diff options
Diffstat (limited to 'vendor/regex-automata/src/dfa.rs')
-rw-r--r-- | vendor/regex-automata/src/dfa.rs | 363 |
1 files changed, 0 insertions, 363 deletions
diff --git a/vendor/regex-automata/src/dfa.rs b/vendor/regex-automata/src/dfa.rs deleted file mode 100644 index 43de3461f..000000000 --- a/vendor/regex-automata/src/dfa.rs +++ /dev/null @@ -1,363 +0,0 @@ -use state_id::StateID; - -/// A trait describing the interface of a deterministic finite automaton (DFA). -/// -/// Every DFA has exactly one start state and at least one dead state (which -/// may be the same, as in the case of an empty DFA). In all cases, a state -/// identifier of `0` must be a dead state such that `DFA::is_dead_state(0)` -/// always returns `true`. -/// -/// Every DFA also has zero or more match states, such that -/// `DFA::is_match_state(id)` returns `true` if and only if `id` corresponds to -/// a match state. -/// -/// In general, users of this trait likely will only need to use the search -/// routines such as `is_match`, `shortest_match`, `find` or `rfind`. The other -/// methods are lower level and are used for walking the transitions of a DFA -/// manually. In particular, the aforementioned search routines are implemented -/// generically in terms of the lower level transition walking routines. -pub trait DFA { - /// The representation used for state identifiers in this DFA. - /// - /// Typically, this is one of `u8`, `u16`, `u32`, `u64` or `usize`. - type ID: StateID; - - /// Return the identifier of this DFA's start state. - fn start_state(&self) -> Self::ID; - - /// Returns true if and only if the given identifier corresponds to a match - /// state. - fn is_match_state(&self, id: Self::ID) -> bool; - - /// Returns true if and only if the given identifier corresponds to a dead - /// state. When a DFA enters a dead state, it is impossible to leave and - /// thus can never lead to a match. - fn is_dead_state(&self, id: Self::ID) -> bool; - - /// Returns true if and only if the given identifier corresponds to either - /// a dead state or a match state, such that one of `is_match_state(id)` - /// or `is_dead_state(id)` must return true. - /// - /// Depending on the implementation of the DFA, this routine can be used - /// to save a branch in the core matching loop. Nevertheless, - /// `is_match_state(id) || is_dead_state(id)` is always a valid - /// implementation. - fn is_match_or_dead_state(&self, id: Self::ID) -> bool; - - /// Returns true if and only if this DFA is anchored. - /// - /// When a DFA is anchored, it is only allowed to report matches that - /// start at index `0`. - fn is_anchored(&self) -> bool; - - /// Given the current state that this DFA is in and the next input byte, - /// this method returns the identifier of the next state. The identifier - /// returned is always valid, but it may correspond to a dead state. - fn next_state(&self, current: Self::ID, input: u8) -> Self::ID; - - /// Like `next_state`, but its implementation may look up the next state - /// without memory safety checks such as bounds checks. As such, callers - /// must ensure that the given identifier corresponds to a valid DFA - /// state. Implementors must, in turn, ensure that this routine is safe - /// for all valid state identifiers and for all possible `u8` values. - unsafe fn next_state_unchecked( - &self, - current: Self::ID, - input: u8, - ) -> Self::ID; - - /// Returns true if and only if the given bytes match this DFA. - /// - /// This routine may short circuit if it knows that scanning future input - /// will never lead to a different result. In particular, if a DFA enters - /// a match state or a dead state, then this routine will return `true` or - /// `false`, respectively, without inspecting any future input. - /// - /// # Example - /// - /// This example shows how to use this method with a - /// [`DenseDFA`](enum.DenseDFA.html). - /// - /// ``` - /// use regex_automata::{DFA, DenseDFA}; - /// - /// # fn example() -> Result<(), regex_automata::Error> { - /// let dfa = DenseDFA::new("foo[0-9]+bar")?; - /// assert_eq!(true, dfa.is_match(b"foo12345bar")); - /// assert_eq!