summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/hybrid/dfa.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/regex-automata/src/hybrid/dfa.rs')
-rw-r--r--vendor/regex-automata/src/hybrid/dfa.rs3817
1 files changed, 3817 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/hybrid/dfa.rs b/vendor/regex-automata/src/hybrid/dfa.rs
new file mode 100644
index 000000000..1fbce5f5f
--- /dev/null
+++ b/vendor/regex-automata/src/hybrid/dfa.rs
@@ -0,0 +1,3817 @@
+/*!
+Types and routines specific to lazy DFAs.
+
+This module is the home of [`hybrid::dfa::DFA`](DFA).
+
+This module also contains a [`hybrid::dfa::Builder`](Builder) and a
+[`hybrid::dfa::Config`](Config) for configuring and building a lazy DFA.
+*/
+
+use core::{borrow::Borrow, iter, mem::size_of};
+
+use alloc::{sync::Arc, vec::Vec};
+
+use crate::{
+ hybrid::{
+ error::{BuildError, CacheError},
+ id::{LazyStateID, LazyStateIDError, OverlappingState},
+ search,
+ },
+ nfa::thompson,
+ util::{
+ alphabet::{self, ByteClasses, ByteSet},
+ determinize::{self, State, StateBuilderEmpty, StateBuilderNFA},
+ id::{PatternID, StateID as NFAStateID},
+ matchtypes::{HalfMatch, MatchError, MatchKind},
+ prefilter,
+ sparse_set::SparseSets,
+ start::Start,
+ },
+};
+
+/// The mininum number of states that a lazy DFA's cache size must support.
+///
+/// This is checked at time of construction to ensure that at least some small
+/// number of states can fit in the given capacity allotment. If we can't fit
+/// at least this number of states, then the thinking is that it's pretty
+/// senseless to use the lazy DFA. More to the point, parts of the code do
+/// assume that the cache can fit at least some small number of states.
+const MIN_STATES: usize = 5;
+
+/// A hybrid NFA/DFA (also called a "lazy DFA") for regex searching.
+///
+/// A lazy DFA is a DFA that builds itself at search time. It otherwise has
+/// very similar characteristics as a [`dense::DFA`](crate::dfa::dense::DFA).
+/// Indeed, both support precisely the same regex features with precisely the
+/// same semantics.
+///
+/// Where as a `dense::DFA` must be completely built to handle any input before
+/// it may be used for search, a lazy DFA starts off effectively empty. During
+/// a search, a lazy DFA will build itself depending on whether it has already
+/// computed the next transition or not. If it has, then it looks a lot like
+/// a `dense::DFA` internally: it does a very fast table based access to find
+/// the next transition. Otherwise, if the state hasn't been computed, then it
+/// does determinization _for that specific transition_ to compute the next DFA
+/// state.
+///
+/// The main selling point of a lazy DFA is that, in practice, it has
+/// the performance profile of a `dense::DFA` without the weakness of it
+/// taking worst case exponential time to build. Indeed, for each byte of
+/// input, the lazy DFA will construct as most one new DFA state. Thus, a
+/// lazy DFA achieves worst case `O(mn)` time for regex search (where `m ~
+/// pattern.len()` and `n ~ haystack.len()`).
+///
+/// The main downsides of a lazy DFA are:
+///
+/// 1. It requires mutable "cache" space during search. This is where the
+/// transition table, among other things, is stored.
+/// 2. In pathological cases (e.g., if the cache is too small), it will run
+/// out of room and either require a bigger cache capacity or will repeatedly
+/// clear the cache and thus repeatedly regenerate DFA states. Overall, this
+/// will tend to be slower than a typical NFA simulation.
+///
+/// # Capabilities
+///
+/// Like a `dense::DFA`, a single lazy DFA fundamentally supports the following
+/// operations:
+///
+/// 1. Detection of a match.
+/// 2. Location of the end of a match.
+/// 3. In the case of a lazy DFA with multiple patterns, which pattern matched
+/// is reported as well.
+///
+/// A notable absence from the above list of capabilities is the location of
+/// the *start* of a match. In order to provide both the start and end of
+/// a match, *two* lazy DFAs are required. This functionality is provided by a
+/// [`Regex`](crate::hybrid::regex::Regex).
+///
+/// # Example
+///
+/// This shows how to build a lazy DFA with the default configuration and
+/// execute a search. Notice how, in contrast to a `dense::DFA`, we must create
+/// a cache and pass it to our search routine.
+///
+/// ```
+/// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+///
+/// let dfa = DFA::new("foo[0-9]+")?;
+/// let mut cache = dfa.create_cache();
+///
+/// let expected = Some(HalfMatch::must(0, 8));
+/// assert_eq!(expected, dfa.find_leftmost_fwd(&mut cache, b"foo12345")?);
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+#[derive(Clone, Debug)]
+pub struct DFA {
+ nfa: Arc<thompson::NFA>,
+ stride2: usize,
+ classes: ByteClasses,
+ quitset: ByteSet,
+ anchored: bool,
+ match_kind: MatchKind,
+ starts_for_each_pattern: bool,
+ cache_capacity: usize,
+ minimum_cache_clear_count: Option<usize>,
+}
+
+impl DFA {
+ /// Parse the given regular expression using a default configuration and
+ /// return the corresponding lazy DFA.
+ ///
+ /// If you want a non-default configuration, then use the [`Builder`] to
+ /// set your own configuration.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa = DFA::new("foo[0-9]+bar")?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let expected = HalfMatch::must(0, 11);
+ /// assert_eq!(
+ /// Some(expected),
+ /// dfa.find_leftmost_fwd(&mut cache, b"foo12345bar")?,
+ /// );
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn new(pattern: &str) -> Result<DFA, BuildError> {
+ DFA::builder().build(pattern)
+ }
+
+ /// Parse the given regular expressions using a default configuration and
+ /// return the corresponding lazy multi-DFA.
+ ///
+ /// If you want a non-default configuration, then use the [`Builder`] to
+ /// set your own configuration.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+"])?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let expected = HalfMatch::must(1, 3);
+ /// assert_eq!(
+ /// Some(expected),
+ /// dfa.find_leftmost_fwd(&mut cache, b"foo12345bar")?,
+ /// );
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<DFA, BuildError> {
+ DFA::builder().build_many(patterns)
+ }
+
+ /// Create a new lazy DFA that matches every input.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa = DFA::always_match()?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let expected = HalfMatch::must(0, 0);
+ /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(&mut cache, b"")?);
+ /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(&mut cache, b"foo")?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn always_match() -> Result<DFA, BuildError> {
+ let nfa = thompson::NFA::always_match();
+ Builder::new().build_from_nfa(Arc::new(nfa))
+ }
+
+ /// Create a new lazy DFA that never matches any input.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::hybrid::dfa::DFA;
+ ///
+ /// let dfa = DFA::never_match()?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// assert_eq!(None, dfa.find_leftmost_fwd(&mut cache, b"")?);
+ /// assert_eq!(None, dfa.find_leftmost_fwd(&mut cache, b"foo")?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn never_match() -> Result<DFA, BuildError> {
+ let nfa = thompson::NFA::never_match();
+ Builder::new().build_from_nfa(Arc::new(nfa))
+ }
+
+ /// Return a default configuration for a `DFA`.
+ ///
+ /// This is a convenience routine to avoid needing to import the `Config`
+ /// type when customizing the construction of a lazy DFA.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to build a lazy DFA that only executes searches
+ /// in anchored mode.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let re = DFA::builder()
+ /// .configure(DFA::config().anchored(true))
+ /// .build(r"[0-9]+")?;
+ /// let mut cache = re.create_cache();
+ ///
+ /// let haystack = "abc123xyz".as_bytes();
+ /// assert_eq!(None, re.find_leftmost_fwd(&mut cache, haystack)?);
+ /// assert_eq!(
+ /// Some(HalfMatch::must(0, 3)),
+ /// re.find_leftmost_fwd(&mut cache, &haystack[3..6])?,
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn config() -> Config {
+ Config::new()
+ }
+
+ /// Return a builder for configuring the construction of a `Regex`.
