crate](https://img.shields.io/crates/v/rand.svg)](https://crates.io/crates/rand) +[![Book](https://img.shields.io/badge/book-master-yellow.svg)](https://rust-random.github.io/book/) +[![API](https://img.shields.io/badge/api-master-yellow.svg)](https://rust-random.github.io/rand) +[![API](https://docs.rs/rand/badge.svg)](https://docs.rs/rand) +[![Minimum rustc version](https://img.shields.io/badge/rustc-1.32+-lightgray.svg)](https://github.com/rust-random/rand#rust-version-requirements) + +A Rust library for random number generation. + +Rand provides utilities to generate random numbers, to convert them to useful +types and distributions, and some randomness-related algorithms. + +The core random number generation traits of Rand live in the [rand_core]( +https://crates.io/crates/rand_core) crate but are also exposed here; RNG +implementations should prefer to use `rand_core` while most other users should +depend on `rand`. + +Documentation: +- [The Rust Rand Book](https://rust-random.github.io/book) +- [API reference (master)](https://rust-random.github.io/rand) +- [API reference (docs.rs)](https://docs.rs/rand) + + +## Usage + +Add this to your `Cargo.toml`: + +```toml +[dependencies] +rand = "0.7" +``` + +To get started using Rand, see [The Book](https://rust-random.github.io/book). + + +## Versions + +Rand libs have inter-dependencies and make use of the +[semver trick](https://github.com/dtolnay/semver-trick/) in order to make traits +compatible across crate versions. (This is especially important for `RngCore` +and `SeedableRng`.) A few crate releases are thus compatibility shims, +depending on the *next* lib version (e.g. `rand_core` versions `0.2.2` and +`0.3.1`). This means, for example, that `rand_core_0_4_0::SeedableRng` and +`rand_core_0_3_0::SeedableRng` are distinct, incompatible traits, which can +cause build errors. Usually, running `cargo update` is enough to fix any issues. + +The Rand lib is not yet stable, however we are careful to limit breaking changes +and warn via deprecation wherever possible. Patch versions never introduce +breaking changes. The following minor versions are supported: + +- Version 0.7 was released in June 2019, moving most non-uniform distributions + to an external crate, moving `from_entropy` to `SeedableRng`, and many small + changes and fixes. +- Version 0.6 was released in November 2018, redesigning the `seq` module, + moving most PRNGs to external crates, and many small changes. +- Version 0.5 was released in May 2018, as a major reorganisation + (introducing `RngCore` and `rand_core`, and deprecating `Rand` and the + previous distribution traits). +- Version 0.4 was released in December 2017, but contained almost no breaking + changes from the 0.3 series. + +A detailed [changelog](CHANGELOG.md) is available. + +When upgrading to the next minor series (especially 0.4 β 0.5), we recommend +reading the [Upgrade Guide](https://rust-random.github.io/book/update.html). + +### Yanked versions + +Some versions of Rand crates have been yanked ("unreleased"). Where this occurs, +the crate's CHANGELOG *should* be updated with a rationale, and a search on the +issue tracker with the keyword `yank` *should* uncover the motivation. + +### Rust version requirements + +Since version 0.7, Rand requires **Rustc version 1.32 or greater**. +Rand 0.5 requires Rustc 1.22 or greater while versions +0.4 and 0.3 (since approx. June 2017) require Rustc version 1.15 or +greater. Subsets of the Rand code may work with older Rust versions, but this +is not supported. + +Travis CI always has a build with a pinned version of Rustc matching the oldest +supported Rust release. The current policy is that this can be updated in any +Rand release if required, but the change must be noted in the changelog. + +## Crate Features + +Rand is built with these features enabled by default: + +- `std` enables functionality dependent on the `std` lib +- `alloc` (implied by `std`) enables functionality requiring an allocator (when using this feature in `no_std`, Rand requires Rustc version 1.36 or greater) +- `getrandom` (implied by `std`) is an optional dependency providing the code + behind `rngs::OsRng` + +Optionally, the following dependencies can be enabled: + +- `log` enables logging via the `log` crate +- `stdweb` implies `getrandom/stdweb` to enable + `getrandom` support on `wasm32-unknown-unknown` + (will be removed in rand 0.8; activate via `getrandom` crate instead) +- `wasm-bindgen` implies `getrandom/wasm-bindgen` to enable + `getrandom` support on `wasm32-unknown-unknown` + (will be removed in rand 0.8; activate via `getrandom` crate instead) + +Additionally, these features configure Rand: + +- `small_rng` enables inclusion of the `SmallRng` PRNG +- `nightly` enables all experimental features +- `simd_support` (experimental) enables sampling of SIMD values + (uniformly random SIMD integers and floats) + +Rand supports limited functionality in `no_std` mode (enabled via +`default-features = false`). In this case, `OsRng` and `from_entropy` are +unavailable (unless `getrandom` is enabled), large parts of `seq` are +unavailable (unless `alloc` is enabled), and `thread_rng` and `random` are +unavailable. + +# License + +Rand is distributed under the terms of both the MIT license and the +Apache License (Version 2.0). + +See [LICENSE-APACHE](LICENSE-APACHE) and [LICENSE-MIT](LICENSE-MIT), and +[COPYRIGHT](COPYRIGHT) for details. diff --git a/vendor/rand-0.7.3/SECURITY.md b/vendor/rand-0.7.3/SECURITY.md new file mode 100644 index 000000000..daedb78f0 --- /dev/null +++ b/vendor/rand-0.7.3/SECURITY.md @@ -0,0 +1,69 @@ +# Security Policy + +## No guarantees + +Support is provided on a best-effort bases only. +No binding guarantees can be provided. + +## Security premises + +Rand provides the trait `rand_core::CryptoRng` aka `rand::CryptoRng` as a marker +trait. Generators implementating `RngCore` *and* `CryptoRng`, and given the +additional constraints that: + +- Instances of seedable RNGs (those implementing `SeedableRng`) are + constructed with cryptographically secure seed values +- The state (memory) of the RNG and its seed value are not be exposed + +are expected to provide the following: + +- An attacker can gain no advantage over chance (50% for each bit) in + predicting the RNG output, even with full knowledge of all prior outputs. + +For some RNGs, notably `OsRng`, `ThreadRng` and those wrapped by `ReseedingRng`, +we provide limited mitigations against side-channel attacks: + +- After a process fork on Unix, there is an upper-bound on the number of bits + output by the RNG before the processes diverge, after which outputs from + each process's RNG are uncorrelated +- After the state (memory) of an RNG is leaked, there is an upper-bound on the + number of bits of output by the RNG before prediction of output by an + observer again becomes computationally-infeasible + +Additionally, derivations from such an RNG (including the `Rng` trait, +implementations of the `Distribution` trait, and `seq` algorithms) should not +introduce signficant bias other than that expected from the operation in +question (e.g. bias from a weighted distribution). + +## Supported Versions + +We will attempt to uphold these premises in the following crate versions, +provided that only the latest patch version is used, and with potential +exceptions for theoretical issues without a known exploit: + +| Crate | Versions | Exceptions | +| ----- | -------- | ---------- | +| `rand` | 0.7 | | +| `rand` | 0.5, 0.6 | Jitter | +| `rand` | 0.4 | Jitter, ISAAC | +| `rand_core` | 0.2 - 0.5 | | +| `rand_chacha` | 0.1 - 0.2 | | +| `rand_hc` | 0.1 - 0.2 | | + +Explanation of exceptions: + +- Jitter: `JitterRng` is used as an entropy source when the primary source + fails; this source may not be secure against side-channel attacks, see #699. +- ISAAC: the [ISAAC](https://burtleburtle.net/bob/rand/isaacafa.html) RNG used + to implement `thread_rng` is difficult to analyse and thus cannot provide + strong assertions of security. + +## Known issues + +In `rand` version 0.3 (0.3.18 and later), if `OsRng` fails, `thread_rng` is +seeded from the system time in an insecure manner. + +## Reporting a Vulnerability + +To report a vulnerability, [open a new issue](https://github.com/rust-random/rand/issues/new). +Once the issue is resolved, the vulnerability should be [reported to RustSec](https://github.com/RustSec/advisory-db/blob/master/CONTRIBUTING.md). diff --git a/vendor/rand-0.7.3/benches/generators.rs b/vendor/rand-0.7.3/benches/generators.rs new file mode 100644 index 000000000..3e264083d --- /dev/null +++ b/vendor/rand-0.7.3/benches/generators.rs @@ -0,0 +1,165 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![feature(test)] +#![allow(non_snake_case)] + +extern crate test; + +const RAND_BENCH_N: u64 = 1000; +const BYTES_LEN: usize = 1024; + +use std::mem::size_of; +use test::{black_box, Bencher}; + +use rand::prelude::*; +use rand::rngs::adapter::ReseedingRng; +use rand::rngs::{mock::StepRng, OsRng}; +use rand_chacha::{ChaCha12Rng, ChaCha20Core, ChaCha20Rng, ChaCha8Rng}; +use rand_hc::Hc128Rng; +use rand_pcg::{Pcg32, Pcg64, Pcg64Mcg}; + +macro_rules! gen_bytes { + ($fnn:ident, $gen:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = $gen; + let mut buf = [0u8; BYTES_LEN]; + b.iter(|| { + for _ in 0..RAND_BENCH_N { + rng.fill_bytes(&mut buf); + black_box(buf); + } + }); + b.bytes = BYTES_LEN as u64 * RAND_BENCH_N; + } + }; +} + +gen_bytes!(gen_bytes_step, StepRng::new(0, 1)); +gen_bytes!(gen_bytes_pcg32, Pcg32::from_entropy()); +gen_bytes!(gen_bytes_pcg64, Pcg64::from_entropy()); +gen_bytes!(gen_bytes_pcg64mcg, Pcg64Mcg::from_entropy()); +gen_bytes!(gen_bytes_chacha8, ChaCha8Rng::from_entropy()); +gen_bytes!(gen_bytes_chacha12, ChaCha12Rng::from_entropy()); +gen_bytes!(gen_bytes_chacha20, ChaCha20Rng::from_entropy()); +gen_bytes!(gen_bytes_hc128, Hc128Rng::from_entropy()); +gen_bytes!(gen_bytes_std, StdRng::from_entropy()); +#[cfg(feature = "small_rng")] +gen_bytes!(gen_bytes_small, SmallRng::from_entropy()); +gen_bytes!(gen_bytes_os, OsRng); + +macro_rules! gen_uint { + ($fnn:ident, $ty:ty, $gen:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = $gen; + b.iter(|| { + let mut accum: $ty = 0; + for _ in 0..RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen::<$ty>()); + } + accum + }); + b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; + } + }; +} + +gen_uint!(gen_u32_step, u32, StepRng::new(0, 1)); +gen_uint!(gen_u32_pcg32, u32, Pcg32::from_entropy()); +gen_uint!(gen_u32_pcg64, u32, Pcg64::from_entropy()); +gen_uint!(gen_u32_pcg64mcg, u32, Pcg64Mcg::from_entropy()); +gen_uint!(gen_u32_chacha8, u32, ChaCha8Rng::from_entropy()); +gen_uint!(gen_u32_chacha12, u32, ChaCha12Rng::from_entropy()); +gen_uint!(gen_u32_chacha20, u32, ChaCha20Rng::from_entropy()); +gen_uint!(gen_u32_hc128, u32, Hc128Rng::from_entropy()); +gen_uint!(gen_u32_std, u32, StdRng::from_entropy()); +#[cfg(feature = "small_rng")] +gen_uint!(gen_u32_small, u32, SmallRng::from_entropy()); +gen_uint!(gen_u32_os, u32, OsRng); + +gen_uint!(gen_u64_step, u64, StepRng::new(0, 1)); +gen_uint!(gen_u64_pcg32, u64, Pcg32::from_entropy()); +gen_uint!(gen_u64_pcg64, u64, Pcg64::from_entropy()); +gen_uint!(gen_u64_pcg64mcg, u64, Pcg64Mcg::from_entropy()); +gen_uint!(gen_u64_chacha8, u64, ChaCha8Rng::from_entropy()); +gen_uint!(gen_u64_chacha12, u64, ChaCha12Rng::from_entropy()); +gen_uint!(gen_u64_chacha20, u64, ChaCha20Rng::from_entropy()); +gen_uint!(gen_u64_hc128, u64, Hc128Rng::from_entropy()); +gen_uint!(gen_u64_std, u64, StdRng::from_entropy()); +#[cfg(feature = "small_rng")] +gen_uint!(gen_u64_small, u64, SmallRng::from_entropy()); +gen_uint!(gen_u64_os, u64, OsRng); + +macro_rules! init_gen { + ($fnn:ident, $gen:ident) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = Pcg32::from_entropy(); + b.iter(|| { + let r2 = $gen::from_rng(&mut rng).unwrap(); + r2 + }); + } + }; +} + +init_gen!(init_pcg32, Pcg32); +init_gen!(init_pcg64, Pcg64); +init_gen!(init_pcg64mcg, Pcg64Mcg); +init_gen!(init_hc128, Hc128Rng); +init_gen!(init_chacha, ChaCha20Rng); + +const RESEEDING_BYTES_LEN: usize = 1024 * 1024; +const RESEEDING_BENCH_N: u64 = 16; + +macro_rules! reseeding_bytes { + ($fnn:ident, $thresh:expr) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = ReseedingRng::new(ChaCha20Core::from_entropy(), $thresh * 1024, OsRng); + let mut buf = [0u8; RESEEDING_BYTES_LEN]; + b.iter(|| { + for _ in 0..RESEEDING_BENCH_N { + rng.fill_bytes(&mut buf); + black_box(&buf); + } + }); + b.bytes = RESEEDING_BYTES_LEN as u64 * RESEEDING_BENCH_N; + } + }; +} + +reseeding_bytes!(reseeding_chacha20_4k, 4); +reseeding_bytes!(reseeding_chacha20_16k, 16); +reseeding_bytes!(reseeding_chacha20_32k, 32); +reseeding_bytes!(reseeding_chacha20_64k, 64); +reseeding_bytes!(reseeding_chacha20_256k, 256); +reseeding_bytes!(reseeding_chacha20_1M, 1024); + + +macro_rules! threadrng_uint { + ($fnn:ident, $ty:ty) => { + #[bench] + fn $fnn(b: &mut Bencher) { + let mut rng = thread_rng(); + b.iter(|| { + let mut accum: $ty = 0; + for _ in 0..RAND_BENCH_N { + accum = accum.wrapping_add(rng.gen::<$ty>()); + } + accum + }); + b.bytes = size_of::<$ty>() as u64 * RAND_BENCH_N; + } + }; +} + +threadrng_uint!(thread_rng_u32, u32); +threadrng_uint!(thread_rng_u64, u64); diff --git a/vendor/rand-0.7.3/benches/misc.rs b/vendor/rand-0.7.3/benches/misc.rs new file mode 100644 index 000000000..e46137f19 --- /dev/null +++ b/vendor/rand-0.7.3/benches/misc.rs @@ -0,0 +1,140 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![feature(test)] + +extern crate test; + +const RAND_BENCH_N: u64 = 1000; + +use test::Bencher; + +use rand::distributions::{Bernoulli, Distribution, Standard}; +use rand::prelude::*; +use rand_pcg::{Pcg32, Pcg64Mcg}; + +#[bench] +fn misc_gen_bool_const(b: &mut Bencher) { + let mut rng = Pcg32::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let mut accum = true; + for _ in 0..crate::RAND_BENCH_N { + accum ^= rng.gen_bool(0.18); + } + accum + }) +} + +#[bench] +fn misc_gen_bool_var(b: &mut Bencher) { + let mut rng = Pcg32::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let mut accum = true; + let mut p = 0.18; + for _ in 0..crate::RAND_BENCH_N { + accum ^= rng.gen_bool(p); + p += 0.0001; + } + accum + }) +} + +#[bench] +fn misc_gen_ratio_const(b: &mut Bencher) { + let mut rng = Pcg32::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let mut accum = true; + for _ in 0..crate::RAND_BENCH_N { + accum ^= rng.gen_ratio(2, 3); + } + accum + }) +} + +#[bench] +fn misc_gen_ratio_var(b: &mut Bencher) { + let mut rng = Pcg32::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let mut accum = true; + for i in 2..(crate::RAND_BENCH_N as u32 + 2) { + accum ^= rng.gen_ratio(i, i + 1); + } + accum + }) +} + +#[bench] +fn misc_bernoulli_const(b: &mut Bencher) { + let mut rng = Pcg32::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let d = rand::distributions::Bernoulli::new(0.18).unwrap(); + let mut accum = true; + for _ in 0..crate::RAND_BENCH_N { + accum ^= rng.sample(d); + } + accum + }) +} + +#[bench] +fn misc_bernoulli_var(b: &mut Bencher) { + let mut rng = Pcg32::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let mut accum = true; + let mut p = 0.18; + for _ in 0..crate::RAND_BENCH_N { + let d = Bernoulli::new(p).unwrap(); + accum ^= rng.sample(d); + p += 0.0001; + } + accum + }) +} + +#[bench] +fn gen_1k_iter_repeat(b: &mut Bencher) { + use std::iter; + let mut rng = Pcg64Mcg::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let v: Vec<u64> = iter::repeat(()).map(|()| rng.gen()).take(128).collect(); + v + }); + b.bytes = 1024; +} + +#[bench] +fn gen_1k_sample_iter(b: &mut Bencher) { + let mut rng = Pcg64Mcg::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + let v: Vec<u64> = Standard.sample_iter(&mut rng).take(128).collect(); + v + }); + b.bytes = 1024; +} + +#[bench] +fn gen_1k_gen_array(b: &mut Bencher) { + let mut rng = Pcg64Mcg::from_rng(&mut thread_rng()).unwrap(); + b.iter(|| { + // max supported array length is 32! + let v: [[u64; 32]; 4] = rng.gen(); + v + }); + b.bytes = 1024; +} + +#[bench] +fn gen_1k_fill(b: &mut Bencher) { + let mut rng = Pcg64Mcg::from_rng(&mut thread_rng()).unwrap(); + let mut buf = [0u64; 128]; + b.iter(|| { + rng.fill(&mut buf[..]); + buf + }); + b.bytes = 1024; +} diff --git a/vendor/rand-0.7.3/benches/seq.rs b/vendor/rand-0.7.3/benches/seq.rs new file mode 100644 index 000000000..7da2ff8a0 --- /dev/null +++ b/vendor/rand-0.7.3/benches/seq.rs @@ -0,0 +1,179 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![feature(test)] +#![allow(non_snake_case)] + +extern crate test; + +use test::Bencher; + +use rand::prelude::*; +use rand::seq::*; +use std::mem::size_of; + +// We force use of 32-bit RNG since seq code is optimised for use with 32-bit +// generators on all platforms. +use rand_pcg::Pcg32 as SmallRng; + +const RAND_BENCH_N: u64 = 1000; + +#[bench] +fn seq_shuffle_100(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &mut [usize] = &mut [1; 100]; + b.iter(|| { + x.shuffle(&mut rng); + x[0] + }) +} + +#[bench] +fn seq_slice_choose_1_of_1000(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &mut [usize] = &mut [1; 1000]; + for i in 0..1000 { + x[i] = i; + } + b.iter(|| { + let mut s = 0; + for _ in 0..RAND_BENCH_N { + s += x.choose(&mut rng).unwrap(); + } + s + }); + b.bytes = size_of::<usize>() as u64 * crate::RAND_BENCH_N; +} + +macro_rules! seq_slice_choose_multiple { + ($name:ident, $amount:expr, $length:expr) => { + #[bench] + fn $name(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &[i32] = &[$amount; $length]; + let mut result = [0i32; $amount]; + b.iter(|| { + // Collect full result to prevent unwanted shortcuts getting + // first element (in case sample_indices returns an iterator). + for (slot, sample) in result.iter_mut().zip(x.choose_multiple(&mut rng, $amount)) { + *slot = *sample; + } + result[$amount - 1] + }) + } + }; +} + +seq_slice_choose_multiple!(seq_slice_choose_multiple_1_of_1000, 1, 1000); +seq_slice_choose_multiple!(seq_slice_choose_multiple_950_of_1000, 950, 1000); +seq_slice_choose_multiple!(seq_slice_choose_multiple_10_of_100, 10, 100); +seq_slice_choose_multiple!(seq_slice_choose_multiple_90_of_100, 90, 100); + +#[bench] +fn seq_iter_choose_from_1000(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &mut [usize] = &mut [1; 1000]; + for i in 0..1000 { + x[i] = i; + } + b.iter(|| { + let mut s = 0; + for _ in 0..RAND_BENCH_N { + s += x.iter().choose(&mut rng).unwrap(); + } + s + }); + b.bytes = size_of::<usize>() as u64 * crate::RAND_BENCH_N; +} + +#[derive(Clone)] +struct UnhintedIterator<I: Iterator + Clone> { + iter: I, +} +impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> { + type Item = I::Item; + + fn next(&mut self) -> Option<Self::Item> { + self.iter.next() + } +} + +#[derive(Clone)] +struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> { + iter: I, + window_size: usize, +} +impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> { + type Item = I::Item; + + fn next(&mut self) -> Option<Self::Item> { + self.iter.next() + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (std::cmp::min(self.iter.len(), self.window_size), None) + } +} + +#[bench] +fn seq_iter_unhinted_choose_from_1000(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &[usize] = &[1; 1000]; + b.iter(|| { + UnhintedIterator { iter: x.iter() } + .choose(&mut rng) + .unwrap() + }) +} + +#[bench] +fn seq_iter_window_hinted_choose_from_1000(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &[usize] = &[1; 1000]; + b.iter(|| { + WindowHintedIterator { + iter: x.iter(), + window_size: 7, + } + .choose(&mut rng) + }) +} + +#[bench] +fn seq_iter_choose_multiple_10_of_100(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &[usize] = &[1; 100]; + b.iter(|| x.iter().cloned().choose_multiple(&mut rng, 10)) +} + +#[bench] +fn seq_iter_choose_multiple_fill_10_of_100(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + let x: &[usize] = &[1; 100]; + let mut buf = [0; 10]; + b.iter(|| x.iter().cloned().choose_multiple_fill(&mut rng, &mut buf)) +} + +macro_rules! sample_indices { + ($name:ident, $fn:ident, $amount:expr, $length:expr) => { + #[bench] + fn $name(b: &mut Bencher) { + let mut rng = SmallRng::from_rng(thread_rng()).unwrap(); + b.iter(|| index::$fn(&mut rng, $length, $amount)) + } + }; +} + +sample_indices!(misc_sample_indices_1_of_1k, sample, 1, 1000); +sample_indices!(misc_sample_indices_10_of_1k, sample, 10, 1000); +sample_indices!(misc_sample_indices_100_of_1k, sample, 100, 1000); +sample_indices!(misc_sample_indices_100_of_1M, sample, 100, 1000_000); +sample_indices!(misc_sample_indices_100_of_1G, sample, 100, 1000_000_000); +sample_indices!(misc_sample_indices_200_of_1G, sample, 200, 1000_000_000); +sample_indices!(misc_sample_indices_400_of_1G, sample, 400, 1000_000_000); +sample_indices!(misc_sample_indices_600_of_1G, sample, 600, 1000_000_000); diff --git a/vendor/rand-0.7.3/benches/weighted.rs b/vendor/rand-0.7.3/benches/weighted.rs new file mode 100644 index 000000000..68722908a --- /dev/null +++ b/vendor/rand-0.7.3/benches/weighted.rs @@ -0,0 +1,36 @@ +// Copyright 2019 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![feature(test)] + +extern crate test; + +use rand::distributions::WeightedIndex; +use rand::Rng; +use test::Bencher; + +#[bench] +fn weighted_index_creation(b: &mut Bencher) { + let mut rng = rand::thread_rng(); + let weights = [1u32, 2, 4, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 7]; + b.iter(|| { + let distr = WeightedIndex::new(weights.to_vec()).unwrap(); + rng.sample(distr) + }) +} + +#[bench] +fn weighted_index_modification(b: &mut Bencher) { + let mut rng = rand::thread_rng(); + let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; + let mut distr = WeightedIndex::new(weights.to_vec()).unwrap(); + b.iter(|| { + distr.update_weights(&[(2, &4), (5, &1)]).unwrap(); + rng.sample(&distr) + }) +} diff --git a/vendor/rand-0.7.3/examples/monte-carlo.rs b/vendor/rand-0.7.3/examples/monte-carlo.rs new file mode 100644 index 000000000..70560d0fa --- /dev/null +++ b/vendor/rand-0.7.3/examples/monte-carlo.rs @@ -0,0 +1,51 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013-2018 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! # Monte Carlo estimation of Ο +//! +//! Imagine that we have a square with sides of length 2 and a unit circle +//! (radius = 1), both centered at the origin. The areas are: +//! +//! ```text +//! area of circle = ΟrΒ² = Ο * r * r = Ο +//! area of square = 2Β² = 4 +//! ``` +//! +//! The circle is entirely within the square, so if we sample many points +//! randomly from the square, roughly Ο / 4 of them should be inside the circle. +//! +//! We can use the above fact to estimate the value of Ο: pick many points in +//! the square at random, calculate the fraction that fall within the circle, +//! and multiply this fraction by 4. + +#![cfg(feature = "std")] + +use rand::distributions::{Distribution, Uniform}; + +fn main() { + let range = Uniform::new(-1.0f64, 1.0); + let mut rng = rand::thread_rng(); + + let total = 1_000_000; + let mut in_circle = 0; + + for _ in 0..total { + let a = range.sample(&mut rng); + let b = range.sample(&mut rng); + if a * a + b * b <= 1.0 { + in_circle += 1; + } + } + + // prints something close to 3.14159... + println!( + "Ο is approximately {}", + 4. * (in_circle as f64) / (total as f64) + ); +} diff --git a/vendor/rand-0.7.3/examples/monty-hall.rs b/vendor/rand-0.7.3/examples/monty-hall.rs new file mode 100644 index 000000000..30e2f44d1 --- /dev/null +++ b/vendor/rand-0.7.3/examples/monty-hall.rs @@ -0,0 +1,123 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013-2018 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! ## Monty Hall Problem +//! +//! This is a simulation of the [Monty Hall Problem][]: +//! +//! > Suppose you're on a game show, and you're given the choice of three doors: +//! > Behind one door is a car; behind the others, goats. You pick a door, say +//! > No. 1, and the host, who knows what's behind the doors, opens another +//! > door, say No. 3, which has a goat. He then says to you, "Do you want to +//! > pick door No. 2?" Is it to your advantage to switch your choice? +//! +//! The rather unintuitive answer is that you will have a 2/3 chance of winning +//! if you switch and a 1/3 chance of winning if you don't, so it's better to +//! switch. +//! +//! This program will simulate the game show and with large enough simulation +//! steps it will indeed confirm that it is better to switch. +//! +//! [Monty Hall Problem]: https://en.wikipedia.org/wiki/Monty_Hall_problem + +#![cfg(feature = "std")] + +use rand::distributions::{Distribution, Uniform}; +use rand::Rng; + +struct SimulationResult { + win: bool, + switch: bool, +} + +// Run a single simulation of the Monty Hall problem. +fn simulate<R: Rng>(random_door: &Uniform<u32>, rng: &mut R) -> SimulationResult { + let car = random_door.sample(rng); + + // This is our initial choice + let mut choice = random_door.sample(rng); + + // The game host opens a door + let open = game_host_open(car, choice, rng); + + // Shall we switch? + let switch = rng.gen(); + if switch { + choice = switch_door(choice, open); + } + + SimulationResult { + win: choice == car, + switch, + } +} + +// Returns the door the game host opens given our choice and knowledge of +// where the car is. The game host will never open the door with the car. +fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 { + use rand::seq::SliceRandom; + *free_doors(&[car, choice]).choose(rng).unwrap() +} + +// Returns the door we switch to, given our current choice and +// the open door. There will only be one valid door. +fn switch_door(choice: u32, open: u32) -> u32 { + free_doors(&[choice, open])[0] +} + +fn free_doors(blocked: &[u32]) -> Vec<u32> { + (0..3).filter(|x| !blocked.contains(x)).collect() +} + +fn main() { + // The estimation will be more accurate with more simulations + let num_simulations = 10000; + + let mut rng = rand::thread_rng(); + let random_door = Uniform::new(0u32, 3); + + let (mut switch_wins, mut switch_losses) = (0, 0); + let (mut keep_wins, mut keep_losses) = (0, 0); + + println!("Running {} simulations...", num_simulations); + for _ in 0..num_simulations { + let result = simulate(&random_door, &mut rng); + + match (result.win, result.switch) { + (true, true) => switch_wins += 1, + (true, false) => keep_wins += 1, + (false, true) => switch_losses += 1, + (false, false) => keep_losses += 1, + } + } + + let total_switches = switch_wins + switch_losses; + let total_keeps = keep_wins + keep_losses; + + println!( + "Switched door {} times with {} wins and {} losses", + total_switches, switch_wins, switch_losses + ); + + println!( + "Kept our choice {} times with {} wins and {} losses", + total_keeps, keep_wins, keep_losses + ); + + // With a large number of simulations, the values should converge to + // 0.667 and 0.333 respectively. + println!( + "Estimated chance to win if we switch: {}", + switch_wins as f32 / total_switches as f32 + ); + println!( + "Estimated chance to win if we don't: {}", + keep_wins as f32 / total_keeps as f32 + ); +} diff --git a/vendor/rand-0.7.3/rustfmt.toml b/vendor/rand-0.7.3/rustfmt.toml new file mode 100644 index 000000000..6a2d9d482 --- /dev/null +++ b/vendor/rand-0.7.3/rustfmt.toml @@ -0,0 +1,32 @@ +# This rustfmt file is added for configuration, but in practice much of our +# code is hand-formatted, frequently with more readable results. + +# Comments: +normalize_comments = true +wrap_comments = false +comment_width = 90 # small excess is okay but prefer 80 + +# Arguments: +use_small_heuristics = "Default" +# TODO: single line functions only where short, please? +# https://github.com/rust-lang/rustfmt/issues/3358 +fn_single_line = false +fn_args_layout = "Compressed" +overflow_delimited_expr = true +where_single_line = true + +# enum_discrim_align_threshold = 20 +# struct_field_align_threshold = 20 + +# Compatibility: +edition = "2018" # we require compatibility back to 1.32.0 + +# Misc: +inline_attribute_width = 80 +blank_lines_upper_bound = 2 +reorder_impl_items = true +# report_todo = "Unnumbered" +# report_fixme = "Unnumbered" + +# Ignored files: +ignore = [] diff --git a/vendor/rand-0.7.3/src/distributions/bernoulli.rs b/vendor/rand-0.7.3/src/distributions/bernoulli.rs new file mode 100644 index 000000000..a1fa86e14 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/bernoulli.rs @@ -0,0 +1,199 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Bernoulli distribution. + +use crate::distributions::Distribution; +use crate::Rng; +use core::{fmt, u64}; + +/// The Bernoulli distribution. +/// +/// This is a special case of the Binomial distribution where `n = 1`. +/// +/// # Example +/// +/// ```rust +/// use rand::distributions::{Bernoulli, Distribution}; +/// +/// let d = Bernoulli::new(0.3).unwrap(); +/// let v = d.sample(&mut rand::thread_rng()); +/// println!("{} is from a Bernoulli distribution", v); +/// ``` +/// +/// # Precision +/// +/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`), +/// so only probabilities that are multiples of 2<sup>-64</sup> can be +/// represented. +#[derive(Clone, Copy, Debug)] +pub struct Bernoulli { + /// Probability of success, relative to the maximal integer. + p_int: u64, +} + +// To sample from the Bernoulli distribution we use a method that compares a +// random `u64` value `v < (p * 2^64)`. +// +// If `p == 1.0`, the integer `v` to compare against can not represented as a +// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64). +// Note that value of `p < 1.0` can never result in `u64::MAX`, because an +// `f64` only has 53 bits of precision, and the next largest value of `p` will +// result in `2^64 - 2048`. +// +// Also there is a 100% theoretical concern: if someone consistenly wants to +// generate `true` using the Bernoulli distribution (i.e. by using a probability +// of `1.0`), just using `u64::MAX` is not enough. On average it would return +// false once every 2^64 iterations. Some people apparently care about this +// case. +// +// That is why we special-case `u64::MAX` to always return `true`, without using +// the RNG, and pay the performance price for all uses that *are* reasonable. +// Luckily, if `new()` and `sample` are close, the compiler can optimize out the +// extra check. +const ALWAYS_TRUE: u64 = u64::MAX; + +// This is just `2.0.powi(64)`, but written this way because it is not available +// in `no_std` mode. +const SCALE: f64 = 2.0 * (1u64 << 63) as f64; + +/// Error type returned from `Bernoulli::new`. +#[derive(Clone, Copy, Debug, PartialEq, Eq)] +pub enum BernoulliError { + /// `p < 0` or `p > 1`. + InvalidProbability, +} + +impl fmt::Display for BernoulliError { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.write_str(match self { + BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution", + }) + } +} + +#[cfg(feature = "std")] +impl ::std::error::Error for BernoulliError {} + +impl Bernoulli { + /// Construct a new `Bernoulli` with the given probability of success `p`. + /// + /// # Precision + /// + /// For `p = 1.0`, the resulting distribution will always generate true. + /// For `p = 0.0`, the resulting distribution will always generate false. + /// + /// This method is accurate for any input `p` in the range `[0, 1]` which is + /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of + /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.) + #[inline] + pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> { + if !(p >= 0.0 && p < 1.0) { + if p == 1.0 { + return Ok(Bernoulli { p_int: ALWAYS_TRUE }); + } + return Err(BernoulliError::InvalidProbability); + } + Ok(Bernoulli { + p_int: (p * SCALE) as u64, + }) + } + + /// Construct a new `Bernoulli` with the probability of success of + /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return + /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`. + /// + /// return `true`. If `numerator == 0` it will always return `false`. + /// For `numerator > denominator` and `denominator == 0`, this returns an + /// error. Otherwise, for `numerator == denominator`, samples are always + /// true; for `numerator == 0` samples are always false. + #[inline] + pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> { + if numerator > denominator || denominator == 0 { + return Err(BernoulliError::InvalidProbability); + } + if numerator == denominator { + return Ok(Bernoulli { p_int: ALWAYS_TRUE }); + } + let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64; + Ok(Bernoulli { p_int }) + } +} + +impl Distribution<bool> for Bernoulli { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { + // Make sure to always return true for p = 1.0. + if self.p_int == ALWAYS_TRUE { + return true; + } + let v: u64 = rng.gen(); + v < self.p_int + } +} + +#[cfg(test)] +mod test { + use super::Bernoulli; + use crate::distributions::Distribution; + use crate::Rng; + + #[test] + fn test_trivial() { + let mut r = crate::test::rng(1); + let always_false = Bernoulli::new(0.0).unwrap(); + let always_true = Bernoulli::new(1.0).unwrap(); + for _ in 0..5 { + assert_eq!(r.sample::<bool, _>(&always_false), false); + assert_eq!(r.sample::<bool, _>(&always_true), true); + assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false); + assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true); + } + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_average() { + const P: f64 = 0.3; + const NUM: u32 = 3; + const DENOM: u32 = 10; + let d1 = Bernoulli::new(P).unwrap(); + let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap(); + const N: u32 = 100_000; + + let mut sum1: u32 = 0; + let mut sum2: u32 = 0; + let mut rng = crate::test::rng(2); + for _ in 0..N { + if d1.sample(&mut rng) { + sum1 += 1; + } + if d2.sample(&mut rng) { + sum2 += 1; + } + } + let avg1 = (sum1 as f64) / (N as f64); + assert!((avg1 - P).abs() < 5e-3); + + let avg2 = (sum2 as f64) / (N as f64); + assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3); + } + + #[test] + fn value_stability() { + let mut rng = crate::test::rng(3); + let distr = Bernoulli::new(0.4532).unwrap(); + let mut buf = [false; 10]; + for x in &mut buf { + *x = rng.sample(&distr); + } + assert_eq!(buf, [ + true, false, false, true, false, false, true, true, true, true + ]); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/binomial.rs b/vendor/rand-0.7.3/src/distributions/binomial.rs new file mode 100644 index 000000000..c096e4a86 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/binomial.rs @@ -0,0 +1,321 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2016-2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The binomial distribution. +#![allow(deprecated)] +#![allow(clippy::all)] + +use crate::distributions::{Distribution, Uniform}; +use crate::Rng; + +/// The binomial distribution `Binomial(n, p)`. +/// +/// This distribution has density function: +/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Binomial { + /// Number of trials. + n: u64, + /// Probability of success. + p: f64, +} + +impl Binomial { + /// Construct a new `Binomial` with the given shape parameters `n` (number + /// of trials) and `p` (probability of success). + /// + /// Panics if `p < 0` or `p > 1`. + pub fn new(n: u64, p: f64) -> Binomial { + assert!(p >= 0.0, "Binomial::new called with p < 0"); + assert!(p <= 1.0, "Binomial::new called with p > 1"); + Binomial { n, p } + } +} + +/// Convert a `f64` to an `i64`, panicing on overflow. +// In the future (Rust 1.34), this might be replaced with `TryFrom`. +fn f64_to_i64(x: f64) -> i64 { + assert!(x < (::std::i64::MAX as f64)); + x as i64 +} + +impl Distribution<u64> for Binomial { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { + // Handle these values directly. + if self.p == 0.0 { + return 0; + } else if self.p == 1.0 { + return self.n; + } + + // The binomial distribution is symmetrical with respect to p -> 1-p, + // k -> n-k switch p so that it is less than 0.5 - this allows for lower + // expected values we will just invert the result at the end + let p = if self.p <= 0.5 { self.p } else { 1.0 - self.p }; + + let result; + let q = 1. - p; + + // For small n * min(p, 1 - p), the BINV algorithm based on the inverse + // transformation of the binomial distribution is efficient. Otherwise, + // the BTPE algorithm is used. + // + // Voratas Kachitvichyanukul and Bruce W. Schmeiser. 1988. Binomial + // random variate generation. Commun. ACM 31, 2 (February 1988), + // 216-222. http://dx.doi.org/10.1145/42372.42381 + + // Threshold for prefering the BINV algorithm. The paper suggests 10, + // Ranlib uses 30, and GSL uses 14. + const BINV_THRESHOLD: f64 = 10.; + + if (self.n as f64) * p < BINV_THRESHOLD && self.n <= (::std::i32::MAX as u64) { + // Use the BINV algorithm. + let s = p / q; + let a = ((self.n + 1) as f64) * s; + let mut r = q.powi(self.n as i32); + let mut u: f64 = rng.gen(); + let mut x = 0; + while u > r as f64 { + u -= r; + x += 1; + r *= a / (x as f64) - s; + } + result = x; + } else { + // Use the BTPE algorithm. + + // Threshold for using the squeeze algorithm. This can be freely + // chosen based on performance. Ranlib and GSL use 20. + const SQUEEZE_THRESHOLD: i64 = 20; + + // Step 0: Calculate constants as functions of `n` and `p`. + let n = self.n as f64; + let np = n * p; + let npq = np * q; + let f_m = np + p; + let m = f64_to_i64(f_m); + // radius of triangle region, since height=1 also area of region + let p1 = (2.195 * npq.sqrt() - 4.6 * q).floor() + 0.5; + // tip of triangle + let x_m = (m as f64) + 0.5; + // left edge of triangle + let x_l = x_m - p1; + // right edge of triangle + let x_r = x_m + p1; + let c = 0.134 + 20.5 / (15.3 + (m as f64)); + // p1 + area of parallelogram region + let p2 = p1 * (1. + 2. * c); + + fn lambda(a: f64) -> f64 { + a * (1. + 0.5 * a) + } + + let lambda_l = lambda((f_m - x_l) / (f_m - x_l * p)); + let lambda_r = lambda((x_r - f_m) / (x_r * q)); + // p1 + area of left tail + let p3 = p2 + c / lambda_l; + // p1 + area of right tail + let p4 = p3 + c / lambda_r; + + // return value + let mut y: i64; + + let gen_u = Uniform::new(0., p4); + let gen_v = Uniform::new(0., 1.); + + loop { + // Step 1: Generate `u` for selecting the region. If region 1 is + // selected, generate a triangularly distributed variate. + let u = gen_u.sample(rng); + let mut v = gen_v.sample(rng); + if !(u > p1) { + y = f64_to_i64(x_m - p1 * v + u); + break; + } + + if !(u > p2) { + // Step 2: Region 2, parallelograms. Check if region 2 is + // used. If so, generate `y`. + let x = x_l + (u - p1) / c; + v = v * c + 1.0 - (x - x_m).abs() / p1; + if v > 1. { + continue; + } else { + y = f64_to_i64(x); + } + } else if !(u > p3) { + // Step 3: Region 3, left exponential tail. + y = f64_to_i64(x_l + v.ln() / lambda_l); + if y < 0 { + continue; + } else { + v *= (u - p2) * lambda_l; + } + } else { + // Step 4: Region 4, right exponential tail. + y = f64_to_i64(x_r - v.ln() / lambda_r); + if y > 0 && (y as u64) > self.n { + continue; + } else { + v *= (u - p3) * lambda_r; + } + } + + // Step 5: Acceptance/rejection comparison. + + // Step 5.0: Test for appropriate method of evaluating f(y). + let k = (y - m).abs(); + if !