(false, dfa.is_match(b"foobar")); - /// # Ok(()) }; example().unwrap() - /// ``` - #[inline] - fn is_match(&self, bytes: &[u8]) -> bool { - self.is_match_at(bytes, 0) - } - - /// Returns the first position at which a match is found. - /// - /// This routine stops scanning input in precisely the same circumstances - /// as `is_match`. The key difference is that this routine returns the - /// position at which it stopped scanning input if and only if a match - /// was found. If no match is found, then `None` is returned. - /// - /// # Example - /// - /// This example shows how to use this method with a - /// [`DenseDFA`](enum.DenseDFA.html). - /// - /// ``` - /// use regex_automata::{DFA, DenseDFA}; - /// - /// # fn example() -> Result<(), regex_automata::Error> { - /// let dfa = DenseDFA::new("foo[0-9]+")?; - /// assert_eq!(Some(4), dfa.shortest_match(b"foo12345")); - /// - /// // Normally, the end of the leftmost first match here would be 3, - /// // but the shortest match semantics detect a match earlier. - /// let dfa = DenseDFA::new("abc|a")?; - /// assert_eq!(Some(1), dfa.shortest_match(b"abc")); - /// # Ok(()) }; example().unwrap() - /// ``` - #[inline] - fn shortest_match(&self, bytes: &[u8]) -> Option<usize> { - self.shortest_match_at(bytes, 0) - } - - /// Returns the end offset of the longest match. If no match exists, - /// then `None` is returned. - /// - /// Implementors of this trait are not required to implement any particular - /// match semantics (such as leftmost-first), which are instead manifest in - /// the DFA's topology itself. - /// - /// In particular, this method must continue searching even after it - /// enters a match state. The search should only terminate once it has - /// reached the end of the input or when it has entered a dead state. Upon - /// termination, the position of the last byte seen while still in a match - /// state is returned. - /// - /// # Example - /// - /// This example shows how to use this method with a - /// [`DenseDFA`](enum.DenseDFA.html). By default, a dense DFA uses - /// "leftmost first" match semantics. - /// - /// Leftmost first match semantics corresponds to the match with the - /// smallest starting offset, but where the end offset is determined by - /// preferring earlier branches in the original regular expression. For - /// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam` - /// will match `Samwise` in `Samwise`. - /// - /// Generally speaking, the "leftmost first" match is how most backtracking - /// regular expressions tend to work. This is in contrast to POSIX-style - /// regular expressions that yield "leftmost longest" matches. Namely, - /// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using - /// leftmost longest semantics. - /// - /// ``` - /// use regex_automata::{DFA, DenseDFA}; - /// - /// # fn example() -> Result<(), regex_automata::Error> { - /// let dfa = DenseDFA::new("foo[0-9]+")?; - /// assert_eq!(Some(8), dfa.find(b"foo12345")); - /// - /// // Even though a match is found after reading the first byte (`a`), - /// // the leftmost first match semantics demand that we find the earliest - /// // match that prefers earlier parts of the pattern over latter parts. - /// let dfa = DenseDFA::new("abc|a")?; - /// assert_eq!(Some(3), dfa.find(b"abc")); - /// # Ok(()) }; example().unwrap() - /// ``` - #[inline] - fn find(&self, bytes: &[u8]) -> Option<usize> { - self.find_at(bytes, 0) - } - - /// Returns the start offset of the longest match in reverse, by searching - /// from the end of the input towards the start of the input. If no match - /// exists, then `None` is returned. In other words, this has the same - /// match semantics as `find`, but in reverse. - /// - /// # Example - /// - /// This example shows how to use this method with a - /// [`DenseDFA`](enum.DenseDFA.html). In particular, this routine - /// is principally useful when used in conjunction with the - /// [`dense::Builder::reverse`](dense/struct.Builder.html#method.reverse) - /// configuration knob. In general, it's unlikely to be correct to use both - /// `find` and `rfind` with the same DFA since any particular DFA will only - /// support searching in one direction. - /// - /// ``` - /// use regex_automata::{dense, DFA}; - /// - /// # fn example() -> Result<(), regex_automata::Error> { - /// let dfa = dense::Builder::new().reverse(true).build("foo[0-9]+")?; - /// assert_eq!