+ ///
+ /// This is a convenience routine to avoid needing to import the
+ /// [`Builder`] type in common cases.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use the builder to disable UTF-8 mode
+ /// everywhere for lazy DFAs. This includes disabling it for both the
+ /// concrete syntax (e.g., `.` matches any byte and Unicode character
+ /// classes like `\p{Letter}` are not allowed) and for the unanchored
+ /// search prefix. The latter enables the regex to match anywhere in a
+ /// sequence of arbitrary bytes. (Typically, the unanchored search prefix
+ /// will only permit matching valid UTF-8.)
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// hybrid::dfa::DFA,
+ /// nfa::thompson,
+ /// HalfMatch, SyntaxConfig,
+ /// };
+ ///
+ /// let re = DFA::builder()
+ /// .syntax(SyntaxConfig::new().utf8(false))
+ /// .thompson(thompson::Config::new().utf8(false))
+ /// .build(r"foo(?-u:[^b])ar.*")?;
+ /// let mut cache = re.create_cache();
+ ///
+ /// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
+ /// let expected = Some(HalfMatch::must(0, 9));
+ /// let got = re.find_leftmost_fwd(&mut cache, haystack)?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn builder() -> Builder {
+ Builder::new()
+ }
+
+ /// Create a new cache for this lazy DFA.
+ ///
+ /// The cache returned should only be used for searches for this
+ /// lazy DFA. If you want to reuse the cache for another DFA, then
+ /// you must call [`Cache::reset`] with that DFA (or, equivalently,
+ /// [`DFA::reset_cache`]).
+ pub fn create_cache(&self) -> Cache {
+ Cache::new(self)
+ }
+
+ /// Reset the given cache such that it can be used for searching with the
+ /// this lazy DFA (and only this DFA).
+ ///
+ /// A cache reset permits reusing memory already allocated in this cache
+ /// with a different lazy DFA.
+ ///
+ /// Resetting a cache sets its "clear count" to 0. This is relevant if the
+ /// lazy DFA has been configured to "give up" after it has cleared the
+ /// cache a certain number of times.
+ ///
+ /// Any lazy state ID generated by the cache prior to resetting it is
+ /// invalid after the reset.
+ ///
+ /// # Example
+ ///
+ /// This shows how to re-purpose a cache for use with a different DFA.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa1 = DFA::new(r"\w")?;
+ /// let dfa2 = DFA::new(r"\W")?;
+ ///
+ /// let mut cache = dfa1.create_cache();
+ /// assert_eq!(
+ /// Some(HalfMatch::must(0, 2)),
+ /// dfa1.find_leftmost_fwd(&mut cache, "Δ".as_bytes())?,
+ /// );
+ ///
+ /// // Using 'cache' with dfa2 is not allowed. It may result in panics or
+ /// // incorrect results. In order to re-purpose the cache, we must reset
+ /// // it with the DFA we'd like to use it with.
+ /// //
+ /// // Similarly, after this reset, using the cache with 'dfa1' is also not
+ /// // allowed.
+ /// dfa2.reset_cache(&mut cache);
+ /// assert_eq!(
+ /// Some(HalfMatch::must(0, 3)),
+ /// dfa2.find_leftmost_fwd(&mut cache, "☃".as_bytes())?,
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn reset_cache(&self, cache: &mut Cache) {
+ Lazy::new(self, cache).reset_cache()
+ }
+
+ /// Returns the total number of patterns compiled into this lazy DFA.
+ ///
+ /// In the case of a DFA that contains no patterns, this returns `0`.
+ ///
+ /// # Example
+ ///
+ /// This example shows the pattern count for a DFA that never matches:
+ ///
+ /// ```
+ /// use regex_automata::hybrid::dfa::DFA;
+ ///
+ /// let dfa = DFA::never_match()?;
+ /// assert_eq!(dfa.pattern_count(), 0);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// And another example for a DFA that matches at every position:
+ ///
+ /// ```
+ /// use regex_automata::hybrid::dfa::DFA;
+ ///
+ /// let dfa = DFA::always_match()?;
+ /// assert_eq!(dfa.pattern_count(), 1);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// And finally, a DFA that was constructed from multiple patterns:
+ ///
+ /// ```
+ /// use regex_automata::hybrid::dfa::DFA;
+ ///
+ /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
+ /// assert_eq!(dfa.pattern_count(), 3);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn pattern_count(&self) -> usize {
+ self.nfa.pattern_len()
+ }
+
+ /// Returns a reference to the underlying NFA.
+ pub fn nfa(&self) -> &Arc<thompson::NFA> {
+ &self.nfa
+ }
+
+ /// Returns the stride, as a base-2 exponent, required for these
+ /// equivalence classes.
+ ///
+ /// The stride is always the smallest power of 2 that is greater than or
+ /// equal to the alphabet length. This is done so that converting between
+ /// state IDs and indices can be done with shifts alone, which is much
+ /// faster than integer division.
+ fn stride2(&self) -> usize {
+ self.stride2
+ }
+
+ /// Returns the total stride for every state in this lazy DFA. This
+ /// corresponds to the total number of transitions used by each state in
+ /// this DFA's transition table.
+ fn stride(&self) -> usize {
+ 1 << self.stride2()
+ }
+
+ /// Returns the total number of elements in the alphabet for this
+ /// transition table. This is always less than or equal to `self.stride()`.
+ /// It is only equal when the alphabet length is a power of 2. Otherwise,
+ /// it is always strictly less.
+ fn alphabet_len(&self) -> usize {
+ self.classes.alphabet_len()
+ }
+
+ /// Returns the memory usage, in bytes, of this lazy DFA.
+ ///
+ /// This does **not** include the stack size used up by this lazy DFA. To
+ /// compute that, use `std::mem::size_of::<DFA>()`. This also does
+ /// not include the size of the `Cache` used.
+ pub fn memory_usage(&self) -> usize {
+ // Everything else is on the stack.
+ self.nfa.memory_usage()
+ }
+}
+
+impl DFA {
+ /// Executes a forward search and returns the end position of the first
+ /// match that is found as early as possible. If no match exists, then
+ /// `None` is returned.
+ ///
+ /// This routine stops scanning input as soon as the search observes a
+ /// match state. This is useful for implementing boolean `is_match`-like
+ /// routines, where as little work is done as possible.
+ ///
+ /// See [`DFA::find_earliest_fwd_at`] for additional functionality, such as
+ /// providing a prefilter, a specific pattern to match and the bounds of
+ /// the search within the haystack. This routine is meant as a convenience
+ /// for common cases where the additional functionality is not needed.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Example
+ ///
+ /// This example demonstrates how the position returned might differ from
+ /// what one might expect when executing a traditional leftmost search.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa = DFA::new("foo[0-9]+")?;
+ /// let mut cache = dfa.create_cache();
+ /// // Normally, the end of the leftmost first match here would be 8,
+ /// // corresponding to the end of the input. But the "earliest" semantics
+ /// // this routine cause it to stop as soon as a match is known, which
+ /// // occurs once 'foo[0-9]' has matched.
+ /// let expected = HalfMatch::must(0, 4);
+ /// assert_eq!(
+ /// Some(expected),
+ /// dfa.find_earliest_fwd(&mut cache, b"foo12345")?,
+ /// );
+ ///
+ /// let dfa = DFA::new("abc|a")?;
+ /// let mut cache = dfa.create_cache();
+ /// // Normally, the end of the leftmost first match here would be 3,
+ /// // but the shortest match semantics detect a match earlier.
+ /// let expected = HalfMatch::must(0, 1);
+ /// assert_eq!(Some(expected), dfa.find_earliest_fwd(&mut cache, b"abc")?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn find_earliest_fwd(
+ &self,
+ cache: &mut Cache,
+ bytes: &[u8],
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ self.find_earliest_fwd_at(cache, None, None, bytes, 0, bytes.len())
+ }
+
+ /// Executes a reverse search and returns the start position of the first
+ /// match that is found as early as possible. If no match exists, then
+ /// `None` is returned.
+ ///
+ /// This routine stops scanning input as soon as the search observes a
+ /// match state.
+ ///
+ /// Note that while it is not technically necessary to build a reverse
+ /// automaton to use a reverse search, it is likely that you'll want to do
+ /// so. Namely, the typical use of a reverse search is to find the starting
+ /// location of a match once its end is discovered from a forward search. A
+ /// reverse DFA automaton can be built by configuring the intermediate NFA
+ /// to be reversed via
+ /// [`nfa::thompson::Config::reverse`](crate::nfa::thompson::Config::reverse).