(k > SQUEEZE_THRESHOLD && (k as f64) < 0.5 * npq - 1.) { + // Step 5.1: Evaluate f(y) via the recursive relationship. Start the + // search from the mode. + let s = p / q; + let a = s * (n + 1.); + let mut f = 1.0; + if m < y { + let mut i = m; + loop { + i += 1; + f *= a / (i as f64) - s; + if i == y { + break; + } + } + } else if m > y { + let mut i = y; + loop { + i += 1; + f /= a / (i as f64) - s; + if i == m { + break; + } + } + } + if v > f { + continue; + } else { + break; + } + } + + // Step 5.2: Squeezing. Check the value of ln(v) againts upper and + // lower bound of ln(f(y)). + let k = k as f64; + let rho = (k / npq) * ((k * (k / 3. + 0.625) + 1. / 6.) / npq + 0.5); + let t = -0.5 * k * k / npq; + let alpha = v.ln(); + if alpha < t - rho { + break; + } + if alpha > t + rho { + continue; + } + + // Step 5.3: Final acceptance/rejection test. + let x1 = (y + 1) as f64; + let f1 = (m + 1) as f64; + let z = (f64_to_i64(n) + 1 - m) as f64; + let w = (f64_to_i64(n) - y + 1) as f64; + + fn stirling(a: f64) -> f64 { + let a2 = a * a; + (13860. - (462. - (132. - (99. - 140. / a2) / a2) / a2) / a2) / a / 166320. + } + + if alpha + > x_m * (f1 / x1).ln() + + (n - (m as f64) + 0.5) * (z / w).ln() + + ((y - m) as f64) * (w * p / (x1 * q)).ln() + // We use the signs from the GSL implementation, which are + // different than the ones in the reference. According to + // the GSL authors, the new signs were verified to be + // correct by one of the original designers of the + // algorithm. + + stirling(f1) + + stirling(z) + - stirling(x1) + - stirling(w) + { + continue; + } + + break; + } + assert!(y >= 0); + result = y as u64; + } + + // Invert the result for p < 0.5. + if p != self.p { + self.n - result + } else { + result + } + } +} + +#[cfg(test)] +mod test { + use super::Binomial; + use crate::distributions::Distribution; + use crate::Rng; + + fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) { + let binomial = Binomial::new(n, p); + + let expected_mean = n as f64 * p; + let expected_variance = n as f64 * p * (1.0 - p); + + let mut results = [0.0; 1000]; + for i in results.iter_mut() { + *i = binomial.sample(rng) as f64; + } + + let mean = results.iter().sum::<f64>() / results.len() as f64; + assert!( + (mean as f64 - expected_mean).abs() < expected_mean / 50.0, + "mean: {}, expected_mean: {}", + mean, + expected_mean + ); + + let variance = + results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64; + assert!( + (variance - expected_variance).abs() < expected_variance / 10.0, + "variance: {}, expected_variance: {}", + variance, + expected_variance + ); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_binomial() { + let mut rng = crate::test::rng(351); + test_binomial_mean_and_variance(150, 0.1, &mut rng); + test_binomial_mean_and_variance(70, 0.6, &mut rng); + test_binomial_mean_and_variance(40, 0.5, &mut rng); + test_binomial_mean_and_variance(20, 0.7, &mut rng); + test_binomial_mean_and_variance(20, 0.5, &mut rng); + } + + #[test] + fn test_binomial_end_points() { + let mut rng = crate::test::rng(352); + assert_eq!(rng.sample(Binomial::new(20, 0.0)), 0); + assert_eq!(rng.sample(Binomial::new(20, 1.0)), 20); + } + + #[test] + #[should_panic] + fn test_binomial_invalid_lambda_neg() { + Binomial::new(20, -10.0); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/cauchy.rs b/vendor/rand-0.7.3/src/distributions/cauchy.rs new file mode 100644 index 000000000..dc54c98a3 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/cauchy.rs @@ -0,0 +1,99 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2016-2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Cauchy distribution. +#![allow(deprecated)] +#![allow(clippy::all)] + +use crate::distributions::Distribution; +use crate::Rng; +use std::f64::consts::PI; + +/// The Cauchy distribution `Cauchy(median, scale)`. +/// +/// This distribution has a density function: +/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))` +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Cauchy { + median: f64, + scale: f64, +} + +impl Cauchy { + /// Construct a new `Cauchy` with the given shape parameters + /// `median` the peak location and `scale` the scale factor. + /// Panics if `scale <= 0`. + pub fn new(median: f64, scale: f64) -> Cauchy { + assert!(scale > 0.0, "Cauchy::new called with scale factor <= 0"); + Cauchy { median, scale } + } +} + +impl Distribution<f64> for Cauchy { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + // sample from [0, 1) + let x = rng.gen::<f64>(); + // get standard cauchy random number + // note that Ο/2 is not exactly representable, even if x=0.5 the result is finite + let comp_dev = (PI * x).tan(); + // shift and scale according to parameters + let result = self.median + self.scale * comp_dev; + result + } +} + +#[cfg(test)] +mod test { + use super::Cauchy; + use crate::distributions::Distribution; + + fn median(mut numbers: &mut [f64]) -> f64 { + sort(&mut numbers); + let mid = numbers.len() / 2; + numbers[mid] + } + + fn sort(numbers: &mut [f64]) { + numbers.sort_by(|a, b| a.partial_cmp(b).unwrap()); + } + + #[test] + fn test_cauchy_averages() { + // NOTE: given that the variance and mean are undefined, + // this test does not have any rigorous statistical meaning. + let cauchy = Cauchy::new(10.0, 5.0); + let mut rng = crate::test::rng(123); + let mut numbers: [f64; 1000] = [0.0; 1000]; + let mut sum = 0.0; + for i in 0..1000 { + numbers[i] = cauchy.sample(&mut rng); + sum += numbers[i]; + } + let median = median(&mut numbers); + println!("Cauchy median: {}", median); + assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough + let mean = sum / 1000.0; + println!("Cauchy mean: {}", mean); + // for a Cauchy distribution the mean should not converge + assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough + } + + #[test] + #[should_panic] + fn test_cauchy_invalid_scale_zero() { + Cauchy::new(0.0, 0.0); + } + + #[test] + #[should_panic] + fn test_cauchy_invalid_scale_neg() { + Cauchy::new(0.0, -10.0); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/dirichlet.rs b/vendor/rand-0.7.3/src/distributions/dirichlet.rs new file mode 100644 index 000000000..a75678a85 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/dirichlet.rs @@ -0,0 +1,126 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The dirichlet distribution. +#![allow(deprecated)] +#![allow(clippy::all)] + +use crate::distributions::gamma::Gamma; +use crate::distributions::Distribution; +use crate::Rng; + +/// The dirichelet distribution `Dirichlet(alpha)`. +/// +/// The Dirichlet distribution is a family of continuous multivariate +/// probability distributions parameterized by a vector alpha of positive reals. +/// It is a multivariate generalization of the beta distribution. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Debug)] +pub struct Dirichlet { + /// Concentration parameters (alpha) + alpha: Vec<f64>, +} + +impl Dirichlet { + /// Construct a new `Dirichlet` with the given alpha parameter `alpha`. + /// + /// # Panics + /// - if `alpha.len() < 2` + #[inline] + pub fn new<V: Into<Vec<f64>>>(alpha: V) -> Dirichlet { + let a = alpha.into(); + assert!(a.len() > 1); + for i in 0..a.len() { + assert!(a[i] > 0.0); + } + + Dirichlet { alpha: a } + } + + /// Construct a new `Dirichlet` with the given shape parameter `alpha` and `size`. + /// + /// # Panics + /// - if `alpha <= 0.0` + /// - if `size < 2` + #[inline] + pub fn new_with_param(alpha: f64, size: usize) -> Dirichlet { + assert!(alpha > 0.0); + assert!(size > 1); + Dirichlet { + alpha: vec![alpha; size], + } + } +} + +impl Distribution<Vec<f64>> for Dirichlet { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<f64> { + let n = self.alpha.len(); + let mut samples = vec![0.0f64; n]; + let mut sum = 0.0f64; + + for i in 0..n { + let g = Gamma::new(self.alpha[i], 1.0); + samples[i] = g.sample(rng); + sum += samples[i]; + } + let invacc = 1.0 / sum; + for i in 0..n { + samples[i] *= invacc; + } + samples + } +} + +#[cfg(test)] +mod test { + use super::Dirichlet; + use crate::distributions::Distribution; + + #[test] + fn test_dirichlet() { + let d = Dirichlet::new(vec![1.0, 2.0, 3.0]); + let mut rng = crate::test::rng(221); + let samples = d.sample(&mut rng); + let _: Vec<f64> = samples + .into_iter() + .map(|x| { + assert!(x > 0.0); + x + }) + .collect(); + } + + #[test] + fn test_dirichlet_with_param() { + let alpha = 0.5f64; + let size = 2; + let d = Dirichlet::new_with_param(alpha, size); + let mut rng = crate::test::rng(221); + let samples = d.sample(&mut rng); + let _: Vec<f64> = samples + .into_iter() + .map(|x| { + assert!(x > 0.0); + x + }) + .collect(); + } + + #[test] + #[should_panic] + fn test_dirichlet_invalid_length() { + Dirichlet::new_with_param(0.5f64, 1); + } + + #[test] + #[should_panic] + fn test_dirichlet_invalid_alpha() { + Dirichlet::new_with_param(0.0f64, 2); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/exponential.rs b/vendor/rand-0.7.3/src/distributions/exponential.rs new file mode 100644 index 000000000..5fdf7aa74 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/exponential.rs @@ -0,0 +1,114 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The exponential distribution. +#![allow(deprecated)] + +use crate::distributions::utils::ziggurat; +use crate::distributions::{ziggurat_tables, Distribution}; +use crate::Rng; + +/// Samples floating-point numbers according to the exponential distribution, +/// with rate parameter `Ξ» = 1`. This is equivalent to `Exp::new(1.0)` or +/// sampling with `-rng.gen::<f64>().ln()`, but faster. +/// +/// See `Exp` for the general exponential distribution. +/// +/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method. The exact +/// description in the paper was adjusted to use tables for the exponential +/// distribution rather than normal. +/// +/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to +/// Generate Normal Random Samples*]( +/// https://www.doornik.com/research/ziggurat.pdf). +/// Nuffield College, Oxford +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Exp1; + +// This could be done via `-rng.gen::<f64>().ln()` but that is slower. +impl Distribution<f64> for Exp1 { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + #[inline] + fn pdf(x: f64) -> f64 { + (-x).exp() + } + #[inline] + fn zero_case<R: Rng + ?Sized>(rng: &mut R, _u: f64) -> f64 { + ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln() + } + + ziggurat( + rng, + false, + &ziggurat_tables::ZIG_EXP_X, + &ziggurat_tables::ZIG_EXP_F, + pdf, + zero_case, + ) + } +} + +/// The exponential distribution `Exp(lambda)`. +/// +/// This distribution has density function: `f(x) = lambda * exp(-lambda * x)` +/// for `x > 0`. +/// +/// Note that [`Exp1`](crate::distributions::Exp1) is an optimised implementation for `lambda = 1`. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Exp { + /// `lambda` stored as `1/lambda`, since this is what we scale by. + lambda_inverse: f64, +} + +impl Exp { + /// Construct a new `Exp` with the given shape parameter + /// `lambda`. Panics if `lambda <= 0`. + #[inline] + pub fn new(lambda: f64) -> Exp { + assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0"); + Exp { + lambda_inverse: 1.0 / lambda, + } + } +} + +impl Distribution<f64> for Exp { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let n: f64 = rng.sample(Exp1); + n * self.lambda_inverse + } +} + +#[cfg(test)] +mod test { + use super::Exp; + use crate::distributions::Distribution; + + #[test] + fn test_exp() { + let exp = Exp::new(10.0); + let mut rng = crate::test::rng(221); + for _ in 0..1000 { + assert!(exp.sample(&mut rng) >= 0.0); + } + } + #[test] + #[should_panic] + fn test_exp_invalid_lambda_zero() { + Exp::new(0.0); + } + #[test] + #[should_panic] + fn test_exp_invalid_lambda_neg() { + Exp::new(-10.0); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/float.rs b/vendor/rand-0.7.3/src/distributions/float.rs new file mode 100644 index 000000000..0a45f3977 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/float.rs @@ -0,0 +1,307 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Basic floating-point number distributions + +use crate::distributions::utils::FloatSIMDUtils; +use crate::distributions::{Distribution, Standard}; +use crate::Rng; +use core::mem; +#[cfg(feature = "simd_support")] use packed_simd::*; + +/// A distribution to sample floating point numbers uniformly in the half-open +/// interval `(0, 1]`, i.e. including 1 but not 0. +/// +/// All values that can be generated are of the form `n * Ξ΅/2`. For `f32` +/// the 24 most significant random bits of a `u32` are used and for `f64` the +/// 53 most significant bits of a `u64` are used. The conversion uses the +/// multiplicative method. +/// +/// See also: [`Standard`] which samples from `[0, 1)`, [`Open01`] +/// which samples from `(0, 1)` and [`Uniform`] which samples from arbitrary +/// ranges. +/// +/// # Example +/// ``` +/// use rand::{thread_rng, Rng}; +/// use rand::distributions::OpenClosed01; +/// +/// let val: f32 = thread_rng().sample(OpenClosed01); +/// println!("f32 from (0, 1): {}", val); +/// ``` +/// +/// [`Standard`]: crate::distributions::Standard +/// [`Open01`]: crate::distributions::Open01 +/// [`Uniform`]: crate::distributions::uniform::Uniform +#[derive(Clone, Copy, Debug)] +pub struct OpenClosed01; + +/// A distribution to sample floating point numbers uniformly in the open +/// interval `(0, 1)`, i.e. not including either endpoint. +/// +/// All values that can be generated are of the form `n * Ξ΅ + Ξ΅/2`. For `f32` +/// the 23 most significant random bits of an `u32` are used, for `f64` 52 from +/// an `u64`. The conversion uses a transmute-based method. +/// +/// See also: [`Standard`] which samples from `[0, 1)`, [`OpenClosed01`] +/// which samples from `(0, 1]` and [`Uniform`] which samples from arbitrary +/// ranges. +/// +/// # Example +/// ``` +/// use rand::{thread_rng, Rng}; +/// use rand::distributions::Open01; +/// +/// let val: f32 = thread_rng().sample(Open01); +/// println!("f32 from (0, 1): {}", val); +/// ``` +/// +/// [`Standard`]: crate::distributions::Standard +/// [`OpenClosed01`]: crate::distributions::OpenClosed01 +/// [`Uniform`]: crate::distributions::uniform::Uniform +#[derive(Clone, Copy, Debug)] +pub struct Open01; + + +// This trait is needed by both this lib and rand_distr hence is a hidden export +#[doc(hidden)] +pub trait IntoFloat { + type F; + + /// Helper method to combine the fraction and a contant exponent into a + /// float. + /// + /// Only the least significant bits of `self` may be set, 23 for `f32` and + /// 52 for `f64`. + /// The resulting value will fall in a range that depends on the exponent. + /// As an example the range with exponent 0 will be + /// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2). + fn into_float_with_exponent(self, exponent: i32) -> Self::F; +} + +macro_rules! float_impls { + ($ty:ident, $uty:ident, $f_scalar:ident, $u_scalar:ty, + $fraction_bits:expr, $exponent_bias:expr) => { + impl IntoFloat for $uty { + type F = $ty; + #[inline(always)] + fn into_float_with_exponent(self, exponent: i32) -> $ty { + // The exponent is encoded using an offset-binary representation + let exponent_bits: $u_scalar = + (($exponent_bias + exponent) as $u_scalar) << $fraction_bits; + $ty::from_bits(self | exponent_bits) + } + } + + impl Distribution<$ty> for Standard { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { + // Multiply-based method; 24/53 random bits; [0, 1) interval. + // We use the most significant bits because for simple RNGs + // those are usually more random. + let float_size = mem::size_of::<$f_scalar>() as u32 * 8; + let precision = $fraction_bits + 1; + let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar); + + let value: $uty = rng.gen(); + let value = value >> (float_size - precision); + scale * $ty::cast_from_int(value) + } + } + + impl Distribution<$ty> for OpenClosed01 { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { + // Multiply-based method; 24/53 random bits; (0, 1] interval. + // We use the most significant bits because for simple RNGs + // those are usually more random. + let float_size = mem::size_of::<$f_scalar>() as u32 * 8; + let precision = $fraction_bits + 1; + let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar); + + let value: $uty = rng.gen(); + let value = value >> (float_size - precision); + // Add 1 to shift up; will not overflow because of right-shift: + scale * $ty::cast_from_int(value + 1) + } + } + + impl Distribution<$ty> for Open01 { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { + // Transmute-based method; 23/52 random bits; (0, 1) interval. + // We use the most significant bits because for simple RNGs + // those are usually more random. + use core::$f_scalar::EPSILON; + let float_size = mem::size_of::<$f_scalar>() as u32 * 8; + + let value: $uty = rng.gen(); + let fraction = value >> (float_size - $fraction_bits); + fraction.into_float_with_exponent(0) - (1.0 - EPSILON / 2.0) + } + } + } +} + +float_impls! { f32, u32, f32, u32, 23, 127 } +float_impls! { f64, u64, f64, u64, 52, 1023 } + +#[cfg(feature = "simd_support")] +float_impls! { f32x2, u32x2, f32, u32, 23, 127 } +#[cfg(feature = "simd_support")] +float_impls! { f32x4, u32x4, f32, u32, 23, 127 } +#[cfg(feature = "simd_support")] +float_impls! { f32x8, u32x8, f32, u32, 23, 127 } +#[cfg(feature = "simd_support")] +float_impls! { f32x16, u32x16, f32, u32, 23, 127 } + +#[cfg(feature = "simd_support")] +float_impls! { f64x2, u64x2, f64, u64, 52, 1023 } +#[cfg(feature = "simd_support")] +float_impls! { f64x4, u64x4, f64, u64, 52, 1023 } +#[cfg(feature = "simd_support")] +float_impls! { f64x8, u64x8, f64, u64, 52, 1023 } + + +#[cfg(test)] +mod tests { + use super::*; + use crate::rngs::mock::StepRng; + + const EPSILON32: f32 = ::core::f32::EPSILON; + const EPSILON64: f64 = ::core::f64::EPSILON; + + macro_rules! test_f32 { + ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => { + #[test] + fn $fnn() { + // Standard + let mut zeros = StepRng::new(0, 0); + assert_eq!(zeros.gen::<$ty>(), $ZERO); + let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0); + assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0); + let mut max = StepRng::new(!0, 0); + assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0); + + // OpenClosed01 + let mut zeros = StepRng::new(0, 0); + assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0); + let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0); + assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON); + let mut max = StepRng::new(!0, 0); + assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0); + + // Open01 + let mut zeros = StepRng::new(0, 0); + assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0); + let mut one = StepRng::new(1 << 9 | 1 << (9 + 32), 0); + assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0); + let mut max = StepRng::new(!0, 0); + assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0); + } + }; + } + test_f32! { f32_edge_cases, f32, 0.0, EPSILON32 } + #[cfg(feature = "simd_support")] + test_f32! { f32x2_edge_cases, f32x2, f32x2::splat(0.0), f32x2::splat(EPSILON32) } + #[cfg(feature = "simd_support")] + test_f32! { f32x4_edge_cases, f32x4, f32x4::splat(0.0), f32x4::splat(EPSILON32) } + #[cfg(feature = "simd_support")] + test_f32! { f32x8_edge_cases, f32x8, f32x8::splat(0.0), f32x8::splat(EPSILON32) } + #[cfg(feature = "simd_support")] + test_f32! { f32x16_edge_cases, f32x16, f32x16::splat(0.0), f32x16::splat(EPSILON32) } + + macro_rules! test_f64 { + ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => { + #[test] + fn $fnn() { + // Standard + let mut zeros = StepRng::new(0, 0); + assert_eq!(zeros.gen::<$ty>(), $ZERO); + let mut one = StepRng::new(1 << 11, 0); + assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0); + let mut max = StepRng::new(!0, 0); + assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0); + + // OpenClosed01 + let mut zeros = StepRng::new(0, 0); + assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0); + let mut one = StepRng::new(1 << 11, 0); + assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON); + let mut max = StepRng::new(!0, 0); + assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0); + + // Open01 + let mut zeros = StepRng::new(0, 0); + assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0); + let mut one = StepRng::new(1 << 12, 0); + assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0); + let mut max = StepRng::new(!0, 0); + assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0); + } + }; + } + test_f64! { f64_edge_cases, f64, 0.0, EPSILON64 } + #[cfg(feature = "simd_support")] + test_f64! { f64x2_edge_cases, f64x2, f64x2::splat(0.0), f64x2::splat(EPSILON64) } + #[cfg(feature = "simd_support")] + test_f64! { f64x4_edge_cases, f64x4, f64x4::splat(0.0), f64x4::splat(EPSILON64) } + #[cfg(feature = "simd_support")] + test_f64! { f64x8_edge_cases, f64x8, f64x8::splat(0.0), f64x8::splat(EPSILON64) } + + #[test] + fn value_stability() { + fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>( + distr: &D, zero: T, expected: &[T], + ) { + let mut rng = crate::test::rng(0x6f44f5646c2a7334); + let mut buf = [zero; 3]; + for x in &mut buf { + *x = rng.sample(&distr); + } + assert_eq!(&buf, expected); + } + + test_samples(&Standard, 0f32, &[0.0035963655, 0.7346052, 0.09778172]); + test_samples(&Standard, 0f64, &[ + 0.7346051961657583, + 0.20298547462974248, + 0.8166436635290655, + ]); + + test_samples(&OpenClosed01, 0f32, &[0.003596425, 0.73460525, 0.09778178]); + test_samples(&OpenClosed01, 0f64, &[ + 0.7346051961657584, + 0.2029854746297426, + 0.8166436635290656, + ]); + + test_samples(&Open01, 0f32, &[0.0035963655, 0.73460525, 0.09778172]); + test_samples(&Open01, 0f64, &[ + 0.7346051961657584, + 0.20298547462974248, + 0.8166436635290656, + ]); + + #[cfg(feature = "simd_support")] + { + // We only test a sub-set of types here. Values are identical to + // non-SIMD types; we assume this pattern continues across all + // SIMD types. + + test_samples(&Standard, f32x2::new(0.0, 0.0), &[ + f32x2::new(0.0035963655, 0.7346052), + f32x2::new(0.09778172, 0.20298547), + f32x2::new(0.34296435, 0.81664366), + ]); + + test_samples(&Standard, f64x2::new(0.0, 0.0), &[ + f64x2::new(0.7346051961657583, 0.20298547462974248), + f64x2::new(0.8166436635290655, 0.7423708925400552), + f64x2::new(0.16387782224016323, 0.9087068770169618), + ]); + } + } +} diff --git a/vendor/rand-0.7.3/src/distributions/gamma.rs b/vendor/rand-0.7.3/src/distributions/gamma.rs new file mode 100644 index 000000000..f19738dbe --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/gamma.rs @@ -0,0 +1,373 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Gamma and derived distributions. +#![allow(deprecated)] + +use self::ChiSquaredRepr::*; +use self::GammaRepr::*; + +use crate::distributions::normal::StandardNormal; +use crate::distributions::{Distribution, Exp, Open01}; +use crate::Rng; + +/// The Gamma distribution `Gamma(shape, scale)` distribution. +/// +/// The density function of this distribution is +/// +/// ```text +/// f(x) = x^(k - 1) * exp(-x / ΞΈ) / (Ξ(k) * ΞΈ^k) +/// ``` +/// +/// where `Ξ` is the Gamma function, `k` is the shape and `ΞΈ` is the +/// scale and both `k` and `ΞΈ` are strictly positive. +/// +/// The algorithm used is that described by Marsaglia & Tsang 2000[^1], +/// falling back to directly sampling from an Exponential for `shape +/// == 1`, and using the boosting technique described in that paper for +/// `shape < 1`. +/// +/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for +/// Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3 +/// (September 2000), 363-372. +/// DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414) +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Gamma { + repr: GammaRepr, +} + +#[derive(Clone, Copy, Debug)] +enum GammaRepr { + Large(GammaLargeShape), + One(Exp), + Small(GammaSmallShape), +} + +// These two helpers could be made public, but saving the +// match-on-Gamma-enum branch from using them directly (e.g. if one +// knows that the shape is always > 1) doesn't appear to be much +// faster. + +/// Gamma distribution where the shape parameter is less than 1. +/// +/// Note, samples from this require a compulsory floating-point `pow` +/// call, which makes it significantly slower than sampling from a +/// gamma distribution where the shape parameter is greater than or +/// equal to 1. +/// +/// See `Gamma` for sampling from a Gamma distribution with general +/// shape parameters. +#[derive(Clone, Copy, Debug)] +struct GammaSmallShape { + inv_shape: f64, + large_shape: GammaLargeShape, +} + +/// Gamma distribution where the shape parameter is larger than 1. +/// +/// See `Gamma` for sampling from a Gamma distribution with general +/// shape parameters. +#[derive(Clone, Copy, Debug)] +struct GammaLargeShape { + scale: f64, + c: f64, + d: f64, +} + +impl Gamma { + /// Construct an object representing the `Gamma(shape, scale)` + /// distribution. + /// + /// Panics if `shape <= 0` or `scale <= 0`. + #[inline] + pub fn new(shape: f64, scale: f64) -> Gamma { + assert!(shape > 0.0, "Gamma::new called with shape <= 0"); + assert!(scale > 0.0, "Gamma::new called with scale <= 0"); + + let repr = if shape == 1.0 { + One(Exp::new(1.0 / scale)) + } else if shape < 1.0 { + Small(GammaSmallShape::new_raw(shape, scale)) + } else { + Large(GammaLargeShape::new_raw(shape, scale)) + }; + Gamma { repr } + } +} + +impl GammaSmallShape { + fn new_raw(shape: f64, scale: f64) -> GammaSmallShape { + GammaSmallShape { + inv_shape: 1. / shape, + large_shape: GammaLargeShape::new_raw(shape + 1.0, scale), + } + } +} + +impl GammaLargeShape { + fn new_raw(shape: f64, scale: f64) -> GammaLargeShape { + let d = shape - 1. / 3.; + GammaLargeShape { + scale, + c: 1. / (9. * d).sqrt(), + d, + } + } +} + +impl Distribution<f64> for Gamma { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + match self.repr { + Small(ref g) => g.sample(rng), + One(ref g) => g.sample(rng), + Large(ref g) => g.sample(rng), + } + } +} +impl Distribution<f64> for GammaSmallShape { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let u: f64 = rng.sample(Open01); + + self.large_shape.sample(rng) * u.powf(self.inv_shape) + } +} +impl Distribution<f64> for GammaLargeShape { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + loop { + let x = rng.sample(StandardNormal); + let v_cbrt = 1.0 + self.c * x; + if v_cbrt <= 0.0 { + // a^3 <= 0 iff a <= 0 + continue; + } + + let v = v_cbrt * v_cbrt * v_cbrt; + let u: f64 = rng.sample(Open01); + + let x_sqr = x * x; + if u < 1.0 - 0.0331 * x_sqr * x_sqr + || u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) + { + return self.d * v * self.scale; + } + } + } +} + +/// The chi-squared distribution `ΟΒ²(k)`, where `k` is the degrees of +/// freedom. +/// +/// For `k > 0` integral, this distribution is the sum of the squares +/// of `k` independent standard normal random variables. For other +/// `k`, this uses the equivalent characterisation +/// `ΟΒ²(k) = Gamma(k/2, 2)`. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct ChiSquared { + repr: ChiSquaredRepr, +} + +#[derive(Clone, Copy, Debug)] +enum ChiSquaredRepr { + // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1, + // e.g. when alpha = 1/2 as it would be for this case, so special- + // casing and using the definition of N(0,1)^2 is faster. + DoFExactlyOne, + DoFAnythingElse(Gamma), +} + +impl ChiSquared { + /// Create a new chi-squared distribution with degrees-of-freedom + /// `k`. Panics if `k < 0`. + pub fn new(k: f64) -> ChiSquared { + let repr = if k == 1.0 { + DoFExactlyOne + } else { + assert!(k > 0.0, "ChiSquared::new called with `k` < 0"); + DoFAnythingElse(Gamma::new(0.5 * k, 2.0)) + }; + ChiSquared { repr } + } +} +impl Distribution<f64> for ChiSquared { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + match self.repr { + DoFExactlyOne => { + // k == 1 => N(0,1)^2 + let norm = rng.sample(StandardNormal); + norm * norm + } + DoFAnythingElse(ref g) => g.sample(rng), + } + } +} + +/// The Fisher F distribution `F(m, n)`. +/// +/// This distribution is equivalent to the ratio of two normalised +/// chi-squared distributions, that is, `F(m,n) = (ΟΒ²(m)/m) / +/// (ΟΒ²(n)/n)`. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct FisherF { + numer: ChiSquared, + denom: ChiSquared, + // denom_dof / numer_dof so that this can just be a straight + // multiplication, rather than a division. + dof_ratio: f64, +} + +impl FisherF { + /// Create a new `FisherF` distribution, with the given + /// parameter. Panics if either `m` or `n` are not positive. + pub fn new(m: f64, n: f64) -> FisherF { + assert!(m > 0.0, "FisherF::new called with `m < 0`"); + assert!(n > 0.0, "FisherF::new called with `n < 0`"); + + FisherF { + numer: ChiSquared::new(m), + denom: ChiSquared::new(n), + dof_ratio: n / m, + } + } +} +impl Distribution<f64> for FisherF { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio + } +} + +/// The Student t distribution, `t(nu)`, where `nu` is the degrees of +/// freedom. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct StudentT { + chi: ChiSquared, + dof: f64, +} + +impl StudentT { + /// Create a new Student t distribution with `n` degrees of + /// freedom. Panics if `n <= 0`. + pub fn new(n: f64) -> StudentT { + assert!(n > 0.0, "StudentT::new called with `n <= 0`"); + StudentT { + chi: ChiSquared::new(n), + dof: n, + } + } +} +impl Distribution<f64> for StudentT { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let norm = rng.sample(StandardNormal); + norm * (self.dof / self.chi.sample(rng)).sqrt() + } +} + +/// The Beta distribution with shape parameters `alpha` and `beta`. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Beta { + gamma_a: Gamma, + gamma_b: Gamma, +} + +impl Beta { + /// Construct an object representing the `Beta(alpha, beta)` + /// distribution. + /// + /// Panics if `shape <= 0` or `scale <= 0`. + pub fn new(alpha: f64, beta: f64) -> Beta { + assert!((alpha > 0.) & (beta > 0.)); + Beta { + gamma_a: Gamma::new(alpha, 1.), + gamma_b: Gamma::new(beta, 1.), + } + } +} + +impl Distribution<f64> for Beta { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let x = self.gamma_a.sample(rng); + let y = self.gamma_b.sample(rng); + x / (x + y) + } +} + +#[cfg(test)] +mod test { + use super::{Beta, ChiSquared, FisherF, StudentT}; + use crate::distributions::Distribution; + + const N: u32 = 100; + + #[test] + fn test_chi_squared_one() { + let chi = ChiSquared::new(1.0); + let mut rng = crate::test::rng(201); + for _ in 0..N { + chi.sample(&mut rng); + } + } + #[test] + fn test_chi_squared_small() { + let chi = ChiSquared::new(0.5); + let mut rng = crate::test::rng(202); + for _ in 0..N { + chi.sample(&mut rng); + } + } + #[test] + fn test_chi_squared_large() { + let chi = ChiSquared::new(30.0); + let mut rng = crate::test::rng(203); + for _ in 0..N { + chi.sample(&mut rng); + } + } + #[test] + #[should_panic] + fn test_chi_squared_invalid_dof() { + ChiSquared::new(-1.0); + } + + #[test] + fn test_f() { + let f = FisherF::new(2.0, 32.0); + let mut rng = crate::test::rng(204); + for _ in 0..N { + f.sample(&mut rng); + } + } + + #[test] + fn test_t() { + let t = StudentT::new(11.0); + let mut rng = crate::test::rng(205); + for _ in 0..N { + t.sample(&mut rng); + } + } + + #[test] + fn test_beta() { + let beta = Beta::new(1.0, 2.0); + let mut rng = crate::test::rng(201); + for _ in 0..N { + beta.sample(&mut rng); + } + } + + #[test] + #[should_panic] + fn test_beta_invalid_dof() { + Beta::new(0., 0.); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/integer.rs b/vendor/rand-0.7.3/src/distributions/integer.rs new file mode 100644 index 000000000..f2db1f1c6 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/integer.rs @@ -0,0 +1,279 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The implementations of the `Standard` distribution for integer types. + +use crate::distributions::{Distribution, Standard}; +use crate::Rng; +#[cfg(all(target_arch = "x86", feature = "nightly"))] use core::arch::x86::*; +#[cfg(all(target_arch = "x86_64", feature = "nightly"))] +use core::arch::x86_64::*; +#[cfg(not(target_os = "emscripten"))] use core::num::NonZeroU128; +use core::num::{NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize}; +#[cfg(feature = "simd_support")] use packed_simd::*; + +impl Distribution<u8> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 { + rng.next_u32() as u8 + } +} + +impl Distribution<u16> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u16 { + rng.next_u32() as u16 + } +} + +impl Distribution<u32> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u32 { + rng.next_u32() + } +} + +impl Distribution<u64> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { + rng.next_u64() + } +} + +#[cfg(not(target_os = "emscripten"))] +impl Distribution<u128> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u128 { + // Use LE; we explicitly generate one value before the next. + let x = u128::from(rng.next_u64()); + let y = u128::from(rng.next_u64()); + (y << 64) | x + } +} + +impl Distribution<usize> for Standard { + #[inline] + #[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { + rng.next_u32() as usize + } + + #[inline] + #[cfg(target_pointer_width = "64")] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { + rng.next_u64() as usize + } +} + +macro_rules! impl_int_from_uint { + ($ty:ty, $uty:ty) => { + impl Distribution<$ty> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { + rng.gen::<$uty>() as $ty + } + } + }; +} + +impl_int_from_uint! { i8, u8 } +impl_int_from_uint! { i16, u16 } +impl_int_from_uint! { i32, u32 } +impl_int_from_uint! { i64, u64 } +#[cfg(not(target_os = "emscripten"))] +impl_int_from_uint! { i128, u128 } +impl_int_from_uint! { isize, usize } + +macro_rules! impl_nzint { + ($ty:ty, $new:path) => { + impl Distribution<$ty> for Standard { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { + loop { + if let Some(nz) = $new(rng.gen()) { + break nz; + } + } + } + } + }; +} + +impl_nzint!(NonZeroU8, NonZeroU8::new); +impl_nzint!(NonZeroU16, NonZeroU16::new); +impl_nzint!(NonZeroU32, NonZeroU32::new); +impl_nzint!(NonZeroU64, NonZeroU64::new); +#[cfg(not(target_os = "emscripten"))] +impl_nzint!(NonZeroU128, NonZeroU128::new); +impl_nzint!(NonZeroUsize, NonZeroUsize::new); + +#[cfg(feature = "simd_support")] +macro_rules! simd_impl { + ($(($intrinsic:ident, $vec:ty),)+) => {$( + impl Distribution<$intrinsic> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $intrinsic { + $intrinsic::from_bits(rng.gen::<$vec>()) + } + } + )+}; + + ($bits:expr,) => {}; + ($bits:expr, $ty:ty, $($ty_more:ty,)*) => { + simd_impl!($bits, $($ty_more,)*); + + impl Distribution<$ty> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { + let mut vec: $ty = Default::default(); + unsafe { + let ptr = &mut vec; + let b_ptr = &mut *(ptr as *mut $ty as *mut [u8; $bits/8]); + rng.fill_bytes(b_ptr); + } + vec.to_le() + } + } + }; +} + +#[cfg(feature = "simd_support")] +simd_impl!(16, u8x2, i8x2,); +#[cfg(feature = "simd_support")] +simd_impl!(32, u8x4, i8x4, u16x2, i16x2,); +#[cfg(feature = "simd_support")] +simd_impl!(64, u8x8, i8x8, u16x4, i16x4, u32x2, i32x2,); +#[cfg(feature = "simd_support")] +simd_impl!(128, u8x16, i8x16, u16x8, i16x8, u32x4, i32x4, u64x2, i64x2,); +#[cfg(feature = "simd_support")] +simd_impl!(256, u8x32, i8x32, u16x16, i16x16, u32x8, i32x8, u64x4, i64x4,); +#[cfg(feature = "simd_support")] +simd_impl!(512, u8x64, i8x64, u16x32, i16x32, u32x16, i32x16, u64x8, i64x8,); +#[cfg(all( + feature = "simd_support", + feature = "nightly", + any(target_arch = "x86", target_arch = "x86_64") +))] +simd_impl!((__m64, u8x8), (__m128i, u8x16), (__m256i, u8x32),); + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn test_integers() { + let mut rng = crate::test::rng(806); + + rng.sample::<isize, _>(Standard); + rng.sample::<i8, _>(Standard); + rng.sample::<i16, _>(Standard); + rng.sample::<i32, _>(Standard); + rng.sample::<i64, _>(Standard); + #[cfg(not(target_os = "emscripten"))] + rng.sample::<i128, _>(Standard); + + rng.sample::<usize, _>(Standard); + rng.sample::<u8, _>(Standard); + rng.sample::<u16, _>(Standard); + rng.sample::<u32, _>(Standard); + rng.sample::<u64, _>(Standard); + #[cfg(not(target_os = "emscripten"))] + rng.sample::<u128, _>(Standard); + } + + #[test] + fn value_stability() { + fn test_samples<T: Copy + core::fmt::Debug + PartialEq>(zero: T, expected: &[T]) + where Standard: Distribution<T> { + let mut rng = crate::test::rng(807); + let mut buf = [zero; 3]; + for x in &mut buf { + *x = rng.sample(Standard); + } + assert_eq!