summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/dfa.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/regex-automata/src/dfa.rs')
-rw-r--r--vendor/regex-automata/src/dfa.rs363
1 files changed, 363 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/dfa.rs b/vendor/regex-automata/src/dfa.rs
new file mode 100644
index 000000000..43de3461f
--- /dev/null
+++ b/vendor/regex-automata/src/dfa.rs
@@ -0,0 +1,363 @@
+use state_id::StateID;
+
+/// A trait describing the interface of a deterministic finite automaton (DFA).
+///
+/// Every DFA has exactly one start state and at least one dead state (which
+/// may be the same, as in the case of an empty DFA). In all cases, a state
+/// identifier of `0` must be a dead state such that `DFA::is_dead_state(0)`
+/// always returns `true`.
+///
+/// Every DFA also has zero or more match states, such that
+/// `DFA::is_match_state(id)` returns `true` if and only if `id` corresponds to
+/// a match state.
+///
+/// In general, users of this trait likely will only need to use the search
+/// routines such as `is_match`, `shortest_match`, `find` or `rfind`. The other
+/// methods are lower level and are used for walking the transitions of a DFA
+/// manually. In particular, the aforementioned search routines are implemented
+/// generically in terms of the lower level transition walking routines.
+pub trait DFA {
+ /// The representation used for state identifiers in this DFA.
+ ///
+ /// Typically, this is one of `u8`, `u16`, `u32`, `u64` or `usize`.
+ type ID: StateID;
+
+ /// Return the identifier of this DFA's start state.
+ fn start_state(&self) -> Self::ID;
+
+ /// Returns true if and only if the given identifier corresponds to a match
+ /// state.
+ fn is_match_state(&self, id: Self::ID) -> bool;
+
+ /// Returns true if and only if the given identifier corresponds to a dead
+ /// state. When a DFA enters a dead state, it is impossible to leave and
+ /// thus can never lead to a match.
+ fn is_dead_state(&self, id: Self::ID) -> bool;
+
+ /// Returns true if and only if the given identifier corresponds to either
+ /// a dead state or a match state, such that one of `is_match_state(id)`
+ /// or `is_dead_state(id)` must return true.
+ ///
+ /// Depending on the implementation of the DFA, this routine can be used
+ /// to save a branch in the core matching loop. Nevertheless,
+ /// `is_match_state(id) || is_dead_state(id)` is always a valid
+ /// implementation.
+ fn is_match_or_dead_state(&self, id: Self::ID) -> bool;
+
+ /// Returns true if and only if this DFA is anchored.
+ ///
+ /// When a DFA is anchored, it is only allowed to report matches that
+ /// start at index `0`.
+ fn is_anchored(&self) -> bool;
+
+ /// Given the current state that this DFA is in and the next input byte,
+ /// this method returns the identifier of the next state. The identifier
+ /// returned is always valid, but it may correspond to a dead state.
+ fn next_state(&self, current: Self::ID, input: u8) -> Self::ID;
+
+ /// Like `next_state`, but its implementation may look up the next state
+ /// without memory safety checks such as bounds checks. As such, callers
+ /// must ensure that the given identifier corresponds to a valid DFA
+ /// state. Implementors must, in turn, ensure that this routine is safe
+ /// for all valid state identifiers and for all possible `u8` values.
+ unsafe fn next_state_unchecked(
+ &self,
+ current: Self::ID,
+ input: u8,
+ ) -> Self::ID;
+
+ /// Returns true if and only if the given bytes match this DFA.
+ ///
+ /// This routine may short circuit if it knows that scanning future input
+ /// will never lead to a different result. In particular, if a DFA enters
+ /// a match state or a dead state, then this routine will return `true` or
+ /// `false`, respectively, without inspecting any future input.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use this method with a
+ /// [`DenseDFA`](enum.DenseDFA.html).
+ ///
+ /// ```
+ /// use regex_automata::{DFA, DenseDFA};
+ ///
+ /// # fn example() -> Result<(), regex_automata::Error> {
+ /// let dfa = DenseDFA::new("foo[0-9]+bar")?;
+ /// assert_eq!(true, dfa.is_match(b"foo12345bar"));
+ /// assert_eq!(false, dfa.is_match(b"foobar"));
+ /// # Ok(()) }; example().unwrap()
+ /// ```
+ #[inline]
+ fn is_match(&self, bytes: &[u8]) -> bool {
+ self.is_match_at(bytes, 0)
+ }
+
+ /// Returns the first position at which a match is found.