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Example
+ ///
+ /// This example demonstrates how the position returned might differ from
+ /// what one might expect when executing a traditional leftmost reverse
+ /// search.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, nfa::thompson, HalfMatch};
+ ///
+ /// let dfa = DFA::builder()
+ /// .thompson(thompson::Config::new().reverse(true))
+ /// .build("[a-z]+[0-9]+")?;
+ /// let mut cache = dfa.create_cache();
+ /// // Normally, the end of the leftmost first match here would be 0,
+ /// // corresponding to the beginning of the input. But the "earliest"
+ /// // semantics of this routine cause it to stop as soon as a match is
+ /// // known, which occurs once '[a-z][0-9]+' has matched.
+ /// let expected = HalfMatch::must(0, 2);
+ /// assert_eq!(
+ /// Some(expected),
+ /// dfa.find_earliest_rev(&mut cache, b"foo12345")?,
+ /// );
+ ///
+ /// let dfa = DFA::builder()
+ /// .thompson(thompson::Config::new().reverse(true))
+ /// .build("abc|c")?;
+ /// let mut cache = dfa.create_cache();
+ /// // Normally, the end of the leftmost first match here would be 0,
+ /// // but the shortest match semantics detect a match earlier.
+ /// let expected = HalfMatch::must(0, 2);
+ /// assert_eq!(Some(expected), dfa.find_earliest_rev(&mut cache, b"abc")?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn find_earliest_rev(
+ &self,
+ cache: &mut Cache,
+ bytes: &[u8],
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ self.find_earliest_rev_at(cache, None, bytes, 0, bytes.len())
+ }
+
+ /// Executes a forward search and returns the end position of the leftmost
+ /// match that is found. If no match exists, then `None` is returned.
+ ///
+ /// In particular, this method continues searching even after it enters
+ /// a match state. The search only terminates once it has reached the
+ /// end of the input or when it has entered a dead or quit state. Upon
+ /// termination, the position of the last byte seen while still in a match
+ /// state is returned.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Example
+ ///
+ /// Leftmost first match semantics corresponds to the match with the
+ /// smallest starting offset, but where the end offset is determined by
+ /// preferring earlier branches in the original regular expression. For
+ /// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam`
+ /// will match `Samwise` in `Samwise`.
+ ///
+ /// Generally speaking, the "leftmost first" match is how most backtracking
+ /// regular expressions tend to work. This is in contrast to POSIX-style
+ /// regular expressions that yield "leftmost longest" matches. Namely,
+ /// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
+ /// leftmost longest semantics. (This crate does not currently support
+ /// leftmost longest semantics.)
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa = DFA::new("foo[0-9]+")?;
+ /// let mut cache = dfa.create_cache();
+ /// let expected = HalfMatch::must(0, 8);
+ /// assert_eq!(
+ /// Some(expected),
+ /// dfa.find_leftmost_fwd(&mut cache, b"foo12345")?,
+ /// );
+ ///
+ /// // Even though a match is found after reading the first byte (`a`),
+ /// // the leftmost first match semantics demand that we find the earliest
+ /// // match that prefers earlier parts of the pattern over latter parts.
+ /// let dfa = DFA::new("abc|a")?;
+ /// let mut cache = dfa.create_cache();
+ /// let expected = HalfMatch::must(0, 3);
+ /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(&mut cache, b"abc")?);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn find_leftmost_fwd(
+ &self,
+ cache: &mut Cache,
+ bytes: &[u8],
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ self.find_leftmost_fwd_at(cache, None, None, bytes, 0, bytes.len())
+ }
+
+ /// Executes a reverse search and returns the start of the position of the
+ /// leftmost match that is found. If no match exists, then `None` is
+ /// returned.
+ ///
+ /// In particular, this method continues searching even after it enters
+ /// a match state. The search only terminates once it has reached the
+ /// end of the input or when it has entered a dead or quit state. Upon
+ /// termination, the position of the last byte seen while still in a match
+ /// state is returned.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Example
+ ///
+ /// In particular, this routine is principally
+ /// useful when used in conjunction with the
+ /// [`nfa::thompson::Config::reverse`](crate::nfa::thompson::Config::revers
+ /// e) configuration. In general, it's unlikely to be correct to use both
+ /// `find_leftmost_fwd` and `find_leftmost_rev` with the same DFA since
+ /// any particular DFA will only support searching in one direction with
+ /// respect to the pattern.
+ ///
+ /// ```
+ /// use regex_automata::{nfa::thompson, hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa = DFA::builder()
+ /// .thompson(thompson::Config::new().reverse(true))
+ /// .build("foo[0-9]+")?;
+ /// let mut cache = dfa.create_cache();
+ /// let expected = HalfMatch::must(0, 0);
+ /// assert_eq!(
+ /// Some(expected),
+ /// dfa.find_leftmost_rev(&mut cache, b"foo12345")?,
+ /// );
+ ///
+ /// // Even though a match is found after reading the last byte (`c`),
+ /// // the leftmost first match semantics demand that we find the earliest
+ /// // match that prefers earlier parts of the pattern over latter parts.
+ /// let dfa = DFA::builder()
+ /// .thompson(thompson::Config::new().reverse(true))
+ /// .build("abc|c")?;
+ /// let mut cache = dfa.create_cache();
+ /// let expected = HalfMatch::must(0, 0);
+ /// assert_eq!(Some(expected), dfa.find_leftmost_rev(&mut cache, b"abc")?);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn find_leftmost_rev(
+ &self,
+ cache: &mut Cache,
+ bytes: &[u8],
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ self.find_leftmost_rev_at(cache, None, bytes, 0, bytes.len())
+ }
+
+ /// Executes an overlapping forward search and returns the end position of
+ /// matches as they are found. If no match exists, then `None` is returned.
+ ///
+ /// This routine is principally only useful when searching for multiple
+ /// patterns on inputs where multiple patterns may match the same regions
+ /// of text. In particular, callers must preserve the automaton's search
+ /// state from prior calls so that the implementation knows where the last
+ /// match occurred.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to run a basic overlapping search. Notice
+ /// that we build the automaton with a `MatchKind::All` configuration.
+ /// Overlapping searches are unlikely to work as one would expect when
+ /// using the default `MatchKind::LeftmostFirst` match semantics, since
+ /// leftmost-first matching is fundamentally incompatible with overlapping
+ /// searches. Namely, overlapping searches need to report matches as they
+ /// are seen, where as leftmost-first searches will continue searching even
+ /// after a match has been observed in order to find the conventional end
+ /// position of the match. More concretely, leftmost-first searches use
+ /// dead states to terminate a search after a specific match can no longer
+ /// be extended. Overlapping searches instead do the opposite by continuing
+ /// the search to find totally new matches (potentially of other patterns).
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// hybrid::{dfa::DFA, OverlappingState},
+ /// HalfMatch,
+ /// MatchKind,
+ /// };
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().match_kind(MatchKind::All))
+ /// .build_many(&[r"\w+$", r"\S+$"])?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let haystack = "@foo".as_bytes();
+ /// let mut state = OverlappingState::start();
+ ///
+ /// let expected = Some(HalfMatch::must(1, 4));
+ /// let got = dfa.find_overlapping_fwd(&mut cache, haystack, &mut state)?;
+ /// assert_eq!(expected, got);
+ ///
+ /// // The first pattern also matches at the same position, so re-running
+ /// // the search will yield another match. Notice also that the first
+ /// // pattern is returned after the second. This is because the second
+ /// // pattern begins its match before the first, is therefore an earlier
+ /// // match and is thus reported first.
+ /// let expected = Some(HalfMatch::must(0, 4));
+ /// let got = dfa.find_overlapping_fwd(&mut cache, haystack, &mut state)?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn find_overlapping_fwd(
+ &self,
+ cache: &mut Cache,
+ bytes: &[u8],
+ state: &mut OverlappingState,
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ self.find_overlapping_fwd_at(
+ cache,
+ None,
+ None,
+ bytes,
+ 0,
+ bytes.len(),
+ state,
+ )
+ }
+
+ /// Executes a forward search and returns the end position of the first
+ /// match that is found as early as possible. If no match exists, then
+ /// `None` is returned.
+ ///
+ /// This routine stops scanning input as soon as the search observes a
+ /// match state. This is useful for implementing boolean `is_match`-like
+ /// routines, where as little work is done as possible.