(&buf, expected); + } + + test_samples(0u8, &[9, 247, 111]); + test_samples(0u16, &[32265, 42999, 38255]); + test_samples(0u32, &[2220326409, 2575017975, 2018088303]); + test_samples(0u64, &[ + 11059617991457472009, + 16096616328739788143, + 1487364411147516184, + ]); + test_samples(0u128, &[ + 296930161868957086625409848350820761097, + 145644820879247630242265036535529306392, + 111087889832015897993126088499035356354, + ]); + #[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))] + test_samples(0usize, &[2220326409, 2575017975, 2018088303]); + #[cfg(target_pointer_width = "64")] + test_samples(0usize, &[ + 11059617991457472009, + 16096616328739788143, + 1487364411147516184, + ]); + + test_samples(0i8, &[9, -9, 111]); + // Skip further i* types: they are simple reinterpretation of u* samples + + #[cfg(feature = "simd_support")] + { + // We only test a sub-set of types here and make assumptions about the rest. + + test_samples(u8x2::default(), &[ + u8x2::new(9, 126), + u8x2::new(247, 167), + u8x2::new(111, 149), + ]); + test_samples(u8x4::default(), &[ + u8x4::new(9, 126, 87, 132), + u8x4::new(247, 167, 123, 153), + u8x4::new(111, 149, 73, 120), + ]); + test_samples(u8x8::default(), &[ + u8x8::new(9, 126, 87, 132, 247, 167, 123, 153), + u8x8::new(111, 149, 73, 120, 68, 171, 98, 223), + u8x8::new(24, 121, 1, 50, 13, 46, 164, 20), + ]); + + test_samples(i64x8::default(), &[ + i64x8::new( + -7387126082252079607, + -2350127744969763473, + 1487364411147516184, + 7895421560427121838, + 602190064936008898, + 6022086574635100741, + -5080089175222015595, + -4066367846667249123, + ), + i64x8::new( + 9180885022207963908, + 3095981199532211089, + 6586075293021332726, + 419343203796414657, + 3186951873057035255, + 5287129228749947252, + 444726432079249540, + -1587028029513790706, + ), + i64x8::new( + 6075236523189346388, + 1351763722368165432, + -6192309979959753740, + -7697775502176768592, + -4482022114172078123, + 7522501477800909500, + -1837258847956201231, + -586926753024886735, + ), + ]); + } + } +} diff --git a/vendor/rand-0.7.3/src/distributions/mod.rs b/vendor/rand-0.7.3/src/distributions/mod.rs new file mode 100644 index 000000000..4e1b1a6e3 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/mod.rs @@ -0,0 +1,406 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013-2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Generating random samples from probability distributions +//! +//! This module is the home of the [`Distribution`] trait and several of its +//! implementations. It is the workhorse behind some of the convenient +//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`], [`Rng::gen_range`] and +//! of course [`Rng::sample`]. +//! +//! Abstractly, a [probability distribution] describes the probability of +//! occurance of each value in its sample space. +//! +//! More concretely, an implementation of `Distribution<T>` for type `X` is an +//! algorithm for choosing values from the sample space (a subset of `T`) +//! according to the distribution `X` represents, using an external source of +//! randomness (an RNG supplied to the `sample` function). +//! +//! A type `X` may implement `Distribution<T>` for multiple types `T`. +//! Any type implementing [`Distribution`] is stateless (i.e. immutable), +//! but it may have internal parameters set at construction time (for example, +//! [`Uniform`] allows specification of its sample space as a range within `T`). +//! +//! +//! # The `Standard` distribution +//! +//! The [`Standard`] distribution is important to mention. This is the +//! distribution used by [`Rng::gen`] and represents the "default" way to +//! produce a random value for many different types, including most primitive +//! types, tuples, arrays, and a few derived types. See the documentation of +//! [`Standard`] for more details. +//! +//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it +//! possible to generate type `T` with [`Rng::gen`], and by extension also +//! with the [`random`] function. +//! +//! ## Random characters +//! +//! [`Alphanumeric`] is a simple distribution to sample random letters and +//! numbers of the `char` type; in contrast [`Standard`] may sample any valid +//! `char`. +//! +//! +//! # Uniform numeric ranges +//! +//! The [`Uniform`] distribution is more flexible than [`Standard`], but also +//! more specialised: it supports fewer target types, but allows the sample +//! space to be specified as an arbitrary range within its target type `T`. +//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions. +//! +//! Values may be sampled from this distribution using [`Rng::gen_range`] or +//! by creating a distribution object with [`Uniform::new`], +//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not +//! known at compile time it is typically faster to reuse an existing +//! distribution object than to call [`Rng::gen_range`]. +//! +//! User types `T` may also implement `Distribution<T>` for [`Uniform`], +//! although this is less straightforward than for [`Standard`] (see the +//! documentation in the [`uniform`] module. Doing so enables generation of +//! values of type `T` with [`Rng::gen_range`]. +//! +//! ## Open and half-open ranges +//! +//! There are surprisingly many ways to uniformly generate random floats. A +//! range between 0 and 1 is standard, but the exact bounds (open vs closed) +//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers +//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of +//! [`Standard`] documentation for more details. +//! +//! # Non-uniform sampling +//! +//! Sampling a simple true/false outcome with a given probability has a name: +//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]). +//! +//! For weighted sampling from a sequence of discrete values, use the +//! [`weighted`] module. +//! +//! This crate no longer includes other non-uniform distributions; instead +//! it is recommended that you use either [`rand_distr`] or [`statrs`]. +//! +//! +//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution +//! [`rand_distr`]: https://crates.io/crates/rand_distr +//! [`statrs`]: https://crates.io/crates/statrs + +//! [`random`]: crate::random +//! [`rand_distr`]: https://crates.io/crates/rand_distr +//! [`statrs`]: https://crates.io/crates/statrs + +use crate::Rng; +use core::iter; + +pub use self::bernoulli::{Bernoulli, BernoulliError}; +pub use self::float::{Open01, OpenClosed01}; +pub use self::other::Alphanumeric; +#[doc(inline)] pub use self::uniform::Uniform; +#[cfg(feature = "alloc")] +pub use self::weighted::{WeightedError, WeightedIndex}; + +// The following are all deprecated after being moved to rand_distr +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::binomial::Binomial; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::cauchy::Cauchy; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::dirichlet::Dirichlet; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::exponential::{Exp, Exp1}; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::gamma::{Beta, ChiSquared, FisherF, Gamma, StudentT}; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::normal::{LogNormal, Normal, StandardNormal}; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::pareto::Pareto; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::poisson::Poisson; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::triangular::Triangular; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::unit_circle::UnitCircle; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::unit_sphere::UnitSphereSurface; +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::weibull::Weibull; + +mod bernoulli; +#[cfg(feature = "std")] mod binomial; +#[cfg(feature = "std")] mod cauchy; +#[cfg(feature = "std")] mod dirichlet; +#[cfg(feature = "std")] mod exponential; +#[cfg(feature = "std")] mod gamma; +#[cfg(feature = "std")] mod normal; +#[cfg(feature = "std")] mod pareto; +#[cfg(feature = "std")] mod poisson; +#[cfg(feature = "std")] mod triangular; +pub mod uniform; +#[cfg(feature = "std")] mod unit_circle; +#[cfg(feature = "std")] mod unit_sphere; +#[cfg(feature = "std")] mod weibull; +#[cfg(feature = "alloc")] pub mod weighted; + +mod float; +#[doc(hidden)] +pub mod hidden_export { + pub use super::float::IntoFloat; // used by rand_distr +} +mod integer; +mod other; +mod utils; +#[cfg(feature = "std")] mod ziggurat_tables; + +/// Types (distributions) that can be used to create a random instance of `T`. +/// +/// It is possible to sample from a distribution through both the +/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and +/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which +/// produces an iterator that samples from the distribution. +/// +/// All implementations are expected to be immutable; this has the significant +/// advantage of not needing to consider thread safety, and for most +/// distributions efficient state-less sampling algorithms are available. +/// +/// Implementations are typically expected to be portable with reproducible +/// results when used with a PRNG with fixed seed; see the +/// [portability chapter](https://rust-random.github.io/book/portability.html) +/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize` +/// type requires different sampling on 32-bit and 64-bit machines. +/// +/// [`sample_iter`]: Distribution::method.sample_iter +pub trait Distribution<T> { + /// Generate a random value of `T`, using `rng` as the source of randomness. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; + + /// Create an iterator that generates random values of `T`, using `rng` as + /// the source of randomness. + /// + /// Note that this function takes `self` by value. This works since + /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`, + /// however borrowing is not automatic hence `distr.sample_iter(...)` may + /// need to be replaced with `(&distr).sample_iter(...)` to borrow or + /// `(&*distr).sample_iter(...)` to reborrow an existing reference. + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; + /// + /// let rng = thread_rng(); + /// + /// // Vec of 16 x f32: + /// let v: Vec<f32> = Standard.sample_iter(rng).take(16).collect(); + /// + /// // String: + /// let s: String = Alphanumeric.sample_iter(rng).take(7).collect(); + /// + /// // Dice-rolling: + /// let die_range = Uniform::new_inclusive(1, 6); + /// let mut roll_die = die_range.sample_iter(rng); + /// while roll_die.next().unwrap() != 6 { + /// println!("Not a 6; rolling again!"); + /// } + /// ``` + fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> + where + R: Rng, + Self: Sized, + { + DistIter { + distr: self, + rng, + phantom: ::core::marker::PhantomData, + } + } +} + +impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { + (*self).sample(rng) + } +} + + +/// An iterator that generates random values of `T` with distribution `D`, +/// using `R` as the source of randomness. +/// +/// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. +/// See its documentation for more. +/// +/// [`sample_iter`]: Distribution::sample_iter +#[derive(Debug)] +pub struct DistIter<D, R, T> { + distr: D, + rng: R, + phantom: ::core::marker::PhantomData<T>, +} + +impl<D, R, T> Iterator for DistIter<D, R, T> +where + D: Distribution<T>, + R: Rng, +{ + type Item = T; + + #[inline(always)] + fn next(&mut self) -> Option<T> { + // Here, self.rng may be a reference, but we must take &mut anyway. + // Even if sample could take an R: Rng by value, we would need to do this + // since Rng is not copyable and we cannot enforce that this is "reborrowable". + Some(self.distr.sample(&mut self.rng)) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (usize::max_value(), None) + } +} + +impl<D, R, T> iter::FusedIterator for DistIter<D, R, T> +where + D: Distribution<T>, + R: Rng, +{ +} + +#[cfg(features = "nightly")] +impl<D, R, T> iter::TrustedLen for DistIter<D, R, T> +where + D: Distribution<T>, + R: Rng, +{ +} + + +/// A generic random value distribution, implemented for many primitive types. +/// Usually generates values with a numerically uniform distribution, and with a +/// range appropriate to the type. +/// +/// ## Provided implementations +/// +/// Assuming the provided `Rng` is well-behaved, these implementations +/// generate values with the following ranges and distributions: +/// +/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed +/// over all values of the type. +/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all +/// code points in the range `0...0x10_FFFF`, except for the range +/// `0xD800...0xDFFF` (the surrogate code points). This includes +/// unassigned/reserved code points. +/// * `bool`: Generates `false` or `true`, each with probability 0.5. +/// * Floating point types (`f32` and `f64`): Uniformly distributed in the +/// half-open range `[0, 1)`. See notes below. +/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their +/// normal integer variants. +/// +/// The `Standard` distribution also supports generation of the following +/// compound types where all component types are supported: +/// +/// * Tuples (up to 12 elements): each element is generated sequentially. +/// * Arrays (up to 32 elements): each element is generated sequentially; +/// see also [`Rng::fill`] which supports arbitrary array length for integer +/// types and tends to be faster for `u32` and smaller types. +/// * `Option<T>` first generates a `bool`, and if true generates and returns +/// `Some(value)` where `value: T`, otherwise returning `None`. +/// +/// ## Custom implementations +/// +/// The [`Standard`] distribution may be implemented for user types as follows: +/// +/// ``` +/// # #![allow(dead_code)] +/// use rand::Rng; +/// use rand::distributions::{Distribution, Standard}; +/// +/// struct MyF32 { +/// x: f32, +/// } +/// +/// impl Distribution<MyF32> for Standard { +/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 { +/// MyF32 { x: rng.gen() } +/// } +/// } +/// ``` +/// +/// ## Example usage +/// ``` +/// use rand::prelude::*; +/// use rand::distributions::Standard; +/// +/// let val: f32 = StdRng::from_entropy().sample(Standard); +/// println!("f32 from [0, 1): {}", val); +/// ``` +/// +/// # Floating point implementation +/// The floating point implementations for `Standard` generate a random value in +/// the half-open interval `[0, 1)`, i.e. including 0 but not 1. +/// +/// All values that can be generated are of the form `n * Ξ΅/2`. For `f32` +/// the 24 most significant random bits of a `u32` are used and for `f64` the +/// 53 most significant bits of a `u64` are used. The conversion uses the +/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (Ξ΅/2)`. +/// +/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which +/// samples from `(0, 1]` and `Rng::gen_range(0, 1)` which also samples from +/// `[0, 1)`. Note that `Open01` and `gen_range` (which uses [`Uniform`]) use +/// transmute-based methods which yield 1 bit less precision but may perform +/// faster on some architectures (on modern Intel CPUs all methods have +/// approximately equal performance). +/// +/// [`Uniform`]: uniform::Uniform +#[derive(Clone, Copy, Debug)] +pub struct Standard; + + +#[cfg(all(test, feature = "std"))] +mod tests { + use super::{Distribution, Uniform}; + use crate::Rng; + + #[test] + fn test_distributions_iter() { + use crate::distributions::Open01; + let mut rng = crate::test::rng(210); + let distr = Open01; + let results: Vec<f32> = distr.sample_iter(&mut rng).take(100).collect(); + println!("{:?}", results); + } + + #[test] + fn test_make_an_iter() { + fn ten_dice_rolls_other_than_five<'a, R: Rng>( + rng: &'a mut R, + ) -> impl Iterator<Item = i32> + 'a { + Uniform::new_inclusive(1, 6) + .sample_iter(rng) + .filter(|x| *x != 5) + .take(10) + } + + let mut rng = crate::test::rng(211); + let mut count = 0; + for val in ten_dice_rolls_other_than_five(&mut rng) { + assert!(val >= 1 && val <= 6 && val != 5); + count += 1; + } + assert_eq!(count, 10); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/normal.rs b/vendor/rand-0.7.3/src/distributions/normal.rs new file mode 100644 index 000000000..ec62fa9ab --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/normal.rs @@ -0,0 +1,177 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The normal and derived distributions. +#![allow(deprecated)] + +use crate::distributions::utils::ziggurat; +use crate::distributions::{ziggurat_tables, Distribution, Open01}; +use crate::Rng; + +/// Samples floating-point numbers according to the normal distribution +/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to +/// `Normal::new(0.0, 1.0)` but faster. +/// +/// See `Normal` for the general normal distribution. +/// +/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method. +/// +/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to +/// Generate Normal Random Samples*]( +/// https://www.doornik.com/research/ziggurat.pdf). +/// Nuffield College, Oxford +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct StandardNormal; + +impl Distribution<f64> for StandardNormal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + #[inline] + fn pdf(x: f64) -> f64 { + (-x * x / 2.0).exp() + } + #[inline] + fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 { + // compute a random number in the tail by hand + + // strange initial conditions, because the loop is not + // do-while, so the condition should be true on the first + // run, they get overwritten anyway (0 < 1, so these are + // good). + let mut x = 1.0f64; + let mut y = 0.0f64; + + while -2.0 * y < x * x { + let x_: f64 = rng.sample(Open01); + let y_: f64 = rng.sample(Open01); + + x = x_.ln() / ziggurat_tables::ZIG_NORM_R; + y = y_.ln(); + } + + if u < 0.0 { + x - ziggurat_tables::ZIG_NORM_R + } else { + ziggurat_tables::ZIG_NORM_R - x + } + } + + ziggurat( + rng, + true, // this is symmetric + &ziggurat_tables::ZIG_NORM_X, + &ziggurat_tables::ZIG_NORM_F, + pdf, + zero_case, + ) + } +} + +/// The normal distribution `N(mean, std_dev**2)`. +/// +/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`] +/// for more details. +/// +/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and +/// standard deviation 1. +/// +/// [`StandardNormal`]: crate::distributions::StandardNormal +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Normal { + mean: f64, + std_dev: f64, +} + +impl Normal { + /// Construct a new `Normal` distribution with the given mean and + /// standard deviation. + /// + /// # Panics + /// + /// Panics if `std_dev < 0`. + #[inline] + pub fn new(mean: f64, std_dev: f64) -> Normal { + assert!(std_dev >= 0.0, "Normal::new called with `std_dev` < 0"); + Normal { mean, std_dev } + } +} +impl Distribution<f64> for Normal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let n = rng.sample(StandardNormal); + self.mean + self.std_dev * n + } +} + + +/// The log-normal distribution `ln N(mean, std_dev**2)`. +/// +/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)` +/// distributed. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct LogNormal { + norm: Normal, +} + +impl LogNormal { + /// Construct a new `LogNormal` distribution with the given mean + /// and standard deviation. + /// + /// # Panics + /// + /// Panics if `std_dev < 0`. + #[inline] + pub fn new(mean: f64, std_dev: f64) -> LogNormal { + assert!(std_dev >= 0.0, "LogNormal::new called with `std_dev` < 0"); + LogNormal { + norm: Normal::new(mean, std_dev), + } + } +} +impl Distribution<f64> for LogNormal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + self.norm.sample(rng).exp() + } +} + +#[cfg(test)] +mod tests { + use super::{LogNormal, Normal}; + use crate::distributions::Distribution; + + #[test] + fn test_normal() { + let norm = Normal::new(10.0, 10.0); + let mut rng = crate::test::rng(210); + for _ in 0..1000 { + norm.sample(&mut rng); + } + } + #[test] + #[should_panic] + fn test_normal_invalid_sd() { + Normal::new(10.0, -1.0); + } + + + #[test] + fn test_log_normal() { + let lnorm = LogNormal::new(10.0, 10.0); + let mut rng = crate::test::rng(211); + for _ in 0..1000 { + lnorm.sample(&mut rng); + } + } + #[test] + #[should_panic] + fn test_log_normal_invalid_sd() { + LogNormal::new(10.0, -1.0); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/other.rs b/vendor/rand-0.7.3/src/distributions/other.rs new file mode 100644 index 000000000..c95060e51 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/other.rs @@ -0,0 +1,291 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The implementations of the `Standard` distribution for other built-in types. + +use core::char; +use core::num::Wrapping; + +use crate::distributions::{Distribution, Standard, Uniform}; +use crate::Rng; + +// ----- Sampling distributions ----- + +/// Sample a `char`, uniformly distributed over ASCII letters and numbers: +/// a-z, A-Z and 0-9. +/// +/// # Example +/// +/// ``` +/// use std::iter; +/// use rand::{Rng, thread_rng}; +/// use rand::distributions::Alphanumeric; +/// +/// let mut rng = thread_rng(); +/// let chars: String = iter::repeat(()) +/// .map(|()| rng.sample(Alphanumeric)) +/// .take(7) +/// .collect(); +/// println!("Random chars: {}", chars); +/// ``` +#[derive(Debug)] +pub struct Alphanumeric; + + +// ----- Implementations of distributions ----- + +impl Distribution<char> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char { + // A valid `char` is either in the interval `[0, 0xD800)` or + // `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in + // `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is + // reserved for surrogates. This is the size of that gap. + const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1; + + // Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used but it + // seemed slower. + let range = Uniform::new(GAP_SIZE, 0x11_0000); + + let mut n = range.sample(rng); + if n <= 0xDFFF { + n -= GAP_SIZE; + } + unsafe { char::from_u32_unchecked(n) } + } +} + +impl Distribution<char> for Alphanumeric { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char { + const RANGE: u32 = 26 + 26 + 10; + const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ + abcdefghijklmnopqrstuvwxyz\ + 0123456789"; + // We can pick from 62 characters. This is so close to a power of 2, 64, + // that we can do better than `Uniform`. Use a simple bitshift and + // rejection sampling. We do not use a bitmask, because for small RNGs + // the most significant bits are usually of higher quality. + loop { + let var = rng.next_u32() >> (32 - 6); + if var < RANGE { + return GEN_ASCII_STR_CHARSET[var as usize] as char; + } + } + } +} + +impl Distribution<bool> for Standard { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { + // We can compare against an arbitrary bit of an u32 to get a bool. + // Because the least significant bits of a lower quality RNG can have + // simple patterns, we compare against the most significant bit. This is + // easiest done using a sign test. + (rng.next_u32() as i32) < 0 + } +} + +macro_rules! tuple_impl { + // use variables to indicate the arity of the tuple + ($($tyvar:ident),* ) => { + // the trailing commas are for the 1 tuple + impl< $( $tyvar ),* > + Distribution<( $( $tyvar ),* , )> + for Standard + where $( Standard: Distribution<$tyvar> ),* + { + #[inline] + fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) { + ( + // use the $tyvar's to get the appropriate number of + // repeats (they're not actually needed) + $( + _rng.gen::<$tyvar>() + ),* + , + ) + } + } + } +} + +impl Distribution<()> for Standard { + #[allow(clippy::unused_unit)] + #[inline] + fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () { + () + } +} +tuple_impl! {A} +tuple_impl! {A, B} +tuple_impl! {A, B, C} +tuple_impl! {A, B, C, D} +tuple_impl! {A, B, C, D, E} +tuple_impl! {A, B, C, D, E, F} +tuple_impl! {A, B, C, D, E, F, G} +tuple_impl! {A, B, C, D, E, F, G, H} +tuple_impl! {A, B, C, D, E, F, G, H, I} +tuple_impl! {A, B, C, D, E, F, G, H, I, J} +tuple_impl! {A, B, C, D, E, F, G, H, I, J, K} +tuple_impl! {A, B, C, D, E, F, G, H, I, J, K, L} + +macro_rules! array_impl { + // recursive, given at least one type parameter: + {$n:expr, $t:ident, $($ts:ident,)*} => { + array_impl!{($n - 1), $($ts,)*} + + impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> { + #[inline] + fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { + [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*] + } + } + }; + // empty case: + {$n:expr,} => { + impl<T> Distribution<[T; $n]> for Standard { + fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] } + } + }; +} + +array_impl! {32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,} + +impl<T> Distribution<Option<T>> for Standard +where Standard: Distribution<T> +{ + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> { + // UFCS is needed here: https://github.com/rust-lang/rust/issues/24066 + if rng.gen::<bool>() { + Some(rng.gen()) + } else { + None + } + } +} + +impl<T> Distribution<Wrapping<T>> for Standard +where Standard: Distribution<T> +{ + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> { + Wrapping(rng.gen()) + } +} + + +#[cfg(test)] +mod tests { + use super::*; + use crate::RngCore; + #[cfg(all(not(feature = "std"), feature = "alloc"))] use alloc::string::String; + + #[test] + fn test_misc() { + let rng: &mut dyn RngCore = &mut crate::test::rng(820); + + rng.sample::<char, _>(Standard); + rng.sample::<bool, _>(Standard); + } + + #[cfg(feature = "alloc")] + #[test] + fn test_chars() { + use core::iter; + let mut rng = crate::test::rng(805); + + // Test by generating a relatively large number of chars, so we also + // take the rejection sampling path. + let word: String = iter::repeat(()) + .map(|()| rng.gen::<char>()) + .take(1000) + .collect(); + assert!(word.len() != 0); + } + + #[test] + fn test_alphanumeric() { + let mut rng = crate::test::rng(806); + + // Test by generating a relatively large number of chars, so we also + // take the rejection sampling path. + let mut incorrect = false; + for _ in 0..100 { + let c = rng.sample(Alphanumeric); + incorrect |= !((c >= '0' && c <= '9') || + (c >= 'A' && c <= 'Z') || + (c >= 'a' && c <= 'z') ); + } + assert!(incorrect == false); + } + + #[test] + fn value_stability() { + fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>( + distr: &D, zero: T, expected: &[T], + ) { + let mut rng = crate::test::rng(807); + let mut buf = [zero; 5]; + for x in &mut buf { + *x = rng.sample(&distr); + } + assert_eq!(&buf, expected); + } + + test_samples(&Standard, 'a', &[ + '\u{8cdac}', + '\u{a346a}', + '\u{80120}', + '\u{ed692}', + '\u{35888}', + ]); + test_samples(&Alphanumeric, 'a', &['h', 'm', 'e', '3', 'M']); + test_samples(&Standard, false, &[true, true, false, true, false]); + test_samples(&Standard, None as Option<bool>, &[ + Some(true), + None, + Some(false), + None, + Some(false), + ]); + test_samples(&Standard, Wrapping(0i32), &[ + Wrapping(-2074640887), + Wrapping(-1719949321), + Wrapping(2018088303), + Wrapping(-547181756), + Wrapping(838957336), + ]); + + // We test only sub-sets of tuple and array impls + test_samples(&Standard, (), &[(), (), (), (), ()]); + test_samples(&Standard, (false,), &[ + (true,), + (true,), + (false,), + (true,), + (false,), + ]); + test_samples(&Standard, (false, false), &[ + (true, true), + (false, true), + (false, false), + (true, false), + (false, false), + ]); + + test_samples(&Standard, [0u8; 0], &[[], [], [], [], []]); + test_samples(&Standard, [0u8; 3], &[ + [9, 247, 111], + [68, 24, 13], + [174, 19, 194], + [172, 69, 213], + [149, 207, 29], + ]); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/pareto.rs b/vendor/rand-0.7.3/src/distributions/pareto.rs new file mode 100644 index 000000000..ac5473b8c --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/pareto.rs @@ -0,0 +1,70 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Pareto distribution. +#![allow(deprecated)] + +use crate::distributions::{Distribution, OpenClosed01}; +use crate::Rng; + +/// Samples floating-point numbers according to the Pareto distribution +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Pareto { + scale: f64, + inv_neg_shape: f64, +} + +impl Pareto { + /// Construct a new Pareto distribution with given `scale` and `shape`. + /// + /// In the literature, `scale` is commonly written as x<sub>m</sub> or k and + /// `shape` is often written as Ξ±. + /// + /// # Panics + /// + /// `scale` and `shape` have to be non-zero and positive. + pub fn new(scale: f64, shape: f64) -> Pareto { + assert!((scale > 0.) & (shape > 0.)); + Pareto { + scale, + inv_neg_shape: -1.0 / shape, + } + } +} + +impl Distribution<f64> for Pareto { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let u: f64 = rng.sample(OpenClosed01); + self.scale * u.powf(self.inv_neg_shape) + } +} + +#[cfg(test)] +mod tests { + use super::Pareto; + use crate::distributions::Distribution; + + #[test] + #[should_panic] + fn invalid() { + Pareto::new(0., 0.); + } + + #[test] + fn sample() { + let scale = 1.0; + let shape = 2.0; + let d = Pareto::new(scale, shape); + let mut rng = crate::test::rng(1); + for _ in 0..1000 { + let r = d.sample(&mut rng); + assert!(r >= scale); + } + } +} diff --git a/vendor/rand-0.7.3/src/distributions/poisson.rs b/vendor/rand-0.7.3/src/distributions/poisson.rs new file mode 100644 index 000000000..ce94d7542 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/poisson.rs @@ -0,0 +1,151 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2016-2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Poisson distribution. +#![allow(deprecated)] + +use crate::distributions::utils::log_gamma; +use crate::distributions::{Cauchy, Distribution}; +use crate::Rng; + +/// The Poisson distribution `Poisson(lambda)`. +/// +/// This distribution has a density function: +/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Poisson { + lambda: f64, + // precalculated values + exp_lambda: f64, + log_lambda: f64, + sqrt_2lambda: f64, + magic_val: f64, +} + +impl Poisson { + /// Construct a new `Poisson` with the given shape parameter + /// `lambda`. Panics if `lambda <= 0`. + pub fn new(lambda: f64) -> Poisson { + assert!(lambda > 0.0, "Poisson::new called with lambda <= 0"); + let log_lambda = lambda.ln(); + Poisson { + lambda, + exp_lambda: (-lambda).exp(), + log_lambda, + sqrt_2lambda: (2.0 * lambda).sqrt(), + magic_val: lambda * log_lambda - log_gamma(1.0 + lambda), + } + } +} + +impl Distribution<u64> for Poisson { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 { + // using the algorithm from Numerical Recipes in C + + // for low expected values use the Knuth method + if self.lambda < 12.0 { + let mut result = 0; + let mut p = 1.0; + while p > self.exp_lambda { + p *= rng.gen::<f64>(); + result += 1; + } + result - 1 + } + // high expected values - rejection method + else { + let mut int_result: u64; + + // we use the Cauchy distribution as the comparison distribution + // f(x) ~ 1/(1+x^2) + let cauchy = Cauchy::new(0.0, 1.0); + + loop { + let mut result; + let mut comp_dev; + + loop { + // draw from the Cauchy distribution + comp_dev = rng.sample(cauchy); + // shift the peak of the comparison ditribution + result = self.sqrt_2lambda * comp_dev + self.lambda; + // repeat the drawing until we are in the range of possible values + if result >= 0.0 { + break; + } + } + // now the result is a random variable greater than 0 with Cauchy distribution + // the result should be an integer value + result = result.floor(); + int_result = result as u64; + + // this is the ratio of the Poisson distribution to the comparison distribution + // the magic value scales the distribution function to a range of approximately 0-1 + // since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1 + // this doesn't change the resulting distribution, only increases the rate of failed drawings + let check = 0.9 + * (1.0 + comp_dev * comp_dev) + * (result * self.log_lambda - log_gamma(1.0 + result) - self.magic_val).exp(); + + // check with uniform random value - if below the threshold, we are within the target distribution + if rng.gen::<f64>() <= check { + break; + } + } + int_result + } + } +} + +#[cfg(test)] +mod test { + use super::Poisson; + use crate::distributions::Distribution; + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_poisson_10() { + let poisson = Poisson::new(10.0); + let mut rng = crate::test::rng(123); + let mut sum = 0; + for _ in 0..1000 { + sum += poisson.sample(&mut rng); + } + let avg = (sum as f64) / 1000.0; + println!("Poisson average: {}", avg); + assert!((avg - 10.0).abs() < 0.5); // not 100% certain, but probable enough + } + + #[test] + fn test_poisson_15() { + // Take the 'high expected values' path + let poisson = Poisson::new(15.0); + let mut rng = crate::test::rng(123); + let mut sum = 0; + for _ in 0..1000 { + sum += poisson.sample(&mut rng); + } + let avg = (sum as f64) / 1000.0; + println!("Poisson average: {}", avg); + assert!((avg - 15.0).abs() < 0.5); // not 100% certain, but probable enough + } + + #[test] + #[should_panic] + fn test_poisson_invalid_lambda_zero() { + Poisson::new(0.0); + } + + #[test] + #[should_panic] + fn test_poisson_invalid_lambda_neg() { + Poisson::new(-10.0); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/triangular.rs b/vendor/rand-0.7.3/src/distributions/triangular.rs new file mode 100644 index 000000000..37be19867 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/triangular.rs @@ -0,0 +1,83 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The triangular distribution. +#![allow(deprecated)] + +use crate::distributions::{Distribution, Standard}; +use crate::Rng; + +/// The triangular distribution. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Triangular { + min: f64, + max: f64, + mode: f64, +} + +impl Triangular { + /// Construct a new `Triangular` with minimum `min`, maximum `max` and mode + /// `mode`. + /// + /// # Panics + /// + /// If `max < mode`, `mode < max` or `max == min`. + #[inline] + pub fn new(min: f64, max: f64, mode: f64) -> Triangular { + assert!(max >= mode); + assert!(mode >= min); + assert!(max != min); + Triangular { min, max, mode } + } +} + +impl Distribution<f64> for Triangular { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let f: f64 = rng.sample(Standard); + let diff_mode_min = self.mode - self.min; + let diff_max_min = self.max - self.min; + if f * diff_max_min < diff_mode_min { + self.min + (f * diff_max_min * diff_mode_min).sqrt() + } else { + self.max - ((1. - f) * diff_max_min * (self.max - self.mode)).sqrt() + } + } +} + +#[cfg(test)] +mod test { + use super::Triangular; + use crate::distributions::Distribution; + + #[test] + fn test_new() { + for &(min, max, mode) in &[ + (-1., 1., 0.), + (1., 2., 1.), + (5., 25., 25.), + (1e-5, 1e5, 1e-3), + (0., 1., 0.9), + (-4., -0.5, -2.), + (-13.039, 8.41, 1.17), + ] { + println!("{} {} {}", min, max, mode); + let _ = Triangular::new(min, max, mode); + } + } + + #[test] + fn test_sample() { + let norm = Triangular::new(0., 1., 0.5); + let mut rng = crate::test::rng(1); + for _ in 0..1000 { + norm.sample(&mut rng); + } + } +} diff --git a/vendor/rand-0.7.3/src/distributions/uniform.rs b/vendor/rand-0.7.3/src/distributions/uniform.rs new file mode 100644 index 000000000..8584152f0 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/uniform.rs @@ -0,0 +1,1380 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A distribution uniformly sampling numbers within a given range. +//! +//! [`Uniform`] is the standard distribution to sample uniformly from a range; +//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a +//! standard die. [`Rng::gen_range`] supports any type supported by +//! [`Uniform`]. +//! +//! This distribution is provided with support for several primitive types +//! (all integer and floating-point types) as well as [`std::time::Duration`], +//! and supports extension to user-defined types via a type-specific *back-end* +//! implementation. +//! +//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the +//! back-ends supporting sampling from primitive integer and floating-point +//! ranges as well as from [`std::time::Duration`]; these types do not normally +//! need to be used directly (unless implementing a derived back-end). +//! +//! # Example usage +//! +//! ``` +//! use rand::{Rng, thread_rng}; +//! use rand::distributions::Uniform; +//! +//! let mut rng = thread_rng(); +//! let side = Uniform::new(-10.0, 10.0); +//! +//! // sample between 1 and 10 points +//! for _ in 0..rng.gen_range(1, 11) { +//! // sample a point from the square with sides -10 - 10 in two dimensions +//! let (x, y) = (rng.sample(side), rng.sample(side)); +//! println!("Point: {}, {}", x, y); +//! } +//! ``` +//! +//! # Extending `Uniform` to support a custom type +//! +//! To extend [`Uniform`] to support your own types, write a back-end which +//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`] +//! helper trait to "register" your back-end. See the `MyF32` example below. +//! +//! At a minimum, the back-end needs to store any parameters needed for sampling +//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`. +//! Those methods should include an assert to check the range is valid (i.e. +//! `low < high`). The example below merely wraps another back-end. +//! +//! The `new`, `new_inclusive` and `sample_single` functions use arguments of +//! type SampleBorrow<X> in order to support passing in values by reference or +//! by value. In the implementation of these functions, you can choose to +//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose +//! to copy or clone the value, whatever is appropriate for your type. +//! +//! ``` +//! use rand::prelude::*; +//! use rand::distributions::uniform::{Uniform, SampleUniform, +//! UniformSampler, UniformFloat, SampleBorrow}; +//! +//! struct MyF32(f32); +//! +//! #[derive(Clone, Copy, Debug)] +//! struct UniformMyF32(UniformFloat<f32>); +//! +//! impl UniformSampler for UniformMyF32 { +//! type X = MyF32; +//! fn new<B1, B2>(low: B1, high: B2) -> Self +//! where B1: SampleBorrow<Self::X> + Sized, +//! B2: SampleBorrow<Self::X> + Sized +//! { +//! UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0)) +//! } +//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self +//! where B1: SampleBorrow<Self::X> + Sized, +//! B2: SampleBorrow<Self::X> + Sized +//! { +//! UniformSampler::new(low, high) +//! } +//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { +//! MyF32(self.0.sample(rng)) +//! } +//! } +//! +//! impl SampleUniform for MyF32 { +//! type Sampler = UniformMyF32; +//! } +//! +//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); +//! let uniform = Uniform::new(low, high); +//! let x = uniform.sample(&mut thread_rng()); +//! ``` +//! +//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform +//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler +//! [`UniformInt`]: crate::distributions::uniform::UniformInt +//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat +//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration +//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow + +#[cfg(not(feature = "std"))] use core::time::Duration; +#[cfg(feature = "std")] use std::time::Duration; + +use crate::distributions::float::IntoFloat; +use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply}; +use crate::distributions::Distribution; +use crate::Rng; + +#[cfg(not(feature = "std"))] +#[allow(unused_imports)] // rustc doesn't detect that this is actually used +use crate::distributions::utils::Float; + + +#[cfg(feature = "simd_support")] use packed_simd::*; + +/// Sample values uniformly between two bounds. +/// +/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform +/// distribution sampling from the given range; these functions may do extra +/// work up front to make sampling of multiple values faster. +/// +/// When sampling from a constant range, many calculations can happen at +/// compile-time and all methods should be fast; for floating-point ranges and +/// the full range of integer types this should have comparable performance to +/// the `Standard` distribution. +/// +/// Steps are taken to avoid bias which might be present in naive +/// implementations; for example `rng.gen::<u8>() % 170` samples from the range +/// `[0, 169]` but is twice as likely to select numbers less than 85 than other +/// values. Further, the implementations here give more weight to the high-bits +/// generated by the RNG than the low bits, since with some RNGs the low-bits +/// are of lower quality than the high bits. +/// +/// Implementations must sample in `[low, high)` range for +/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular care must +/// be taken to ensure that rounding never results values `< low` or `>= high`. +/// +/// # Example +/// +/// ``` +/// use rand::distributions::{Distribution, Uniform}; +/// +/// fn main() { +/// let between = Uniform::from(10..10000); +/// let mut rng = rand::thread_rng(); +/// let mut sum = 0; +/// for _ in 0..1000 { +/// sum += between.sample(&mut rng); +/// } +/// println!