+ ///
+ /// This routine stops scanning input in precisely the same circumstances
+ /// as `is_match`. The key difference is that this routine returns the
+ /// position at which it stopped scanning input if and only if a match
+ /// was found. If no match is found, then `None` is returned.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use this method with a
+ /// [`DenseDFA`](enum.DenseDFA.html).
+ ///
+ /// ```
+ /// use regex_automata::{DFA, DenseDFA};
+ ///
+ /// # fn example() -> Result<(), regex_automata::Error> {
+ /// let dfa = DenseDFA::new("foo[0-9]+")?;
+ /// assert_eq!(Some(4), dfa.shortest_match(b"foo12345"));
+ ///
+ /// // Normally, the end of the leftmost first match here would be 3,
+ /// // but the shortest match semantics detect a match earlier.
+ /// let dfa = DenseDFA::new("abc|a")?;
+ /// assert_eq!(Some(1), dfa.shortest_match(b"abc"));
+ /// # Ok(()) }; example().unwrap()
+ /// ```
+ #[inline]
+ fn shortest_match(&self, bytes: &[u8]) -> Option<usize> {
+ self.shortest_match_at(bytes, 0)
+ }
+
+ /// Returns the end offset of the longest match. If no match exists,
+ /// then `None` is returned.
+ ///
+ /// Implementors of this trait are not required to implement any particular
+ /// match semantics (such as leftmost-first), which are instead manifest in
+ /// the DFA's topology itself.
+ ///
+ /// In particular, this method must continue searching even after it
+ /// enters a match state. The search should only terminate once it has
+ /// reached the end of the input or when it has entered a dead state. Upon
+ /// termination, the position of the last byte seen while still in a match
+ /// state is returned.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use this method with a
+ /// [`DenseDFA`](enum.DenseDFA.html). By default, a dense DFA uses
+ /// "leftmost first" match semantics.
+ ///
+ /// Leftmost first match semantics corresponds to the match with the
+ /// smallest starting offset, but where the end offset is determined by
+ /// preferring earlier branches in the original regular expression. For
+ /// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam`
+ /// will match `Samwise` in `Samwise`.
+ ///
+ /// Generally speaking, the "leftmost first" match is how most backtracking
+ /// regular expressions tend to work. This is in contrast to POSIX-style
+ /// regular expressions that yield "leftmost longest" matches. Namely,
+ /// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
+ /// leftmost longest semantics.
+ ///
+ /// ```
+ /// use regex_automata::{DFA, DenseDFA};
+ ///
+ /// # fn example() -> Result<(), regex_automata::Error> {
+ /// let dfa = DenseDFA::new("foo[0-9]+")?;
+ /// assert_eq!(Some(8), dfa.find(b"foo12345"));
+ ///
+ /// // Even though a match is found after reading the first byte (`a`),
+ /// // the leftmost first match semantics demand that we find the earliest
+ /// // match that prefers earlier parts of the pattern over latter parts.
+ /// let dfa = DenseDFA::new("abc|a")?;
+ /// assert_eq!(Some(3), dfa.find(b"abc"));
+ /// # Ok(()) }; example().unwrap()
+ /// ```
+ #[inline]
+ fn find(&self, bytes: &[u8]) -> Option<usize> {
+ self.find_at(bytes, 0)
+ }
+
+ /// Returns the start offset of the longest match in reverse, by searching
+ /// from the end of the input towards the start of the input. If no match
+ /// exists, then `None` is returned. In other words, this has the same
+ /// match semantics as `find`, but in reverse.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use this method with a
+ /// [`DenseDFA`](enum.DenseDFA.html). In particular, this routine
+ /// is principally useful when used in conjunction with the
+ /// [`dense::Builder::reverse`](dense/struct.Builder.html#method.reverse)
+ /// configuration knob. In general, it's unlikely to be correct to use both
+ /// `find` and `rfind` with the same DFA since any particular DFA will only
+ /// support searching in one direction.
+ ///
+ /// ```
+ /// use regex_automata::{dense, DFA};
+ ///
+ /// # fn example() -> Result<(), regex_automata::Error> {
+ /// let dfa = dense::Builder::new().reverse(true).build("foo[0-9]+")?;
+ /// assert_eq!(Some(0), dfa.rfind(b"foo12345"));
+ /// # Ok(()) }; example().unwrap()
+ /// ```
+ #[inline]
+ fn rfind(&self, bytes: &[u8]) -> Option<usize> {
+ self.rfind_at(bytes, bytes.len())
+ }
+
+ /// Returns the same as `is_match`, but starts the search at the given
+ /// offset.