+ ///
+ /// This is like [`DFA::find_earliest_fwd`], except it provides some
+ /// additional control over how the search is executed:
+ ///
+ /// * `pre` is a prefilter scanner that, when given, is used whenever the
+ /// DFA enters its starting state. This is meant to speed up searches where
+ /// one or a small number of literal prefixes are known.
+ /// * `pattern_id` specifies a specific pattern in the DFA to run an
+ /// anchored search for. If not given, then a search for any pattern is
+ /// performed. For lazy DFAs, [`Config::starts_for_each_pattern`] must be
+ /// enabled to use this functionality.
+ /// * `start` and `end` permit searching a specific region of the haystack
+ /// `bytes`. This is useful when implementing an iterator over matches
+ /// within the same haystack, which cannot be done correctly by simply
+ /// providing a subslice of `bytes`. (Because the existence of look-around
+ /// operations such as `\b`, `^` and `$` need to take the surrounding
+ /// context into account. This cannot be done if the haystack doesn't
+ /// contain it.)
+ ///
+ /// The examples below demonstrate each of these additional parameters.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if a `pattern_id` is given and this lazy DFA does
+ /// not support specific pattern searches.
+ ///
+ /// It also panics if the given haystack range is not valid.
+ ///
+ /// # Example: prefilter
+ ///
+ /// This example shows how to provide a prefilter for a pattern where all
+ /// matches start with a `z` byte.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// hybrid::dfa::DFA,
+ /// util::prefilter::{Candidate, Prefilter, Scanner, State},
+ /// HalfMatch,
+ /// };
+ ///
+ /// #[derive(Debug)]
+ /// pub struct ZPrefilter;
+ ///
+ /// impl Prefilter for ZPrefilter {
+ /// fn next_candidate(
+ /// &self,
+ /// _: &mut State,
+ /// haystack: &[u8],
+ /// at: usize,
+ /// ) -> Candidate {
+ /// // Try changing b'z' to b'q' and observe this test fail since
+ /// // the prefilter will skip right over the match.
+ /// match haystack.iter().position(|&b| b == b'z') {
+ /// None => Candidate::None,
+ /// Some(i) => Candidate::PossibleStartOfMatch(at + i),
+ /// }
+ /// }
+ ///
+ /// fn heap_bytes(&self) -> usize {
+ /// 0
+ /// }
+ /// }
+ ///
+ /// let dfa = DFA::new("z[0-9]{3}")?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let haystack = "foobar z123 q123".as_bytes();
+ /// // A scanner executes a prefilter while tracking some state that helps
+ /// // determine whether a prefilter is still "effective" or not.
+ /// let mut scanner = Scanner::new(&ZPrefilter);
+ ///
+ /// let expected = Some(HalfMatch::must(0, 11));
+ /// let got = dfa.find_earliest_fwd_at(
+ /// &mut cache,
+ /// Some(&mut scanner),
+ /// None,
+ /// haystack,
+ /// 0,
+ /// haystack.len(),
+ /// )?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// # Example: specific pattern search
+ ///
+ /// This example shows how to build a lazy multi-DFA that permits searching
+ /// for specific patterns.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// hybrid::dfa::DFA,
+ /// HalfMatch,
+ /// PatternID,
+ /// };
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().starts_for_each_pattern(true))
+ /// .build_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = "foo123".as_bytes();
+ ///
+ /// // Since we are using the default leftmost-first match and both
+ /// // patterns match at the same starting position, only the first pattern
+ /// // will be returned in this case when doing a search for any of the
+ /// // patterns.
+ /// let expected = Some(HalfMatch::must(0, 6));
+ /// let got = dfa.find_earliest_fwd_at(
+ /// &mut cache,
+ /// None,
+ /// None,
+ /// haystack,
+ /// 0,
+ /// haystack.len(),
+ /// )?;
+ /// assert_eq!(expected, got);
+ ///
+ /// // But if we want to check whether some other pattern matches, then we
+ /// // can provide its pattern ID.
+ /// let expected = Some(HalfMatch::must(1, 6));
+ /// let got = dfa.find_earliest_fwd_at(
+ /// &mut cache,
+ /// None,
+ /// Some(PatternID::must(1)),
+ /// haystack,
+ /// 0,
+ /// haystack.len(),
+ /// )?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// # Example: specifying the bounds of a search
+ ///
+ /// This example shows how providing the bounds of a search can produce
+ /// different results than simply sub-slicing the haystack.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// // N.B. We disable Unicode here so that we use a simple ASCII word
+ /// // boundary. Alternatively, we could enable heuristic support for
+ /// // Unicode word boundaries since our haystack is pure ASCII.
+ /// let dfa = DFA::new(r"(?-u)\b[0-9]{3}\b")?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = "foo123bar".as_bytes();
+ ///
+ /// // Since we sub-slice the haystack, the search doesn't know about the
+ /// // larger context and assumes that `123` is surrounded by word
+ /// // boundaries. And of course, the match position is reported relative
+ /// // to the sub-slice as well, which means we get `3` instead of `6`.
+ /// let expected = Some(HalfMatch::must(0, 3));
+ /// let got = dfa.find_earliest_fwd_at(
+ /// &mut cache,
+ /// None,
+ /// None,
+ /// &haystack[3..6],
+ /// 0,
+ /// haystack[3..6].len(),
+ /// )?;
+ /// assert_eq!(expected, got);
+ ///
+ /// // But if we provide the bounds of the search within the context of the
+ /// // entire haystack, then the search can take the surrounding context
+ /// // into account. (And if we did find a match, it would be reported
+ /// // as a valid offset into `haystack` instead of its sub-slice.)
+ /// let expected = None;
+ /// let got = dfa.find_earliest_fwd_at(
+ /// &mut cache,
+ /// None,
+ /// None,
+ /// haystack,
+ /// 3,
+ /// 6,
+ /// )?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn find_earliest_fwd_at(
+ &self,
+ cache: &mut Cache,
+ pre: Option<&mut prefilter::Scanner>,
+ pattern_id: Option<PatternID>,
+ bytes: &[u8],
+ start: usize,
+ end: usize,
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ search::find_earliest_fwd(
+ pre, self, cache, pattern_id, bytes, start, end,
+ )
+ }
+
+ /// Executes a reverse search and returns the start position of the first
+ /// match that is found as early as possible. If no match exists, then
+ /// `None` is returned.
+ ///
+ /// This routine stops scanning input as soon as the search observes a
+ /// match state.
+ ///
+ /// This is like [`DFA::find_earliest_rev`], except it provides some
+ /// additional control over how the search is executed. See the
+ /// documentation of [`DFA::find_earliest_fwd_at`] for more details
+ /// on the additional parameters along with examples of their usage.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if a `pattern_id` is given and the underlying
+ /// DFA does not support specific pattern searches.
+ ///
+ /// It also panics if the given haystack range is not valid.
+ #[inline]
+ pub fn find_earliest_rev_at(
+ &self,
+ cache: &mut Cache,
+ pattern_id: Option<PatternID>,
+ bytes: &[u8],
+ start: usize,
+ end: usize,
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ search::find_earliest_rev(self, cache, pattern_id, bytes, start, end)
+ }
+
+ /// Executes a forward search and returns the end position of the leftmost
+ /// match that is found. If no match exists, then `None` is returned.
+ ///
+ /// This is like [`DFA::find_leftmost_fwd`], except it provides some
+ /// additional control over how the search is executed. See the
+ /// documentation of [`DFA::find_earliest_fwd_at`] for more details on the
+ /// additional parameters along with examples of their usage.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if a `pattern_id` is given and the underlying
+ /// DFA does not support specific pattern searches.
+ ///
+ /// It also panics if the given haystack range is not valid.
+ #[inline]
+ pub fn find_leftmost_fwd_at(
+ &self,
+ cache: &mut Cache,
+ pre: Option<&mut prefilter::Scanner>,
+ pattern_id: Option<PatternID>,
+ bytes: &[u8],
+ start: usize,
+ end: usize,
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ search::find_leftmost_fwd(
+ pre, self, cache, pattern_id, bytes, start, end,
+ )
+ }
+
+ /// Executes a reverse search and returns the start of the position of the
+ /// leftmost match that is found. If no match exists, then `None` is
+ /// returned.