("{}", sum); +/// } +/// ``` +/// +/// [`new`]: Uniform::new +/// [`new_inclusive`]: Uniform::new_inclusive +#[derive(Clone, Copy, Debug)] +pub struct Uniform<X: SampleUniform>(X::Sampler); + +impl<X: SampleUniform> Uniform<X> { + /// Create a new `Uniform` instance which samples uniformly from the half + /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. + pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X> + where + B1: SampleBorrow<X> + Sized, + B2: SampleBorrow<X> + Sized, + { + Uniform(X::Sampler::new(low, high)) + } + + /// Create a new `Uniform` instance which samples uniformly from the closed + /// range `[low, high]` (inclusive). Panics if `low > high`. + pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X> + where + B1: SampleBorrow<X> + Sized, + B2: SampleBorrow<X> + Sized, + { + Uniform(X::Sampler::new_inclusive(low, high)) + } +} + +impl<X: SampleUniform> Distribution<X> for Uniform<X> { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { + self.0.sample(rng) + } +} + +/// Helper trait for creating objects using the correct implementation of +/// [`UniformSampler`] for the sampling type. +/// +/// See the [module documentation] on how to implement [`Uniform`] range +/// sampling for a custom type. +/// +/// [module documentation]: crate::distributions::uniform +pub trait SampleUniform: Sized { + /// The `UniformSampler` implementation supporting type `X`. + type Sampler: UniformSampler<X = Self>; +} + +/// Helper trait handling actual uniform sampling. +/// +/// See the [module documentation] on how to implement [`Uniform`] range +/// sampling for a custom type. +/// +/// Implementation of [`sample_single`] is optional, and is only useful when +/// the implementation can be faster than `Self::new(low, high).sample(rng)`. +/// +/// [module documentation]: crate::distributions::uniform +/// [`sample_single`]: UniformSampler::sample_single +pub trait UniformSampler: Sized { + /// The type sampled by this implementation. + type X; + + /// Construct self, with inclusive lower bound and exclusive upper bound + /// `[low, high)`. + /// + /// Usually users should not call this directly but instead use + /// `Uniform::new`, which asserts that `low < high` before calling this. + fn new<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized; + + /// Construct self, with inclusive bounds `[low, high]`. + /// + /// Usually users should not call this directly but instead use + /// `Uniform::new_inclusive`, which asserts that `low <= high` before + /// calling this. + fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized; + + /// Sample a value. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; + + /// Sample a single value uniformly from a range with inclusive lower bound + /// and exclusive upper bound `[low, high)`. + /// + /// By default this is implemented using + /// `UniformSampler::new(low, high).sample(rng)`. However, for some types + /// more optimal implementations for single usage may be provided via this + /// method (which is the case for integers and floats). + /// Results may not be identical. + /// + /// Note that to use this method in a generic context, the type needs to be + /// retrieved via `SampleUniform::Sampler` as follows: + /// ``` + /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}}; + /// # #[allow(unused)] + /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T { + /// let mut rng = thread_rng(); + /// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng) + /// } + /// ``` + fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let uniform: Self = UniformSampler::new(low, high); + uniform.sample(rng) + } +} + +impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> { + fn from(r: ::core::ops::Range<X>) -> Uniform<X> { + Uniform::new(r.start, r.end) + } +} + +impl<X: SampleUniform> From<::core::ops::RangeInclusive<X>> for Uniform<X> { + fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> { + Uniform::new_inclusive(r.start(), r.end()) + } +} + +/// Helper trait similar to [`Borrow`] but implemented +/// only for SampleUniform and references to SampleUniform in +/// order to resolve ambiguity issues. +/// +/// [`Borrow`]: std::borrow::Borrow +pub trait SampleBorrow<Borrowed> { + /// Immutably borrows from an owned value. See [`Borrow::borrow`] + /// + /// [`Borrow::borrow`]: std::borrow::Borrow::borrow + fn borrow(&self) -> &Borrowed; +} +impl<Borrowed> SampleBorrow<Borrowed> for Borrowed +where Borrowed: SampleUniform +{ + #[inline(always)] + fn borrow(&self) -> &Borrowed { + self + } +} +impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed +where Borrowed: SampleUniform +{ + #[inline(always)] + fn borrow(&self) -> &Borrowed { + *self + } +} + +//////////////////////////////////////////////////////////////////////////////// + +// What follows are all back-ends. + + +/// The back-end implementing [`UniformSampler`] for integer types. +/// +/// Unless you are implementing [`UniformSampler`] for your own type, this type +/// should not be used directly, use [`Uniform`] instead. +/// +/// # Implementation notes +/// +/// For simplicity, we use the same generic struct `UniformInt<X>` for all +/// integer types `X`. This gives us only one field type, `X`; to store unsigned +/// values of this size, we take use the fact that these conversions are no-ops. +/// +/// For a closed range, the number of possible numbers we should generate is +/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of +/// our sample space, `zone`, is a multiple of `range`; other values must be +/// rejected (by replacing with a new random sample). +/// +/// As a special case, we use `range = 0` to represent the full range of the +/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`). +/// +/// The optimum `zone` is the largest product of `range` which fits in our +/// (unsigned) target type. We calculate this by calculating how many numbers we +/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large) +/// product of `range` will suffice, thus in `sample_single` we multiply by a +/// power of 2 via bit-shifting (faster but may cause more rejections). +/// +/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we +/// use `u32` for our `zone` and samples (because it's not slower and because +/// it reduces the chance of having to reject a sample). In this case we cannot +/// store `zone` in the target type since it is too large, however we know +/// `ints_to_reject < range <= $unsigned::MAX`. +/// +/// An alternative to using a modulus is widening multiply: After a widening +/// multiply by `range`, the result is in the high word. Then comparing the low +/// word against `zone` makes sure our distribution is uniform. +#[derive(Clone, Copy, Debug)] +pub struct UniformInt<X> { + low: X, + range: X, + z: X, // either ints_to_reject or zone depending on implementation +} + +macro_rules! uniform_int_impl { + ($ty:ty, $unsigned:ident, $u_large:ident) => { + impl SampleUniform for $ty { + type Sampler = UniformInt<$ty>; + } + + impl UniformSampler for UniformInt<$ty> { + // We play free and fast with unsigned vs signed here + // (when $ty is signed), but that's fine, since the + // contract of this macro is for $ty and $unsigned to be + // "bit-equal", so casting between them is a no-op. + + type X = $ty; + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low < high, "Uniform::new called with `low >= high`"); + UniformSampler::new_inclusive(low, high - 1) + } + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!( + low <= high, + "Uniform::new_inclusive called with `low > high`" + ); + let unsigned_max = ::core::$u_large::MAX; + + let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned; + let ints_to_reject = if range > 0 { + let range = $u_large::from(range); + (unsigned_max - range + 1) % range + } else { + 0 + }; + + UniformInt { + low: low, + // These are really $unsigned values, but store as $ty: + range: range as $ty, + z: ints_to_reject as $unsigned as $ty, + } + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + let range = self.range as $unsigned as $u_large; + if range > 0 { + let unsigned_max = ::core::$u_large::MAX; + let zone = unsigned_max - (self.z as $unsigned as $u_large); + loop { + let v: $u_large = rng.gen(); + let (hi, lo) = v.wmul(range); + if lo <= zone { + return self.low.wrapping_add(hi as $ty); + } + } + } else { + // Sample from the entire integer range. + rng.gen() + } + } + + fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low < high, "UniformSampler::sample_single: low >= high"); + let range = high.wrapping_sub(low) as $unsigned as $u_large; + let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { + // Using a modulus is faster than the approximation for + // i8 and i16. I suppose we trade the cost of one + // modulus for near-perfect branch prediction. + let unsigned_max: $u_large = ::core::$u_large::MAX; + let ints_to_reject = (unsigned_max - range + 1) % range; + unsigned_max - ints_to_reject + } else { + // conservative but fast approximation. `- 1` is necessary to allow the + // same comparison without bias. + (range << range.leading_zeros()).wrapping_sub(1) + }; + + loop { + let v: $u_large = rng.gen(); + let (hi, lo) = v.wmul(range); + if lo <= zone { + return low.wrapping_add(hi as $ty); + } + } + } + } + }; +} + +uniform_int_impl! { i8, u8, u32 } +uniform_int_impl! { i16, u16, u32 } +uniform_int_impl! { i32, u32, u32 } +uniform_int_impl! { i64, u64, u64 } +#[cfg(not(target_os = "emscripten"))] +uniform_int_impl! { i128, u128, u128 } +uniform_int_impl! { isize, usize, usize } +uniform_int_impl! { u8, u8, u32 } +uniform_int_impl! { u16, u16, u32 } +uniform_int_impl! { u32, u32, u32 } +uniform_int_impl! { u64, u64, u64 } +uniform_int_impl! { usize, usize, usize } +#[cfg(not(target_os = "emscripten"))] +uniform_int_impl! { u128, u128, u128 } + +#[cfg(all(feature = "simd_support", feature = "nightly"))] +macro_rules! uniform_simd_int_impl { + ($ty:ident, $unsigned:ident, $u_scalar:ident) => { + // The "pick the largest zone that can fit in an `u32`" optimization + // is less useful here. Multiple lanes complicate things, we don't + // know the PRNG's minimal output size, and casting to a larger vector + // is generally a bad idea for SIMD performance. The user can still + // implement it manually. + + // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality + // perhaps `impl SampleUniform for $u_scalar`? + impl SampleUniform for $ty { + type Sampler = UniformInt<$ty>; + } + + impl UniformSampler for UniformInt<$ty> { + type X = $ty; + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low.lt(high).all(), "Uniform::new called with `low >= high`"); + UniformSampler::new_inclusive(low, high - 1) + } + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low.le(high).all(), + "Uniform::new_inclusive called with `low > high`"); + let unsigned_max = ::core::$u_scalar::MAX; + + // NOTE: these may need to be replaced with explicitly + // wrapping operations if `packed_simd` changes + let range: $unsigned = ((high - low) + 1).cast(); + // `% 0` will panic at runtime. + let not_full_range = range.gt($unsigned::splat(0)); + // replacing 0 with `unsigned_max` allows a faster `select` + // with bitwise OR + let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max)); + // wrapping addition + let ints_to_reject = (unsigned_max - range + 1) % modulo; + // When `range` is 0, `lo` of `v.wmul(range)` will always be + // zero which means only one sample is needed. + let zone = unsigned_max - ints_to_reject; + + UniformInt { + low: low, + // These are really $unsigned values, but store as $ty: + range: range.cast(), + z: zone.cast(), + } + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + let range: $unsigned = self.range.cast(); + let zone: $unsigned = self.z.cast(); + + // This might seem very slow, generating a whole new + // SIMD vector for every sample rejection. For most uses + // though, the chance of rejection is small and provides good + // general performance. With multiple lanes, that chance is + // multiplied. To mitigate this, we replace only the lanes of + // the vector which fail, iteratively reducing the chance of + // rejection. The replacement method does however add a little + // overhead. Benchmarking or calculating probabilities might + // reveal contexts where this replacement method is slower. + let mut v: $unsigned = rng.gen(); + loop { + let (hi, lo) = v.wmul(range); + let mask = lo.le(zone); + if mask.all() { + let hi: $ty = hi.cast(); + // wrapping addition + let result = self.low + hi; + // `select` here compiles to a blend operation + // When `range.eq(0).none()` the compare and blend + // operations are avoided. + let v: $ty = v.cast(); + return range.gt($unsigned::splat(0)).select(result, v); + } + // Replace only the failing lanes + v = mask.select(v, rng.gen()); + } + } + } + }; + + // bulk implementation + ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => { + $( + uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar); + uniform_simd_int_impl!($signed, $unsigned, $u_scalar); + )+ + }; +} + +#[cfg(all(feature = "simd_support", feature = "nightly"))] +uniform_simd_int_impl! { + (u64x2, i64x2), + (u64x4, i64x4), + (u64x8, i64x8), + u64 +} + +#[cfg(all(feature = "simd_support", feature = "nightly"))] +uniform_simd_int_impl! { + (u32x2, i32x2), + (u32x4, i32x4), + (u32x8, i32x8), + (u32x16, i32x16), + u32 +} + +#[cfg(all(feature = "simd_support", feature = "nightly"))] +uniform_simd_int_impl! { + (u16x2, i16x2), + (u16x4, i16x4), + (u16x8, i16x8), + (u16x16, i16x16), + (u16x32, i16x32), + u16 +} + +#[cfg(all(feature = "simd_support", feature = "nightly"))] +uniform_simd_int_impl! { + (u8x2, i8x2), + (u8x4, i8x4), + (u8x8, i8x8), + (u8x16, i8x16), + (u8x32, i8x32), + (u8x64, i8x64), + u8 +} + + +/// The back-end implementing [`UniformSampler`] for floating-point types. +/// +/// Unless you are implementing [`UniformSampler`] for your own type, this type +/// should not be used directly, use [`Uniform`] instead. +/// +/// # Implementation notes +/// +/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the +/// `UniformFloat` implementation converts the output of an PRNG itself. This +/// way one or two steps can be optimized out. +/// +/// The floats are first converted to a value in the `[1, 2)` interval using a +/// transmute-based method, and then mapped to the expected range with a +/// multiply and addition. Values produced this way have what equals 23 bits of +/// random digits for an `f32`, and 52 for an `f64`. +/// +/// [`new`]: UniformSampler::new +/// [`new_inclusive`]: UniformSampler::new_inclusive +/// [`Standard`]: crate::distributions::Standard +#[derive(Clone, Copy, Debug)] +pub struct UniformFloat<X> { + low: X, + scale: X, +} + +macro_rules! uniform_float_impl { + ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => { + impl SampleUniform for $ty { + type Sampler = UniformFloat<$ty>; + } + + impl UniformSampler for UniformFloat<$ty> { + type X = $ty; + + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low.all_lt(high), "Uniform::new called with `low >= high`"); + assert!( + low.all_finite() && high.all_finite(), + "Uniform::new called with non-finite boundaries" + ); + let max_rand = <$ty>::splat( + (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, + ); + + let mut scale = high - low; + + loop { + let mask = (scale * max_rand + low).ge_mask(high); + if mask.none() { + break; + } + scale = scale.decrease_masked(mask); + } + + debug_assert!(<$ty>::splat(0.0).all_le(scale)); + + UniformFloat { low, scale } + } + + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!( + low.all_le(high), + "Uniform::new_inclusive called with `low > high`" + ); + assert!( + low.all_finite() && high.all_finite(), + "Uniform::new_inclusive called with non-finite boundaries" + ); + let max_rand = <$ty>::splat( + (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, + ); + + let mut scale = (high - low) / max_rand; + + loop { + let mask = (scale * max_rand + low).gt_mask(high); + if mask.none() { + break; + } + scale = scale.decrease_masked(mask); + } + + debug_assert!(<$ty>::splat(0.0).all_le(scale)); + + UniformFloat { low, scale } + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + // Generate a value in the range [1, 2) + let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); + + // Get a value in the range [0, 1) in order to avoid + // overflowing into infinity when multiplying with scale + let value0_1 = value1_2 - 1.0; + + // We don't use `f64::mul_add`, because it is not available with + // `no_std`. Furthermore, it is slower for some targets (but + // faster for others). However, the order of multiplication and + // addition is important, because on some platforms (e.g. ARM) + // it will be optimized to a single (non-FMA) instruction. + value0_1 * self.scale + self.low + } + + #[inline] + fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!( + low.all_lt(high), + "UniformSampler::sample_single: low >= high" + ); + let mut scale = high - low; + + loop { + // Generate a value in the range [1, 2) + let value1_2 = + (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); + + // Get a value in the range [0, 1) in order to avoid + // overflowing into infinity when multiplying with scale + let value0_1 = value1_2 - 1.0; + + // Doing multiply before addition allows some architectures + // to use a single instruction. + let res = value0_1 * scale + low; + + debug_assert!(low.all_le(res) || !scale.all_finite()); + if res.all_lt(high) { + return res; + } + + // This handles a number of edge cases. + // * `low` or `high` is NaN. In this case `scale` and + // `res` are going to end up as NaN. + // * `low` is negative infinity and `high` is finite. + // `scale` is going to be infinite and `res` will be + // NaN. + // * `high` is positive infinity and `low` is finite. + // `scale` is going to be infinite and `res` will + // be infinite or NaN (if value0_1 is 0). + // * `low` is negative infinity and `high` is positive + // infinity. `scale` will be infinite and `res` will + // be NaN. + // * `low` and `high` are finite, but `high - low` + // overflows to infinite. `scale` will be infinite + // and `res` will be infinite or NaN (if value0_1 is 0). + // So if `high` or `low` are non-finite, we are guaranteed + // to fail the `res < high` check above and end up here. + // + // While we technically should check for non-finite `low` + // and `high` before entering the loop, by doing the checks + // here instead, we allow the common case to avoid these + // checks. But we are still guaranteed that if `low` or + // `high` are non-finite we'll end up here and can do the + // appropriate checks. + // + // Likewise `high - low` overflowing to infinity is also + // rare, so handle it here after the common case. + let mask = !scale.finite_mask(); + if mask.any() { + assert!( + low.all_finite() && high.all_finite(), + "Uniform::sample_single: low and high must be finite" + ); + scale = scale.decrease_masked(mask); + } + } + } + } + }; +} + +uniform_float_impl! { f32, u32, f32, u32, 32 - 23 } +uniform_float_impl! { f64, u64, f64, u64, 64 - 52 } + +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 } + +#[cfg(feature = "simd_support")] +uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 } + + +/// The back-end implementing [`UniformSampler`] for `Duration`. +/// +/// Unless you are implementing [`UniformSampler`] for your own types, this type +/// should not be used directly, use [`Uniform`] instead. +#[derive(Clone, Copy, Debug)] +pub struct UniformDuration { + mode: UniformDurationMode, + offset: u32, +} + +#[derive(Debug, Copy, Clone)] +enum UniformDurationMode { + Small { + secs: u64, + nanos: Uniform<u32>, + }, + Medium { + nanos: Uniform<u64>, + }, + Large { + max_secs: u64, + max_nanos: u32, + secs: Uniform<u64>, + }, +} + +impl SampleUniform for Duration { + type Sampler = UniformDuration; +} + +impl UniformSampler for UniformDuration { + type X = Duration; + + #[inline] + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low < high, "Uniform::new called with `low >= high`"); + UniformDuration::new_inclusive(low, high - Duration::new(0, 1)) + } + + #[inline] + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!( + low <= high, + "Uniform::new_inclusive called with `low > high`" + ); + + let low_s = low.as_secs(); + let low_n = low.subsec_nanos(); + let mut high_s = high.as_secs(); + let mut high_n = high.subsec_nanos(); + + if high_n < low_n { + high_s -= 1; + high_n += 1_000_000_000; + } + + let mode = if low_s == high_s { + UniformDurationMode::Small { + secs: low_s, + nanos: Uniform::new_inclusive(low_n, high_n), + } + } else { + let max = high_s + .checked_mul(1_000_000_000) + .and_then(|n| n.checked_add(u64::from(high_n))); + + if let Some(higher_bound) = max { + let lower_bound = low_s * 1_000_000_000 + u64::from(low_n); + UniformDurationMode::Medium { + nanos: Uniform::new_inclusive(lower_bound, higher_bound), + } + } else { + // An offset is applied to simplify generation of nanoseconds + let max_nanos = high_n - low_n; + UniformDurationMode::Large { + max_secs: high_s, + max_nanos, + secs: Uniform::new_inclusive(low_s, high_s), + } + } + }; + UniformDuration { + mode, + offset: low_n, + } + } + + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration { + match self.mode { + UniformDurationMode::Small { secs, nanos } => { + let n = nanos.sample(rng); + Duration::new(secs, n) + } + UniformDurationMode::Medium { nanos } => { + let nanos = nanos.sample(rng); + Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32) + } + UniformDurationMode::Large { + max_secs, + max_nanos, + secs, + } => { + // constant folding means this is at least as fast as `gen_range` + let nano_range = Uniform::new(0, 1_000_000_000); + loop { + let s = secs.sample(rng); + let n = nano_range.sample(rng); + if !(s == max_secs && n > max_nanos) { + let sum = n + self.offset; + break Duration::new(s, sum); + } + } + } + } + } +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::rngs::mock::StepRng; + + #[should_panic] + #[test] + fn test_uniform_bad_limits_equal_int() { + Uniform::new(10, 10); + } + + #[test] + fn test_uniform_good_limits_equal_int() { + let mut rng = crate::test::rng(804); + let dist = Uniform::new_inclusive(10, 10); + for _ in 0..20 { + assert_eq!(rng.sample(dist), 10); + } + } + + #[should_panic] + #[test] + fn test_uniform_bad_limits_flipped_int() { + Uniform::new(10, 5); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_integers() { + #[cfg(not(target_os = "emscripten"))] use core::{i128, u128}; + use core::{i16, i32, i64, i8, isize}; + use core::{u16, u32, u64, u8, usize}; + + let mut rng = crate::test::rng(251); + macro_rules! t { + ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{ + for &(low, high) in $v.iter() { + let my_uniform = Uniform::new(low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $lt(v, high)); + } + + let my_uniform = Uniform::new_inclusive(low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $le(v, high)); + } + + let my_uniform = Uniform::new(&low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $lt(v, high)); + } + + let my_uniform = Uniform::new_inclusive(&low, &high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $le(v, high)); + } + + for _ in 0..1000 { + let v: $ty = rng.gen_range(low, high); + assert!($le(low, v) && $lt(v, high)); + } + } + }}; + + // scalar bulk + ($($ty:ident),*) => {{ + $(t!( + $ty, + [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)], + |x, y| x <= y, + |x, y| x < y + );)* + }}; + + // simd bulk + ($($ty:ident),* => $scalar:ident) => {{ + $(t!( + $ty, + [ + ($ty::splat(0), $ty::splat(10)), + ($ty::splat(10), $ty::splat(127)), + ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)), + ], + |x: $ty, y| x.le(y).all(), + |x: $ty, y| x.lt(y).all() + );)* + }}; + } + t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize); + #[cfg(not(target_os = "emscripten"))] + t!(i128, u128); + + #[cfg(all(feature = "simd_support", feature = "nightly"))] + { + t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8); + t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8); + t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16); + t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16); + t!(u32x2, u32x4, u32x8, u32x16 => u32); + t!(i32x2, i32x4, i32x8, i32x16 => i32); + t!(u64x2, u64x4, u64x8 => u64); + t!(i64x2, i64x4, i64x8 => i64); + } + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_floats() { + let mut rng = crate::test::rng(252); + let mut zero_rng = StepRng::new(0, 0); + let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0); + macro_rules! t { + ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{ + let v: &[($f_scalar, $f_scalar)] = &[ + (0.0, 100.0), + (-1e35, -1e25), + (1e-35, 1e-25), + (-1e35, 1e35), + (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)), + (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)), + (-<$f_scalar>::from_bits(5), 0.0), + (-<$f_scalar>::from_bits(7), -0.0), + (10.0, ::core::$f_scalar::MAX), + (-100.0, ::core::$f_scalar::MAX), + (-::core::$f_scalar::MAX / 5.0, ::core::$f_scalar::MAX), + (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX / 5.0), + (-::core::$f_scalar::MAX * 0.8, ::core::$f_scalar::MAX * 0.7), + (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX), + ]; + for &(low_scalar, high_scalar) in v.iter() { + for lane in 0..<$ty>::lanes() { + let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); + let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); + let my_uniform = Uniform::new(low, high); + let my_incl_uniform = Uniform::new_inclusive(low, high); + for _ in 0..100 { + let v = rng.sample(my_uniform).extract(lane); + assert!(low_scalar <= v && v < high_scalar); + let v = rng.sample(my_incl_uniform).extract(lane); + assert!(low_scalar <= v && v <= high_scalar); + let v = rng.gen_range(low, high).extract(lane); + assert!(low_scalar <= v && v < high_scalar); + } + + assert_eq!( + rng.sample(Uniform::new_inclusive(low, low)).extract(lane), + low_scalar + ); + + assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar); + assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar); + assert_eq!(zero_rng.gen_range(low, high).extract(lane), low_scalar); + assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar); + assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar); + + // Don't run this test for really tiny differences between high and low + // since for those rounding might result in selecting high for a very + // long time. + if (high_scalar - low_scalar) > 0.0001 { + let mut lowering_max_rng = StepRng::new( + 0xffff_ffff_ffff_ffff, + (-1i64 << $bits_shifted) as u64, + ); + assert!( + lowering_max_rng.gen_range(low, high).extract(lane) < high_scalar + ); + } + } + } + + assert_eq!( + rng.sample(Uniform::new_inclusive( + ::core::$f_scalar::MAX, + ::core::$f_scalar::MAX + )), + ::core::$f_scalar::MAX + ); + assert_eq!( + rng.sample(Uniform::new_inclusive( + -::core::$f_scalar::MAX, + -::core::$f_scalar::MAX + )), + -::core::$f_scalar::MAX + ); + }}; + } + + t!(f32, f32, 32 - 23); + t!(f64, f64, 64 - 52); + #[cfg(feature = "simd_support")] + { + t!(f32x2, f32, 32 - 23); + t!(f32x4, f32, 32 - 23); + t!(f32x8, f32, 32 - 23); + t!(f32x16, f32, 32 - 23); + t!(f64x2, f64, 64 - 52); + t!(f64x4, f64, 64 - 52); + t!(f64x8, f64, 64 - 52); + } + } + + #[test] + #[cfg(all( + feature = "std", + not(target_arch = "wasm32"), + not(target_arch = "asmjs") + ))] + fn test_float_assertions() { + use super::SampleUniform; + use std::panic::catch_unwind; + fn range<T: SampleUniform>(low: T, high: T) { + let mut rng = crate::test::rng(253); + rng.gen_range(low, high); + } + + macro_rules! t { + ($ty:ident, $f_scalar:ident) => {{ + let v: &[($f_scalar, $f_scalar)] = &[ + (::std::$f_scalar::NAN, 0.0), + (1.0, ::std::$f_scalar::NAN), + (::std::$f_scalar::NAN, ::std::$f_scalar::NAN), + (1.0, 0.5), + (::std::$f_scalar::MAX, -::std::$f_scalar::MAX), + (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY), + ( + ::std::$f_scalar::NEG_INFINITY, + ::std::$f_scalar::NEG_INFINITY, + ), + (::std::$f_scalar::NEG_INFINITY, 5.0), + (5.0, ::std::$f_scalar::INFINITY), + (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY), + (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN), + (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY), + ]; + for &(low_scalar, high_scalar) in v.iter() { + for lane in 0..<$ty>::lanes() { + let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); + let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); + assert!(catch_unwind(|| range(low, high)).is_err()); + assert!(catch_unwind(|| Uniform::new(low, high)).is_err()); + assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err()); + assert!(catch_unwind(|| range(low, low)).is_err()); + assert!(catch_unwind(|| Uniform::new(low, low)).is_err()); + } + } + }}; + } + + t!(f32, f32); + t!(f64, f64); + #[cfg(feature = "simd_support")] + { + t!(f32x2, f32); + t!(f32x4, f32); + t!(f32x8, f32); + t!(f32x16, f32); + t!(f64x2, f64); + t!(f64x4, f64); + t!(f64x8, f64); + } + } + + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_durations() { + #[cfg(not(feature = "std"))] use core::time::Duration; + #[cfg(feature = "std")] use std::time::Duration; + + let mut rng = crate::test::rng(253); + + let v = &[ + (Duration::new(10, 50000), Duration::new(100, 1234)), + (Duration::new(0, 100), Duration::new(1, 50)), + ( + Duration::new(0, 0), + Duration::new(u64::max_value(), 999_999_999), + ), + ]; + for &(low, high) in v.iter() { + let my_uniform = Uniform::new(low, high); + for _ in 0..1000 { + let v = rng.sample(my_uniform); + assert!(low <= v && v < high); + } + } + } + + #[test] + fn test_custom_uniform() { + use crate::distributions::uniform::{ + SampleBorrow, SampleUniform, UniformFloat, UniformSampler, + }; + #[derive(Clone, Copy, PartialEq, PartialOrd)] + struct MyF32 { + x: f32, + } + #[derive(Clone, Copy, Debug)] + struct UniformMyF32(UniformFloat<f32>); + impl UniformSampler for UniformMyF32 { + type X = MyF32; + + fn new<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x)) + } + + fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + UniformSampler::new(low, high) + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + MyF32 { + x: self.0.sample(rng), + } + } + } + impl SampleUniform for MyF32 { + type Sampler = UniformMyF32; + } + + let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 }); + let uniform = Uniform::new(low, high); + let mut rng = crate::test::rng(804); + for _ in 0..100 { + let x: MyF32 = rng.sample(uniform); + assert!(low <= x && x < high); + } + } + + #[test] + fn test_uniform_from_std_range() { + let r = Uniform::from(2u32..7); + assert_eq!(r.0.low, 2); + assert_eq!(r.0.range, 5); + let r = Uniform::from(2.0f64..7.0); + assert_eq!(r.0.low, 2.0); + assert_eq!(r.0.scale, 5.0); + } + + #[test] + fn test_uniform_from_std_range_inclusive() { + let r = Uniform::from(2u32..=6); + assert_eq!(r.0.low, 2); + assert_eq!(r.0.range, 5); + let r = Uniform::from(2.0f64..=7.0); + assert_eq!(r.0.low, 2.0); + assert!(r.0.scale > 5.0); + assert!(r.0.scale < 5.0 + 1e-14); + } + + #[test] + fn value_stability() { + fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>( + lb: T, ub: T, expected_single: &[T], expected_multiple: &[T], + ) where Uniform<T>: Distribution<T> { + let mut rng = crate::test::rng(897); + let mut buf = [lb; 3]; + + for x in &mut buf { + *x = T::Sampler::sample_single(lb, ub, &mut rng); + } + assert_eq!(&buf, expected_single); + + let distr = Uniform::new(lb, ub); + for x in &mut buf { + *x = rng.sample(&distr); + } + assert_eq!(&buf, expected_multiple); + } + + // We test on a sub-set of types; possibly we should do more. + // TODO: SIMD types + + test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]); + test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]); + + test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[ + 0.008194133, + 0.00398172, + 0.007428536, + ]); + test_samples( + -1e10f64, + 1e10f64, + &[-4673848682.871551, 6388267422.932352, 4857075081.198343], + &[1173375212.1808167, 1917642852.109581, 2365076174.3153973], + ); + + test_samples( + Duration::new(2, 0), + Duration::new(4, 0), + &[ + Duration::new(2, 532615131), + Duration::new(3, 638826742), + Duration::new(3, 485707508), + ], + &[ + Duration::new(3, 117337521), + Duration::new(3, 191764285), + Duration::new(3, 236507617), + ], + ); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/unit_circle.rs b/vendor/rand-0.7.3/src/distributions/unit_circle.rs new file mode 100644 index 000000000..37885d8eb --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/unit_circle.rs @@ -0,0 +1,102 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![allow(deprecated)] +#![allow(clippy::all)] + +use crate::distributions::{Distribution, Uniform}; +use crate::Rng; + +/// Samples uniformly from the edge of the unit circle in two dimensions. +/// +/// Implemented via a method by von Neumann[^1]. +/// +/// [^1]: von Neumann, J. (1951) [*Various Techniques Used in Connection with +/// Random Digits.*](https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf) +/// NBS Appl. Math. Ser., No. 12. Washington, DC: U.S. Government Printing +/// Office, pp. 36-38. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct UnitCircle; + +impl UnitCircle { + /// Construct a new `UnitCircle` distribution. + #[inline] + pub fn new() -> UnitCircle { + UnitCircle + } +} + +impl Distribution<[f64; 2]> for UnitCircle { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [f64; 2] { + let uniform = Uniform::new(-1., 1.); + let mut x1; + let mut x2; + let mut sum; + loop { + x1 = uniform.sample(rng); + x2 = uniform.sample(rng); + sum = x1 * x1 + x2 * x2; + if sum < 1. { + break; + } + } + let diff = x1 * x1 - x2 * x2; + [diff / sum, 2. * x1 * x2 / sum] + } +} + +#[cfg(test)] +mod tests { + use super::UnitCircle; + use crate::distributions::Distribution; + + /// Assert that two numbers are almost equal to each other. + /// + /// On panic, this macro will print the values of the expressions with their + /// debug representations. + macro_rules! assert_almost_eq { + ($a:expr, $b:expr, $prec:expr) => { + let diff = ($a - $b).abs(); + if diff > $prec { + panic!(format!( + "assertion failed: `abs(left - right) = {:.1e} < {:e}`, \ + (left: `{}`, right: `{}`)", + diff, $prec, $a, $b + )); + } + }; + } + + #[test] + fn norm() { + let mut rng = crate::test::rng(1); + let dist = UnitCircle::new(); + for _ in 0..1000 { + let x = dist.sample(&mut rng); + assert_almost_eq!(x[0] * x[0] + x[1] * x[1], 1., 1e-15); + } + } + + #[test] + fn value_stability() { + let mut rng = crate::test::rng(2); + let expected = [ + [-0.9965658683520504, -0.08280380447614634], + [-0.9790853270389644, -0.20345004884984505], + [-0.8449189758898707, 0.5348943112253227], + ]; + let samples = [ + UnitCircle.sample(&mut rng), + UnitCircle.sample(&mut rng), + UnitCircle.sample(&mut rng), + ]; + assert_eq!(samples, expected); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/unit_sphere.rs b/vendor/rand-0.7.3/src/distributions/unit_sphere.rs new file mode 100644 index 000000000..5b8c8ad55 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/unit_sphere.rs @@ -0,0 +1,97 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![allow(deprecated)] +#![allow(clippy::all)] + +use crate::distributions::{Distribution, Uniform}; +use crate::Rng; + +/// Samples uniformly from the surface of the unit sphere in three dimensions. +/// +/// Implemented via a method by Marsaglia[^1]. +/// +/// [^1]: Marsaglia, George (1972). [*Choosing a Point from the Surface of a +/// Sphere.*](https://doi.org/10.1214/aoms/1177692644) +/// Ann. Math. Statist. 43, no. 2, 645--646. +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct UnitSphereSurface; + +impl UnitSphereSurface { + /// Construct a new `UnitSphereSurface` distribution. + #[inline] + pub fn new() -> UnitSphereSurface { + UnitSphereSurface + } +} + +impl Distribution<[f64; 3]> for UnitSphereSurface { + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [f64; 3] { + let uniform = Uniform::new(-1., 1.); + loop { + let (x1, x2) = (uniform.sample(rng), uniform.sample(rng)); + let sum = x1 * x1 + x2 * x2; + if sum >= 1. { + continue; + } + let factor = 2. * (1.0_f64 - sum).sqrt(); + return [x1 * factor, x2 * factor, 1. - 2. * sum]; + } + } +} + +#[cfg(test)] +mod tests { + use super::UnitSphereSurface; + use crate::distributions::Distribution; + + /// Assert that two numbers are almost equal to each other. + /// + /// On panic, this macro will print the values of the expressions with their + /// debug representations. + macro_rules! assert_almost_eq { + ($a:expr, $b:expr, $prec:expr) => { + let diff = ($a - $b).abs(); + if diff > $prec { + panic!(format!( + "assertion failed: `abs(left - right) = {:.1e} < {:e}`, \ + (left: `{}`, right: `{}`)", + diff, $prec, $a, $b + )); + } + }; + } + + #[test] + fn norm() { + let mut rng = crate::test::rng(1); + let dist = UnitSphereSurface::new(); + for _ in 0..1000 { + let x = dist.sample(&mut rng); + assert_almost_eq!(x[0] * x[0] + x[1] * x[1] + x[2] * x[2], 1., 1e-15); + } + } + + #[test] + fn value_stability() { + let mut rng = crate::test::rng(2); + let expected = [ + [0.03247542860231647, -0.7830477442152738, 0.6211131755296027], + [-0.09978440840914075, 0.9706650829833128, -0.21875184231323952], + [0.2735582468624679, 0.9435374242279655, -0.1868234852870203], + ]; + let samples = [ + UnitSphereSurface.sample(&mut rng), + UnitSphereSurface.sample(&mut rng), + UnitSphereSurface.sample(&mut rng), + ]; + assert_eq!