summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/dfa.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/regex-automata/src/dfa.rs')
-rw-r--r--vendor/regex-automata/src/dfa.rs363
1 files changed, 0 insertions, 363 deletions
diff --git a/vendor/regex-automata/src/dfa.rs b/vendor/regex-automata/src/dfa.rs
deleted file mode 100644
index 43de3461f..000000000
--- a/vendor/regex-automata/src/dfa.rs
+++ /dev/null
@@ -1,363 +0,0 @@
-use state_id::StateID;
-
-/// A trait describing the interface of a deterministic finite automaton (DFA).
-///
-/// Every DFA has exactly one start state and at least one dead state (which
-/// may be the same, as in the case of an empty DFA). In all cases, a state
-/// identifier of `0` must be a dead state such that `DFA::is_dead_state(0)`
-/// always returns `true`.
-///
-/// Every DFA also has zero or more match states, such that
-/// `DFA::is_match_state(id)` returns `true` if and only if `id` corresponds to
-/// a match state.
-///
-/// In general, users of this trait likely will only need to use the search
-/// routines such as `is_match`, `shortest_match`, `find` or `rfind`. The other
-/// methods are lower level and are used for walking the transitions of a DFA
-/// manually. In particular, the aforementioned search routines are implemented
-/// generically in terms of the lower level transition walking routines.
-pub trait DFA {
- /// The representation used for state identifiers in this DFA.
- ///
- /// Typically, this is one of `u8`, `u16`, `u32`, `u64` or `usize`.
- type ID: StateID;
-
- /// Return the identifier of this DFA's start state.
- fn start_state(&self) -> Self::ID;
-
- /// Returns true if and only if the given identifier corresponds to a match
- /// state.
- fn is_match_state(&self, id: Self::ID) -> bool;
-
- /// Returns true if and only if the given identifier corresponds to a dead
- /// state. When a DFA enters a dead state, it is impossible to leave and
- /// thus can never lead to a match.
- fn is_dead_state(&self, id: Self::ID) -> bool;
-
- /// Returns true if and only if the given identifier corresponds to either
- /// a dead state or a match state, such that one of `is_match_state(id)`
- /// or `is_dead_state(id)` must return true.
- ///
- /// Depending on the implementation of the DFA, this routine can be used
- /// to save a branch in the core matching loop. Nevertheless,
- /// `is_match_state(id) || is_dead_state(id)` is always a valid
- /// implementation.
- fn is_match_or_dead_state(&self, id: Self::ID) -> bool;
-
- /// Returns true if and only if this DFA is anchored.
- ///
- /// When a DFA is anchored, it is only allowed to report matches that
- /// start at index `0`.
- fn is_anchored(&self) -> bool;
-
- /// Given the current state that this DFA is in and the next input byte,
- /// this method returns the identifier of the next state. The identifier
- /// returned is always valid, but it may correspond to a dead state.
- fn next_state(&self, current: Self::ID, input: u8) -> Self::ID;
-
- /// Like `next_state`, but its implementation may look up the next state
- /// without memory safety checks such as bounds checks. As such, callers
- /// must ensure that the given identifier corresponds to a valid DFA
- /// state. Implementors must, in turn, ensure that this routine is safe
- /// for all valid state identifiers and for all possible `u8` values.
- unsafe fn next_state_unchecked(
- &self,
- current: Self::ID,
- input: u8,
- ) -> Self::ID;
-
- /// Returns true if and only if the given bytes match this DFA.
- ///
- /// This routine may short circuit if it knows that scanning future input
- /// will never lead to a different result. In particular, if a DFA enters
- /// a match state or a dead state, then this routine will return `true` or
- /// `false`, respectively, without inspecting any future input.
- ///
- /// # Example
- ///
- /// This example shows how to use this method with a
- /// [`DenseDFA`](enum.DenseDFA.html).
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dfa = DenseDFA::new("foo[0-9]+bar")?;
- /// assert_eq!(true, dfa.is_match(b"foo12345bar"));
- /// assert_eq!(false, dfa.is_match(b"foobar"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- #[inline]
- fn is_match(&self, bytes: &[u8]) -> bool {
- self.is_match_at(bytes, 0)
- }
-
- /// Returns the first position at which a match is found.