+ ///
+ /// This is like [`DFA::find_leftmost_rev`], except it provides some
+ /// additional control over how the search is executed. See the
+ /// documentation of [`DFA::find_earliest_fwd_at`] for more details on the
+ /// additional parameters along with examples of their usage.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if a `pattern_id` is given and the underlying
+ /// DFA does not support specific pattern searches.
+ ///
+ /// It also panics if the given haystack range is not valid.
+ #[inline]
+ pub fn find_leftmost_rev_at(
+ &self,
+ cache: &mut Cache,
+ pattern_id: Option<PatternID>,
+ bytes: &[u8],
+ start: usize,
+ end: usize,
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ search::find_leftmost_rev(self, cache, pattern_id, bytes, start, end)
+ }
+
+ /// Executes an overlapping forward search and returns the end position of
+ /// matches as they are found. If no match exists, then `None` is returned.
+ ///
+ /// This routine is principally only useful when searching for multiple
+ /// patterns on inputs where multiple patterns may match the same regions
+ /// of text. In particular, callers must preserve the automaton's search
+ /// state from prior calls so that the implementation knows where the last
+ /// match occurred.
+ ///
+ /// This is like [`DFA::find_overlapping_fwd`], except it provides
+ /// some additional control over how the search is executed. See the
+ /// documentation of [`DFA::find_earliest_fwd_at`] for more details
+ /// on the additional parameters along with examples of their usage.
+ ///
+ /// When using this routine to implement an iterator of overlapping
+ /// matches, the `start` of the search should always be set to the end
+ /// of the last match. If more patterns match at the previous location,
+ /// then they will be immediately returned. (This is tracked by the given
+ /// overlapping state.) Otherwise, the search continues at the starting
+ /// position given.
+ ///
+ /// If for some reason you want the search to forget about its previous
+ /// state and restart the search at a particular position, then setting the
+ /// state to [`OverlappingState::start`] will accomplish that.
+ ///
+ /// # Errors
+ ///
+ /// This routine only errors if the search could not complete. For
+ /// lazy DFAs generated by this crate, this only occurs in non-default
+ /// configurations where quit bytes are used, Unicode word boundaries are
+ /// heuristically enabled or limits are set on the number of times the lazy
+ /// DFA's cache may be cleared.
+ ///
+ /// When a search cannot complete, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if a `pattern_id` is given and the underlying
+ /// DFA does not support specific pattern searches.
+ ///
+ /// It also panics if the given haystack range is not valid.
+ #[inline]
+ pub fn find_overlapping_fwd_at(
+ &self,
+ cache: &mut Cache,
+ pre: Option<&mut prefilter::Scanner>,
+ pattern_id: Option<PatternID>,
+ bytes: &[u8],
+ start: usize,
+ end: usize,
+ state: &mut OverlappingState,
+ ) -> Result<Option<HalfMatch>, MatchError> {
+ search::find_overlapping_fwd(
+ pre, self, cache, pattern_id, bytes, start, end, state,
+ )
+ }
+}
+
+impl DFA {
+ /// Transitions from the current state to the next state, given the next
+ /// byte of input.
+ ///
+ /// The given cache is used to either reuse pre-computed state
+ /// transitions, or to store this newly computed transition for future
+ /// reuse. Thus, this routine guarantees that it will never return a state
+ /// ID that has an "unknown" tag.
+ ///
+ /// # State identifier validity
+ ///
+ /// The only valid value for `current` is the lazy state ID returned
+ /// by the most recent call to `next_state`, `next_state_untagged`,
+ /// `next_state_untagged_unchecked`, `start_state_forward` or
+ /// `state_state_reverse` for the given `cache`. Any state ID returned from
+ /// prior calls to these routines (with the same `cache`) is considered
+ /// invalid (even if it gives an appearance of working). State IDs returned
+ /// from _any_ prior call for different `cache` values are also always
+ /// invalid.
+ ///
+ /// The returned ID is always a valid ID when `current` refers to a valid
+ /// ID. Moreover, this routine is defined for all possible values of
+ /// `input`.
+ ///
+ /// These validity rules are not checked, even in debug mode. Callers are
+ /// required to uphold these rules themselves.
+ ///
+ /// Violating these state ID validity rules will not sacrifice memory
+ /// safety, but _may_ produce an incorrect result or a panic.
+ ///
+ /// # Panics
+ ///
+ /// If the given ID does not refer to a valid state, then this routine
+ /// may panic but it also may not panic and instead return an invalid or
+ /// incorrect ID.
+ ///
+ /// # Example
+ ///
+ /// This shows a simplistic example for walking a lazy DFA for a given
+ /// haystack by using the `next_state` method.
+ ///
+ /// ```
+ /// use regex_automata::hybrid::dfa::DFA;
+ ///
+ /// let dfa = DFA::new(r"[a-z]+r")?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = "bar".as_bytes();
+ ///
+ /// // The start state is determined by inspecting the position and the
+ /// // initial bytes of the haystack.
+ /// let mut sid = dfa.start_state_forward(
+ /// &mut cache, None, haystack, 0, haystack.len(),
+ /// )?;
+ /// // Walk all the bytes in the haystack.
+ /// for &b in haystack {
+ /// sid = dfa.next_state(&mut cache, sid, b)?;
+ /// }
+ /// // Matches are always delayed by 1 byte, so we must explicitly walk the
+ /// // special "EOI" transition at the end of the search.
+ /// sid = dfa.next_eoi_state(&mut cache, sid)?;
+ /// assert!(sid.is_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn next_state(
+ &self,
+ cache: &mut Cache,
+ current: LazyStateID,
+ input: u8,
+ ) -> Result<LazyStateID, CacheError> {
+ let class = usize::from(self.classes.get(input));
+ let offset = current.as_usize_untagged() + class;
+ let sid = cache.trans[offset];
+ if !sid.is_unknown() {
+ return Ok(sid);
+ }
+ let unit = alphabet::Unit::u8(input);
+ Lazy::new(self, cache).cache_next_state(current, unit)
+ }
+
+ /// Transitions from the current state to the next state, given the next
+ /// byte of input and a state ID that is not tagged.
+ ///
+ /// The only reason to use this routine is performance. In particular, the
+ /// `next_state` method needs to do some additional checks, among them is
+ /// to account for identifiers to states that are not yet computed. In
+ /// such a case, the transition is computed on the fly. However, if it is
+ /// known that the `current` state ID is untagged, then these checks can be
+ /// omitted.
+ ///
+ /// Since this routine does not compute states on the fly, it does not
+ /// modify the cache and thus cannot return an error. Consequently, `cache`
+ /// does not need to be mutable and it is possible for this routine to
+ /// return a state ID corresponding to the special "unknown" state. In
+ /// this case, it is the caller's responsibility to use the prior state
+ /// ID and `input` with `next_state` in order to force the computation of
+ /// the unknown transition. Otherwise, trying to use the "unknown" state
+ /// ID will just result in transitioning back to itself, and thus never
+ /// terminating. (This is technically a special exemption to the state ID
+ /// validity rules, but is permissible since this routine is guarateed to
+ /// never mutate the given `cache`, and thus the identifier is guaranteed
+ /// to remain valid.)
+ ///
+ /// See [`LazyStateID`] for more details on what it means for a state ID
+ /// to be tagged. Also, see
+ /// [`next_state_untagged_unchecked`](DFA::next_state_untagged_unchecked)
+ /// for this same idea, but with bounds checks forcefully elided.
+ ///
+ /// # State identifier validity
+ ///
+ /// The only valid value for `current` is an **untagged** lazy
+ /// state ID returned by the most recent call to `next_state`,
+ /// `next_state_untagged`, `next_state_untagged_unchecked`,
+ /// `start_state_forward` or `state_state_reverse` for the given `cache`.
+ /// Any state ID returned from prior calls to these routines (with the
+ /// same `cache`) is considered invalid (even if it gives an appearance
+ /// of working). State IDs returned from _any_ prior call for different
+ /// `cache` values are also always invalid.
+ ///
+ /// The returned ID is always a valid ID when `current` refers to a valid
+ /// ID, although it may be tagged. Moreover, this routine is defined for
+ /// all possible values of `input`.
+ ///
+ /// Not all validity rules are checked, even in debug mode. Callers are
+ /// required to uphold these rules themselves.