(samples, expected); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/utils.rs b/vendor/rand-0.7.3/src/distributions/utils.rs new file mode 100644 index 000000000..2d36b0226 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/utils.rs @@ -0,0 +1,547 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Math helper functions + +#[cfg(feature = "std")] use crate::distributions::ziggurat_tables; +#[cfg(feature = "std")] use crate::Rng; +#[cfg(feature = "simd_support")] use packed_simd::*; + + +pub trait WideningMultiply<RHS = Self> { + type Output; + + fn wmul(self, x: RHS) -> Self::Output; +} + +macro_rules! wmul_impl { + ($ty:ty, $wide:ty, $shift:expr) => { + impl WideningMultiply for $ty { + type Output = ($ty, $ty); + + #[inline(always)] + fn wmul(self, x: $ty) -> Self::Output { + let tmp = (self as $wide) * (x as $wide); + ((tmp >> $shift) as $ty, tmp as $ty) + } + } + }; + + // simd bulk implementation + ($(($ty:ident, $wide:ident),)+, $shift:expr) => { + $( + impl WideningMultiply for $ty { + type Output = ($ty, $ty); + + #[inline(always)] + fn wmul(self, x: $ty) -> Self::Output { + // For supported vectors, this should compile to a couple + // supported multiply & swizzle instructions (no actual + // casting). + // TODO: optimize + let y: $wide = self.cast(); + let x: $wide = x.cast(); + let tmp = y * x; + let hi: $ty = (tmp >> $shift).cast(); + let lo: $ty = tmp.cast(); + (hi, lo) + } + } + )+ + }; +} +wmul_impl! { u8, u16, 8 } +wmul_impl! { u16, u32, 16 } +wmul_impl! { u32, u64, 32 } +#[cfg(not(target_os = "emscripten"))] +wmul_impl! { u64, u128, 64 } + +// This code is a translation of the __mulddi3 function in LLVM's +// compiler-rt. It is an optimised variant of the common method +// `(a + b) * (c + d) = ac + ad + bc + bd`. +// +// For some reason LLVM can optimise the C version very well, but +// keeps shuffling registers in this Rust translation. +macro_rules! wmul_impl_large { + ($ty:ty, $half:expr) => { + impl WideningMultiply for $ty { + type Output = ($ty, $ty); + + #[inline(always)] + fn wmul(self, b: $ty) -> Self::Output { + const LOWER_MASK: $ty = !0 >> $half; + let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK); + let mut t = low >> $half; + low &= LOWER_MASK; + t += (self >> $half).wrapping_mul(b & LOWER_MASK); + low += (t & LOWER_MASK) << $half; + let mut high = t >> $half; + t = low >> $half; + low &= LOWER_MASK; + t += (b >> $half).wrapping_mul(self & LOWER_MASK); + low += (t & LOWER_MASK) << $half; + high += t >> $half; + high += (self >> $half).wrapping_mul(b >> $half); + + (high, low) + } + } + }; + + // simd bulk implementation + (($($ty:ty,)+) $scalar:ty, $half:expr) => { + $( + impl WideningMultiply for $ty { + type Output = ($ty, $ty); + + #[inline(always)] + fn wmul(self, b: $ty) -> Self::Output { + // needs wrapping multiplication + const LOWER_MASK: $scalar = !0 >> $half; + let mut low = (self & LOWER_MASK) * (b & LOWER_MASK); + let mut t = low >> $half; + low &= LOWER_MASK; + t += (self >> $half) * (b & LOWER_MASK); + low += (t & LOWER_MASK) << $half; + let mut high = t >> $half; + t = low >> $half; + low &= LOWER_MASK; + t += (b >> $half) * (self & LOWER_MASK); + low += (t & LOWER_MASK) << $half; + high += t >> $half; + high += (self >> $half) * (b >> $half); + + (high, low) + } + } + )+ + }; +} +#[cfg(target_os = "emscripten")] +wmul_impl_large! { u64, 32 } +#[cfg(not(target_os = "emscripten"))] +wmul_impl_large! { u128, 64 } + +macro_rules! wmul_impl_usize { + ($ty:ty) => { + impl WideningMultiply for usize { + type Output = (usize, usize); + + #[inline(always)] + fn wmul(self, x: usize) -> Self::Output { + let (high, low) = (self as $ty).wmul(x as $ty); + (high as usize, low as usize) + } + } + }; +} +#[cfg(target_pointer_width = "32")] +wmul_impl_usize! { u32 } +#[cfg(target_pointer_width = "64")] +wmul_impl_usize! { u64 } + +#[cfg(all(feature = "simd_support", feature = "nightly"))] +mod simd_wmul { + use super::*; + #[cfg(target_arch = "x86")] use core::arch::x86::*; + #[cfg(target_arch = "x86_64")] use core::arch::x86_64::*; + + wmul_impl! { + (u8x2, u16x2), + (u8x4, u16x4), + (u8x8, u16x8), + (u8x16, u16x16), + (u8x32, u16x32),, + 8 + } + + wmul_impl! { (u16x2, u32x2),, 16 } + #[cfg(not(target_feature = "sse2"))] + wmul_impl! { (u16x4, u32x4),, 16 } + #[cfg(not(target_feature = "sse4.2"))] + wmul_impl! { (u16x8, u32x8),, 16 } + #[cfg(not(target_feature = "avx2"))] + wmul_impl! { (u16x16, u32x16),, 16 } + + // 16-bit lane widths allow use of the x86 `mulhi` instructions, which + // means `wmul` can be implemented with only two instructions. + #[allow(unused_macros)] + macro_rules! wmul_impl_16 { + ($ty:ident, $intrinsic:ident, $mulhi:ident, $mullo:ident) => { + impl WideningMultiply for $ty { + type Output = ($ty, $ty); + + #[inline(always)] + fn wmul(self, x: $ty) -> Self::Output { + let b = $intrinsic::from_bits(x); + let a = $intrinsic::from_bits(self); + let hi = $ty::from_bits(unsafe { $mulhi(a, b) }); + let lo = $ty::from_bits(unsafe { $mullo(a, b) }); + (hi, lo) + } + } + }; + } + + #[cfg(target_feature = "sse2")] + wmul_impl_16! { u16x4, __m64, _mm_mulhi_pu16, _mm_mullo_pi16 } + #[cfg(target_feature = "sse4.2")] + wmul_impl_16! { u16x8, __m128i, _mm_mulhi_epu16, _mm_mullo_epi16 } + #[cfg(target_feature = "avx2")] + wmul_impl_16! { u16x16, __m256i, _mm256_mulhi_epu16, _mm256_mullo_epi16 } + // FIXME: there are no `__m512i` types in stdsimd yet, so `wmul::<u16x32>` + // cannot use the same implementation. + + wmul_impl! { + (u32x2, u64x2), + (u32x4, u64x4), + (u32x8, u64x8),, + 32 + } + + // TODO: optimize, this seems to seriously slow things down + wmul_impl_large! { (u8x64,) u8, 4 } + wmul_impl_large! { (u16x32,) u16, 8 } + wmul_impl_large! { (u32x16,) u32, 16 } + wmul_impl_large! { (u64x2, u64x4, u64x8,) u64, 32 } +} +#[cfg(all(feature = "simd_support", feature = "nightly"))] +pub use self::simd_wmul::*; + + +/// Helper trait when dealing with scalar and SIMD floating point types. +pub(crate) trait FloatSIMDUtils { + // `PartialOrd` for vectors compares lexicographically. We want to compare all + // the individual SIMD lanes instead, and get the combined result over all + // lanes. This is possible using something like `a.lt(b).all()`, but we + // implement it as a trait so we can write the same code for `f32` and `f64`. + // Only the comparison functions we need are implemented. + fn all_lt(self, other: Self) -> bool; + fn all_le(self, other: Self) -> bool; + fn all_finite(self) -> bool; + + type Mask; + fn finite_mask(self) -> Self::Mask; + fn gt_mask(self, other: Self) -> Self::Mask; + fn ge_mask(self, other: Self) -> Self::Mask; + + // Decrease all lanes where the mask is `true` to the next lower value + // representable by the floating-point type. At least one of the lanes + // must be set. + fn decrease_masked(self, mask: Self::Mask) -> Self; + + // Convert from int value. Conversion is done while retaining the numerical + // value, not by retaining the binary representation. + type UInt; + fn cast_from_int(i: Self::UInt) -> Self; +} + +/// Implement functions available in std builds but missing from core primitives +#[cfg(not(std))] +pub(crate) trait Float: Sized { + fn is_nan(self) -> bool; + fn is_infinite(self) -> bool; + fn is_finite(self) -> bool; +} + +/// Implement functions on f32/f64 to give them APIs similar to SIMD types +pub(crate) trait FloatAsSIMD: Sized { + #[inline(always)] + fn lanes() -> usize { + 1 + } + #[inline(always)] + fn splat(scalar: Self) -> Self { + scalar + } + #[inline(always)] + fn extract(self, index: usize) -> Self { + debug_assert_eq!(index, 0); + self + } + #[inline(always)] + fn replace(self, index: usize, new_value: Self) -> Self { + debug_assert_eq!(index, 0); + new_value + } +} + +pub(crate) trait BoolAsSIMD: Sized { + fn any(self) -> bool; + fn all(self) -> bool; + fn none(self) -> bool; +} + +impl BoolAsSIMD for bool { + #[inline(always)] + fn any(self) -> bool { + self + } + + #[inline(always)] + fn all(self) -> bool { + self + } + + #[inline(always)] + fn none(self) -> bool { + !self + } +} + +macro_rules! scalar_float_impl { + ($ty:ident, $uty:ident) => { + #[cfg(not(std))] + impl Float for $ty { + #[inline] + fn is_nan(self) -> bool { + self != self + } + + #[inline] + fn is_infinite(self) -> bool { + self == ::core::$ty::INFINITY || self == ::core::$ty::NEG_INFINITY + } + + #[inline] + fn is_finite(self) -> bool { + !(self.is_nan() || self.is_infinite()) + } + } + + impl FloatSIMDUtils for $ty { + type Mask = bool; + type UInt = $uty; + + #[inline(always)] + fn all_lt(self, other: Self) -> bool { + self < other + } + + #[inline(always)] + fn all_le(self, other: Self) -> bool { + self <= other + } + + #[inline(always)] + fn all_finite(self) -> bool { + self.is_finite() + } + + #[inline(always)] + fn finite_mask(self) -> Self::Mask { + self.is_finite() + } + + #[inline(always)] + fn gt_mask(self, other: Self) -> Self::Mask { + self > other + } + + #[inline(always)] + fn ge_mask(self, other: Self) -> Self::Mask { + self >= other + } + + #[inline(always)] + fn decrease_masked(self, mask: Self::Mask) -> Self { + debug_assert!(mask, "At least one lane must be set"); + <$ty>::from_bits(self.to_bits() - 1) + } + + #[inline] + fn cast_from_int(i: Self::UInt) -> Self { + i as $ty + } + } + + impl FloatAsSIMD for $ty {} + }; +} + +scalar_float_impl!(f32, u32); +scalar_float_impl!(f64, u64); + + +#[cfg(feature = "simd_support")] +macro_rules! simd_impl { + ($ty:ident, $f_scalar:ident, $mty:ident, $uty:ident) => { + impl FloatSIMDUtils for $ty { + type Mask = $mty; + type UInt = $uty; + + #[inline(always)] + fn all_lt(self, other: Self) -> bool { + self.lt(other).all() + } + + #[inline(always)] + fn all_le(self, other: Self) -> bool { + self.le(other).all() + } + + #[inline(always)] + fn all_finite(self) -> bool { + self.finite_mask().all() + } + + #[inline(always)] + fn finite_mask(self) -> Self::Mask { + // This can possibly be done faster by checking bit patterns + let neg_inf = $ty::splat(::core::$f_scalar::NEG_INFINITY); + let pos_inf = $ty::splat(::core::$f_scalar::INFINITY); + self.gt(neg_inf) & self.lt(pos_inf) + } + + #[inline(always)] + fn gt_mask(self, other: Self) -> Self::Mask { + self.gt(other) + } + + #[inline(always)] + fn ge_mask(self, other: Self) -> Self::Mask { + self.ge(other) + } + + #[inline(always)] + fn decrease_masked(self, mask: Self::Mask) -> Self { + // Casting a mask into ints will produce all bits set for + // true, and 0 for false. Adding that to the binary + // representation of a float means subtracting one from + // the binary representation, resulting in the next lower + // value representable by $ty. This works even when the + // current value is infinity. + debug_assert!(mask.any(), "At least one lane must be set"); + <$ty>::from_bits(<$uty>::from_bits(self) + <$uty>::from_bits(mask)) + } + + #[inline] + fn cast_from_int(i: Self::UInt) -> Self { + i.cast() + } + } + }; +} + +#[cfg(feature="simd_support")] simd_impl! { f32x2, f32, m32x2, u32x2 } +#[cfg(feature="simd_support")] simd_impl! { f32x4, f32, m32x4, u32x4 } +#[cfg(feature="simd_support")] simd_impl! { f32x8, f32, m32x8, u32x8 } +#[cfg(feature="simd_support")] simd_impl! { f32x16, f32, m32x16, u32x16 } +#[cfg(feature="simd_support")] simd_impl! { f64x2, f64, m64x2, u64x2 } +#[cfg(feature="simd_support")] simd_impl! { f64x4, f64, m64x4, u64x4 } +#[cfg(feature="simd_support")] simd_impl! { f64x8, f64, m64x8, u64x8 } + +/// Calculates ln(gamma(x)) (natural logarithm of the gamma +/// function) using the Lanczos approximation. +/// +/// The approximation expresses the gamma function as: +/// `gamma(z+1) = sqrt(2*pi)*(z+g+0.5)^(z+0.5)*exp(-z-g-0.5)*Ag(z)` +/// `g` is an arbitrary constant; we use the approximation with `g=5`. +/// +/// Noting that `gamma(z+1) = z*gamma(z)` and applying `ln` to both sides: +/// `ln(gamma(z)) = (z+0.5)*ln(z+g+0.5)-(z+g+0.5) + ln(sqrt(2*pi)*Ag(z)/z)` +/// +/// `Ag(z)` is an infinite series with coefficients that can be calculated +/// ahead of time - we use just the first 6 terms, which is good enough +/// for most purposes. +#[cfg(feature = "std")] +pub fn log_gamma(x: f64) -> f64 { + // precalculated 6 coefficients for the first 6 terms of the series + let coefficients: [f64; 6] = [ + 76.18009172947146, + -86.50532032941677, + 24.01409824083091, + -1.231739572450155, + 0.1208650973866179e-2, + -0.5395239384953e-5, + ]; + + // (x+0.5)*ln(x+g+0.5)-(x+g+0.5) + let tmp = x + 5.5; + let log = (x + 0.5) * tmp.ln() - tmp; + + // the first few terms of the series for Ag(x) + let mut a = 1.000000000190015; + let mut denom = x; + for coeff in &coefficients { + denom += 1.0; + a += coeff / denom; + } + + // get everything together + // a is Ag(x) + // 2.5066... is sqrt(2pi) + log + (2.5066282746310005 * a / x).ln() +} + +/// Sample a random number using the Ziggurat method (specifically the +/// ZIGNOR variant from Doornik 2005). Most of the arguments are +/// directly from the paper: +/// +/// * `rng`: source of randomness +/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0. +/// * `X`: the $x_i$ abscissae. +/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$) +/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$ +/// * `pdf`: the probability density function +/// * `zero_case`: manual sampling from the tail when we chose the +/// bottom box (i.e. i == 0) + +// the perf improvement (25-50%) is definitely worth the extra code +// size from force-inlining. +#[cfg(feature = "std")] +#[inline(always)] +pub fn ziggurat<R: Rng + ?Sized, P, Z>( + rng: &mut R, + symmetric: bool, + x_tab: ziggurat_tables::ZigTable, + f_tab: ziggurat_tables::ZigTable, + mut pdf: P, + mut zero_case: Z +) -> f64 +where + P: FnMut(f64) -> f64, + Z: FnMut(&mut R, f64) -> f64, +{ + use crate::distributions::float::IntoFloat; + loop { + // As an optimisation we re-implement the conversion to a f64. + // From the remaining 12 most significant bits we use 8 to construct `i`. + // This saves us generating a whole extra random number, while the added + // precision of using 64 bits for f64 does not buy us much. + let bits = rng.next_u64(); + let i = bits as usize & 0xff; + + let u = if symmetric { + // Convert to a value in the range [2,4) and substract to get [-1,1) + // We can't convert to an open range directly, that would require + // substracting `3.0 - EPSILON`, which is not representable. + // It is possible with an extra step, but an open range does not + // seem neccesary for the ziggurat algorithm anyway. + (bits >> 12).into_float_with_exponent(1) - 3.0 + } else { + // Convert to a value in the range [1,2) and substract to get (0,1) + (bits >> 12).into_float_with_exponent(0) - (1.0 - ::core::f64::EPSILON / 2.0) + }; + let x = u * x_tab[i]; + + let test_x = if symmetric { x.abs() } else { x }; + + // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i]) + if test_x < x_tab[i + 1] { + return x; + } + if i == 0 { + return zero_case(rng, u); + } + // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1 + if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) { + return x; + } + } +} diff --git a/vendor/rand-0.7.3/src/distributions/weibull.rs b/vendor/rand-0.7.3/src/distributions/weibull.rs new file mode 100644 index 000000000..ffbc93b01 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/weibull.rs @@ -0,0 +1,67 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The Weibull distribution. +#![allow(deprecated)] + +use crate::distributions::{Distribution, OpenClosed01}; +use crate::Rng; + +/// Samples floating-point numbers according to the Weibull distribution +#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")] +#[derive(Clone, Copy, Debug)] +pub struct Weibull { + inv_shape: f64, + scale: f64, +} + +impl Weibull { + /// Construct a new `Weibull` distribution with given `scale` and `shape`. + /// + /// # Panics + /// + /// `scale` and `shape` have to be non-zero and positive. + pub fn new(scale: f64, shape: f64) -> Weibull { + assert!((scale > 0.) & (shape > 0.)); + Weibull { + inv_shape: 1. / shape, + scale, + } + } +} + +impl Distribution<f64> for Weibull { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let x: f64 = rng.sample(OpenClosed01); + self.scale * (-x.ln()).powf(self.inv_shape) + } +} + +#[cfg(test)] +mod tests { + use super::Weibull; + use crate::distributions::Distribution; + + #[test] + #[should_panic] + fn invalid() { + Weibull::new(0., 0.); + } + + #[test] + fn sample() { + let scale = 1.0; + let shape = 2.0; + let d = Weibull::new(scale, shape); + let mut rng = crate::test::rng(1); + for _ in 0..1000 { + let r = d.sample(&mut rng); + assert!(r >= 0.); + } + } +} diff --git a/vendor/rand-0.7.3/src/distributions/weighted/alias_method.rs b/vendor/rand-0.7.3/src/distributions/weighted/alias_method.rs new file mode 100644 index 000000000..7d42a3526 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/weighted/alias_method.rs @@ -0,0 +1,517 @@ +//! This module contains an implementation of alias method for sampling random +//! indices with probabilities proportional to a collection of weights. + +use super::WeightedError; +#[cfg(not(feature = "std"))] use crate::alloc::vec; +#[cfg(not(feature = "std"))] use crate::alloc::vec::Vec; +use crate::distributions::uniform::SampleUniform; +use crate::distributions::Distribution; +use crate::distributions::Uniform; +use crate::Rng; +use core::fmt; +use core::iter::Sum; +use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign}; + +/// A distribution using weighted sampling to pick a discretely selected item. +/// +/// Sampling a [`WeightedIndex<W>`] distribution returns the index of a randomly +/// selected element from the vector used to create the [`WeightedIndex<W>`]. +/// The chance of a given element being picked is proportional to the value of +/// the element. The weights can have any type `W` for which a implementation of +/// [`Weight`] exists. +/// +/// # Performance +/// +/// Given that `n` is the number of items in the vector used to create an +/// [`WeightedIndex<W>`], [`WeightedIndex<W>`] will require `O(n)` amount of +/// memory. More specifically it takes up some constant amount of memory plus +/// the vector used to create it and a [`Vec<u32>`] with capacity `n`. +/// +/// Time complexity for the creation of a [`WeightedIndex<W>`] is `O(n)`. +/// Sampling is `O(1)`, it makes a call to [`Uniform<u32>::sample`] and a call +/// to [`Uniform<W>::sample`]. +/// +/// # Example +/// +/// ``` +/// use rand::distributions::weighted::alias_method::WeightedIndex; +/// use rand::prelude::*; +/// +/// let choices = vec!['a', 'b', 'c']; +/// let weights = vec![2, 1, 1]; +/// let dist = WeightedIndex::new(weights).unwrap(); +/// let mut rng = thread_rng(); +/// for _ in 0..100 { +/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' +/// println!("{}", choices[dist.sample(&mut rng)]); +/// } +/// +/// let items = [('a', 0), ('b', 3), ('c', 7)]; +/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1).collect()).unwrap(); +/// for _ in 0..100 { +/// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c' +/// println!("{}", items[dist2.sample(&mut rng)].0); +/// } +/// ``` +/// +/// [`WeightedIndex<W>`]: crate::distributions::weighted::alias_method::WeightedIndex +/// [`Weight`]: crate::distributions::weighted::alias_method::Weight +/// [`Vec<u32>`]: Vec +/// [`Uniform<u32>::sample`]: Distribution::sample +/// [`Uniform<W>::sample`]: Distribution::sample +pub struct WeightedIndex<W: Weight> { + aliases: Vec<u32>, + no_alias_odds: Vec<W>, + uniform_index: Uniform<u32>, + uniform_within_weight_sum: Uniform<W>, +} + +impl<W: Weight> WeightedIndex<W> { + /// Creates a new [`WeightedIndex`]. + /// + /// Returns an error if: + /// - The vector is empty. + /// - The vector is longer than `u32::MAX`. + /// - For any weight `w`: `w < 0` or `w > max` where `max = W::MAX / + /// weights.len()`. + /// - The sum of weights is zero. + pub fn new(weights: Vec<W>) -> Result<Self, WeightedError> { + let n = weights.len(); + if n == 0 { + return Err(WeightedError::NoItem); + } else if n > ::core::u32::MAX as usize { + return Err(WeightedError::TooMany); + } + let n = n as u32; + + let max_weight_size = W::try_from_u32_lossy(n) + .map(|n| W::MAX / n) + .unwrap_or(W::ZERO); + if !weights + .iter() + .all(|&w| W::ZERO <= w && w <= max_weight_size) + { + return Err(WeightedError::InvalidWeight); + } + + // The sum of weights will represent 100% of no alias odds. + let weight_sum = Weight::sum(weights.as_slice()); + // Prevent floating point overflow due to rounding errors. + let weight_sum = if weight_sum > W::MAX { + W::MAX + } else { + weight_sum + }; + if weight_sum == W::ZERO { + return Err(WeightedError::AllWeightsZero); + } + + // `weight_sum` would have been zero if `try_from_lossy` causes an error here. + let n_converted = W::try_from_u32_lossy(n).unwrap(); + + let mut no_alias_odds = weights; + for odds in no_alias_odds.iter_mut() { + *odds *= n_converted; + // Prevent floating point overflow due to rounding errors. + *odds = if *odds > W::MAX { W::MAX } else { *odds }; + } + + /// This struct is designed to contain three data structures at once, + /// sharing the same memory. More precisely it contains two linked lists + /// and an alias map, which will be the output of this method. To keep + /// the three data structures from getting in each other's way, it must + /// be ensured that a single index is only ever in one of them at the + /// same time. + struct Aliases { + aliases: Vec<u32>, + smalls_head: u32, + bigs_head: u32, + } + + impl Aliases { + fn new(size: u32) -> Self { + Aliases { + aliases: vec![0; size as usize], + smalls_head: ::core::u32::MAX, + bigs_head: ::core::u32::MAX, + } + } + + fn push_small(&mut self, idx: u32) { + self.aliases[idx as usize] = self.smalls_head; + self.smalls_head = idx; + } + + fn push_big(&mut self, idx: u32) { + self.aliases[idx as usize] = self.bigs_head; + self.bigs_head = idx; + } + + fn pop_small(&mut self) -> u32 { + let popped = self.smalls_head; + self.smalls_head = self.aliases[popped as usize]; + popped + } + + fn pop_big(&mut self) -> u32 { + let popped = self.bigs_head; + self.bigs_head = self.aliases[popped as usize]; + popped + } + + fn smalls_is_empty(&self) -> bool { + self.smalls_head == ::core::u32::MAX + } + + fn bigs_is_empty(&self) -> bool { + self.bigs_head == ::core::u32::MAX + } + + fn set_alias(&mut self, idx: u32, alias: u32) { + self.aliases[idx as usize] = alias; + } + } + + let mut aliases = Aliases::new(n); + + // Split indices into those with small weights and those with big weights. + for (index, &odds) in no_alias_odds.iter().enumerate() { + if odds < weight_sum { + aliases.push_small(index as u32); + } else { + aliases.push_big(index as u32); + } + } + + // Build the alias map by finding an alias with big weight for each index with + // small weight. + while !aliases.smalls_is_empty() && !aliases.bigs_is_empty() { + let s = aliases.pop_small(); + let b = aliases.pop_big(); + + aliases.set_alias(s, b); + no_alias_odds[b as usize] = + no_alias_odds[b as usize] - weight_sum + no_alias_odds[s as usize]; + + if no_alias_odds[b as usize] < weight_sum { + aliases.push_small(b); + } else { + aliases.push_big(b); + } + } + + // The remaining indices should have no alias odds of about 100%. This is due to + // numeric accuracy. Otherwise they would be exactly 100%. + while !aliases.smalls_is_empty() { + no_alias_odds[aliases.pop_small() as usize] = weight_sum; + } + while !aliases.bigs_is_empty() { + no_alias_odds[aliases.pop_big() as usize] = weight_sum; + } + + // Prepare distributions for sampling. Creating them beforehand improves + // sampling performance. + let uniform_index = Uniform::new(0, n); + let uniform_within_weight_sum = Uniform::new(W::ZERO, weight_sum); + + Ok(Self { + aliases: aliases.aliases, + no_alias_odds, + uniform_index, + uniform_within_weight_sum, + }) + } +} + +impl<W: Weight> Distribution<usize> for WeightedIndex<W> { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { + let candidate = rng.sample(self.uniform_index); + if rng.sample(&self.uniform_within_weight_sum) < self.no_alias_odds[candidate as usize] { + candidate as usize + } else { + self.aliases[candidate as usize] as usize + } + } +} + +impl<W: Weight> fmt::Debug for WeightedIndex<W> +where + W: fmt::Debug, + Uniform<W>: fmt::Debug, +{ + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("WeightedIndex") + .field("aliases", &self.aliases) + .field("no_alias_odds", &self.no_alias_odds) + .field("uniform_index", &self.uniform_index) + .field("uniform_within_weight_sum", &self.uniform_within_weight_sum) + .finish() + } +} + +impl<W: Weight> Clone for WeightedIndex<W> +where Uniform<W>: Clone +{ + fn clone(&self) -> Self { + Self { + aliases: self.aliases.clone(), + no_alias_odds: self.no_alias_odds.clone(), + uniform_index: self.uniform_index.clone(), + uniform_within_weight_sum: self.uniform_within_weight_sum.clone(), + } + } +} + +/// Trait that must be implemented for weights, that are used with +/// [`WeightedIndex`]. Currently no guarantees on the correctness of +/// [`WeightedIndex`] are given for custom implementations of this trait. +pub trait Weight: + Sized + + Copy + + SampleUniform + + PartialOrd + + Add<Output = Self> + + AddAssign + + Sub<Output = Self> + + SubAssign + + Mul<Output = Self> + + MulAssign + + Div<Output = Self> + + DivAssign + + Sum +{ + /// Maximum number representable by `Self`. + const MAX: Self; + + /// Element of `Self` equivalent to 0. + const ZERO: Self; + + /// Produce an instance of `Self` from a `u32` value, or return `None` if + /// out of range. Loss of precision (where `Self` is a floating point type) + /// is acceptable. + fn try_from_u32_lossy(n: u32) -> Option<Self>; + + /// Sums all values in slice `values`. + fn sum(values: &[Self]) -> Self { + values.iter().map(|x| *x).sum() + } +} + +macro_rules! impl_weight_for_float { + ($T: ident) => { + impl Weight for $T { + const MAX: Self = ::core::$T::MAX; + const ZERO: Self = 0.0; + + fn try_from_u32_lossy(n: u32) -> Option<Self> { + Some(n as $T) + } + + fn sum(values: &[Self]) -> Self { + pairwise_sum(values) + } + } + }; +} + +/// In comparison to naive accumulation, the pairwise sum algorithm reduces +/// rounding errors when there are many floating point values. +fn pairwise_sum<T: Weight>(values: &[T]) -> T { + if values.len() <= 32 { + values.iter().map(|x| *x).sum() + } else { + let mid = values.len() / 2; + let (a, b) = values.split_at(mid); + pairwise_sum(a) + pairwise_sum(b) + } +} + +macro_rules! impl_weight_for_int { + ($T: ident) => { + impl Weight for $T { + const MAX: Self = ::core::$T::MAX; + const ZERO: Self = 0; + + fn try_from_u32_lossy(n: u32) -> Option<Self> { + let n_converted = n as Self; + if n_converted >= Self::ZERO && n_converted as u32 == n { + Some(n_converted) + } else { + None + } + } + } + }; +} + +impl_weight_for_float!(f64); +impl_weight_for_float!(f32); +impl_weight_for_int!(usize); +#[cfg(not(target_os = "emscripten"))] +impl_weight_for_int!(u128); +impl_weight_for_int!(u64); +impl_weight_for_int!(u32); +impl_weight_for_int!(u16); +impl_weight_for_int!(u8); +impl_weight_for_int!(isize); +#[cfg(not(target_os = "emscripten"))] +impl_weight_for_int!(i128); +impl_weight_for_int!(i64); +impl_weight_for_int!(i32); +impl_weight_for_int!(i16); +impl_weight_for_int!(i8); + +#[cfg(test)] +mod test { + use super::*; + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_weighted_index_f32() { + test_weighted_index(f32::into); + + // Floating point special cases + assert_eq!( + WeightedIndex::new(vec![::core::f32::INFINITY]).unwrap_err(), + WeightedError::InvalidWeight + ); + assert_eq!( + WeightedIndex::new(vec![-0_f32]).unwrap_err(), + WeightedError::AllWeightsZero + ); + assert_eq!( + WeightedIndex::new(vec![-1_f32]).unwrap_err(), + WeightedError::InvalidWeight + ); + assert_eq!( + WeightedIndex::new(vec![-::core::f32::INFINITY]).unwrap_err(), + WeightedError::InvalidWeight + ); + assert_eq!( + WeightedIndex::new(vec![::core::f32::NAN]).unwrap_err(), + WeightedError::InvalidWeight + ); + } + + #[cfg(not(target_os = "emscripten"))] + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_weighted_index_u128() { + test_weighted_index(|x: u128| x as f64); + } + + #[cfg(all(rustc_1_26, not(target_os = "emscripten")))] + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_weighted_index_i128() { + test_weighted_index(|x: i128| x as f64); + + // Signed integer special cases + assert_eq!( + WeightedIndex::new(vec![-1_i128]).unwrap_err(), + WeightedError::InvalidWeight + ); + assert_eq!( + WeightedIndex::new(vec![::core::i128::MIN]).unwrap_err(), + WeightedError::InvalidWeight + ); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_weighted_index_u8() { + test_weighted_index(u8::into); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_weighted_index_i8() { + test_weighted_index(i8::into); + + // Signed integer special cases + assert_eq!( + WeightedIndex::new(vec![-1_i8]).unwrap_err(), + WeightedError::InvalidWeight + ); + assert_eq!( + WeightedIndex::new(vec![::core::i8::MIN]).unwrap_err(), + WeightedError::InvalidWeight + ); + } + + fn test_weighted_index<W: Weight, F: Fn(W) -> f64>(w_to_f64: F) + where WeightedIndex<W>: fmt::Debug { + const NUM_WEIGHTS: u32 = 10; + const ZERO_WEIGHT_INDEX: u32 = 3; + const NUM_SAMPLES: u32 = 15000; + let mut rng = crate::test::rng(0x9c9fa0b0580a7031); + + let weights = { + let mut weights = Vec::with_capacity(NUM_WEIGHTS as usize); + let random_weight_distribution = crate::distributions::Uniform::new_inclusive( + W::ZERO, + W::MAX / W::try_from_u32_lossy(NUM_WEIGHTS).unwrap(), + ); + for _ in 0..NUM_WEIGHTS { + weights.push(rng.sample(&random_weight_distribution)); + } + weights[ZERO_WEIGHT_INDEX as usize] = W::ZERO; + weights + }; + let weight_sum = weights.iter().map(|w| *w).sum::<W>(); + let expected_counts = weights + .iter() + .map(|&w| w_to_f64(w) / w_to_f64(weight_sum) * NUM_SAMPLES as f64) + .collect::<Vec<f64>>(); + let weight_distribution = WeightedIndex::new(weights).unwrap(); + + let mut counts = vec![0; NUM_WEIGHTS as usize]; + for _ in 0..NUM_SAMPLES { + counts[rng.sample(&weight_distribution)] += 1; + } + + assert_eq!(counts[ZERO_WEIGHT_INDEX as usize], 0); + for (count, expected_count) in counts.into_iter().zip(expected_counts) { + let difference = (count as f64 - expected_count).abs(); + let max_allowed_difference = NUM_SAMPLES as f64 / NUM_WEIGHTS as f64 * 0.1; + assert!(difference <= max_allowed_difference); + } + + assert_eq!( + WeightedIndex::<W>::new(vec![]).unwrap_err(), + WeightedError::NoItem + ); + assert_eq!( + WeightedIndex::new(vec![W::ZERO]).unwrap_err(), + WeightedError::AllWeightsZero + ); + assert_eq!( + WeightedIndex::new(vec![W::MAX, W::MAX]).unwrap_err(), + WeightedError::InvalidWeight + ); + } + + #[test] + fn value_stability() { + fn test_samples<W: Weight>(weights: Vec<W>, buf: &mut [usize], expected: &[usize]) { + assert_eq!(buf.len(), expected.len()); + let distr = WeightedIndex::new(weights).unwrap(); + let mut rng = crate::test::rng(0x9c9fa0b0580a7031); + for r in buf.iter_mut() { + *r = rng.sample(&distr); + } + assert_eq!(buf, expected); + } + + let mut buf = [0; 10]; + test_samples(vec![1i32, 1, 1, 1, 1, 1, 1, 1, 1], &mut buf, &[ + 6, 5, 7, 5, 8, 7, 6, 2, 3, 7, + ]); + test_samples(vec![0.7f32, 0.1, 0.1, 0.1], &mut buf, &[ + 2, 0, 0, 0, 0, 0, 0, 0, 1, 3, + ]); + test_samples(vec![1.0f64, 0.999, 0.998, 0.997], &mut buf, &[ + 2, 1, 2, 3, 2, 1, 3, 2, 1, 1, + ]); + } +} diff --git a/vendor/rand-0.7.3/src/distributions/weighted/mod.rs b/vendor/rand-0.7.3/src/distributions/weighted/mod.rs new file mode 100644 index 000000000..357e3a9f0 --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/weighted/mod.rs @@ -0,0 +1,413 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Weighted index sampling +//! +//! This module provides two implementations for sampling indices: +//! +//! * [`WeightedIndex`] allows `O(log N)` sampling +//! * [`alias_method::WeightedIndex`] allows `O(1)` sampling, but with +//! much greater set-up cost +//! +//! [`alias_method::WeightedIndex`]: alias_method/struct.WeightedIndex.html + +pub mod alias_method; + +use crate::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler}; +use crate::distributions::Distribution; +use crate::Rng; +use core::cmp::PartialOrd; +use core::fmt; + +// Note that this whole module is only imported if feature="alloc" is enabled. +#[cfg(not(feature = "std"))] use crate::alloc::vec::Vec; + +/// A distribution using weighted sampling to pick a discretely selected +/// item. +/// +/// Sampling a `WeightedIndex` distribution returns the index of a randomly +/// selected element from the iterator used when the `WeightedIndex` was +/// created. The chance of a given element being picked is proportional to the +/// value of the element. The weights can use any type `X` for which an +/// implementation of [`Uniform<X>`] exists. +/// +/// # Performance +/// +/// A `WeightedIndex<X>` contains a `Vec<X>` and a [`Uniform<X>`] and so its +/// size is the sum of the size of those objects, possibly plus some alignment. +/// +/// Creating a `WeightedIndex<X>` will allocate enough space to hold `N - 1` +/// weights of type `X`, where `N` is the number of weights. However, since +/// `Vec` doesn't guarantee a particular growth strategy, additional memory +/// might be allocated but not used. Since the `WeightedIndex` object also +/// contains, this might cause additional allocations, though for primitive +/// types, ['Uniform<X>`] doesn't allocate any memory. +/// +/// Time complexity of sampling from `WeightedIndex` is `O(log N)` where +/// `N` is the number of weights. +/// +/// Sampling from `WeightedIndex` will result in a single call to +/// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically +/// will request a single value from the underlying [`RngCore`], though the +/// exact number depends on the implementaiton of `Uniform<X>::sample`. +/// +/// # Example +/// +/// ``` +/// use rand::prelude::*; +/// use rand::distributions::WeightedIndex; +/// +/// let choices = ['a', 'b', 'c']; +/// let weights = [2, 1, 1]; +/// let dist = WeightedIndex::new(&weights).unwrap(); +/// let mut rng = thread_rng(); +/// for _ in 0..100 { +/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' +/// println!("{}", choices[dist.sample(&mut rng)]); +/// } +/// +/// let items = [('a', 0), ('b', 3), ('c', 7)]; +/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1)).unwrap(); +/// for _ in 0..100 { +/// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c' +/// println!("{}", items[dist2.sample(&mut rng)].0); +/// } +/// ``` +/// +/// [`Uniform<X>`]: crate::distributions::uniform::Uniform +/// [`RngCore`]: crate::RngCore +#[derive(Debug, Clone)] +pub struct WeightedIndex<X: SampleUniform + PartialOrd> { + cumulative_weights: Vec<X>, + total_weight: X, + weight_distribution: X::Sampler, +} + +impl<X: SampleUniform + PartialOrd> WeightedIndex<X> { + /// Creates a new a `WeightedIndex` [`Distribution`] using the values + /// in `weights`. The weights can use any type `X` for which an + /// implementation of [`Uniform<X>`] exists. + /// + /// Returns an error if the iterator is empty, if any weight is `< 0`, or + /// if its total value is 0. + /// + /// [`Uniform<X>`]: crate::distributions::uniform::Uniform + pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, WeightedError> + where + I: IntoIterator, + I::Item: SampleBorrow<X>, + X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default, + { + let mut iter = weights.into_iter(); + let mut total_weight: X = iter.next().ok_or(WeightedError::NoItem)?.borrow().clone(); + + let zero = <X as Default>::default(); + if total_weight < zero { + return Err(WeightedError::InvalidWeight); + } + + let mut weights = Vec::<X>::with_capacity(iter.size_hint().0); + for w in iter { + if *w.borrow() < zero { + return Err(WeightedError::InvalidWeight); + } + weights.push(total_weight.clone()); + total_weight += w.borrow(); + } + + if total_weight == zero { + return Err(WeightedError::AllWeightsZero); + } + let distr = X::Sampler::new(zero, total_weight.clone()); + + Ok(WeightedIndex { + cumulative_weights: weights, + total_weight, + weight_distribution: distr, + }) + } + + /// Update a subset of weights, without changing the number of weights. + /// + /// `new_weights` must be sorted by the index. + /// + /// Using this method instead of `new` might be more efficient if only a small number of + /// weights is modified. No allocations are performed, unless the weight type `X` uses + /// allocation internally. + /// + /// In case of error, `self` is not modified. + pub fn update_weights(&mut self, new_weights: &[(usize, &X)]) -> Result<(), WeightedError> + where X: for<'a> ::core::ops::AddAssign<&'a X> + + for<'a> ::core::ops::SubAssign<&'a X> + + Clone + + Default { + if new_weights.is_empty() { + return Ok(()); + } + + let zero = <X as Default>::default(); + + let mut total_weight = self.total_weight.clone(); + + // Check for errors first, so we don't modify `self` in case something + // goes wrong. + let mut prev_i = None; + for &(i, w) in new_weights { + if let Some(old_i) = prev_i { + if old_i >= i { + return Err(WeightedError::InvalidWeight); + } + } + if *w < zero { + return Err(WeightedError::InvalidWeight); + } + if i >= self.cumulative_weights.len() + 1 { + return Err(WeightedError::TooMany); + } + + let mut old_w = if i < self.cumulative_weights.len() { + self.cumulative_weights[i].clone() + } else { + self.total_weight.clone() + }; + if i > 0 { + old_w -= &self.cumulative_weights[i - 1]; + } + + total_weight -= &old_w; + total_weight += w; + prev_i = Some(i); + } + if total_weight == zero { + return Err(WeightedError::AllWeightsZero); + } + + // Update the weights. Because we checked all the preconditions in the + // previous loop, this should never panic. + let mut iter = new_weights.iter(); + + let mut prev_weight = zero.clone(); + let mut next_new_weight = iter.next(); + let &(first_new_index, _) = next_new_weight.unwrap(); + let mut cumulative_weight = if first_new_index > 0 { + self.cumulative_weights[first_new_index - 1].clone() + } else { + zero.clone() + }; + for i in first_new_index..self.cumulative_weights.len() { + match next_new_weight { + Some(&(j, w)) if i == j => { + cumulative_weight += w; + next_new_weight = iter.next(); + } + _ => { + let mut tmp = self.cumulative_weights[i].clone(); + tmp -= &prev_weight; // We know this is positive. + cumulative_weight += &tmp; + } + } + prev_weight = cumulative_weight.clone(); + core::mem::swap(&mut prev_weight, &mut self.cumulative_weights[i]); + } + + self.total_weight = total_weight; + self.weight_distribution = X::Sampler::new(zero, self.total_weight.clone()); + + Ok(()) + } +} + +impl<X> Distribution<usize> for WeightedIndex<X> +where X: SampleUniform + PartialOrd +{ + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { + use ::core::cmp::Ordering; + let chosen_weight = self.weight_distribution.sample(rng); + // Find the first item which has a weight *higher* than the chosen weight. + self.cumulative_weights + .binary_search_by(|w| { + if *w <= chosen_weight { + Ordering::Less + } else { + Ordering::Greater + } + }) + .unwrap_err() + } +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_weightedindex() { + let mut r = crate::test::rng(700); + const N_REPS: u32 = 5000; + let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; + let total_weight = weights.iter().sum::<u32>() as f32; + + let verify = |result: [i32; 14]| { + for (i, count) in result.iter().enumerate() { + let exp = (weights[i] * N_REPS) as f32 / total_weight; + let mut err = (*count as f32 - exp).abs(); + if err != 0.0 { + err /= exp; + } + assert!(err <= 0.25); + } + }; + + // WeightedIndex from vec + let mut chosen = [0i32; 14]; + let distr = WeightedIndex::new(weights.to_vec()).unwrap(); + for _ in 0..N_REPS { + chosen[distr.sample(&mut r)] += 1; + } + verify(chosen); + + // WeightedIndex from slice + chosen = [0i32; 14]; + let distr = WeightedIndex::new(&weights[..]).unwrap(); + for _ in 0..N_REPS { + chosen[distr.sample(&mut r)] += 1; + } + verify(chosen); + + // WeightedIndex from iterator + chosen = [0i32; 14]; + let distr = WeightedIndex::new(weights.iter()).unwrap(); + for _ in 0..N_REPS { + chosen[distr.sample(&mut r)] += 1; + } + verify(chosen); + + for _ in 0..5 { + assert_eq!(WeightedIndex::new(&[0, 1]).unwrap().sample(&mut r), 1); + assert_eq!(WeightedIndex::new(&[1, 0]).unwrap().sample(&mut r), 0); + assert_eq!( + WeightedIndex::new(&[0, 0, 0, 0, 10, 0]) + .unwrap() + .sample(&mut r), + 4 + ); + } + + assert_eq!( + WeightedIndex::new(&[10][0..0]).unwrap_err(), + WeightedError::NoItem + ); + assert_eq!( + WeightedIndex::new(&[0]).unwrap_err(), + WeightedError::AllWeightsZero + ); + assert_eq!( + WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(), + WeightedError::InvalidWeight + ); + assert_eq!( + WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(), + WeightedError::InvalidWeight + ); + assert_eq!( + WeightedIndex::new(&[-10]).unwrap_err(), + WeightedError::InvalidWeight + ); + } + + #[test] + fn test_update_weights() { + let data = [ + ( + &[10u32, 2, 3, 4][..], + &[(1, &100), (2, &4)][..], // positive change + &[10, 100, 4, 4][..], + ), + ( + &[1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..], + &[(2, &1), (5, &1), (13, &100)][..], // negative change and last element + &[1u32, 2, 1, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 100][..], + ), + ]; + + for (weights, update, expected_weights) in data.iter() { + let total_weight = weights.iter().sum::<u32>(); + let mut distr = WeightedIndex::new(weights.to_vec()).unwrap(); + assert_eq!