+ ///
+ /// The significance of the starting point is that it takes the surrounding
+ /// context into consideration. For example, if the DFA is anchored, then
+ /// a match can only occur when `start == 0`.
+ #[inline]
+ fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
+ if self.is_anchored() && start > 0 {
+ return false;
+ }
+
+ let mut state = self.start_state();
+ if self.is_match_or_dead_state(state) {
+ return self.is_match_state(state);
+ }
+ for &b in bytes[start..].iter() {
+ state = unsafe { self.next_state_unchecked(state, b) };
+ if self.is_match_or_dead_state(state) {
+ return self.is_match_state(state);
+ }
+ }
+ false
+ }
+
+ /// Returns the same as `shortest_match`, but starts the search at the
+ /// given offset.
+ ///
+ /// The significance of the starting point is that it takes the surrounding
+ /// context into consideration. For example, if the DFA is anchored, then
+ /// a match can only occur when `start == 0`.
+ #[inline]
+ fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
+ if self.is_anchored() && start > 0 {
+ return None;
+ }
+
+ let mut state = self.start_state();
+ if self.is_match_or_dead_state(state) {
+ return if self.is_dead_state(state) { None } else { Some(start) };
+ }
+ for (i, &b) in bytes[start..].iter().enumerate() {
+ state = unsafe { self.next_state_unchecked(state, b) };
+ if self.is_match_or_dead_state(state) {
+ return if self.is_dead_state(state) {
+ None
+ } else {
+ Some(start + i + 1)
+ };
+ }
+ }
+ None
+ }
+
+ /// Returns the same as `find`, but starts the search at the given
+ /// offset.
+ ///
+ /// The significance of the starting point is that it takes the surrounding
+ /// context into consideration. For example, if the DFA is anchored, then
+ /// a match can only occur when `start == 0`.
+ #[inline]
+ fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
+ if self.is_anchored() && start > 0 {
+ return None;
+ }
+
+ let mut state = self.start_state();
+ let mut last_match = if self.is_dead_state(state) {
+ return None;
+ } else if self.is_match_state(state) {
+ Some(start)
+ } else {
+ None
+ };
+ for (i, &b) in bytes[start..].iter().enumerate() {
+ state = unsafe { self.next_state_unchecked(state, b) };
+ if self.is_match_or_dead_state(state) {
+ if self.is_dead_state(state) {
+ return last_match;
+ }
+ last_match = Some(start + i + 1);
+ }
+ }
+ last_match
+ }
+
+ /// Returns the same as `rfind`, but starts the search at the given
+ /// offset.
+ ///
+ /// The significance of the starting point is that it takes the surrounding
+ /// context into consideration. For example, if the DFA is anchored, then
+ /// a match can only occur when `start == bytes.len()`.
+ #[inline(never)]
+ fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
+ if self.is_anchored() && start < bytes.len() {
+ return None;
+ }
+
+ let mut state = self.start_state();
+ let mut last_match = if self.is_dead_state(state) {
+ return None;
+ } else if self.is_match_state(state) {
+ Some(start)
+ } else {
+ None
+ };
+ for (i, &b) in bytes[..start].iter().enumerate().rev() {
+ state = unsafe { self.next_state_unchecked(state, b) };
+ if self.is_match_or_dead_state(state) {
+ if self.is_dead_state(state) {
+ return last_match;
+ }
+ last_match = Some(i);
+ }
+ }
+ last_match
+ }
+}
+
+impl<'a, T: DFA> DFA for &'a T {
+ type ID = T::ID;
+
+ #[inline]
+ fn start_state(&self) -> Self::ID {
+ (**self).start_state()
+ }
+
+ #[inline]
+ fn is_match_state(&self, id: Self::ID) -> bool {
+ (**self).is_match_state(id)
+ }
+
+ #[inline]
+ fn is_match_or_dead_state(&self, id: Self::ID) -> bool {
+ (**self).is_match_or_dead_state(id)
+ }
+
+ #[inline]
+ fn is_dead_state(&self, id: Self::ID) -> bool {
+ (**self).is_dead_state(id)
+ }
+
+ #[inline]
+ fn is_anchored(&self) -> bool {
+ (**self).is_anchored()
+ }
+
+ #[inline]
+ fn next_state(&self, current: Self::ID, input: u8) -> Self::ID {
+ (**self).next_state(current, input)
+ }
+
+ #[inline]
+ unsafe fn next_state_unchecked(
+ &self,
+ current: Self::ID,
+ input: u8,
+ ) -> Self::ID {
+ (**self).next_state_unchecked(current, input)
+ }
+}