+ ///
+ /// Violating these state ID validity rules will not sacrifice memory
+ /// safety, but _may_ produce an incorrect result or a panic.
+ ///
+ /// # Panics
+ ///
+ /// If the given ID does not refer to a valid state, then this routine
+ /// may panic but it also may not panic and instead return an invalid or
+ /// incorrect ID.
+ ///
+ /// # Example
+ ///
+ /// This shows a simplistic example for walking a lazy DFA for a given
+ /// haystack by using the `next_state_untagged` method where possible.
+ ///
+ /// ```
+ /// use regex_automata::hybrid::dfa::DFA;
+ ///
+ /// let dfa = DFA::new(r"[a-z]+r")?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = "bar".as_bytes();
+ ///
+ /// // The start state is determined by inspecting the position and the
+ /// // initial bytes of the haystack.
+ /// let mut sid = dfa.start_state_forward(
+ /// &mut cache, None, haystack, 0, haystack.len(),
+ /// )?;
+ /// // Walk all the bytes in the haystack.
+ /// let mut at = 0;
+ /// while at < haystack.len() {
+ /// if sid.is_tagged() {
+ /// sid = dfa.next_state(&mut cache, sid, haystack[at])?;
+ /// } else {
+ /// let mut prev_sid = sid;
+ /// // We attempt to chew through as much as we can while moving
+ /// // through untagged state IDs. Thus, the transition function
+ /// // does less work on average per byte. (Unrolling this loop
+ /// // may help even more.)
+ /// while at < haystack.len() {
+ /// prev_sid = sid;
+ /// sid = dfa.next_state_untagged(
+ /// &mut cache, sid, haystack[at],
+ /// );
+ /// at += 1;
+ /// if sid.is_tagged() {
+ /// break;
+ /// }
+ /// }
+ /// // We must ensure that we never proceed to the next iteration
+ /// // with an unknown state ID. If we don't account for this
+ /// // case, then search isn't guaranteed to terminate since all
+ /// // transitions on unknown states loop back to itself.
+ /// if sid.is_unknown() {
+ /// sid = dfa.next_state(
+ /// &mut cache, prev_sid, haystack[at - 1],
+ /// )?;
+ /// }
+ /// }
+ /// }
+ /// // Matches are always delayed by 1 byte, so we must explicitly walk the
+ /// // special "EOI" transition at the end of the search.
+ /// sid = dfa.next_eoi_state(&mut cache, sid)?;
+ /// assert!(sid.is_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn next_state_untagged(
+ &self,
+ cache: &Cache,
+ current: LazyStateID,
+ input: u8,
+ ) -> LazyStateID {
+ debug_assert!(!current.is_tagged());
+ let class = usize::from(self.classes.get(input));
+ let offset = current.as_usize_unchecked() + class;
+ cache.trans[offset]
+ }
+
+ /// Transitions from the current state to the next state, eliding bounds
+ /// checks, given the next byte of input and a state ID that is not tagged.
+ ///
+ /// The only reason to use this routine is performance. In particular, the
+ /// `next_state` method needs to do some additional checks, among them is
+ /// to account for identifiers to states that are not yet computed. In
+ /// such a case, the transition is computed on the fly. However, if it is
+ /// known that the `current` state ID is untagged, then these checks can be
+ /// omitted.
+ ///
+ /// Since this routine does not compute states on the fly, it does not
+ /// modify the cache and thus cannot return an error. Consequently, `cache`
+ /// does not need to be mutable and it is possible for this routine to
+ /// return a state ID corresponding to the special "unknown" state. In
+ /// this case, it is the caller's responsibility to use the prior state
+ /// ID and `input` with `next_state` in order to force the computation of
+ /// the unknown transition. Otherwise, trying to use the "unknown" state
+ /// ID will just result in transitioning back to itself, and thus never
+ /// terminating. (This is technically a special exemption to the state ID
+ /// validity rules, but is permissible since this routine is guarateed to
+ /// never mutate the given `cache`, and thus the identifier is guaranteed
+ /// to remain valid.)
+ ///
+ /// See [`LazyStateID`] for more details on what it means for a state ID
+ /// to be tagged. Also, see
+ /// [`next_state_untagged`](DFA::next_state_untagged)
+ /// for this same idea, but with memory safety guaranteed by retaining
+ /// bounds checks.
+ ///
+ /// # State identifier validity
+ ///
+ /// The only valid value for `current` is an **untagged** lazy
+ /// state ID returned by the most recent call to `next_state`,
+ /// `next_state_untagged`, `next_state_untagged_unchecked`,
+ /// `start_state_forward` or `state_state_reverse` for the given `cache`.
+ /// Any state ID returned from prior calls to these routines (with the
+ /// same `cache`) is considered invalid (even if it gives an appearance
+ /// of working). State IDs returned from _any_ prior call for different
+ /// `cache` values are also always invalid.
+ ///
+ /// The returned ID is always a valid ID when `current` refers to a valid
+ /// ID, although it may be tagged. Moreover, this routine is defined for
+ /// all possible values of `input`.
+ ///
+ /// Not all validity rules are checked, even in debug mode. Callers are
+ /// required to uphold these rules themselves.
+ ///
+ /// Violating these state ID validity rules will not sacrifice memory
+ /// safety, but _may_ produce an incorrect result or a panic.
+ ///
+ /// # Safety
+ ///
+ /// Callers of this method must guarantee that `current` refers to a valid
+ /// state ID according to the rules described above. If `current` is not a
+ /// valid state ID for this automaton, then calling this routine may result
+ /// in undefined behavior.
+ ///
+ /// If `current` is valid, then the ID returned is valid for all possible
+ /// values of `input`.
+ #[inline]
+ pub unsafe fn next_state_untagged_unchecked(
+ &self,
+ cache: &Cache,
+ current: LazyStateID,
+ input: u8,
+ ) -> LazyStateID {
+ debug_assert!(!current.is_tagged());
+ let class = usize::from(self.classes.get(input));
+ let offset = current.as_usize_unchecked() + class;
+ *cache.trans.get_unchecked(offset)
+ }
+
+ /// Transitions from the current state to the next state for the special
+ /// EOI symbol.
+ ///
+ /// The given cache is used to either reuse pre-computed state
+ /// transitions, or to store this newly computed transition for future
+ /// reuse. Thus, this routine guarantees that it will never return a state
+ /// ID that has an "unknown" tag.
+ ///
+ /// This routine must be called at the end of every search in a correct
+ /// implementation of search. Namely, lazy DFAs in this crate delay matches
+ /// by one byte in order to support look-around operators. Thus, after
+ /// reaching the end of a haystack, a search implementation must follow one
+ /// last EOI transition.
+ ///
+ /// It is best to think of EOI as an additional symbol in the alphabet of a
+ /// DFA that is distinct from every other symbol. That is, the alphabet of
+ /// lazy DFAs in this crate has a logical size of 257 instead of 256, where
+ /// 256 corresponds to every possible inhabitant of `u8`. (In practice, the
+ /// physical alphabet size may be smaller because of alphabet compression
+ /// via equivalence classes, but EOI is always represented somehow in the
+ /// alphabet.)
+ ///
+ /// # State identifier validity
+ ///
+ /// The only valid value for `current` is the lazy state ID returned
+ /// by the most recent call to `next_state`, `next_state_untagged`,
+ /// `next_state_untagged_unchecked`, `start_state_forward` or
+ /// `state_state_reverse` for the given `cache`. Any state ID returned from
+ /// prior calls to these routines (with the same `cache`) is considered
+ /// invalid (even if it gives an appearance of working). State IDs returned
+ /// from _any_ prior call for different `cache` values are also always
+ /// invalid.
+ ///
+ /// The returned ID is always a valid ID when `current` refers to a valid
+ /// ID.
+ ///
+ /// These validity rules are not checked, even in debug mode. Callers are
+ /// required to uphold these rules themselves.
+ ///
+ /// Violating these state ID validity rules will not sacrifice memory
+ /// safety, but _may_ produce an incorrect result or a panic.
+ ///
+ /// # Panics
+ ///
+ /// If the given ID does not refer to a valid state, then this routine
+ /// may panic but it also may not panic and instead return an invalid or
+ /// incorrect ID.
+ ///
+ /// # Example
+ ///
+ /// This shows a simplistic example for walking a DFA for a given haystack,
+ /// and then finishing the search with the final EOI transition.