(distr.total_weight, total_weight); + + distr.update_weights(update).unwrap(); + let expected_total_weight = expected_weights.iter().sum::<u32>(); + let expected_distr = WeightedIndex::new(expected_weights.to_vec()).unwrap(); + assert_eq!(distr.total_weight, expected_total_weight); + assert_eq!(distr.total_weight, expected_distr.total_weight); + assert_eq!(distr.cumulative_weights, expected_distr.cumulative_weights); + } + } + + #[test] + fn value_stability() { + fn test_samples<X: SampleUniform + PartialOrd, I>( + weights: I, buf: &mut [usize], expected: &[usize], + ) where + I: IntoIterator, + I::Item: SampleBorrow<X>, + X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default, + { + assert_eq!(buf.len(), expected.len()); + let distr = WeightedIndex::new(weights).unwrap(); + let mut rng = crate::test::rng(701); + for r in buf.iter_mut() { + *r = rng.sample(&distr); + } + assert_eq!(buf, expected); + } + + let mut buf = [0; 10]; + test_samples(&[1i32, 1, 1, 1, 1, 1, 1, 1, 1], &mut buf, &[ + 0, 6, 2, 6, 3, 4, 7, 8, 2, 5, + ]); + test_samples(&[0.7f32, 0.1, 0.1, 0.1], &mut buf, &[ + 0, 0, 0, 1, 0, 0, 2, 3, 0, 0, + ]); + test_samples(&[1.0f64, 0.999, 0.998, 0.997], &mut buf, &[ + 2, 2, 1, 3, 2, 1, 3, 3, 2, 1, + ]); + } +} + +/// Error type returned from `WeightedIndex::new`. +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +pub enum WeightedError { + /// The provided weight collection contains no items. + NoItem, + + /// A weight is either less than zero, greater than the supported maximum or + /// otherwise invalid. + InvalidWeight, + + /// All items in the provided weight collection are zero. + AllWeightsZero, + + /// Too many weights are provided (length greater than `u32::MAX`) + TooMany, +} + +#[cfg(feature = "std")] +impl ::std::error::Error for WeightedError {} + +impl fmt::Display for WeightedError { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match *self { + WeightedError::NoItem => write!(f, "No weights provided."), + WeightedError::InvalidWeight => write!(f, "A weight is invalid."), + WeightedError::AllWeightsZero => write!(f, "All weights are zero."), + WeightedError::TooMany => write!(f, "Too many weights (hit u32::MAX)"), + } + } +} diff --git a/vendor/rand-0.7.3/src/distributions/ziggurat_tables.rs b/vendor/rand-0.7.3/src/distributions/ziggurat_tables.rs new file mode 100644 index 000000000..f830a601b --- /dev/null +++ b/vendor/rand-0.7.3/src/distributions/ziggurat_tables.rs @@ -0,0 +1,283 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// Tables for distributions which are sampled using the ziggurat +// algorithm. Autogenerated by `ziggurat_tables.py`. + +pub type ZigTable = &'static [f64; 257]; +pub const ZIG_NORM_R: f64 = 3.654152885361008796; +#[rustfmt::skip] +pub static ZIG_NORM_X: [f64; 257] = + [3.910757959537090045, 3.654152885361008796, 3.449278298560964462, 3.320244733839166074, + 3.224575052047029100, 3.147889289517149969, 3.083526132001233044, 3.027837791768635434, + 2.978603279880844834, 2.934366867207854224, 2.894121053612348060, 2.857138730872132548, + 2.822877396825325125, 2.790921174000785765, 2.760944005278822555, 2.732685359042827056, + 2.705933656121858100, 2.680514643284522158, 2.656283037575502437, 2.633116393630324570, + 2.610910518487548515, 2.589575986706995181, 2.569035452680536569, 2.549221550323460761, + 2.530075232158516929, 2.511544441625342294, 2.493583041269680667, 2.476149939669143318, + 2.459208374333311298, 2.442725318198956774, 2.426670984935725972, 2.411018413899685520, + 2.395743119780480601, 2.380822795170626005, 2.366237056715818632, 2.351967227377659952, + 2.337996148795031370, 2.324308018869623016, 2.310888250599850036, 2.297723348901329565, + 2.284800802722946056, 2.272108990226823888, 2.259637095172217780, 2.247375032945807760, + 2.235313384928327984, 2.223443340090905718, 2.211756642882544366, 2.200245546609647995, + 2.188902771624720689, 2.177721467738641614, 2.166695180352645966, 2.155817819875063268, + 2.145083634046203613, 2.134487182844320152, 2.124023315687815661, 2.113687150684933957, + 2.103474055713146829, 2.093379631137050279, 2.083399693996551783, 2.073530263516978778, + 2.063767547809956415, 2.054107931648864849, 2.044547965215732788, 2.035084353727808715, + 2.025713947862032960, 2.016433734904371722, 2.007240830558684852, 1.998132471356564244, + 1.989106007615571325, 1.980158896898598364, 1.971288697931769640, 1.962493064942461896, + 1.953769742382734043, 1.945116560006753925, 1.936531428273758904, 1.928012334050718257, + 1.919557336591228847, 1.911164563769282232, 1.902832208548446369, 1.894558525668710081, + 1.886341828534776388, 1.878180486290977669, 1.870072921069236838, 1.862017605397632281, + 1.854013059758148119, 1.846057850283119750, 1.838150586580728607, 1.830289919680666566, + 1.822474540091783224, 1.814703175964167636, 1.806974591348693426, 1.799287584547580199, + 1.791640986550010028, 1.784033659547276329, 1.776464495522344977, 1.768932414909077933, + 1.761436365316706665, 1.753975320315455111, 1.746548278279492994, 1.739154261283669012, + 1.731792314050707216, 1.724461502945775715, 1.717160915015540690, 1.709889657069006086, + 1.702646854797613907, 1.695431651932238548, 1.688243209434858727, 1.681080704722823338, + 1.673943330923760353, 1.666830296159286684, 1.659740822855789499, 1.652674147080648526, + 1.645629517902360339, 1.638606196773111146, 1.631603456932422036, 1.624620582830568427, + 1.617656869570534228, 1.610711622367333673, 1.603784156023583041, 1.596873794420261339, + 1.589979870021648534, 1.583101723393471438, 1.576238702733332886, 1.569390163412534456, + 1.562555467528439657, 1.555733983466554893, 1.548925085471535512, 1.542128153226347553, + 1.535342571438843118, 1.528567729435024614, 1.521803020758293101, 1.515047842773992404, + 1.508301596278571965, 1.501563685112706548, 1.494833515777718391, 1.488110497054654369, + 1.481394039625375747, 1.474683555695025516, 1.467978458615230908, 1.461278162507407830, + 1.454582081885523293, 1.447889631277669675, 1.441200224845798017, 1.434513276002946425, + 1.427828197027290358, 1.421144398672323117, 1.414461289772464658, 1.407778276843371534, + 1.401094763676202559, 1.394410150925071257, 1.387723835686884621, 1.381035211072741964, + 1.374343665770030531, 1.367648583594317957, 1.360949343030101844, 1.354245316759430606, + 1.347535871177359290, 1.340820365893152122, 1.334098153216083604, 1.327368577624624679, + 1.320630975217730096, 1.313884673146868964, 1.307128989027353860, 1.300363230327433728, + 1.293586693733517645, 1.286798664489786415, 1.279998415710333237, 1.273185207661843732, + 1.266358287014688333, 1.259516886060144225, 1.252660221891297887, 1.245787495544997903, + 1.238897891102027415, 1.231990574742445110, 1.225064693752808020, 1.218119375481726552, + 1.211153726239911244, 1.204166830140560140, 1.197157747875585931, 1.190125515422801650, + 1.183069142678760732, 1.175987612011489825, 1.168879876726833800, 1.161744859441574240, + 1.154581450355851802, 1.147388505416733873, 1.140164844363995789, 1.132909248648336975, + 1.125620459211294389, 1.118297174115062909, 1.110938046009249502, 1.103541679420268151, + 1.096106627847603487, 1.088631390649514197, 1.081114409698889389, 1.073554065787871714, + 1.065948674757506653, 1.058296483326006454, 1.050595664586207123, 1.042844313139370538, + 1.035040439828605274, 1.027181966030751292, 1.019266717460529215, 1.011292417434978441, + 1.003256679539591412, 0.995156999629943084, 0.986990747093846266, 0.978755155288937750, + 0.970447311058864615, 0.962064143217605250, 0.953602409875572654, 0.945058684462571130, + 0.936429340280896860, 0.927710533396234771, 0.918898183643734989, 0.909987953490768997, + 0.900975224455174528, 0.891855070726792376, 0.882622229578910122, 0.873271068082494550, + 0.863795545546826915, 0.854189171001560554, 0.844444954902423661, 0.834555354079518752, + 0.824512208745288633, 0.814306670128064347, 0.803929116982664893, 0.793369058833152785, + 0.782615023299588763, 0.771654424216739354, 0.760473406422083165, 0.749056662009581653, + 0.737387211425838629, 0.725446140901303549, 0.713212285182022732, 0.700661841097584448, + 0.687767892786257717, 0.674499822827436479, 0.660822574234205984, 0.646695714884388928, + 0.632072236375024632, 0.616896989996235545, 0.601104617743940417, 0.584616766093722262, + 0.567338257040473026, 0.549151702313026790, 0.529909720646495108, 0.509423329585933393, + 0.487443966121754335, 0.463634336771763245, 0.437518402186662658, 0.408389134588000746, + 0.375121332850465727, 0.335737519180459465, 0.286174591747260509, 0.215241895913273806, + 0.000000000000000000]; +#[rustfmt::skip] +pub static ZIG_NORM_F: [f64; 257] = + [0.000477467764586655, 0.001260285930498598, 0.002609072746106363, 0.004037972593371872, + 0.005522403299264754, 0.007050875471392110, 0.008616582769422917, 0.010214971439731100, + 0.011842757857943104, 0.013497450601780807, 0.015177088307982072, 0.016880083152595839, + 0.018605121275783350, 0.020351096230109354, 0.022117062707379922, 0.023902203305873237, + 0.025705804008632656, 0.027527235669693315, 0.029365939758230111, 0.031221417192023690, + 0.033093219458688698, 0.034980941461833073, 0.036884215688691151, 0.038802707404656918, + 0.040736110656078753, 0.042684144916619378, 0.044646552251446536, 0.046623094902089664, + 0.048613553216035145, 0.050617723861121788, 0.052635418276973649, 0.054666461325077916, + 0.056710690106399467, 0.058767952921137984, 0.060838108349751806, 0.062921024437977854, + 0.065016577971470438, 0.067124653828023989, 0.069245144397250269, 0.071377949059141965, + 0.073522973714240991, 0.075680130359194964, 0.077849336702372207, 0.080030515814947509, + 0.082223595813495684, 0.084428509570654661, 0.086645194450867782, 0.088873592068594229, + 0.091113648066700734, 0.093365311913026619, 0.095628536713353335, 0.097903279039215627, + 0.100189498769172020, 0.102487158942306270, 0.104796225622867056, 0.107116667775072880, + 0.109448457147210021, 0.111791568164245583, 0.114145977828255210, 0.116511665626037014, + 0.118888613443345698, 0.121276805485235437, 0.123676228202051403, 0.126086870220650349, + 0.128508722280473636, 0.130941777174128166, 0.133386029692162844, 0.135841476571757352, + 0.138308116449064322, 0.140785949814968309, 0.143274978974047118, 0.145775208006537926, + 0.148286642733128721, 0.150809290682410169, 0.153343161060837674, 0.155888264725064563, + 0.158444614156520225, 0.161012223438117663, 0.163591108232982951, 0.166181285765110071, + 0.168782774801850333, 0.171395595638155623, 0.174019770082499359, 0.176655321444406654, + 0.179302274523530397, 0.181960655600216487, 0.184630492427504539, 0.187311814224516926, + 0.190004651671193070, 0.192709036904328807, 0.195425003514885592, 0.198152586546538112, + 0.200891822495431333, 0.203642749311121501, 0.206405406398679298, 0.209179834621935651, + 0.211966076307852941, 0.214764175252008499, 0.217574176725178370, 0.220396127481011589, + 0.223230075764789593, 0.226076071323264877, 0.228934165415577484, 0.231804410825248525, + 0.234686861873252689, 0.237581574432173676, 0.240488605941449107, 0.243408015423711988, + 0.246339863502238771, 0.249284212419516704, 0.252241126056943765, 0.255210669955677150, + 0.258192911338648023, 0.261187919133763713, 0.264195763998317568, 0.267216518344631837, + 0.270250256366959984, 0.273297054069675804, 0.276356989296781264, 0.279430141762765316, + 0.282516593084849388, 0.285616426816658109, 0.288729728483353931, 0.291856585618280984, + 0.294997087801162572, 0.298151326697901342, 0.301319396102034120, 0.304501391977896274, + 0.307697412505553769, 0.310907558127563710, 0.314131931597630143, 0.317370638031222396, + 0.320623784958230129, 0.323891482377732021, 0.327173842814958593, 0.330470981380537099, + 0.333783015832108509, 0.337110066638412809, 0.340452257045945450, 0.343809713148291340, + 0.347182563958251478, 0.350570941482881204, 0.353974980801569250, 0.357394820147290515, + 0.360830600991175754, 0.364282468130549597, 0.367750569780596226, 0.371235057669821344, + 0.374736087139491414, 0.378253817247238111, 0.381788410875031348, 0.385340034841733958, + 0.388908860020464597, 0.392495061461010764, 0.396098818517547080, 0.399720314981931668, + 0.403359739222868885, 0.407017284331247953, 0.410693148271983222, 0.414387534042706784, + 0.418100649839684591, 0.421832709231353298, 0.425583931339900579, 0.429354541031341519, + 0.433144769114574058, 0.436954852549929273, 0.440785034667769915, 0.444635565397727750, + 0.448506701509214067, 0.452398706863882505, 0.456311852680773566, 0.460246417814923481, + 0.464202689050278838, 0.468180961407822172, 0.472181538469883255, 0.476204732721683788, + 0.480250865911249714, 0.484320269428911598, 0.488413284707712059, 0.492530263646148658, + 0.496671569054796314, 0.500837575128482149, 0.505028667945828791, 0.509245245998136142, + 0.513487720749743026, 0.517756517232200619, 0.522052074674794864, 0.526374847174186700, + 0.530725304406193921, 0.535103932383019565, 0.539511234259544614, 0.543947731192649941, + 0.548413963257921133, 0.552910490428519918, 0.557437893621486324, 0.561996775817277916, + 0.566587763258951771, 0.571211506738074970, 0.575868682975210544, 0.580559996103683473, + 0.585286179266300333, 0.590047996335791969, 0.594846243770991268, 0.599681752622167719, + 0.604555390700549533, 0.609468064928895381, 0.614420723892076803, 0.619414360609039205, + 0.624450015550274240, 0.629528779928128279, 0.634651799290960050, 0.639820277456438991, + 0.645035480824251883, 0.650298743114294586, 0.655611470583224665, 0.660975147780241357, + 0.666391343912380640, 0.671861719900766374, 0.677388036222513090, 0.682972161648791376, + 0.688616083008527058, 0.694321916130032579, 0.700091918140490099, 0.705928501336797409, + 0.711834248882358467, 0.717811932634901395, 0.723864533472881599, 0.729995264565802437, + 0.736207598131266683, 0.742505296344636245, 0.748892447223726720, 0.755373506511754500, + 0.761953346841546475, 0.768637315803334831, 0.775431304986138326, 0.782341832659861902, + 0.789376143571198563, 0.796542330428254619, 0.803849483176389490, 0.811307874318219935, + 0.818929191609414797, 0.826726833952094231, 0.834716292992930375, 0.842915653118441077, + 0.851346258465123684, 0.860033621203008636, 0.869008688043793165, 0.878309655816146839, + 0.887984660763399880, 0.898095921906304051, 0.908726440060562912, 0.919991505048360247, + 0.932060075968990209, 0.945198953453078028, 0.959879091812415930, 0.977101701282731328, + 1.000000000000000000]; +pub const ZIG_EXP_R: f64 = 7.697117470131050077; +#[rustfmt::skip] +pub static ZIG_EXP_X: [f64; 257] = + [8.697117470131052741, 7.697117470131050077, 6.941033629377212577, 6.478378493832569696, + 6.144164665772472667, 5.882144315795399869, 5.666410167454033697, 5.482890627526062488, + 5.323090505754398016, 5.181487281301500047, 5.054288489981304089, 4.938777085901250530, + 4.832939741025112035, 4.735242996601741083, 4.644491885420085175, 4.559737061707351380, + 4.480211746528421912, 4.405287693473573185, 4.334443680317273007, 4.267242480277365857, + 4.203313713735184365, 4.142340865664051464, 4.084051310408297830, 4.028208544647936762, + 3.974606066673788796, 3.923062500135489739, 3.873417670399509127, 3.825529418522336744, + 3.779270992411667862, 3.734528894039797375, 3.691201090237418825, 3.649195515760853770, + 3.608428813128909507, 3.568825265648337020, 3.530315889129343354, 3.492837654774059608, + 3.456332821132760191, 3.420748357251119920, 3.386035442460300970, 3.352149030900109405, + 3.319047470970748037, 3.286692171599068679, 3.255047308570449882, 3.224079565286264160, + 3.193757903212240290, 3.164053358025972873, 3.134938858084440394, 3.106389062339824481, + 3.078380215254090224, 3.050890016615455114, 3.023897504455676621, 2.997382949516130601, + 2.971327759921089662, 2.945714394895045718, 2.920526286512740821, 2.895747768600141825, + 2.871364012015536371, 2.847360965635188812, 2.823725302450035279, 2.800444370250737780, + 2.777506146439756574, 2.754899196562344610, 2.732612636194700073, 2.710636095867928752, + 2.688959688741803689, 2.667573980773266573, 2.646469963151809157, 2.625639026797788489, + 2.605072938740835564, 2.584763820214140750, 2.564704126316905253, 2.544886627111869970, + 2.525304390037828028, 2.505950763528594027, 2.486819361740209455, 2.467904050297364815, + 2.449198932978249754, 2.430698339264419694, 2.412396812688870629, 2.394289099921457886, + 2.376370140536140596, 2.358635057409337321, 2.341079147703034380, 2.323697874390196372, + 2.306486858283579799, 2.289441870532269441, 2.272558825553154804, 2.255833774367219213, + 2.239262898312909034, 2.222842503111036816, 2.206569013257663858, 2.190438966723220027, + 2.174449009937774679, 2.158595893043885994, 2.142876465399842001, 2.127287671317368289, + 2.111826546019042183, 2.096490211801715020, 2.081275874393225145, 2.066180819490575526, + 2.051202409468584786, 2.036338080248769611, 2.021585338318926173, 2.006941757894518563, + 1.992404978213576650, 1.977972700957360441, 1.963642687789548313, 1.949412758007184943, + 1.935280786297051359, 1.921244700591528076, 1.907302480018387536, 1.893452152939308242, + 1.879691795072211180, 1.866019527692827973, 1.852433515911175554, 1.838931967018879954, + 1.825513128903519799, 1.812175288526390649, 1.798916770460290859, 1.785735935484126014, + 1.772631179231305643, 1.759600930889074766, 1.746643651946074405, 1.733757834985571566, + 1.720942002521935299, 1.708194705878057773, 1.695514524101537912, 1.682900062917553896, + 1.670349953716452118, 1.657862852574172763, 1.645437439303723659, 1.633072416535991334, + 1.620766508828257901, 1.608518461798858379, 1.596327041286483395, 1.584191032532688892, + 1.572109239386229707, 1.560080483527888084, 1.548103603714513499, 1.536177455041032092, + 1.524300908219226258, 1.512472848872117082, 1.500692176842816750, 1.488957805516746058, + 1.477268661156133867, 1.465623682245745352, 1.454021818848793446, 1.442462031972012504, + 1.430943292938879674, 1.419464582769983219, 1.408024891569535697, 1.396623217917042137, + 1.385258568263121992, 1.373929956328490576, 1.362636402505086775, 1.351376933258335189, + 1.340150580529504643, 1.328956381137116560, 1.317793376176324749, 1.306660610415174117, + 1.295557131686601027, 1.284481990275012642, 1.273434238296241139, 1.262412929069615330, + 1.251417116480852521, 1.240445854334406572, 1.229498195693849105, 1.218573192208790124, + 1.207669893426761121, 1.196787346088403092, 1.185924593404202199, 1.175080674310911677, + 1.164254622705678921, 1.153445466655774743, 1.142652227581672841, 1.131873919411078511, + 1.121109547701330200, 1.110358108727411031, 1.099618588532597308, 1.088889961938546813, + 1.078171191511372307, 1.067461226479967662, 1.056759001602551429, 1.046063435977044209, + 1.035373431790528542, 1.024687873002617211, 1.014005623957096480, 1.003325527915696735, + 0.992646405507275897, 0.981967053085062602, 0.971286240983903260, 0.960602711668666509, + 0.949915177764075969, 0.939222319955262286, 0.928522784747210395, 0.917815182070044311, + 0.907098082715690257, 0.896370015589889935, 0.885629464761751528, 0.874874866291025066, + 0.864104604811004484, 0.853317009842373353, 0.842510351810368485, 0.831682837734273206, + 0.820832606554411814, 0.809957724057418282, 0.799056177355487174, 0.788125868869492430, + 0.777164609759129710, 0.766170112735434672, 0.755139984181982249, 0.744071715500508102, + 0.732962673584365398, 0.721810090308756203, 0.710611050909655040, 0.699362481103231959, + 0.688061132773747808, 0.676703568029522584, 0.665286141392677943, 0.653804979847664947, + 0.642255960424536365, 0.630634684933490286, 0.618936451394876075, 0.607156221620300030, + 0.595288584291502887, 0.583327712748769489, 0.571267316532588332, 0.559100585511540626, + 0.546820125163310577, 0.534417881237165604, 0.521885051592135052, 0.509211982443654398, + 0.496388045518671162, 0.483401491653461857, 0.470239275082169006, 0.456886840931420235, + 0.443327866073552401, 0.429543940225410703, 0.415514169600356364, 0.401214678896277765, + 0.386617977941119573, 0.371692145329917234, 0.356399760258393816, 0.340696481064849122, + 0.324529117016909452, 0.307832954674932158, 0.290527955491230394, 0.272513185478464703, + 0.253658363385912022, 0.233790483059674731, 0.212671510630966620, 0.189958689622431842, + 0.165127622564187282, 0.137304980940012589, 0.104838507565818778, 0.063852163815001570, + 0.000000000000000000]; +#[rustfmt::skip] +pub static ZIG_EXP_F: [f64; 257] = + [0.000167066692307963, 0.000454134353841497, 0.000967269282327174, 0.001536299780301573, + 0.002145967743718907, 0.002788798793574076, 0.003460264777836904, 0.004157295120833797, + 0.004877655983542396, 0.005619642207205489, 0.006381905937319183, 0.007163353183634991, + 0.007963077438017043, 0.008780314985808977, 0.009614413642502212, 0.010464810181029981, + 0.011331013597834600, 0.012212592426255378, 0.013109164931254991, 0.014020391403181943, + 0.014945968011691148, 0.015885621839973156, 0.016839106826039941, 0.017806200410911355, + 0.018786700744696024, 0.019780424338009740, 0.020787204072578114, 0.021806887504283581, + 0.022839335406385240, 0.023884420511558174, 0.024942026419731787, 0.026012046645134221, + 0.027094383780955803, 0.028188948763978646, 0.029295660224637411, 0.030414443910466622, + 0.031545232172893622, 0.032687963508959555, 0.033842582150874358, 0.035009037697397431, + 0.036187284781931443, 0.037377282772959382, 0.038578995503074871, 0.039792391023374139, + 0.041017441380414840, 0.042254122413316254, 0.043502413568888197, 0.044762297732943289, + 0.046033761076175184, 0.047316792913181561, 0.048611385573379504, 0.049917534282706379, + 0.051235237055126281, 0.052564494593071685, 0.053905310196046080, 0.055257689676697030, + 0.056621641283742870, 0.057997175631200659, 0.059384305633420280, 0.060783046445479660, + 0.062193415408541036, 0.063615431999807376, 0.065049117786753805, 0.066494496385339816, + 0.067951593421936643, 0.069420436498728783, 0.070901055162371843, 0.072393480875708752, + 0.073897746992364746, 0.075413888734058410, 0.076941943170480517, 0.078481949201606435, + 0.080033947542319905, 0.081597980709237419, 0.083174093009632397, 0.084762330532368146, + 0.086362741140756927, 0.087975374467270231, 0.089600281910032886, 0.091237516631040197, + 0.092887133556043569, 0.094549189376055873, 0.096223742550432825, 0.097910853311492213, + 0.099610583670637132, 0.101322997425953631, 0.103048160171257702, 0.104786139306570145, + 0.106537004050001632, 0.108300825451033755, 0.110077676405185357, 0.111867631670056283, + 0.113670767882744286, 0.115487163578633506, 0.117316899211555525, 0.119160057175327641, + 0.121016721826674792, 0.122886979509545108, 0.124770918580830933, 0.126668629437510671, + 0.128580204545228199, 0.130505738468330773, 0.132445327901387494, 0.134399071702213602, + 0.136367070926428829, 0.138349428863580176, 0.140346251074862399, 0.142357645432472146, + 0.144383722160634720, 0.146424593878344889, 0.148480375643866735, 0.150551185001039839, + 0.152637142027442801, 0.154738369384468027, 0.156854992369365148, 0.158987138969314129, + 0.161134939917591952, 0.163298528751901734, 0.165478041874935922, 0.167673618617250081, + 0.169885401302527550, 0.172113535315319977, 0.174358169171353411, 0.176619454590494829, + 0.178897546572478278, 0.181192603475496261, 0.183504787097767436, 0.185834262762197083, + 0.188181199404254262, 0.190545769663195363, 0.192928149976771296, 0.195328520679563189, + 0.197747066105098818, 0.200183974691911210, 0.202639439093708962, 0.205113656293837654, + 0.207606827724221982, 0.210119159388988230, 0.212650861992978224, 0.215202151075378628, + 0.217773247148700472, 0.220364375843359439, 0.222975768058120111, 0.225607660116683956, + 0.228260293930716618, 0.230933917169627356, 0.233628783437433291, 0.236345152457059560, + 0.239083290262449094, 0.241843469398877131, 0.244625969131892024, 0.247431075665327543, + 0.250259082368862240, 0.253110290015629402, 0.255985007030415324, 0.258883549749016173, + 0.261806242689362922, 0.264753418835062149, 0.267725419932044739, 0.270722596799059967, + 0.273745309652802915, 0.276793928448517301, 0.279868833236972869, 0.282970414538780746, + 0.286099073737076826, 0.289255223489677693, 0.292439288161892630, 0.295651704281261252, + 0.298892921015581847, 0.302163400675693528, 0.305463619244590256, 0.308794066934560185, + 0.312155248774179606, 0.315547685227128949, 0.318971912844957239, 0.322428484956089223, + 0.325917972393556354, 0.329440964264136438, 0.332998068761809096, 0.336589914028677717, + 0.340217149066780189, 0.343880444704502575, 0.347580494621637148, 0.351318016437483449, + 0.355093752866787626, 0.358908472948750001, 0.362762973354817997, 0.366658079781514379, + 0.370594648435146223, 0.374573567615902381, 0.378595759409581067, 0.382662181496010056, + 0.386773829084137932, 0.390931736984797384, 0.395136981833290435, 0.399390684475231350, + 0.403694012530530555, 0.408048183152032673, 0.412454465997161457, 0.416914186433003209, + 0.421428728997616908, 0.425999541143034677, 0.430628137288459167, 0.435316103215636907, + 0.440065100842354173, 0.444876873414548846, 0.449753251162755330, 0.454696157474615836, + 0.459707615642138023, 0.464789756250426511, 0.469944825283960310, 0.475175193037377708, + 0.480483363930454543, 0.485871987341885248, 0.491343869594032867, 0.496901987241549881, + 0.502549501841348056, 0.508289776410643213, 0.514126393814748894, 0.520063177368233931, + 0.526104213983620062, 0.532253880263043655, 0.538516872002862246, 0.544898237672440056, + 0.551403416540641733, 0.558038282262587892, 0.564809192912400615, 0.571723048664826150, + 0.578787358602845359, 0.586010318477268366, 0.593400901691733762, 0.600968966365232560, + 0.608725382079622346, 0.616682180915207878, 0.624852738703666200, 0.633251994214366398, + 0.641896716427266423, 0.650805833414571433, 0.660000841079000145, 0.669506316731925177, + 0.679350572264765806, 0.689566496117078431, 0.700192655082788606, 0.711274760805076456, + 0.722867659593572465, 0.735038092431424039, 0.747868621985195658, 0.761463388849896838, + 0.775956852040116218, 0.791527636972496285, 0.808421651523009044, 0.826993296643051101, + 0.847785500623990496, 0.871704332381204705, 0.900469929925747703, 0.938143680862176477, + 1.000000000000000000]; diff --git a/vendor/rand-0.7.3/src/lib.rs b/vendor/rand-0.7.3/src/lib.rs new file mode 100644 index 000000000..d42a79fb1 --- /dev/null +++ b/vendor/rand-0.7.3/src/lib.rs @@ -0,0 +1,723 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013-2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Utilities for random number generation +//! +//! Rand provides utilities to generate random numbers, to convert them to +//! useful types and distributions, and some randomness-related algorithms. +//! +//! # Quick Start +//! +//! To get you started quickly, the easiest and highest-level way to get +//! a random value is to use [`random()`]; alternatively you can use +//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while +//! the [`distributions`] and [`seq`] modules provide further +//! functionality on top of RNGs. +//! +//! ``` +//! use rand::prelude::*; +//! +//! if rand::random() { // generates a boolean +//! // Try printing a random unicode code point (probably a bad idea)! +//! println!("char: {}", rand::random::<char>()); +//! } +//! +//! let mut rng = rand::thread_rng(); +//! let y: f64 = rng.gen(); // generates a float between 0 and 1 +//! +//! let mut nums: Vec<i32> = (1..100).collect(); +//! nums.shuffle(&mut rng); +//! ``` +//! +//! # The Book +//! +//! For the user guide and futher documentation, please read +//! [The Rust Rand Book](https://rust-random.github.io/book). + +#![doc( + html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", + html_favicon_url = "https://www.rust-lang.org/favicon.ico", + html_root_url = "https://rust-random.github.io/rand/" +)] +#![deny(missing_docs)] +#![deny(missing_debug_implementations)] +#![doc(test(attr(allow(unused_variables), deny(warnings))))] +#![cfg_attr(not(feature = "std"), no_std)] +#![cfg_attr(all(feature = "simd_support", feature = "nightly"), feature(stdsimd))] +#![allow( + clippy::excessive_precision, + clippy::unreadable_literal, + clippy::float_cmp +)] + +#[cfg(all(feature = "alloc", not(feature = "std")))] extern crate alloc; + +#[allow(unused)] +macro_rules! trace { ($($x:tt)*) => ( + #[cfg(feature = "log")] { + log::trace!($($x)*) + } +) } +#[allow(unused)] +macro_rules! debug { ($($x:tt)*) => ( + #[cfg(feature = "log")] { + log::debug!($($x)*) + } +) } +#[allow(unused)] +macro_rules! info { ($($x:tt)*) => ( + #[cfg(feature = "log")] { + log::info!($($x)*) + } +) } +#[allow(unused)] +macro_rules! warn { ($($x:tt)*) => ( + #[cfg(feature = "log")] { + log::warn!($($x)*) + } +) } +#[allow(unused)] +macro_rules! error { ($($x:tt)*) => ( + #[cfg(feature = "log")] { + log::error!($($x)*) + } +) } + +// Re-exports from rand_core +pub use rand_core::{CryptoRng, Error, RngCore, SeedableRng}; + +// Public exports +#[cfg(feature = "std")] pub use crate::rngs::thread::thread_rng; + +// Public modules +pub mod distributions; +pub mod prelude; +pub mod rngs; +pub mod seq; + + +use crate::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler}; +use crate::distributions::{Distribution, Standard}; +use core::num::Wrapping; +use core::{mem, slice}; + +/// An automatically-implemented extension trait on [`RngCore`] providing high-level +/// generic methods for sampling values and other convenience methods. +/// +/// This is the primary trait to use when generating random values. +/// +/// # Generic usage +/// +/// The basic pattern is `fn foo<R: Rng +Β ?Sized>(rng: &mut R)`. Some +/// things are worth noting here: +/// +/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no +/// difference whether we use `R: Rng` or `R: RngCore`. +/// - The `+ ?Sized` un-bounding allows functions to be called directly on +/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without +/// this it would be necessary to write `foo(&mut r)`. +/// +/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some +/// trade-offs. It allows the argument to be consumed directly without a `&mut` +/// (which is how `from_rng(thread_rng())` works); also it still works directly +/// on references (including type-erased references). Unfortunately within the +/// function `foo` it is not known whether `rng` is a reference type or not, +/// hence many uses of `rng` require an extra reference, either explicitly +/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the +/// optimiser can remove redundant references later. +/// +/// Example: +/// +/// ``` +/// # use rand::thread_rng; +/// use rand::Rng; +/// +/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { +/// rng.gen() +/// } +/// +/// # let v = foo(&mut thread_rng()); +/// ``` +pub trait Rng: RngCore { + /// Return a random value supporting the [`Standard`] distribution. + /// + /// # Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// let x: u32 = rng.gen(); + /// println!("{}", x); + /// println!("{:?}", rng.gen::<(f64, bool)>()); + /// ``` + /// + /// # Arrays and tuples + /// + /// The `rng.gen()` method is able to generate arrays (up to 32 elements) + /// and tuples (up to 12 elements), so long as all element types can be + /// generated. + /// + /// For arrays of integers, especially for those with small element types + /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`]. + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support + /// + /// let arr1: [f32; 32] = rng.gen(); // array construction + /// let mut arr2 = [0u8; 128]; + /// rng.fill(&mut arr2); // array fill + /// ``` + /// + /// [`Standard`]: distributions::Standard + #[inline] + fn gen<T>(&mut self) -> T + where Standard: Distribution<T> { + Standard.sample(self) + } + + /// Generate a random value in the range [`low`, `high`), i.e. inclusive of + /// `low` and exclusive of `high`. + /// + /// This function is optimised for the case that only a single sample is + /// made from the given range. See also the [`Uniform`] distribution + /// type which may be faster if sampling from the same range repeatedly. + /// + /// # Panics + /// + /// Panics if `low >= high`. + /// + /// # Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// let n: u32 = rng.gen_range(0, 10); + /// println!("{}", n); + /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); + /// println!("{}", m); + /// ``` + /// + /// [`Uniform`]: distributions::uniform::Uniform + fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T + where + B1: SampleBorrow<T> + Sized, + B2: SampleBorrow<T> + Sized, + { + T::Sampler::sample_single(low, high, self) + } + + /// Sample a new value, using the given distribution. + /// + /// ### Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// use rand::distributions::Uniform; + /// + /// let mut rng = thread_rng(); + /// let x = rng.sample(Uniform::new(10u32, 15)); + /// // Type annotation requires two types, the type and distribution; the + /// // distribution can be inferred. + /// let y = rng.sample::<u16, _>(Uniform::new(10, 15)); + /// ``` + fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { + distr.sample(self) + } + + /// Create an iterator that generates values using the given distribution. + /// + /// Note that this function takes its arguments by value. This works since + /// `(&mut R): Rng where R: Rng` and + /// `(&D): Distribution where D: Distribution`, + /// however borrowing is not automatic hence `rng.sample_iter(...)` may + /// need to be replaced with `(&mut rng).sample_iter(...)`. + /// + /// # Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// use rand::distributions::{Alphanumeric, Uniform, Standard}; + /// + /// let rng = thread_rng(); + /// + /// // Vec of 16 x f32: + /// let v: Vec<f32> = rng.sample_iter(Standard).take(16).collect(); + /// + /// // String: + /// let s: String = rng.sample_iter(Alphanumeric).take(7).collect(); + /// + /// // Combined values + /// println!("{:?}", rng.sample_iter(Standard).take(5) + /// .collect::<Vec<(f64, bool)>>()); + /// + /// // Dice-rolling: + /// let die_range = Uniform::new_inclusive(1, 6); + /// let mut roll_die = rng.sample_iter(die_range); + /// while roll_die.next().unwrap() != 6 { + /// println!("Not a 6; rolling again!"); + /// } + /// ``` + fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T> + where + D: Distribution<T>, + Self: Sized, + { + distr.sample_iter(self) + } + + /// Fill `dest` entirely with random bytes (uniform value distribution), + /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices + /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). + /// + /// On big-endian platforms this performs byte-swapping to ensure + /// portability of results from reproducible generators. + /// + /// This uses [`fill_bytes`] internally which may handle some RNG errors + /// implicitly (e.g. waiting if the OS generator is not ready), but panics + /// on other errors. See also [`try_fill`] which returns errors. + /// + /// # Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// + /// let mut arr = [0i8; 20]; + /// thread_rng().fill(&mut arr[..]); + /// ``` + /// + /// [`fill_bytes`]: RngCore::fill_bytes + /// [`try_fill`]: Rng::try_fill + fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) { + self.fill_bytes(dest.as_byte_slice_mut()); + dest.to_le(); + } + + /// Fill `dest` entirely with random bytes (uniform value distribution), + /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices + /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). + /// + /// On big-endian platforms this performs byte-swapping to ensure + /// portability of results from reproducible generators. + /// + /// This is identical to [`fill`] except that it uses [`try_fill_bytes`] + /// internally and forwards RNG errors. + /// + /// # Example + /// + /// ``` + /// # use rand::Error; + /// use rand::{thread_rng, Rng}; + /// + /// # fn try_inner() -> Result<(), Error> { + /// let mut arr = [0u64; 4]; + /// thread_rng().try_fill(&mut arr[..])?; + /// # Ok(()) + /// # } + /// + /// # try_inner().unwrap() + /// ``` + /// + /// [`try_fill_bytes`]: RngCore::try_fill_bytes + /// [`fill`]: Rng::fill + fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { + self.try_fill_bytes(dest.as_byte_slice_mut())?; + dest.to_le(); + Ok(()) + } + + /// Return a bool with a probability `p` of being true. + /// + /// See also the [`Bernoulli`] distribution, which may be faster if + /// sampling from the same probability repeatedly. + /// + /// # Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// println!("{}", rng.gen_bool(1.0 / 3.0)); + /// ``` + /// + /// # Panics + /// + /// If `p < 0` or `p > 1`. + /// + /// [`Bernoulli`]: distributions::bernoulli::Bernoulli + #[inline] + fn gen_bool(&mut self, p: f64) -> bool { + let d = distributions::Bernoulli::new(p).unwrap(); + self.sample(d) + } + + /// Return a bool with a probability of `numerator/denominator` of being + /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of + /// returning true. If `numerator == denominator`, then the returned value + /// is guaranteed to be `true`. If `numerator == 0`, then the returned + /// value is guaranteed to be `false`. + /// + /// See also the [`Bernoulli`] distribution, which may be faster if + /// sampling from the same `numerator` and `denominator` repeatedly. + /// + /// # Panics + /// + /// If `denominator == 0` or `numerator > denominator`. + /// + /// # Example + /// + /// ``` + /// use rand::{thread_rng, Rng}; + /// + /// let mut rng = thread_rng(); + /// println!("{}", rng.gen_ratio(2, 3)); + /// ``` + /// + /// [`Bernoulli`]: distributions::bernoulli::Bernoulli + #[inline] + fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { + let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap(); + self.sample(d) + } +} + +impl<R: RngCore + ?Sized> Rng for R {} + +/// Trait for casting types to byte slices +/// +/// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods. +pub trait AsByteSliceMut { + /// Return a mutable reference to self as a byte slice + fn as_byte_slice_mut(&mut self) -> &mut [u8]; + + /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms). + fn to_le(&mut self); +} + +impl AsByteSliceMut for [u8] { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + self + } + + fn to_le(&mut self) {} +} + +macro_rules! impl_as_byte_slice { + () => {}; + ($t:ty) => { + impl AsByteSliceMut for [$t] { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + if self.len() == 0 { + unsafe { + // must not use null pointer + slice::from_raw_parts_mut(0x1 as *mut u8, 0) + } + } else { + unsafe { + slice::from_raw_parts_mut(self.as_mut_ptr() + as *mut u8, + self.len() * mem::size_of::<$t>() + ) + } + } + } + + fn to_le(&mut self) { + for x in self { + *x = x.to_le(); + } + } + } + + impl AsByteSliceMut for [Wrapping<$t>] { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + if self.len() == 0 { + unsafe { + // must not use null pointer + slice::from_raw_parts_mut(0x1 as *mut u8, 0) + } + } else { + unsafe { + slice::from_raw_parts_mut(self.as_mut_ptr() + as *mut u8, + self.len() * mem::size_of::<$t>() + ) + } + } + } + + fn to_le(&mut self) { + for x in self { + *x = Wrapping(x.0.to_le()); + } + } + } + }; + ($t:ty, $($tt:ty,)*) => { + impl_as_byte_slice!