- ///
- /// This routine stops scanning input in precisely the same circumstances
- /// as `is_match`. The key difference is that this routine returns the
- /// position at which it stopped scanning input if and only if a match
- /// was found. If no match is found, then `None` is returned.
- ///
- /// # Example
- ///
- /// This example shows how to use this method with a
- /// [`DenseDFA`](enum.DenseDFA.html).
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dfa = DenseDFA::new("foo[0-9]+")?;
- /// assert_eq!(Some(4), dfa.shortest_match(b"foo12345"));
- ///
- /// // Normally, the end of the leftmost first match here would be 3,
- /// // but the shortest match semantics detect a match earlier.
- /// let dfa = DenseDFA::new("abc|a")?;
- /// assert_eq!(Some(1), dfa.shortest_match(b"abc"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- #[inline]
- fn shortest_match(&self, bytes: &[u8]) -> Option<usize> {
- self.shortest_match_at(bytes, 0)
- }
-
- /// Returns the end offset of the longest match. If no match exists,
- /// then `None` is returned.
- ///
- /// Implementors of this trait are not required to implement any particular
- /// match semantics (such as leftmost-first), which are instead manifest in
- /// the DFA's topology itself.
- ///
- /// In particular, this method must continue searching even after it
- /// enters a match state. The search should only terminate once it has
- /// reached the end of the input or when it has entered a dead state. Upon
- /// termination, the position of the last byte seen while still in a match
- /// state is returned.
- ///
- /// # Example
- ///
- /// This example shows how to use this method with a
- /// [`DenseDFA`](enum.DenseDFA.html). By default, a dense DFA uses
- /// "leftmost first" match semantics.
- ///
- /// Leftmost first match semantics corresponds to the match with the
- /// smallest starting offset, but where the end offset is determined by
- /// preferring earlier branches in the original regular expression. For
- /// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam`
- /// will match `Samwise` in `Samwise`.
- ///
- /// Generally speaking, the "leftmost first" match is how most backtracking
- /// regular expressions tend to work. This is in contrast to POSIX-style
- /// regular expressions that yield "leftmost longest" matches. Namely,
- /// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
- /// leftmost longest semantics.
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dfa = DenseDFA::new("foo[0-9]+")?;
- /// assert_eq!(Some(8), dfa.find(b"foo12345"));
- ///
- /// // Even though a match is found after reading the first byte (`a`),
- /// // the leftmost first match semantics demand that we find the earliest
- /// // match that prefers earlier parts of the pattern over latter parts.
- /// let dfa = DenseDFA::new("abc|a")?;
- /// assert_eq!(Some(3), dfa.find(b"abc"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- #[inline]
- fn find(&self, bytes: &[u8]) -> Option<usize> {
- self.find_at(bytes, 0)
- }
-
- /// Returns the start offset of the longest match in reverse, by searching
- /// from the end of the input towards the start of the input. If no match
- /// exists, then `None` is returned. In other words, this has the same
- /// match semantics as `find`, but in reverse.
- ///
- /// # Example
- ///
- /// This example shows how to use this method with a
- /// [`DenseDFA`](enum.DenseDFA.html). In particular, this routine
- /// is principally useful when used in conjunction with the
- /// [`dense::Builder::reverse`](dense/struct.Builder.html#method.reverse)
- /// configuration knob. In general, it's unlikely to be correct to use both
- /// `find` and `rfind` with the same DFA since any particular DFA will only
- /// support searching in one direction.
- ///
- /// ```
- /// use regex_automata::{dense, DFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dfa = dense::Builder::new().reverse(true).build("foo[0-9]+")?;
- /// assert_eq!(Some(0), dfa.rfind(b"foo12345"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- #[inline]
- fn rfind(&self, bytes: &[u8]) -> Option<usize> {
- self.rfind_at(bytes, bytes.len())
- }
-
- /// Returns the same as `is_match`, but starts the search at the given
- /// offset.
- ///
- /// The significance of the starting point is that it takes the surrounding
- /// context into consideration. For example, if the DFA is anchored, then
- /// a match can only occur when `start == 0`.