+ ///
+ /// ```
+ /// use regex_automata::hybrid::dfa::DFA;
+ ///
+ /// let dfa = DFA::new(r"[a-z]+r")?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = "bar".as_bytes();
+ ///
+ /// // The start state is determined by inspecting the position and the
+ /// // initial bytes of the haystack.
+ /// let mut sid = dfa.start_state_forward(
+ /// &mut cache, None, haystack, 0, haystack.len(),
+ /// )?;
+ /// // Walk all the bytes in the haystack.
+ /// for &b in haystack {
+ /// sid = dfa.next_state(&mut cache, sid, b)?;
+ /// }
+ /// // Matches are always delayed by 1 byte, so we must explicitly walk
+ /// // the special "EOI" transition at the end of the search. Without this
+ /// // final transition, the assert below will fail since the DFA will not
+ /// // have entered a match state yet!
+ /// sid = dfa.next_eoi_state(&mut cache, sid)?;
+ /// assert!(sid.is_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn next_eoi_state(
+ &self,
+ cache: &mut Cache,
+ current: LazyStateID,
+ ) -> Result<LazyStateID, CacheError> {
+ let eoi = self.classes.eoi().as_usize();
+ let offset = current.as_usize_untagged() + eoi;
+ let sid = cache.trans[offset];
+ if !sid.is_unknown() {
+ return Ok(sid);
+ }
+ let unit = self.classes.eoi();
+ Lazy::new(self, cache).cache_next_state(current, unit)
+ }
+
+ /// Return the ID of the start state for this lazy DFA when executing a
+ /// forward search.
+ ///
+ /// Unlike typical DFA implementations, the start state for DFAs in this
+ /// crate is dependent on a few different factors:
+ ///
+ /// * The pattern ID, if present. When the underlying DFA has been
+ /// configured with multiple patterns _and_ the DFA has been configured to
+ /// build an anchored start state for each pattern, then a pattern ID may
+ /// be specified to execute an anchored search for that specific pattern.
+ /// If `pattern_id` is invalid or if the DFA isn't configured to build
+ /// start states for each pattern, then implementations must panic. DFAs in
+ /// this crate can be configured to build start states for each pattern via
+ /// [`Config::starts_for_each_pattern`].
+ /// * When `start > 0`, the byte at index `start - 1` may influence the
+ /// start state if the regex uses `^` or `\b`.
+ /// * Similarly, when `start == 0`, it may influence the start state when
+ /// the regex uses `^` or `\A`.
+ /// * Currently, `end` is unused.
+ /// * Whether the search is a forward or reverse search. This routine can
+ /// only be used for forward searches.
+ ///
+ /// # Panics
+ ///
+ /// This panics if `start..end` is not a valid sub-slice of `bytes`. This
+ /// also panics if `pattern_id` is non-None and does not refer to a valid
+ /// pattern, or if the DFA was not configured to build anchored start
+ /// states for each pattern.
+ #[inline]
+ pub fn start_state_forward(
+ &self,
+ cache: &mut Cache,
+ pattern_id: Option<PatternID>,
+ bytes: &[u8],
+ start: usize,
+ end: usize,
+ ) -> Result<LazyStateID, CacheError> {
+ let mut lazy = Lazy::new(self, cache);
+ let start_type = Start::from_position_fwd(bytes, start, end);
+ let sid = lazy.as_ref().get_cached_start_id(pattern_id, start_type);
+ if !sid.is_unknown() {
+ return Ok(sid);
+ }
+ lazy.cache_start_group(pattern_id, start_type)
+ }
+
+ /// Return the ID of the start state for this lazy DFA when executing a
+ /// reverse search.
+ ///
+ /// Unlike typical DFA implementations, the start state for DFAs in this
+ /// crate is dependent on a few different factors:
+ ///
+ /// * The pattern ID, if present. When the underlying DFA has been
+ /// configured with multiple patterns _and_ the DFA has been configured to
+ /// build an anchored start state for each pattern, then a pattern ID may
+ /// be specified to execute an anchored search for that specific pattern.
+ /// If `pattern_id` is invalid or if the DFA isn't configured to build
+ /// start states for each pattern, then implementations must panic. DFAs in
+ /// this crate can be configured to build start states for each pattern via
+ /// [`Config::starts_for_each_pattern`].
+ /// * When `end < bytes.len()`, the byte at index `end` may influence the
+ /// start state if the regex uses `$` or `\b`.
+ /// * Similarly, when `end == bytes.len()`, it may influence the start
+ /// state when the regex uses `$` or `\z`.
+ /// * Currently, `start` is unused.
+ /// * Whether the search is a forward or reverse search. This routine can
+ /// only be used for reverse searches.
+ ///
+ /// # Panics
+ ///
+ /// This panics if `start..end` is not a valid sub-slice of `bytes`. This
+ /// also panics if `pattern_id` is non-None and does not refer to a valid
+ /// pattern, or if the DFA was not configured to build anchored start
+ /// states for each pattern.
+ #[inline]
+ pub fn start_state_reverse(
+ &self,
+ cache: &mut Cache,
+ pattern_id: Option<PatternID>,
+ bytes: &[u8],
+ start: usize,
+ end: usize,
+ ) -> Result<LazyStateID, CacheError> {
+ let mut lazy = Lazy::new(self, cache);
+ let start_type = Start::from_position_rev(bytes, start, end);
+ let sid = lazy.as_ref().get_cached_start_id(pattern_id, start_type);
+ if !sid.is_unknown() {
+ return Ok(sid);
+ }
+ lazy.cache_start_group(pattern_id, start_type)
+ }
+
+ /// Returns the total number of patterns that match in this state.
+ ///
+ /// If the lazy DFA was compiled with one pattern, then this must
+ /// necessarily always return `1` for all match states.
+ ///
+ /// A lazy DFA guarantees that [`DFA::match_pattern`] can be called with
+ /// indices up to (but not including) the count returned by this routine
+ /// without panicking.
+ ///
+ /// If the given state is not a match state, then this may either panic
+ /// or return an incorrect result.
+ ///
+ /// # Example
+ ///
+ /// This example shows a simple instance of implementing overlapping
+ /// matches. In particular, it shows not only how to determine how many
+ /// patterns have matched in a particular state, but also how to access
+ /// which specific patterns have matched.
+ ///
+ /// Notice that we must use [`MatchKind::All`](crate::MatchKind::All)
+ /// when building the DFA. If we used
+ /// [`MatchKind::LeftmostFirst`](crate::MatchKind::LeftmostFirst)
+ /// instead, then the DFA would not be constructed in a way that supports
+ /// overlapping matches. (It would only report a single pattern that
+ /// matches at any particular point in time.)
+ ///
+ /// Another thing to take note of is the patterns used and the order in
+ /// which the pattern IDs are reported. In the example below, pattern `3`
+ /// is yielded first. Why? Because it corresponds to the match that
+ /// appears first. Namely, the `@` symbol is part of `\S+` but not part
+ /// of any of the other patterns. Since the `\S+` pattern has a match that
+ /// starts to the left of any other pattern, its ID is returned before any
+ /// other.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, MatchKind};
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().match_kind(MatchKind::All))
+ /// .build_many(&[
+ /// r"\w+", r"[a-z]+", r"[A-Z]+", r"\S+",
+ /// ])?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = "@bar".as_bytes();
+ ///
+ /// // The start state is determined by inspecting the position and the
+ /// // initial bytes of the haystack.
+ /// let mut sid = dfa.start_state_forward(
+ /// &mut cache, None, haystack, 0, haystack.len(),
+ /// )?;
+ /// // Walk all the bytes in the haystack.
+ /// for &b in haystack {
+ /// sid = dfa.next_state(&mut cache, sid, b)?;
+ /// }
+ /// sid = dfa.next_eoi_state(&mut cache, sid)?;
+ ///
+ /// assert!(sid.is_match());
+ /// assert_eq!(dfa.match_count(&mut cache, sid), 3);
+ /// // The following calls are guaranteed to not panic since `match_count`
+ /// // returned `3` above.