($t); + // TODO: this could replace above impl once Rust #32463 is fixed + // impl_as_byte_slice!(Wrapping<$t>); + impl_as_byte_slice!($($tt,)*); + } +} + +impl_as_byte_slice!(u16, u32, u64, usize,); +#[cfg(not(target_os = "emscripten"))] +impl_as_byte_slice!(u128); +impl_as_byte_slice!(i8, i16, i32, i64, isize,); +#[cfg(not(target_os = "emscripten"))] +impl_as_byte_slice!(i128); + +macro_rules! impl_as_byte_slice_arrays { + ($n:expr,) => {}; + ($n:expr, $N:ident) => { + impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { + fn as_byte_slice_mut(&mut self) -> &mut [u8] { + self[..].as_byte_slice_mut() + } + + fn to_le(&mut self) { + self[..].to_le() + } + } + }; + ($n:expr, $N:ident, $($NN:ident,)*) => { + impl_as_byte_slice_arrays!($n, $N); + impl_as_byte_slice_arrays!($n - 1, $($NN,)*); + }; + (!div $n:expr,) => {}; + (!div $n:expr, $N:ident, $($NN:ident,)*) => { + impl_as_byte_slice_arrays!($n, $N); + impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*); + }; +} +#[rustfmt::skip] +impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); +impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,); + +/// Generates a random value using the thread-local random number generator. +/// +/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for +/// documentation of the entropy source and [`Standard`] for documentation of +/// distributions and type-specific generation. +/// +/// # Examples +/// +/// ``` +/// let x = rand::random::<u8>(); +/// println!("{}", x); +/// +/// let y = rand::random::<f64>(); +/// println!("{}", y); +/// +/// if rand::random() { // generates a boolean +/// println!("Better lucky than good!"); +/// } +/// ``` +/// +/// If you're calling `random()` in a loop, caching the generator as in the +/// following example can increase performance. +/// +/// ``` +/// use rand::Rng; +/// +/// let mut v = vec![1, 2, 3]; +/// +/// for x in v.iter_mut() { +/// *x = rand::random() +/// } +/// +/// // can be made faster by caching thread_rng +/// +/// let mut rng = rand::thread_rng(); +/// +/// for x in v.iter_mut() { +/// *x = rng.gen(); +/// } +/// ``` +/// +/// [`Standard`]: distributions::Standard +#[cfg(feature = "std")] +#[inline] +pub fn random<T>() -> T +where Standard: Distribution<T> { + thread_rng().gen() +} + +#[cfg(test)] +mod test { + use super::*; + use crate::rngs::mock::StepRng; + #[cfg(all(not(feature = "std"), feature = "alloc"))] use alloc::boxed::Box; + + /// Construct a deterministic RNG with the given seed + pub fn rng(seed: u64) -> impl RngCore { + // For tests, we want a statistically good, fast, reproducible RNG. + // PCG32 will do fine, and will be easy to embed if we ever need to. + const INC: u64 = 11634580027462260723; + rand_pcg::Pcg32::new(seed, INC) + } + + #[test] + fn test_fill_bytes_default() { + let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); + + // check every remainder mod 8, both in small and big vectors. + let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87]; + for &n in lengths.iter() { + let mut buffer = [0u8; 87]; + let v = &mut buffer[0..n]; + r.fill_bytes(v); + + // use this to get nicer error messages. + for (i, &byte) in v.iter().enumerate() { + if byte == 0 { + panic!("byte {} of {} is zero", i, n) + } + } + } + } + + #[test] + fn test_fill() { + let x = 9041086907909331047; // a random u64 + let mut rng = StepRng::new(x, 0); + + // Convert to byte sequence and back to u64; byte-swap twice if BE. + let mut array = [0u64; 2]; + rng.fill(&mut array[..]); + assert_eq!(array, [x, x]); + assert_eq!(rng.next_u64(), x); + + // Convert to bytes then u32 in LE order + let mut array = [0u32; 2]; + rng.fill(&mut array[..]); + assert_eq!(array, [x as u32, (x >> 32) as u32]); + assert_eq!(rng.next_u32(), x as u32); + + // Check equivalence using wrapped arrays + let mut warray = [Wrapping(0u32); 2]; + rng.fill(&mut warray[..]); + assert_eq!(array[0], warray[0].0); + assert_eq!(array[1], warray[1].0); + } + + #[test] + fn test_fill_empty() { + let mut array = [0u32; 0]; + let mut rng = StepRng::new(0, 1); + rng.fill(&mut array); + rng.fill(&mut array[..]); + } + + #[test] + fn test_gen_range() { + let mut r = rng(101); + for _ in 0..1000 { + let a = r.gen_range(-4711, 17); + assert!(a >= -4711 && a < 17); + let a = r.gen_range(-3i8, 42); + assert!(a >= -3i8 && a < 42i8); + let a = r.gen_range(&10u16, 99); + assert!(a >= 10u16 && a < 99u16); + let a = r.gen_range(-100i32, &2000); + assert!(a >= -100i32 && a < 2000i32); + let a = r.gen_range(&12u32, &24u32); + assert!(a >= 12u32 && a < 24u32); + + assert_eq!(r.gen_range(0u32, 1), 0u32); + assert_eq!(r.gen_range(-12i64, -11), -12i64); + assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000); + } + } + + #[test] + #[should_panic] + fn test_gen_range_panic_int() { + let mut r = rng(102); + r.gen_range(5, -2); + } + + #[test] + #[should_panic] + fn test_gen_range_panic_usize() { + let mut r = rng(103); + r.gen_range(5, 2); + } + + #[test] + fn test_gen_bool() { + let mut r = rng(105); + for _ in 0..5 { + assert_eq!(r.gen_bool(0.0), false); + assert_eq!(r.gen_bool(1.0), true); + } + } + + #[test] + fn test_rng_trait_object() { + use crate::distributions::{Distribution, Standard}; + let mut rng = rng(109); + let mut r = &mut rng as &mut dyn RngCore; + r.next_u32(); + r.gen::<i32>(); + assert_eq!(r.gen_range(0, 1), 0); + let _c: u8 = Standard.sample(&mut r); + } + + #[test] + #[cfg(feature = "alloc")] + fn test_rng_boxed_trait() { + use crate::distributions::{Distribution, Standard}; + let rng = rng(110); + let mut r = Box::new(rng) as Box<dyn RngCore>; + r.next_u32(); + r.gen::<i32>(); + assert_eq!(r.gen_range(0, 1), 0); + let _c: u8 = Standard.sample(&mut r); + } + + #[test] + #[cfg(feature = "std")] + fn test_random() { + // not sure how to test this aside from just getting some values + let _n: usize = random(); + let _f: f32 = random(); + let _o: Option<Option<i8>> = random(); + let _many: ( + (), + (usize, isize, Option<(u32, (bool,))>), + (u8, i8, u16, i16, u32, i32, u64, i64), + (f32, (f64, (f64,))), + ) = random(); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_gen_ratio_average() { + const NUM: u32 = 3; + const DENOM: u32 = 10; + const N: u32 = 100_000; + + let mut sum: u32 = 0; + let mut rng = rng(111); + for _ in 0..N { + if rng.gen_ratio(NUM, DENOM) { + sum += 1; + } + } + // Have Binomial(N, NUM/DENOM) distribution + let expected = (NUM * N) / DENOM; // exact integer + assert!(((sum - expected) as i32).abs() < 500); + } +} diff --git a/vendor/rand-0.7.3/src/prelude.rs b/vendor/rand-0.7.3/src/prelude.rs new file mode 100644 index 000000000..98ae3bb43 --- /dev/null +++ b/vendor/rand-0.7.3/src/prelude.rs @@ -0,0 +1,33 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Convenience re-export of common members +//! +//! Like the standard library's prelude, this module simplifies importing of +//! common items. Unlike the standard prelude, the contents of this module must +//! be imported manually: +//! +//! ``` +//! use rand::prelude::*; +//! # let mut r = StdRng::from_rng(thread_rng()).unwrap(); +//! # let _: f32 = r.gen(); +//! ``` + +#[doc(no_inline)] pub use crate::distributions::Distribution; +#[cfg(feature = "small_rng")] +#[doc(no_inline)] +pub use crate::rngs::SmallRng; +#[doc(no_inline)] pub use crate::rngs::StdRng; +#[doc(no_inline)] +#[cfg(feature = "std")] +pub use crate::rngs::ThreadRng; +#[doc(no_inline)] pub use crate::seq::{IteratorRandom, SliceRandom}; +#[doc(no_inline)] +#[cfg(feature = "std")] +pub use crate::{random, thread_rng}; +#[doc(no_inline)] pub use crate::{CryptoRng, Rng, RngCore, SeedableRng}; diff --git a/vendor/rand-0.7.3/src/rngs/adapter/mod.rs b/vendor/rand-0.7.3/src/rngs/adapter/mod.rs new file mode 100644 index 000000000..45e56af72 --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/adapter/mod.rs @@ -0,0 +1,15 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Wrappers / adapters forming RNGs + +#[cfg(feature = "std")] mod read; +mod reseeding; + +#[cfg(feature = "std")] pub use self::read::{ReadError, ReadRng}; +pub use self::reseeding::ReseedingRng; diff --git a/vendor/rand-0.7.3/src/rngs/adapter/read.rs b/vendor/rand-0.7.3/src/rngs/adapter/read.rs new file mode 100644 index 000000000..9a4b55d4e --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/adapter/read.rs @@ -0,0 +1,155 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A wrapper around any Read to treat it as an RNG. + +use std::fmt; +use std::io::Read; + +use rand_core::{impls, Error, RngCore}; + + +/// An RNG that reads random bytes straight from any type supporting +/// [`std::io::Read`], for example files. +/// +/// This will work best with an infinite reader, but that is not required. +/// +/// This can be used with `/dev/urandom` on Unix but it is recommended to use +/// [`OsRng`] instead. +/// +/// # Panics +/// +/// `ReadRng` uses [`std::io::Read::read_exact`], which retries on interrupts. +/// All other errors from the underlying reader, including when it does not +/// have enough data, will only be reported through [`try_fill_bytes`]. +/// The other [`RngCore`] methods will panic in case of an error. +/// +/// # Example +/// +/// ``` +/// use rand::Rng; +/// use rand::rngs::adapter::ReadRng; +/// +/// let data = vec![1, 2, 3, 4, 5, 6, 7, 8]; +/// let mut rng = ReadRng::new(&data[..]); +/// println!("{:x}", rng.gen::<u32>()); +/// ``` +/// +/// [`OsRng`]: crate::rngs::OsRng +/// [`try_fill_bytes`]: RngCore::try_fill_bytes +#[derive(Debug)] +pub struct ReadRng<R> { + reader: R, +} + +impl<R: Read> ReadRng<R> { + /// Create a new `ReadRng` from a `Read`. + pub fn new(r: R) -> ReadRng<R> { + ReadRng { reader: r } + } +} + +impl<R: Read> RngCore for ReadRng<R> { + fn next_u32(&mut self) -> u32 { + impls::next_u32_via_fill(self) + } + + fn next_u64(&mut self) -> u64 { + impls::next_u64_via_fill(self) + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.try_fill_bytes(dest).unwrap_or_else(|err| { + panic!( + "reading random bytes from Read implementation failed; error: {}", + err + ) + }); + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + if dest.is_empty() { + return Ok(()); + } + // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. + self.reader + .read_exact(dest) + .map_err(|e| Error::new(ReadError(e))) + } +} + +/// `ReadRng` error type +#[derive(Debug)] +pub struct ReadError(std::io::Error); + +impl fmt::Display for ReadError { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "ReadError: {}", self.0) + } +} + +impl std::error::Error for ReadError { + fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { + Some(&self.0) + } +} + + +#[cfg(test)] +mod test { + use super::ReadRng; + use crate::RngCore; + + #[test] + fn test_reader_rng_u64() { + // transmute from the target to avoid endianness concerns. + #[rustfmt::skip] + let v = vec![0u8, 0, 0, 0, 0, 0, 0, 1, + 0 , 0, 0, 0, 0, 0, 0, 2, + 0, 0, 0, 0, 0, 0, 0, 3]; + let mut rng = ReadRng::new(&v[..]); + + assert_eq!(rng.next_u64(), 1_u64.to_be()); + assert_eq!(rng.next_u64(), 2_u64.to_be()); + assert_eq!(rng.next_u64(), 3_u64.to_be()); + } + + #[test] + fn test_reader_rng_u32() { + let v = vec![0u8, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3]; + let mut rng = ReadRng::new(&v[..]); + + assert_eq!(rng.next_u32(), 1_u32.to_be()); + assert_eq!(rng.next_u32(), 2_u32.to_be()); + assert_eq!(rng.next_u32(), 3_u32.to_be()); + } + + #[test] + fn test_reader_rng_fill_bytes() { + let v = [1u8, 2, 3, 4, 5, 6, 7, 8]; + let mut w = [0u8; 8]; + + let mut rng = ReadRng::new(&v[..]); + rng.fill_bytes(&mut w); + + assert!(v == w); + } + + #[test] + fn test_reader_rng_insufficient_bytes() { + let v = [1u8, 2, 3, 4, 5, 6, 7, 8]; + let mut w = [0u8; 9]; + + let mut rng = ReadRng::new(&v[..]); + + let result = rng.try_fill_bytes(&mut w); + assert!(result.is_err()); + println!("Error: {}", result.unwrap_err()); + } +} diff --git a/vendor/rand-0.7.3/src/rngs/adapter/reseeding.rs b/vendor/rand-0.7.3/src/rngs/adapter/reseeding.rs new file mode 100644 index 000000000..5460e3431 --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/adapter/reseeding.rs @@ -0,0 +1,369 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A wrapper around another PRNG that reseeds it after it +//! generates a certain number of random bytes. + +use core::mem::size_of; + +use rand_core::block::{BlockRng, BlockRngCore}; +use rand_core::{CryptoRng, Error, RngCore, SeedableRng}; + +/// A wrapper around any PRNG that implements [`BlockRngCore`], that adds the +/// ability to reseed it. +/// +/// `ReseedingRng` reseeds the underlying PRNG in the following cases: +/// +/// - On a manual call to [`reseed()`]. +/// - After `clone()`, the clone will be reseeded on first use. +/// - After a process is forked, the RNG in the child process is reseeded within +/// the next few generated values, depending on the block size of the +/// underlying PRNG. For ChaCha and Hc128 this is a maximum of +/// 15 `u32` values before reseeding. +/// - After the PRNG has generated a configurable number of random bytes. +/// +/// # When should reseeding after a fixed number of generated bytes be used? +/// +/// Reseeding after a fixed number of generated bytes is never strictly +/// *necessary*. Cryptographic PRNGs don't have a limited number of bytes they +/// can output, or at least not a limit reachable in any practical way. There is +/// no such thing as 'running out of entropy'. +/// +/// Occasionally reseeding can be seen as some form of 'security in depth'. Even +/// if in the future a cryptographic weakness is found in the CSPRNG being used, +/// or a flaw in the implementation, occasionally reseeding should make +/// exploiting it much more difficult or even impossible. +/// +/// Use [`ReseedingRng::new`] with a `threshold` of `0` to disable reseeding +/// after a fixed number of generated bytes. +/// +/// # Error handling +/// +/// Although unlikely, reseeding the wrapped PRNG can fail. `ReseedingRng` will +/// never panic but try to handle the error intelligently through some +/// combination of retrying and delaying reseeding until later. +/// If handling the source error fails `ReseedingRng` will continue generating +/// data from the wrapped PRNG without reseeding. +/// +/// Manually calling [`reseed()`] will not have this retry or delay logic, but +/// reports the error. +/// +/// # Example +/// +/// ``` +/// use rand::prelude::*; +/// use rand_chacha::ChaCha20Core; // Internal part of ChaChaRng that +/// // implements BlockRngCore +/// use rand::rngs::OsRng; +/// use rand::rngs::adapter::ReseedingRng; +/// +/// let prng = ChaCha20Core::from_entropy(); +/// let mut reseeding_rng = ReseedingRng::new(prng, 0, OsRng); +/// +/// println!("{}", reseeding_rng.gen::<u64>()); +/// +/// let mut cloned_rng = reseeding_rng.clone(); +/// assert!(reseeding_rng.gen::<u64>() != cloned_rng.gen::<u64>()); +/// ``` +/// +/// [`BlockRngCore`]: rand_core::block::BlockRngCore +/// [`ReseedingRng::new`]: ReseedingRng::new +/// [`reseed()`]: ReseedingRng::reseed +#[derive(Debug)] +pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>) +where + R: BlockRngCore + SeedableRng, + Rsdr: RngCore; + +impl<R, Rsdr> ReseedingRng<R, Rsdr> +where + R: BlockRngCore + SeedableRng, + Rsdr: RngCore, +{ + /// Create a new `ReseedingRng` from an existing PRNG, combined with a RNG + /// to use as reseeder. + /// + /// `threshold` sets the number of generated bytes after which to reseed the + /// PRNG. Set it to zero to never reseed based on the number of generated + /// values. + pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { + ReseedingRng(BlockRng::new(ReseedingCore::new(rng, threshold, reseeder))) + } + + /// Reseed the internal PRNG. + pub fn reseed(&mut self) -> Result<(), Error> { + self.0.core.reseed() + } +} + +// TODO: this should be implemented for any type where the inner type +// implements RngCore, but we can't specify that because ReseedingCore is private +impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr> +where + R: BlockRngCore<Item = u32> + SeedableRng, + <R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>, +{ + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr> +where + R: BlockRngCore + SeedableRng + Clone, + Rsdr: RngCore + Clone, +{ + fn clone(&self) -> ReseedingRng<R, Rsdr> { + // Recreating `BlockRng` seems easier than cloning it and resetting + // the index. + ReseedingRng(BlockRng::new(self.0.core.clone())) + } +} + +impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr> +where + R: BlockRngCore + SeedableRng + CryptoRng, + Rsdr: RngCore + CryptoRng, +{ +} + +#[derive(Debug)] +struct ReseedingCore<R, Rsdr> { + inner: R, + reseeder: Rsdr, + threshold: i64, + bytes_until_reseed: i64, + fork_counter: usize, +} + +impl<R, Rsdr> BlockRngCore for ReseedingCore<R, Rsdr> +where + R: BlockRngCore + SeedableRng, + Rsdr: RngCore, +{ + type Item = <R as BlockRngCore>::Item; + type Results = <R as BlockRngCore>::Results; + + fn generate(&mut self, results: &mut Self::Results) { + let global_fork_counter = fork::get_fork_counter(); + if self.bytes_until_reseed <= 0 || self.is_forked(global_fork_counter) { + // We get better performance by not calling only `reseed` here + // and continuing with the rest of the function, but by directly + // returning from a non-inlined function. + return self.reseed_and_generate(results, global_fork_counter); + } + let num_bytes = results.as_ref().len() * size_of::<Self::Item>(); + self.bytes_until_reseed -= num_bytes as i64; + self.inner.generate(results); + } +} + +impl<R, Rsdr> ReseedingCore<R, Rsdr> +where + R: BlockRngCore + SeedableRng, + Rsdr: RngCore, +{ + /// Create a new `ReseedingCore`. + fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { + use ::core::i64::MAX; + fork::register_fork_handler(); + + // Because generating more values than `i64::MAX` takes centuries on + // current hardware, we just clamp to that value. + // Also we set a threshold of 0, which indicates no limit, to that + // value. + let threshold = if threshold == 0 { + MAX + } else if threshold <= MAX as u64 { + threshold as i64 + } else { + MAX + }; + + ReseedingCore { + inner: rng, + reseeder, + threshold: threshold as i64, + bytes_until_reseed: threshold as i64, + fork_counter: 0, + } + } + + /// Reseed the internal PRNG. + fn reseed(&mut self) -> Result<(), Error> { + R::from_rng(&mut self.reseeder).map(|result| { + self.bytes_until_reseed = self.threshold; + self.inner = result + }) + } + + fn is_forked(&self, global_fork_counter: usize) -> bool { + // In theory, on 32-bit platforms, it is possible for + // `global_fork_counter` to wrap around after ~4e9 forks. + // + // This check will detect a fork in the normal case where + // `fork_counter < global_fork_counter`, and also when the difference + // between both is greater than `isize::MAX` (wrapped around). + // + // It will still fail to detect a fork if there have been more than + // `isize::MAX` forks, without any reseed in between. Seems unlikely + // enough. + (self.fork_counter.wrapping_sub(global_fork_counter) as isize) < 0 + } + + #[inline(never)] + fn reseed_and_generate( + &mut self, results: &mut <Self as BlockRngCore>::Results, global_fork_counter: usize, + ) { + #![allow(clippy::if_same_then_else)] // false positive + if self.is_forked(global_fork_counter) { + info!("Fork detected, reseeding RNG"); + } else { + trace!("Reseeding RNG (periodic reseed)"); + } + + let num_bytes = results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>(); + + if let Err(e) = self.reseed() { + warn!("Reseeding RNG failed: {}", e); + let _ = e; + } + self.fork_counter = global_fork_counter; + + self.bytes_until_reseed = self.threshold - num_bytes as i64; + self.inner.generate(results); + } +} + +impl<R, Rsdr> Clone for ReseedingCore<R, Rsdr> +where + R: BlockRngCore + SeedableRng + Clone, + Rsdr: RngCore + Clone, +{ + fn clone(&self) -> ReseedingCore<R, Rsdr> { + ReseedingCore { + inner: self.inner.clone(), + reseeder: self.reseeder.clone(), + threshold: self.threshold, + bytes_until_reseed: 0, // reseed clone on first use + fork_counter: self.fork_counter, + } + } +} + +impl<R, Rsdr> CryptoRng for ReseedingCore<R, Rsdr> +where + R: BlockRngCore + SeedableRng + CryptoRng, + Rsdr: RngCore + CryptoRng, +{ +} + + +#[cfg(all(unix, feature = "std", not(target_os = "emscripten")))] +mod fork { + use core::sync::atomic::{AtomicUsize, Ordering}; + use std::sync::Once; + + // Fork protection + // + // We implement fork protection on Unix using `pthread_atfork`. + // When the process is forked, we increment `RESEEDING_RNG_FORK_COUNTER`. + // Every `ReseedingRng` stores the last known value of the static in + // `fork_counter`. If the cached `fork_counter` is less than + // `RESEEDING_RNG_FORK_COUNTER`, it is time to reseed this RNG. + // + // If reseeding fails, we don't deal with this by setting a delay, but just + // don't update `fork_counter`, so a reseed is attempted as soon as + // possible. + + static RESEEDING_RNG_FORK_COUNTER: AtomicUsize = AtomicUsize::new(0); + + pub fn get_fork_counter() -> usize { + RESEEDING_RNG_FORK_COUNTER.load(Ordering::Relaxed) + } + + extern "C" fn fork_handler() { + // Note: fetch_add is defined to wrap on overflow + // (which is what we want). + RESEEDING_RNG_FORK_COUNTER.fetch_add(1, Ordering::Relaxed); + } + + pub fn register_fork_handler() { + static REGISTER: Once = Once::new(); + REGISTER.call_once(|| unsafe { + libc::pthread_atfork(None, None, Some(fork_handler)); + }); + } +} + +#[cfg(not(all(unix, feature = "std", not(target_os = "emscripten"))))] +mod fork { + pub fn get_fork_counter() -> usize { + 0 + } + pub fn register_fork_handler() {} +} + + +#[cfg(test)] +mod test { + use super::ReseedingRng; + use crate::rngs::mock::StepRng; + use crate::rngs::std::Core; + use crate::{Rng, SeedableRng}; + + #[test] + fn test_reseeding() { + let mut zero = StepRng::new(0, 0); + let rng = Core::from_rng(&mut zero).unwrap(); + let thresh = 1; // reseed every time the buffer is exhausted + let mut reseeding = ReseedingRng::new(rng, thresh, zero); + + // RNG buffer size is [u32; 64] + // Debug is only implemented up to length 32 so use two arrays + let mut buf = ([0u32; 32], [0u32; 32]); + reseeding.fill(&mut buf.0); + reseeding.fill(&mut buf.1); + let seq = buf; + for _ in 0..10 { + reseeding.fill(&mut buf.0); + reseeding.fill(&mut buf.1); + assert_eq!(buf, seq); + } + } + + #[test] + fn test_clone_reseeding() { + let mut zero = StepRng::new(0, 0); + let rng = Core::from_rng(&mut zero).unwrap(); + let mut rng1 = ReseedingRng::new(rng, 32 * 4, zero); + + let first: u32 = rng1.gen(); + for _ in 0..10 { + let _ = rng1.gen::<u32>(); + } + + let mut rng2 = rng1.clone(); + assert_eq!(first, rng2.gen::<u32>()); + } +} diff --git a/vendor/rand-0.7.3/src/rngs/entropy.rs b/vendor/rand-0.7.3/src/rngs/entropy.rs new file mode 100644 index 000000000..9ad0d71e0 --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/entropy.rs @@ -0,0 +1,76 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Entropy generator, or wrapper around external generators + +#![allow(deprecated)] // whole module is deprecated + +use crate::rngs::OsRng; +use rand_core::{CryptoRng, Error, RngCore}; + +/// An interface returning random data from external source(s), provided +/// specifically for securely seeding algorithmic generators (PRNGs). +/// +/// This is deprecated. It is suggested you use [`rngs::OsRng`] instead. +/// +/// [`rngs::OsRng`]: crate::rngs::OsRng +#[derive(Debug)] +#[deprecated(since = "0.7.0", note = "use rngs::OsRng instead")] +pub struct EntropyRng { + source: OsRng, +} + +impl EntropyRng { + /// Create a new `EntropyRng`. + /// + /// This method will do no system calls or other initialization routines, + /// those are done on first use. This is done to make `new` infallible, + /// and `try_fill_bytes` the only place to report errors. + pub fn new() -> Self { + EntropyRng { source: OsRng } + } +} + +impl Default for EntropyRng { + fn default() -> Self { + EntropyRng::new() + } +} + +impl RngCore for EntropyRng { + fn next_u32(&mut self) -> u32 { + self.source.next_u32() + } + + fn next_u64(&mut self) -> u64 { + self.source.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.source.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.source.try_fill_bytes(dest) + } +} + +impl CryptoRng for EntropyRng {} + + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn test_entropy() { + let mut rng = EntropyRng::new(); + let n = (rng.next_u32() ^ rng.next_u32()).count_ones(); + assert!(n >= 2); // p(failure) approx 1e-7 + } +} diff --git a/vendor/rand-0.7.3/src/rngs/mock.rs b/vendor/rand-0.7.3/src/rngs/mock.rs new file mode 100644 index 000000000..9a47264a7 --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/mock.rs @@ -0,0 +1,67 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Mock random number generator + +use rand_core::{impls, Error, RngCore}; + +/// A simple implementation of `RngCore` for testing purposes. +/// +/// This generates an arithmetic sequence (i.e. adds a constant each step) +/// over a `u64` number, using wrapping arithmetic. If the increment is 0 +/// the generator yields a constant. +/// +/// ``` +/// use rand::Rng; +/// use rand::rngs::mock::StepRng; +/// +/// let mut my_rng = StepRng::new(2, 1); +/// let sample: [u64; 3] = my_rng.gen(); +/// assert_eq!(sample, [2, 3, 4]); +/// ``` +#[derive(Debug, Clone)] +pub struct StepRng { + v: u64, + a: u64, +} + +impl StepRng { + /// Create a `StepRng`, yielding an arithmetic sequence starting with + /// `initial` and incremented by `increment` each time. + pub fn new(initial: u64, increment: u64) -> Self { + StepRng { + v: initial, + a: increment, + } + } +} + +impl RngCore for StepRng { + #[inline] + fn next_u32(&mut self) -> u32 { + self.next_u64() as u32 + } + + #[inline] + fn next_u64(&mut self) -> u64 { + let result = self.v; + self.v = self.v.wrapping_add(self.a); + result + } + + #[inline] + fn fill_bytes(&mut self, dest: &mut [u8]) { + impls::fill_bytes_via_next(self, dest); + } + + #[inline] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.fill_bytes(dest); + Ok(()) + } +} diff --git a/vendor/rand-0.7.3/src/rngs/mod.rs b/vendor/rand-0.7.3/src/rngs/mod.rs new file mode 100644 index 000000000..111219602 --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/mod.rs @@ -0,0 +1,116 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Random number generators and adapters +//! +//! ## Background: Random number generators (RNGs) +//! +//! Computers cannot produce random numbers from nowhere. We classify +//! random number generators as follows: +//! +//! - "True" random number generators (TRNGs) use hard-to-predict data sources +//! (e.g. the high-resolution parts of event timings and sensor jitter) to +//! harvest random bit-sequences, apply algorithms to remove bias and +//! estimate available entropy, then combine these bits into a byte-sequence +//! or an entropy pool. This job is usually done by the operating system or +//! a hardware generator (HRNG). +//! - "Pseudo"-random number generators (PRNGs) use algorithms to transform a +//! seed into a sequence of pseudo-random numbers. These generators can be +//! fast and produce well-distributed unpredictable random numbers (or not). +//! They are usually deterministic: given algorithm and seed, the output +//! sequence can be reproduced. They have finite period and eventually loop; +//! with many algorithms this period is fixed and can be proven sufficiently +//! long, while others are chaotic and the period depends on the seed. +//! - "Cryptographically secure" pseudo-random number generators (CSPRNGs) +//! are the sub-set of PRNGs which are secure. Security of the generator +//! relies both on hiding the internal state and using a strong algorithm. +//! +//! ## Traits and functionality +//! +//! All RNGs implement the [`RngCore`] trait, as a consequence of which the +//! [`Rng`] extension trait is automatically implemented. Secure RNGs may +//! additionally implement the [`CryptoRng`] trait. +//! +//! All PRNGs require a seed to produce their random number sequence. The +//! [`SeedableRng`] trait provides three ways of constructing PRNGs: +//! +//! - `from_seed` accepts a type specific to the PRNG +//! - `from_rng` allows a PRNG to be seeded from any other RNG +//! - `seed_from_u64` allows any PRNG to be seeded from a `u64` insecurely +//! - `from_entropy` securely seeds a PRNG from fresh entropy +//! +//! Use the [`rand_core`] crate when implementing your own RNGs. +//! +//! ## Our generators +//! +//! This crate provides several random number generators: +//! +//! - [`OsRng`] is an interface to the operating system's random number +//! source. Typically the operating system uses a CSPRNG with entropy +//! provided by a TRNG and some type of on-going re-seeding. +//! - [`ThreadRng`], provided by the [`thread_rng`] function, is a handle to a +//! thread-local CSPRNG with periodic seeding from [`OsRng`]. Because this +//! is local, it is typically much faster than [`OsRng`]. It should be +//! secure, though the paranoid may prefer [`OsRng`]. +//! - [`StdRng`] is a CSPRNG chosen for good performance and trust of security +//! (based on reviews, maturity and usage). The current algorithm is ChaCha20, +//! which is well established and rigorously analysed. +//! [`StdRng`] provides the algorithm used by [`ThreadRng`] but without +//! periodic reseeding. +//! - [`SmallRng`] is an **insecure** PRNG designed to be fast, simple, require +//! little memory, and have good output quality. +//! +//! The algorithms selected for [`StdRng`] and [`SmallRng`] may change in any +//! release and may be platform-dependent, therefore they should be considered +//! **not reproducible**. +//! +//! ## Additional generators +//! +//! **TRNGs**: The [`rdrand`] crate provides an interface to the RDRAND and +//! RDSEED instructions available in modern Intel and AMD CPUs. +//! The [`rand_jitter`] crate provides a user-space implementation of +//! entropy harvesting from CPU timer jitter, but is very slow and has +//! [security issues](https://github.com/rust-random/rand/issues/699). +//! +//! **PRNGs**: Several companion crates are available, providing individual or +//! families of PRNG algorithms. These provide the implementations behind +//! [`StdRng`] and [`SmallRng`] but can also be used directly, indeed *should* +//! be used directly when **reproducibility** matters. +//! Some suggestions are: [`rand_chacha`], [`rand_pcg`], [`rand_xoshiro`]. +//! A full list can be found by searching for crates with the [`rng` tag]. +//! +//! [`Rng`]: crate::Rng +//! [`RngCore`]: crate::RngCore +//! [`CryptoRng`]: crate::CryptoRng +//! [`SeedableRng`]: crate::SeedableRng +//! [`thread_rng`]: crate::thread_rng +//! [`rdrand`]: https://crates.io/crates/rdrand +//! [`rand_jitter`]: https://crates.io/crates/rand_jitter +//! [`rand_chacha`]: https://crates.io/crates/rand_chacha +//! [`rand_pcg`]: https://crates.io/crates/rand_pcg +//! [`rand_xoshiro`]: https://crates.io/crates/rand_xoshiro +//! [`rng` tag]: https://crates.io/keywords/rng + +pub mod adapter; + +#[cfg(feature = "std")] mod entropy; +pub mod mock; // Public so we don't export `StepRng` directly, making it a bit + // more clear it is intended for testing. +#[cfg(feature = "small_rng")] mod small; +mod std; +#[cfg(feature = "std")] pub(crate) mod thread; + +#[allow(deprecated)] +#[cfg(feature = "std")] +pub use self::entropy::EntropyRng; + +#[cfg(feature = "small_rng")] pub use self::small::SmallRng; +pub use self::std::StdRng; +#[cfg(feature = "std")] pub use self::thread::ThreadRng; + +#[cfg(feature = "getrandom")] pub use rand_core::OsRng; diff --git a/vendor/rand-0.7.3/src/rngs/small.rs b/vendor/rand-0.7.3/src/rngs/small.rs new file mode 100644 index 000000000..d67689814 --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/small.rs @@ -0,0 +1,113 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A small fast RNG + +use rand_core::{Error, RngCore, SeedableRng}; + +#[cfg(all(not(target_os = "emscripten"), target_pointer_width = "64"))] +type Rng = rand_pcg::Pcg64Mcg; +#[cfg(not(all(not(target_os = "emscripten"), target_pointer_width = "64")))] +type Rng = rand_pcg::Pcg32; + +/// A small-state, fast non-crypto PRNG +/// +/// `SmallRng` may be a good choice when a PRNG with small state, cheap +/// initialization, good statistical quality and good performance are required. +/// It is **not** a good choice when security against prediction or +/// reproducibility are important. +/// +/// This PRNG is **feature-gated**: to use, you must enable the crate feature +/// `small_rng`. +/// +/// The algorithm is deterministic but should not be considered reproducible +/// due to dependence on platform and possible replacement in future +/// library versions. For a reproducible generator, use a named PRNG from an +/// external crate, e.g. [rand_pcg] or [rand_chacha]. +/// Refer also to [The Book](https://rust-random.github.io/book/guide-rngs.html). +/// +/// The PRNG algorithm in `SmallRng` is chosen to be +/// efficient on the current platform, without consideration for cryptography +/// or security. The size of its state is much smaller than [`StdRng`]. +/// The current algorithm is [`Pcg64Mcg`](rand_pcg::Pcg64Mcg) on 64-bit +/// platforms and [`Pcg32`](rand_pcg::Pcg32) on 32-bit platforms. Both are +/// implemented by the [rand_pcg] crate. +/// +/// # Examples +/// +/// Initializing `SmallRng` with a random seed can be done using [`SeedableRng::from_entropy`]: +/// +/// ``` +/// use rand::{Rng, SeedableRng}; +/// use rand::rngs::SmallRng; +/// +/// // Create small, cheap to initialize and fast RNG with a random seed. +/// // The randomness is supplied by the operating system. +/// let mut small_rng = SmallRng::from_entropy(); +/// # let v: u32 = small_rng.gen(); +/// ``` +/// +/// When initializing a lot of `SmallRng`'s, using [`thread_rng`] can be more +/// efficient: +/// +/// ``` +/// use rand::{SeedableRng, thread_rng}; +/// use rand::rngs::SmallRng; +/// +/// // Create a big, expensive to initialize and slower, but unpredictable RNG. +/// // This is cached and done only once per thread. +/// let mut thread_rng = thread_rng(); +/// // Create small, cheap to initialize and fast RNGs with random seeds. +/// // One can generally assume this won't fail. +/// let rngs: Vec<SmallRng> = (0..10) +/// .map(|_| SmallRng::from_rng(&mut thread_rng).unwrap()) +/// .collect(); +/// ``` +/// +/// [`StdRng`]: crate::rngs::StdRng +/// [`thread_rng`]: crate::thread_rng +/// [rand_chacha]: https://crates.io/crates/rand_chacha +/// [rand_pcg]: https://crates.io/crates/rand_pcg +#[derive(Clone, Debug)] +pub struct SmallRng(Rng); + +impl RngCore for SmallRng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + #[inline(always)] + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest); + } + + #[inline(always)] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for SmallRng { + type Seed = <Rng as SeedableRng>::Seed; + + #[inline(always)] + fn from_seed(seed: Self::Seed) -> Self { + SmallRng(Rng::from_seed(seed)) + } + + #[inline(always)] + fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { + Rng::from_rng(rng).map(SmallRng) + } +} diff --git a/vendor/rand-0.7.3/src/rngs/std.rs b/vendor/rand-0.7.3/src/rngs/std.rs new file mode 100644 index 000000000..8b07081a0 --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/std.rs @@ -0,0 +1,103 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The standard RNG + +use crate::{CryptoRng, Error, RngCore, SeedableRng}; + +#[cfg(all(any(test, feature = "std"), not(target_os = "emscripten")))] +pub(crate) use rand_chacha::ChaCha20Core as Core; +#[cfg(all(any(test, feature = "std"), target_os = "emscripten"))] +pub(crate) use rand_hc::Hc128Core as Core; + +#[cfg(not(target_os = "emscripten"))] use rand_chacha::ChaCha20Rng as Rng; +#[cfg(target_os = "emscripten")] use rand_hc::Hc128Rng as Rng; + +/// The standard RNG. The PRNG algorithm in `StdRng` is chosen to be efficient +/// on the current platform, to be statistically strong and unpredictable +/// (meaning a cryptographically secure PRNG). +/// +/// The current algorithm used is the ChaCha block cipher with 20 rounds. +/// This may change as new evidence of cipher security and performance +/// becomes available. +/// +/// The algorithm is deterministic but should not be considered reproducible +/// due to dependence on configuration and possible replacement in future +/// library versions. For a secure reproducible generator, we recommend use of +/// the [rand_chacha] crate directly. +/// +/// [rand_chacha]: https://crates.io/crates/rand_chacha +#[derive(Clone, Debug)] +pub struct StdRng(Rng); + +impl RngCore for StdRng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + #[inline(always)] + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest); + } + + #[inline(always)] + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for StdRng { + type Seed = <Rng as SeedableRng>::Seed; + + #[inline(always)] + fn from_seed(seed: Self::Seed) -> Self { + StdRng(Rng::from_seed(seed)) + } + + #[inline(always)] + fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { + Rng::from_rng(rng).map(StdRng) + } +} + +impl CryptoRng for StdRng {} + + +#[cfg(test)] +mod test { + use crate::rngs::StdRng; + use crate::{RngCore, SeedableRng}; + + #[test] + fn test_stdrng_construction() { + // Test value-stability of StdRng. This is expected to break any time + // the algorithm is changed. + #[rustfmt::skip] + let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; + + #[cfg(any(feature = "stdrng_strong", not(feature = "stdrng_fast")))] + let target = [3950704604716924505, 5573172343717151650]; + #[cfg(all(not(feature = "stdrng_strong"), feature = "stdrng_fast"))] + let target = [10719222850664546238, 14064965282130556830]; + + let mut rng0 = StdRng::from_seed(seed); + let x0 = rng0.next_u64(); + + let mut rng1 = StdRng::from_rng(rng0).unwrap(); + let x1 = rng1.next_u64(); + + assert_eq!