- #[inline]
- fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
- if self.is_anchored() && start > 0 {
- return false;
- }
-
- let mut state = self.start_state();
- if self.is_match_or_dead_state(state) {
- return self.is_match_state(state);
- }
- for &b in bytes[start..].iter() {
- state = unsafe { self.next_state_unchecked(state, b) };
- if self.is_match_or_dead_state(state) {
- return self.is_match_state(state);
- }
- }
- false
- }
-
- /// Returns the same as `shortest_match`, but starts the search at the
- /// given offset.
- ///
- /// The significance of the starting point is that it takes the surrounding
- /// context into consideration. For example, if the DFA is anchored, then
- /// a match can only occur when `start == 0`.
- #[inline]
- fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
- if self.is_anchored() && start > 0 {
- return None;
- }
-
- let mut state = self.start_state();
- if self.is_match_or_dead_state(state) {
- return if self.is_dead_state(state) { None } else { Some(start) };
- }
- for (i, &b) in bytes[start..].iter().enumerate() {
- state = unsafe { self.next_state_unchecked(state, b) };
- if self.is_match_or_dead_state(state) {
- return if self.is_dead_state(state) {
- None
- } else {
- Some(start + i + 1)
- };
- }
- }
- None
- }
-
- /// Returns the same as `find`, but starts the search at the given
- /// offset.
- ///
- /// The significance of the starting point is that it takes the surrounding
- /// context into consideration. For example, if the DFA is anchored, then
- /// a match can only occur when `start == 0`.
- #[inline]
- fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
- if self.is_anchored() && start > 0 {
- return None;
- }
-
- let mut state = self.start_state();
- let mut last_match = if self.is_dead_state(state) {
- return None;
- } else if self.is_match_state(state) {
- Some(start)
- } else {
- None
- };
- for (i, &b) in bytes[start..].iter().enumerate() {
- state = unsafe { self.next_state_unchecked(state, b) };
- if self.is_match_or_dead_state(state) {
- if self.is_dead_state(state) {
- return last_match;
- }
- last_match = Some(start + i + 1);
- }
- }
- last_match
- }
-
- /// Returns the same as `rfind`, but starts the search at the given
- /// offset.
- ///
- /// The significance of the starting point is that it takes the surrounding
- /// context into consideration. For example, if the DFA is anchored, then
- /// a match can only occur when `start == bytes.len()`.
- #[inline(never)]
- fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
- if self.is_anchored() && start < bytes.len() {
- return None;
- }
-
- let mut state = self.start_state();
- let mut last_match = if self.is_dead_state(state) {
- return None;
- } else if self.is_match_state(state) {
- Some(start)
- } else {
- None
- };
- for (i, &b) in bytes[..start].iter().enumerate().rev() {
- state = unsafe { self.next_state_unchecked(state, b) };
- if self.is_match_or_dead_state(state) {
- if self.is_dead_state(state) {
- return last_match;
- }
- last_match = Some(i);
- }
- }
- last_match
- }
-}
-
-impl<'a, T: DFA> DFA for &'a T {
- type ID = T::ID;
-
- #[inline]
- fn start_state(&self) -> Self::ID {
- (**self).start_state()
- }
-
- #[inline]
- fn is_match_state(&self, id: Self::ID) -> bool {
- (**self).is_match_state(id)
- }
-
- #[inline]
- fn is_match_or_dead_state(&self, id: Self::ID) -> bool {
- (**self).is_match_or_dead_state(id)
- }
-
- #[inline]
- fn is_dead_state(&self, id: Self::ID) -> bool {
- (**self).is_dead_state(id)
- }
-
- #[inline]
- fn is_anchored(&self) -> bool {
- (**self).is_anchored()
- }
-
- #[inline]
- fn next_state(&self, current: Self::ID, input: u8) -> Self::ID {
- (**self).next_state(current, input)
- }
-
- #[inline]
- unsafe fn next_state_unchecked(
- &self,
- current: Self::ID,
- input: u8,
- ) -> Self::ID {
- (**self).next_state_unchecked(current, input)
- }
-}