(Some(0), dfa.rfind(b"foo12345")); - /// # Ok(()) }; example().unwrap() - /// ``` - #[inline] - fn rfind(&self, bytes: &[u8]) -> Option<usize> { - self.rfind_at(bytes, bytes.len()) - } - - /// Returns the same as `is_match`, but starts the search at the given - /// offset. - /// - /// The significance of the starting point is that it takes the surrounding - /// context into consideration. For example, if the DFA is anchored, then - /// a match can only occur when `start == 0`. - #[inline] - fn is_match_at(&self, bytes: &[u8], start: usize) -> bool { - if self.is_anchored() && start > 0 { - return false; - } - - let mut state = self.start_state(); - if self.is_match_or_dead_state(state) { - return self.is_match_state(state); - } - for &b in bytes[start..].iter() { - state = unsafe { self.next_state_unchecked(state, b) }; - if self.is_match_or_dead_state(state) { - return self.is_match_state(state); - } - } - false - } - - /// Returns the same as `shortest_match`, but starts the search at the - /// given offset. - /// - /// The significance of the starting point is that it takes the surrounding - /// context into consideration. For example, if the DFA is anchored, then - /// a match can only occur when `start == 0`. - #[inline] - fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> { - if self.is_anchored() && start > 0 { - return None; - } - - let mut state = self.start_state(); - if self.is_match_or_dead_state(state) { - return if self.is_dead_state(state) { None } else { Some(start) }; - } - for (i, &b) in bytes[start..].iter().enumerate() { - state = unsafe { self.next_state_unchecked(state, b) }; - if self.is_match_or_dead_state(state) { - return if self.is_dead_state(state) { - None - } else { - Some(start + i + 1) - }; - } - } - None - } - - /// Returns the same as `find`, but starts the search at the given - /// offset. - /// - /// The significance of the starting point is that it takes the surrounding - /// context into consideration. For example, if the DFA is anchored, then - /// a match can only occur when `start == 0`. - #[inline] - fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> { - if self.is_anchored() && start > 0 { - return None; - } - - let mut state = self.start_state(); - let mut last_match = if self.is_dead_state(state) { - return None; - } else if self.is_match_state(state) { - Some(start) - } else { - None - }; - for (i, &b) in bytes[start..].iter().enumerate() { - state = unsafe { self.next_state_unchecked(state, b) }; - if self.is_match_or_dead_state(state) { - if self.is_dead_state(state) { - return last_match; - } - last_match = Some(start + i + 1); - } - } - last_match - } - - /// Returns the same as `rfind`, but starts the search at the given - /// offset. - /// - /// The significance of the starting point is that it takes the surrounding - /// context into consideration. For example, if the DFA is anchored, then - /// a match can only occur when `start == bytes.len()`. - #[inline(never)] - fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> { - if self.is_anchored() && start < bytes.len() { - return None; - } - - let mut state = self.start_state(); - let mut last_match = if self.is_dead_state(state) { - return None; - } else if self.is_match_state(state) { - Some(start) - } else { - None - }; - for (i, &b) in bytes[..start].iter().enumerate().rev() { - state = unsafe { self.next_state_unchecked(state, b) }; - if self.is_match_or_dead_state(state) { - if self.is_dead_state(state) { - return last_match; - } - last_match = Some(i); - } - } - last_match - } -} - -impl<'a, T: DFA> DFA for &'a T { - type ID = T::ID; - - #[inline] - fn start_state(&self) -> Self::ID { - (**self).start_state() - } - - #[inline] - fn is_match_state(&self, id: Self::ID) -> bool { - (**self).is_match_state(id) - } - - #[inline] - fn is_match_or_dead_state(&self, id: Self::ID) -> bool { - (**self).is_match_or_dead_state(id) - } - - #[inline] - fn is_dead_state(&self, id: Self::ID) -> bool { - (**self).is_dead_state(id) - } - - #[inline] - fn is_anchored(&self) -> bool { - (**self).is_anchored() - } - - #[inline] - fn next_state(&self, current: Self::ID, input: u8) -> Self::ID { - (**self).next_state(current, input) - } - - #[inline] - unsafe fn next_state_unchecked( - &self, - current: Self::ID, - input: u8, - ) -> Self::ID { - (**self).next_state_unchecked(current, input) - } -} |