([x0, x1], target); + } +} diff --git a/vendor/rand-0.7.3/src/rngs/thread.rs b/vendor/rand-0.7.3/src/rngs/thread.rs new file mode 100644 index 000000000..91ed4c30a --- /dev/null +++ b/vendor/rand-0.7.3/src/rngs/thread.rs @@ -0,0 +1,124 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Thread-local random number generator + +use std::cell::UnsafeCell; +use std::ptr::NonNull; + +use super::std::Core; +use crate::rngs::adapter::ReseedingRng; +use crate::rngs::OsRng; +use crate::{CryptoRng, Error, RngCore, SeedableRng}; + +// Rationale for using `UnsafeCell` in `ThreadRng`: +// +// Previously we used a `RefCell`, with an overhead of ~15%. There will only +// ever be one mutable reference to the interior of the `UnsafeCell`, because +// we only have such a reference inside `next_u32`, `next_u64`, etc. Within a +// single thread (which is the definition of `ThreadRng`), there will only ever +// be one of these methods active at a time. +// +// A possible scenario where there could be multiple mutable references is if +// `ThreadRng` is used inside `next_u32` and co. But the implementation is +// completely under our control. We just have to ensure none of them use +// `ThreadRng` internally, which is nonsensical anyway. We should also never run +// `ThreadRng` in destructors of its implementation, which is also nonsensical. + + +// Number of generated bytes after which to reseed `ThreadRng`. +// According to benchmarks, reseeding has a noticable impact with thresholds +// of 32 kB and less. We choose 64 kB to avoid significant overhead. +const THREAD_RNG_RESEED_THRESHOLD: u64 = 1024 * 64; + +/// The type returned by [`thread_rng`], essentially just a reference to the +/// PRNG in thread-local memory. +/// +/// `ThreadRng` uses the same PRNG as [`StdRng`] for security and performance. +/// As hinted by the name, the generator is thread-local. `ThreadRng` is a +/// handle to this generator and thus supports `Copy`, but not `Send` or `Sync`. +/// +/// Unlike `StdRng`, `ThreadRng` uses the [`ReseedingRng`] wrapper to reseed +/// the PRNG from fresh entropy every 64 kiB of random data. +/// [`OsRng`] is used to provide seed data. +/// +/// Note that the reseeding is done as an extra precaution against side-channel +/// attacks and mis-use (e.g. if somehow weak entropy were supplied initially). +/// The PRNG algorithms used are assumed to be secure. +/// +/// [`ReseedingRng`]: crate::rngs::adapter::ReseedingRng +/// [`StdRng`]: crate::rngs::StdRng +#[derive(Copy, Clone, Debug)] +pub struct ThreadRng { + // inner raw pointer implies type is neither Send nor Sync + rng: NonNull<ReseedingRng<Core, OsRng>>, +} + +thread_local!( + static THREAD_RNG_KEY: UnsafeCell<ReseedingRng<Core, OsRng>> = { + let r = Core::from_rng(OsRng).unwrap_or_else(|err| + panic!("could not initialize thread_rng: {}", err)); + let rng = ReseedingRng::new(r, + THREAD_RNG_RESEED_THRESHOLD, + OsRng); + UnsafeCell::new(rng) + } +); + +/// Retrieve the lazily-initialized thread-local random number generator, +/// seeded by the system. Intended to be used in method chaining style, +/// e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g. +/// `let mut rng = thread_rng();`. Invoked by the `Default` trait, making +/// `ThreadRng::default()` equivalent. +/// +/// For more information see [`ThreadRng`]. +pub fn thread_rng() -> ThreadRng { + let raw = THREAD_RNG_KEY.with(|t| t.get()); + let nn = NonNull::new(raw).unwrap(); + ThreadRng { rng: nn } +} + +impl Default for ThreadRng { + fn default() -> ThreadRng { + crate::prelude::thread_rng() + } +} + +impl RngCore for ThreadRng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + unsafe { self.rng.as_mut().next_u32() } + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + unsafe { self.rng.as_mut().next_u64() } + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + unsafe { self.rng.as_mut().fill_bytes(dest) } + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + unsafe { self.rng.as_mut().try_fill_bytes(dest) } + } +} + +impl CryptoRng for ThreadRng {} + + +#[cfg(test)] +mod test { + #[test] + fn test_thread_rng() { + use crate::Rng; + let mut r = crate::thread_rng(); + r.gen::<i32>(); + assert_eq!(r.gen_range(0, 1), 0); + } +} diff --git a/vendor/rand-0.7.3/src/seq/index.rs b/vendor/rand-0.7.3/src/seq/index.rs new file mode 100644 index 000000000..551d409e7 --- /dev/null +++ b/vendor/rand-0.7.3/src/seq/index.rs @@ -0,0 +1,438 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Low-level API for sampling indices + +#[cfg(feature = "alloc")] use core::slice; + +#[cfg(all(feature = "alloc", not(feature = "std")))] +use crate::alloc::vec::{self, Vec}; +#[cfg(feature = "std")] use std::vec; +// BTreeMap is not as fast in tests, but better than nothing. +#[cfg(all(feature = "alloc", not(feature = "std")))] +use crate::alloc::collections::BTreeSet; +#[cfg(feature = "std")] use std::collections::HashSet; + +#[cfg(feature = "alloc")] +use crate::distributions::{uniform::SampleUniform, Distribution, Uniform}; +use crate::Rng; + +/// A vector of indices. +/// +/// Multiple internal representations are possible. +#[derive(Clone, Debug)] +pub enum IndexVec { + #[doc(hidden)] + U32(Vec<u32>), + #[doc(hidden)] + USize(Vec<usize>), +} + +impl IndexVec { + /// Returns the number of indices + #[inline] + pub fn len(&self) -> usize { + match *self { + IndexVec::U32(ref v) => v.len(), + IndexVec::USize(ref v) => v.len(), + } + } + + /// Returns `true` if the length is 0. + #[inline] + pub fn is_empty(&self) -> bool { + match *self { + IndexVec::U32(ref v) => v.is_empty(), + IndexVec::USize(ref v) => v.is_empty(), + } + } + + /// Return the value at the given `index`. + /// + /// (Note: we cannot implement [`std::ops::Index`] because of lifetime + /// restrictions.) + #[inline] + pub fn index(&self, index: usize) -> usize { + match *self { + IndexVec::U32(ref v) => v[index] as usize, + IndexVec::USize(ref v) => v[index], + } + } + + /// Return result as a `Vec<usize>`. Conversion may or may not be trivial. + #[inline] + pub fn into_vec(self) -> Vec<usize> { + match self { + IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(), + IndexVec::USize(v) => v, + } + } + + /// Iterate over the indices as a sequence of `usize` values + #[inline] + pub fn iter(&self) -> IndexVecIter<'_> { + match *self { + IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()), + IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()), + } + } + + /// Convert into an iterator over the indices as a sequence of `usize` values + #[inline] + pub fn into_iter(self) -> IndexVecIntoIter { + match self { + IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()), + IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()), + } + } +} + +impl PartialEq for IndexVec { + fn eq(&self, other: &IndexVec) -> bool { + use self::IndexVec::*; + match (self, other) { + (&U32(ref v1), &U32(ref v2)) => v1 == v2, + (&USize(ref v1), &USize(ref v2)) => v1 == v2, + (&U32(ref v1), &USize(ref v2)) => { + (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y)) + } + (&USize(ref v1), &U32(ref v2)) => { + (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize)) + } + } + } +} + +impl From<Vec<u32>> for IndexVec { + #[inline] + fn from(v: Vec<u32>) -> Self { + IndexVec::U32(v) + } +} + +impl From<Vec<usize>> for IndexVec { + #[inline] + fn from(v: Vec<usize>) -> Self { + IndexVec::USize(v) + } +} + +/// Return type of `IndexVec::iter`. +#[derive(Debug)] +pub enum IndexVecIter<'a> { + #[doc(hidden)] + U32(slice::Iter<'a, u32>), + #[doc(hidden)] + USize(slice::Iter<'a, usize>), +} + +impl<'a> Iterator for IndexVecIter<'a> { + type Item = usize; + + #[inline] + fn next(&mut self) -> Option<usize> { + use self::IndexVecIter::*; + match *self { + U32(ref mut iter) => iter.next().map(|i| *i as usize), + USize(ref mut iter) => iter.next().cloned(), + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + match *self { + IndexVecIter::U32(ref v) => v.size_hint(), + IndexVecIter::USize(ref v) => v.size_hint(), + } + } +} + +impl<'a> ExactSizeIterator for IndexVecIter<'a> {} + +/// Return type of `IndexVec::into_iter`. +#[derive(Clone, Debug)] +pub enum IndexVecIntoIter { + #[doc(hidden)] + U32(vec::IntoIter<u32>), + #[doc(hidden)] + USize(vec::IntoIter<usize>), +} + +impl Iterator for IndexVecIntoIter { + type Item = usize; + + #[inline] + fn next(&mut self) -> Option<Self::Item> { + use self::IndexVecIntoIter::*; + match *self { + U32(ref mut v) => v.next().map(|i| i as usize), + USize(ref mut v) => v.next(), + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + use self::IndexVecIntoIter::*; + match *self { + U32(ref v) => v.size_hint(), + USize(ref v) => v.size_hint(), + } + } +} + +impl ExactSizeIterator for IndexVecIntoIter {} + + +/// Randomly sample exactly `amount` distinct indices from `0..length`, and +/// return them in random order (fully shuffled). +/// +/// This method is used internally by the slice sampling methods, but it can +/// sometimes be useful to have the indices themselves so this is provided as +/// an alternative. +/// +/// The implementation used is not specified; we automatically select the +/// fastest available algorithm for the `length` and `amount` parameters +/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking, +/// complexity is `O(amount)`, except that when `amount` is small, performance +/// is closer to `O(amount^2)`, and when `length` is close to `amount` then +/// `O(length)`. +/// +/// Note that performance is significantly better over `u32` indices than over +/// `u64` indices. Because of this we hide the underlying type behind an +/// abstraction, `IndexVec`. +/// +/// If an allocation-free `no_std` function is required, it is suggested +/// to adapt the internal `sample_floyd` implementation. +/// +/// Panics if `amount > length`. +pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec +where R: Rng + ?Sized { + if amount > length { + panic!("`amount` of samples must be less than or equal to `length`"); + } + if length > (::core::u32::MAX as usize) { + // We never want to use inplace here, but could use floyd's alg + // Lazy version: always use the cache alg. + return sample_rejection(rng, length, amount); + } + let amount = amount as u32; + let length = length as u32; + + // Choice of algorithm here depends on both length and amount. See: + // https://github.com/rust-random/rand/pull/479 + // We do some calculations with f32. Accuracy is not very important. + + if amount < 163 { + const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]]; + let j = if length < 500_000 { 0 } else { 1 }; + let amount_fp = amount as f32; + let m4 = C[0][j] * amount_fp; + // Short-cut: when amount < 12, floyd's is always faster + if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp { + sample_inplace(rng, length, amount) + } else { + sample_floyd(rng, length, amount) + } + } else { + const C: [f32; 2] = [270.0, 330.0 / 9.0]; + let j = if length < 500_000 { 0 } else { 1 }; + if (length as f32) < C[j] * (amount as f32) { + sample_inplace(rng, length, amount) + } else { + sample_rejection(rng, length, amount) + } + } +} + +/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's +/// combination algorithm. +/// +/// The output values are fully shuffled. (Overhead is under 50%.) +/// +/// This implementation uses `O(amount)` memory and `O(amount^2)` time. +fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec +where R: Rng + ?Sized { + // For small amount we use Floyd's fully-shuffled variant. For larger + // amounts this is slow due to Vec::insert performance, so we shuffle + // afterwards. Benchmarks show little overhead from extra logic. + let floyd_shuffle = amount < 50; + + debug_assert!(amount <= length); + let mut indices = Vec::with_capacity(amount as usize); + for j in length - amount..length { + let t = rng.gen_range(0, j + 1); + if floyd_shuffle { + if let Some(pos) = indices.iter().position(|&x| x == t) { + indices.insert(pos, j); + continue; + } + } else if indices.contains(&t) { + indices.push(j); + continue; + } + indices.push(t); + } + if !floyd_shuffle { + // Reimplement SliceRandom::shuffle with smaller indices + for i in (1..amount).rev() { + // invariant: elements with index > i have been locked in place. + indices.swap(i as usize, rng.gen_range(0, i + 1) as usize); + } + } + IndexVec::from(indices) +} + +/// Randomly sample exactly `amount` indices from `0..length`, using an inplace +/// partial Fisher-Yates method. +/// Sample an amount of indices using an inplace partial fisher yates method. +/// +/// This allocates the entire `length` of indices and randomizes only the first `amount`. +/// It then truncates to `amount` and returns. +/// +/// This method is not appropriate for large `length` and potentially uses a lot +/// of memory; because of this we only implement for `u32` index (which improves +/// performance in all cases). +/// +/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time. +fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec +where R: Rng + ?Sized { + debug_assert!(amount <= length); + let mut indices: Vec<u32> = Vec::with_capacity(length as usize); + indices.extend(0..length); + for i in 0..amount { + let j: u32 = rng.gen_range(i, length); + indices.swap(i as usize, j as usize); + } + indices.truncate(amount as usize); + debug_assert_eq!(indices.len(), amount as usize); + IndexVec::from(indices) +} + +trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform + core::hash::Hash { + fn zero() -> Self; + fn as_usize(self) -> usize; +} +impl UInt for u32 { + #[inline] + fn zero() -> Self { + 0 + } + + #[inline] + fn as_usize(self) -> usize { + self as usize + } +} +impl UInt for usize { + #[inline] + fn zero() -> Self { + 0 + } + + #[inline] + fn as_usize(self) -> usize { + self + } +} + +/// Randomly sample exactly `amount` indices from `0..length`, using rejection +/// sampling. +/// +/// Since `amount <<< length` there is a low chance of a random sample in +/// `0..length` being a duplicate. We test for duplicates and resample where +/// necessary. The algorithm is `O(amount)` time and memory. +/// +/// This function is generic over X primarily so that results are value-stable +/// over 32-bit and 64-bit platforms. +fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec +where + R: Rng + ?Sized, + IndexVec: From<Vec<X>>, +{ + debug_assert!(amount < length); + #[cfg(feature = "std")] + let mut cache = HashSet::with_capacity(amount.as_usize()); + #[cfg(not(feature = "std"))] + let mut cache = BTreeSet::new(); + let distr = Uniform::new(X::zero(), length); + let mut indices = Vec::with_capacity(amount.as_usize()); + for _ in 0..amount.as_usize() { + let mut pos = distr.sample(rng); + while !cache.insert(pos) { + pos = distr.sample(rng); + } + indices.push(pos); + } + + debug_assert_eq!(indices.len(), amount.as_usize()); + IndexVec::from(indices) +} + +#[cfg(test)] +mod test { + use super::*; + #[cfg(all(feature = "alloc", not(feature = "std")))] use crate::alloc::vec; + #[cfg(feature = "std")] use std::vec; + + #[test] + fn test_sample_boundaries() { + let mut r = crate::test::rng(404); + + assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0); + assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0); + assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]); + + assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0); + + assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0); + assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0); + assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]); + + // These algorithms should be fast with big numbers. Test average. + let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum(); + assert!(1 << 25 < sum && sum < (1 << 25) * 25); + + let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum(); + assert!(1 << 25 < sum && sum < (1 << 25) * 25); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_sample_alg() { + let seed_rng = crate::test::rng; + + // We can't test which algorithm is used directly, but Floyd's alg + // should produce different results from the others. (Also, `inplace` + // and `cached` currently use different sizes thus produce different results.) + + // A small length and relatively large amount should use inplace + let (length, amount): (usize, usize) = (100, 50); + let v1 = sample(&mut seed_rng(420), length, amount); + let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32); + assert!(v1.iter().all(|e| e < length)); + assert_eq!(v1, v2); + + // Test Floyd's alg does produce different results + let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32); + assert!(v1 != v3); + + // A large length and small amount should use Floyd + let (length, amount): (usize, usize) = (1 << 20, 50); + let v1 = sample(&mut seed_rng(421), length, amount); + let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32); + assert!(v1.iter().all(|e| e < length)); + assert_eq!(v1, v2); + + // A large length and larger amount should use cache + let (length, amount): (usize, usize) = (1 << 20, 600); + let v1 = sample(&mut seed_rng(422), length, amount); + let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32); + assert!(v1.iter().all(|e| e < length)); + assert_eq!(v1, v2); + } +} diff --git a/vendor/rand-0.7.3/src/seq/mod.rs b/vendor/rand-0.7.3/src/seq/mod.rs new file mode 100644 index 000000000..dabf32927 --- /dev/null +++ b/vendor/rand-0.7.3/src/seq/mod.rs @@ -0,0 +1,850 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Sequence-related functionality +//! +//! This module provides: +//! +//! * [`SliceRandom`] slice sampling and mutation +//! * [`IteratorRandom`] iterator sampling +//! * [`index::sample`] low-level API to choose multiple indices from +//! `0..length` +//! +//! Also see: +//! +//! * [`crate::distributions::weighted`] module which provides +//! implementations of weighted index sampling. +//! +//! In order to make results reproducible across 32-64 bit architectures, all +//! `usize` indices are sampled as a `u32` where possible (also providing a +//! small performance boost in some cases). + + +#[cfg(feature = "alloc")] pub mod index; + +#[cfg(feature = "alloc")] use core::ops::Index; + +#[cfg(all(feature = "alloc", not(feature = "std")))] use crate::alloc::vec::Vec; + +#[cfg(feature = "alloc")] +use crate::distributions::uniform::{SampleBorrow, SampleUniform}; +#[cfg(feature = "alloc")] use crate::distributions::WeightedError; +use crate::Rng; + +/// Extension trait on slices, providing random mutation and sampling methods. +/// +/// This trait is implemented on all `[T]` slice types, providing several +/// methods for choosing and shuffling elements. You must `use` this trait: +/// +/// ``` +/// use rand::seq::SliceRandom; +/// +/// fn main() { +/// let mut rng = rand::thread_rng(); +/// let mut bytes = "Hello, random!".to_string().into_bytes(); +/// bytes.shuffle(&mut rng); +/// let str = String::from_utf8(bytes).unwrap(); +/// println!("{}", str); +/// } +/// ``` +/// Example output (non-deterministic): +/// ```none +/// l,nmroHado !le +/// ``` +pub trait SliceRandom { + /// The element type. + type Item; + + /// Returns a reference to one random element of the slice, or `None` if the + /// slice is empty. + /// + /// For slices, complexity is `O(1)`. + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::seq::SliceRandom; + /// + /// let choices = [1, 2, 4, 8, 16, 32]; + /// let mut rng = thread_rng(); + /// println!("{:?}", choices.choose(&mut rng)); + /// assert_eq!(choices[..0].choose(&mut rng), None); + /// ``` + fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> + where R: Rng + ?Sized; + + /// Returns a mutable reference to one random element of the slice, or + /// `None` if the slice is empty. + /// + /// For slices, complexity is `O(1)`. + fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> + where R: Rng + ?Sized; + + /// Chooses `amount` elements from the slice at random, without repetition, + /// and in random order. The returned iterator is appropriate both for + /// collection into a `Vec` and filling an existing buffer (see example). + /// + /// In case this API is not sufficiently flexible, use [`index::sample`]. + /// + /// For slices, complexity is the same as [`index::sample`]. + /// + /// # Example + /// ``` + /// use rand::seq::SliceRandom; + /// + /// let mut rng = &mut rand::thread_rng(); + /// let sample = "Hello, audience!".as_bytes(); + /// + /// // collect the results into a vector: + /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect(); + /// + /// // store in a buffer: + /// let mut buf = [0u8; 5]; + /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { + /// *slot = *b; + /// } + /// ``` + #[cfg(feature = "alloc")] + fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item> + where R: Rng + ?Sized; + + /// Similar to [`choose`], but where the likelihood of each outcome may be + /// specified. + /// + /// The specified function `weight` maps each item `x` to a relative + /// likelihood `weight(x)`. The probability of each item being selected is + /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. + /// + /// For slices of length `n`, complexity is `O(n)`. + /// See also [`choose_weighted_mut`], [`distributions::weighted`]. + /// + /// # Example + /// + /// ``` + /// use rand::prelude::*; + /// + /// let choices = [('a', 2), ('b', 1), ('c', 1)]; + /// let mut rng = thread_rng(); + /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' + /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); + /// ``` + /// [`choose`]: SliceRandom::choose + /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut + /// [`distributions::weighted`]: crate::distributions::weighted + #[cfg(feature = "alloc")] + fn choose_weighted<R, F, B, X>( + &self, rng: &mut R, weight: F, + ) -> Result<&Self::Item, WeightedError> + where + R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default; + + /// Similar to [`choose_mut`], but where the likelihood of each outcome may + /// be specified. + /// + /// The specified function `weight` maps each item `x` to a relative + /// likelihood `weight(x)`. The probability of each item being selected is + /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. + /// + /// For slices of length `n`, complexity is `O(n)`. + /// See also [`choose_weighted`], [`distributions::weighted`]. + /// + /// [`choose_mut`]: SliceRandom::choose_mut + /// [`choose_weighted`]: SliceRandom::choose_weighted + /// [`distributions::weighted`]: crate::distributions::weighted + #[cfg(feature = "alloc")] + fn choose_weighted_mut<R, F, B, X>( + &mut self, rng: &mut R, weight: F, + ) -> Result<&mut Self::Item, WeightedError> + where + R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default; + + /// Shuffle a mutable slice in place. + /// + /// For slices of length `n`, complexity is `O(n)`. + /// + /// # Example + /// + /// ``` + /// use rand::seq::SliceRandom; + /// use rand::thread_rng; + /// + /// let mut rng = thread_rng(); + /// let mut y = [1, 2, 3, 4, 5]; + /// println!("Unshuffled: {:?}", y); + /// y.shuffle(&mut rng); + /// println!("Shuffled: {:?}", y); + /// ``` + fn shuffle<R>(&mut self, rng: &mut R) + where R: Rng + ?Sized; + + /// Shuffle a slice in place, but exit early. + /// + /// Returns two mutable slices from the source slice. The first contains + /// `amount` elements randomly permuted. The second has the remaining + /// elements that are not fully shuffled. + /// + /// This is an efficient method to select `amount` elements at random from + /// the slice, provided the slice may be mutated. + /// + /// If you only need to choose elements randomly and `amount > self.len()/2` + /// then you may improve performance by taking + /// `amount = values.len() - amount` and using only the second slice. + /// + /// If `amount` is greater than the number of elements in the slice, this + /// will perform a full shuffle. + /// + /// For slices, complexity is `O(m)` where `m = amount`. + fn partial_shuffle<R>( + &mut self, rng: &mut R, amount: usize, + ) -> (&mut [Self::Item], &mut [Self::Item]) + where R: Rng + ?Sized; +} + +/// Extension trait on iterators, providing random sampling methods. +/// +/// This trait is implemented on all sized iterators, providing methods for +/// choosing one or more elements. You must `use` this trait: +/// +/// ``` +/// use rand::seq::IteratorRandom; +/// +/// fn main() { +/// let mut rng = rand::thread_rng(); +/// +/// let faces = "πππππ π’"; +/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap()); +/// } +/// ``` +/// Example output (non-deterministic): +/// ```none +/// I am π! +/// ``` +pub trait IteratorRandom: Iterator + Sized { + /// Choose one element at random from the iterator. + /// + /// Returns `None` if and only if the iterator is empty. + /// + /// This method uses [`Iterator::size_hint`] for optimisation. With an + /// accurate hint and where [`Iterator::nth`] is a constant-time operation + /// this method can offer `O(1)` performance. Where no size hint is + /// available, complexity is `O(n)` where `n` is the iterator length. + /// Partial hints (where `lower > 0`) also improve performance. + /// + /// For slices, prefer [`SliceRandom::choose`] which guarantees `O(1)` + /// performance. + fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item> + where R: Rng + ?Sized { + let (mut lower, mut upper) = self.size_hint(); + let mut consumed = 0; + let mut result = None; + + if upper == Some(lower) { + return if lower == 0 { + None + } else { + self.nth(gen_index(rng, lower)) + }; + } + + // Continue until the iterator is exhausted + loop { + if lower > 1 { + let ix = gen_index(rng, lower + consumed); + let skip = if ix < lower { + result = self.nth(ix); + lower - (ix + 1) + } else { + lower + }; + if upper == Some(lower) { + return result; + } + consumed += lower; + if skip > 0 { + self.nth(skip - 1); + } + } else { + let elem = self.next(); + if elem.is_none() { + return result; + } + consumed += 1; + let denom = consumed as f64; // accurate to 2^53 elements + if rng.gen_bool(1.0 / denom) { + result = elem; + } + } + + let hint = self.size_hint(); + lower = hint.0; + upper = hint.1; + } + } + + /// Collects values at random from the iterator into a supplied buffer + /// until that buffer is filled. + /// + /// Although the elements are selected randomly, the order of elements in + /// the buffer is neither stable nor fully random. If random ordering is + /// desired, shuffle the result. + /// + /// Returns the number of elements added to the buffer. This equals the length + /// of the buffer unless the iterator contains insufficient elements, in which + /// case this equals the number of elements available. + /// + /// Complexity is `O(n)` where `n` is the length of the iterator. + /// For slices, prefer [`SliceRandom::choose_multiple`]. + fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize + where R: Rng + ?Sized { + let amount = buf.len(); + let mut len = 0; + while len < amount { + if let Some(elem) = self.next() { + buf[len] = elem; + len += 1; + } else { + // Iterator exhausted; stop early + return len; + } + } + + // Continue, since the iterator was not exhausted + for (i, elem) in self.enumerate() { + let k = gen_index(rng, i + 1 + amount); + if let Some(slot) = buf.get_mut(k) { + *slot = elem; + } + } + len + } + + /// Collects `amount` values at random from the iterator into a vector. + /// + /// This is equivalent to `choose_multiple_fill` except for the result type. + /// + /// Although the elements are selected randomly, the order of elements in + /// the buffer is neither stable nor fully random. If random ordering is + /// desired, shuffle the result. + /// + /// The length of the returned vector equals `amount` unless the iterator + /// contains insufficient elements, in which case it equals the number of + /// elements available. + /// + /// Complexity is `O(n)` where `n` is the length of the iterator. + /// For slices, prefer [`SliceRandom::choose_multiple`]. + #[cfg(feature = "alloc")] + fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item> + where R: Rng + ?Sized { + let mut reservoir = Vec::with_capacity(amount); + reservoir.extend(self.by_ref().take(amount)); + + // Continue unless the iterator was exhausted + // + // note: this prevents iterators that "restart" from causing problems. + // If the iterator stops once, then so do we. + if reservoir.len() == amount { + for (i, elem) in self.enumerate() { + let k = gen_index(rng, i + 1 + amount); + if let Some(slot) = reservoir.get_mut(k) { + *slot = elem; + } + } + } else { + // Don't hang onto extra memory. There is a corner case where + // `amount` was much less than `self.len()`. + reservoir.shrink_to_fit(); + } + reservoir + } +} + + +impl<T> SliceRandom for [T] { + type Item = T; + + fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> + where R: Rng + ?Sized { + if self.is_empty() { + None + } else { + Some(&self[gen_index(rng, self.len())]) + } + } + + fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> + where R: Rng + ?Sized { + if self.is_empty() { + None + } else { + let len = self.len(); + Some(&mut self[gen_index(rng, len)]) + } + } + + #[cfg(feature = "alloc")] + fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item> + where R: Rng + ?Sized { + let amount = ::core::cmp::min(amount, self.len()); + SliceChooseIter { + slice: self, + _phantom: Default::default(), + indices: index::sample(rng, self.len(), amount).into_iter(), + } + } + + #[cfg(feature = "alloc")] + fn choose_weighted<R, F, B, X>( + &self, rng: &mut R, weight: F, + ) -> Result<&Self::Item, WeightedError> + where + R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default, + { + use crate::distributions::{Distribution, WeightedIndex}; + let distr = WeightedIndex::new(self.iter().map(weight))?; + Ok(&self[distr.sample(rng)]) + } + + #[cfg(feature = "alloc")] + fn choose_weighted_mut<R, F, B, X>( + &mut self, rng: &mut R, weight: F, + ) -> Result<&mut Self::Item, WeightedError> + where + R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default, + { + use crate::distributions::{Distribution, WeightedIndex}; + let distr = WeightedIndex::new(self.iter().map(weight))?; + Ok(&mut self[distr.sample(rng)]) + } + + fn shuffle<R>(&mut self, rng: &mut R) + where R: Rng + ?Sized { + for i in (1..self.len()).rev() { + // invariant: elements with index > i have been locked in place. + self.swap(i, gen_index(rng, i + 1)); + } + } + + fn partial_shuffle<R>( + &mut self, rng: &mut R, amount: usize, + ) -> (&mut [Self::Item], &mut [Self::Item]) + where R: Rng + ?Sized { + // This applies Durstenfeld's algorithm for the + // [FisherβYates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) + // for an unbiased permutation, but exits early after choosing `amount` + // elements. + + let len = self.len(); + let end = if amount >= len { 0 } else { len - amount }; + + for i in (end..len).rev() { + // invariant: elements with index > i have been locked in place. + self.swap(i, gen_index(rng, i + 1)); + } + let r = self.split_at_mut(end); + (r.1, r.0) + } +} + +impl<I> IteratorRandom for I where I: Iterator + Sized {} + + +/// An iterator over multiple slice elements. +/// +/// This struct is created by +/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple). +#[cfg(feature = "alloc")] +#[derive(Debug)] +pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { + slice: &'a S, + _phantom: ::core::marker::PhantomData<T>, + indices: index::IndexVecIntoIter, +} + +#[cfg(feature = "alloc")] +impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<Self::Item> { + // TODO: investigate using SliceIndex::get_unchecked when stable + self.indices.next().map(|i| &self.slice[i as usize]) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.indices.len(), Some(self.indices.len())) + } +} + +#[cfg(feature = "alloc")] +impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator + for SliceChooseIter<'a, S, T> +{ + fn len(&self) -> usize { + self.indices.len() + } +} + + +// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where +// possible, primarily in order to produce the same output on 32-bit and 64-bit +// platforms. +#[inline] +fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize { + if ubound <= (core::u32::MAX as usize) { + rng.gen_range(0, ubound as u32) as usize + } else { + rng.gen_range(0, ubound) + } +} + + +#[cfg(test)] +mod test { + use super::*; + #[cfg(feature = "alloc")] use crate::Rng; + #[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec; + + #[test] + fn test_slice_choose() { + let mut r = crate::test::rng(107); + let chars = [ + 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', + ]; + let mut chosen = [0i32; 14]; + // The below all use a binomial distribution with n=1000, p=1/14. + // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 + for _ in 0..1000 { + let picked = *chars.choose(&mut r).unwrap(); + chosen[(picked as usize) - ('a' as usize)] += 1; + } + for count in chosen.iter() { + assert!(40 < *count && *count < 106); + } + + chosen.iter_mut().for_each(|x| *x = 0); + for _ in 0..1000 { + *chosen.choose_mut(&mut r).unwrap() += 1; + } + for count in chosen.iter() { + assert!(40 < *count && *count < 106); + } + + let mut v: [isize; 0] = []; + assert_eq!(v.choose(&mut r), None); + assert_eq!(v.choose_mut(&mut r), None); + } + + #[derive(Clone)] + struct UnhintedIterator<I: Iterator + Clone> { + iter: I, + } + impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> { + type Item = I::Item; + + fn next(&mut self) -> Option<Self::Item> { + self.iter.next() + } + } + + #[derive(Clone)] + struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> { + iter: I, + chunk_remaining: usize, + chunk_size: usize, + hint_total_size: bool, + } + impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> { + type Item = I::Item; + + fn next(&mut self) -> Option<Self::Item> { + if self.chunk_remaining == 0 { + self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len()); + } + self.chunk_remaining = self.chunk_remaining.saturating_sub(1); + + self.iter.next() + } + + fn size_hint(&self) -> (usize, Option<usize>) { + ( + self.chunk_remaining, + if self.hint_total_size { + Some(self.iter.len()) + } else { + None + }, + ) + } + } + + #[derive(Clone)] + struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> { + iter: I, + window_size: usize, + hint_total_size: bool, + } + impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> { + type Item = I::Item; + + fn next(&mut self) -> Option<Self::Item> { + self.iter.next() + } + + fn size_hint(&self) -> (usize, Option<usize>) { + ( + ::core::cmp::min(self.iter.len(), self.window_size), + if self.hint_total_size { + Some(self.iter.len()) + } else { + None + }, + ) + } + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_iterator_choose() { + let r = &mut crate::test::rng(109); + fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) { + let mut chosen = [0i32; 9]; + for _ in 0..1000 { + let picked = iter.clone().choose(r).unwrap(); + chosen[picked] += 1; + } + for count in chosen.iter() { + // Samples should follow Binomial(1000, 1/9) + // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x + // Note: have seen 153, which is unlikely but not impossible. + assert!( + 72 < *count && *count < 154, + "count not close to 1000/9: {}", + count + ); + } + } + + test_iter(r, 0..9); + test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); + #[cfg(feature = "alloc")] + test_iter(r, (0..9).collect::<Vec<_>>().into_iter()); + test_iter(r, UnhintedIterator { iter: 0..9 }); + test_iter(r, ChunkHintedIterator { + iter: 0..9, + chunk_size: 4, + chunk_remaining: 4, + hint_total_size: false, + }); + test_iter(r, ChunkHintedIterator { + iter: 0..9, + chunk_size: 4, + chunk_remaining: 4, + hint_total_size: true, + }); + test_iter(r, WindowHintedIterator { + iter: 0..9, + window_size: 2, + hint_total_size: false, + }); + test_iter(r, WindowHintedIterator { + iter: 0..9, + window_size: 2, + hint_total_size: true, + }); + + assert_eq!((0..0).choose(r), None); + assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_shuffle() { + let mut r = crate::test::rng(108); + let empty: &mut [isize] = &mut []; + empty.shuffle(&mut r); + let mut one = [1]; + one.shuffle(&mut r); + let b: &[_] = &[1]; + assert_eq!(one, b); + + let mut two = [1, 2]; + two.shuffle(&mut r); + assert!(two == [1, 2] || two == [2, 1]); + + fn move_last(slice: &mut [usize], pos: usize) { + // use slice[pos..].rotate_left(1); once we can use that + let last_val = slice[pos]; + for i in pos..slice.len() - 1 { + slice[i] = slice[i + 1]; + } + *slice.last_mut().unwrap() = last_val; + } + let mut counts = [0i32; 24]; + for _ in 0..10000 { + let mut arr: [usize; 4] = [0, 1, 2, 3]; + arr.shuffle(&mut r); + let mut permutation = 0usize; + let mut pos_value = counts.len(); + for i in 0..4 { + pos_value /= 4 - i; + let pos = arr.iter().position(|&x| x == i).unwrap(); + assert!(pos < (4 - i)); + permutation += pos * pos_value; + move_last(&mut arr, pos); + assert_eq!(arr[3], i); + } + for i in 0..4 { + assert_eq!(arr[i], i); + } + counts[permutation] += 1; + } + for count in counts.iter() { + // Binomial(10000, 1/24) with average 416.667 + // Octave: binocdf(n, 10000, 1/24) + // 99.9% chance samples lie within this range: + assert!(352 <= *count && *count <= 483, "count: {}", count); + } + } + + #[test] + fn test_partial_shuffle() { + let mut r = crate::test::rng(118); + + let mut empty: [u32; 0] = []; + let res = empty.partial_shuffle(&mut r, 10); + assert_eq!((res.0.len(), res.1.len()), (0, 0)); + + let mut v = [1, 2, 3, 4, 5]; + let res = v.partial_shuffle(&mut r, 2); + assert_eq!((res.0.len(), res.1.len()), (2, 3)); + assert!(res.0[0] != res.0[1]); + // First elements are only modified if selected, so at least one isn't modified: + assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); + } + + #[test] + #[cfg(feature = "alloc")] + fn test_sample_iter() { + let min_val = 1; + let max_val = 100; + + let mut r = crate::test::rng(401); + let vals = (min_val..max_val).collect::<Vec<i32>>(); + let small_sample = vals.iter().choose_multiple(&mut r, 5); + let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5); + + assert_eq!(small_sample.len(), 5); + assert_eq!(large_sample.len(), vals.len()); + // no randomization happens when amount >= len + assert_eq!(large_sample, vals.iter().collect::<Vec<_>>()); + + assert!(small_sample + .iter() + .all(|e| { **e >= min_val && **e <= max_val })); + } + + #[test] + #[cfg(feature = "alloc")] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_weighted() { + let mut r = crate::test::rng(406); + const N_REPS: u32 = 3000; + let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; + let total_weight = weights.iter().sum::<u32>() as f32; + + let verify = |result: [i32; 14]| { + for (i, count) in result.iter().enumerate() { + let exp = (weights[i] * N_REPS) as f32 / total_weight; + let mut err = (*count as f32 - exp).abs(); + if err != 0.0 { + err /= exp; + } + assert!(err <= 0.25); + } + }; + + // choose_weighted + fn get_weight<T>(item: &(u32, T)) -> u32 { + item.0 + } + let mut chosen = [0i32; 14]; + let mut items = [(0u32, 0usize); 14]; // (weight, index) + for (i, item) in items.iter_mut().enumerate() { + *item = (weights[i], i); + } + for _ in 0..N_REPS { + let item = items.choose_weighted(&mut r, get_weight).unwrap(); + chosen[item.1] += 1; + } + verify(chosen); + + // choose_weighted_mut + let mut items = [(0u32, 0i32); 14]; // (weight, count) + for (i, item) in items.iter_mut().enumerate() { + *item = (weights[i], 0); + } + for _ in 0..N_REPS { + items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; + } + for (ch, item) in chosen.iter_mut().zip(items.iter()) { + *ch = item.1; + } + verify(chosen); + + // Check error cases + let empty_slice = &mut [10][0..0]; + assert_eq!( + empty_slice.choose_weighted(&mut r, |_| 1), + Err(WeightedError::NoItem) + ); + assert_eq!( + empty_slice.choose_weighted_mut(&mut r, |_| 1), + Err(WeightedError::NoItem) + ); + assert_eq!( + ['x'].choose_weighted_mut(&mut r, |_| 0), + Err(WeightedError::AllWeightsZero) + ); + assert_eq!( + [0, -1].choose_weighted_mut(&mut r, |x| *x), + Err(WeightedError::InvalidWeight) + ); + assert_eq!( + [-1, 0].choose_weighted_mut(&mut r, |x| *x), + Err(WeightedError::InvalidWeight) + ); + } +} |