+ /// assert_eq!(dfa.match_pattern(&mut cache, sid, 0).as_usize(), 3);
+ /// assert_eq!(dfa.match_pattern(&mut cache, sid, 1).as_usize(), 0);
+ /// assert_eq!(dfa.match_pattern(&mut cache, sid, 2).as_usize(), 1);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn match_count(&self, cache: &Cache, id: LazyStateID) -> usize {
+ assert!(id.is_match());
+ LazyRef::new(self, cache).get_cached_state(id).match_count()
+ }
+
+ /// Returns the pattern ID corresponding to the given match index in the
+ /// given state.
+ ///
+ /// See [`DFA::match_count`] for an example of how to use this method
+ /// correctly. Note that if you know your lazy DFA is configured with a
+ /// single pattern, then this routine is never necessary since it will
+ /// always return a pattern ID of `0` for an index of `0` when `id`
+ /// corresponds to a match state.
+ ///
+ /// Typically, this routine is used when implementing an overlapping
+ /// search, as the example for `DFA::match_count` does.
+ ///
+ /// # Panics
+ ///
+ /// If the state ID is not a match state or if the match index is out
+ /// of bounds for the given state, then this routine may either panic
+ /// or produce an incorrect result. If the state ID is correct and the
+ /// match index is correct, then this routine always produces a valid
+ /// `PatternID`.
+ #[inline]
+ pub fn match_pattern(
+ &self,
+ cache: &Cache,
+ id: LazyStateID,
+ match_index: usize,
+ ) -> PatternID {
+ // This is an optimization for the very common case of a DFA with a
+ // single pattern. This conditional avoids a somewhat more costly path
+ // that finds the pattern ID from the corresponding `State`, which
+ // requires a bit of slicing/pointer-chasing. This optimization tends
+ // to only matter when matches are frequent.
+ if self.pattern_count() == 1 {
+ return PatternID::ZERO;
+ }
+ LazyRef::new(self, cache)
+ .get_cached_state(id)
+ .match_pattern(match_index)
+ }
+}
+
+/// A cache represents a partially computed DFA.
+///
+/// A cache is the key component that differentiates a classical DFA and a
+/// hybrid NFA/DFA (also called a "lazy DFA"). Where a classical DFA builds a
+/// complete transition table that can handle all possible inputs, a hybrid
+/// NFA/DFA starts with an empty transition table and builds only the parts
+/// required during search. The parts that are built are stored in a cache. For
+/// this reason, a cache is a required parameter for nearly every operation on
+/// a [`DFA`].
+///
+/// Caches can be created from their corresponding DFA via
+/// [`DFA::create_cache`]. A cache can only be used with either the DFA that
+/// created it, or the DFA that was most recently used to reset it with
+/// [`Cache::reset`]. Using a cache with any other DFA may result in panics
+/// or incorrect results.
+#[derive(Clone, Debug)]
+pub struct Cache {
+ // N.B. If you're looking to understand how determinization works, it
+ // is probably simpler to first grok src/dfa/determinize.rs, since that
+ // doesn't have the "laziness" component.
+ /// The transition table.
+ ///
+ /// Given a `current` LazyStateID and an `input` byte, the next state can
+ /// be computed via `trans[untagged(current) + equiv_class(input)]`. Notice
+ /// that no multiplication is used. That's because state identifiers are
+ /// "premultiplied."
+ ///
+ /// Note that the next state may be the "unknown" state. In this case, the
+ /// next state is not known and determinization for `current` on `input`
+ /// must be performed.
+ trans: Vec<LazyStateID>,
+ /// The starting states for this DFA.
+ ///
+ /// These are computed lazily. Initially, these are all set to "unknown"
+ /// lazy state IDs.
+ ///
+ /// When 'starts_for_each_pattern' is disabled (the default), then the size
+ /// of this is constrained to the possible starting configurations based
+ /// on the search parameters. (At time of writing, that's 4.) However,
+ /// when starting states for each pattern is enabled, then there are N
+ /// additional groups of starting states, where each group reflects the
+ /// different possible configurations and N is the number of patterns.
+ starts: Vec<LazyStateID>,
+ /// A sequence of NFA/DFA powerset states that have been computed for this
+ /// lazy DFA. This sequence is indexable by untagged LazyStateIDs. (Every
+ /// tagged LazyStateID can be used to index this sequence by converting it
+ /// to its untagged form.)
+ states: Vec<State>,
+ /// A map from states to their corresponding IDs. This map may be accessed
+ /// via the raw byte representation of a state, which means that a `State`
+ /// does not need to be allocated to determine whether it already exists
+ /// in this map. Indeed, the existence of such a state is what determines
+ /// whether we allocate a new `State` or not.
+ ///
+ /// The higher level idea here is that we do just enough determinization
+ /// for a state to check whether we've already computed it. If we have,
+ /// then we can save a little (albeit not much) work. The real savings is
+ /// in memory usage. If we never checked for trivially duplicate states,
+ /// then our memory usage would explode to unreasonable levels.
+ states_to_id: StateMap,
+ /// Sparse sets used to track which NFA states have been visited during
+ /// various traversals.
+ sparses: SparseSets,
+ /// Scratch space for traversing the NFA graph. (We use space on the heap
+ /// instead of the call stack.)
+ stack: Vec<NFAStateID>,
+ /// Scratch space for building a NFA/DFA powerset state. This is used to
+ /// help amortize allocation since not every powerset state generated is
+ /// added to the cache. In particular, if it already exists in the cache,
+ /// then there is no need to allocate a new `State` for it.
+ scratch_state_builder: StateBuilderEmpty,
+ /// A simple abstraction for handling the saving of at most a single state
+ /// across a cache clearing. This is required for correctness. Namely, if
+ /// adding a new state after clearing the cache fails, then the caller
+ /// must retain the ability to continue using the state ID given. The
+ /// state corresponding to the state ID is what we preserve across cache
+ /// clearings.
+ state_saver: StateSaver,
+ /// The memory usage, in bytes, used by 'states' and 'states_to_id'. We
+ /// track this as new states are added since states use a variable amount
+ /// of heap. Tracking this as we add states makes it possible to compute
+ /// the total amount of memory used by the determinizer in constant time.
+ memory_usage_state: usize,
+ /// The number of times the cache has been cleared. When a minimum cache
+ /// clear count is set, then the cache will return an error instead of
+ /// clearing the cache if the count has been exceeded.
+ clear_count: usize,
+}
+
+impl Cache {
+ /// Create a new cache for the given lazy DFA.
+ ///
+ /// The cache returned should only be used for searches for the given DFA.
+ /// If you want to reuse the cache for another DFA, then you must call
+ /// [`Cache::reset`] with that DFA.
+ pub fn new(dfa: &DFA) -> Cache {
+ let mut cache = Cache {
+ trans: alloc::vec![],
+ starts: alloc::vec![],
+ states: alloc::vec![],
+ states_to_id: StateMap::new(),
+ sparses: SparseSets::new(dfa.nfa.len()),
+ stack: alloc::vec![],
+ scratch_state_builder: StateBuilderEmpty::new(),
+ state_saver: StateSaver::none(),
+ memory_usage_state: 0,
+ clear_count: 0,
+ };
+ Lazy { dfa, cache: &mut cache }.init_cache();
+ cache
+ }
+
+ /// Reset this cache such that it can be used for searching with the given
+ /// lazy DFA (and only that DFA).
+ ///
+ /// A cache reset permits reusing memory already allocated in this cache
+ /// with a different lazy DFA.
+ ///
+ /// Resetting a cache sets its "clear count" to 0. This is relevant if the
+ /// lazy DFA has been configured to "give up" after it has cleared the
+ /// cache a certain number of times.
+ ///
+ /// Any lazy state ID generated by the cache prior to resetting it is
+ /// invalid after the reset.
+ ///
+ /// # Example
+ ///
+ /// This shows how to re-purpose a cache for use with a different DFA.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let dfa1 = DFA::new(r"\w")?;
+ /// let dfa2 = DFA::new(r"\W")?;
+ ///
+ /// let mut cache = dfa1.create_cache();
+ /// assert_eq!(
+ /// Some(HalfMatch::must(0, 2)),
+ /// dfa1.find_leftmost_fwd(&mut cache, "Δ".as_bytes())?,
+ /// );
+ ///
+ /// // Using 'cache' with dfa2 is not allowed. It may result in panics or
+ /// // incorrect results. In order to re-purpose the cache, we must reset
+ /// // it with the DFA we'd like to use it with.
+ /// //
+ /// // Similarly, after this reset, using the cache with 'dfa1' is also not
+ /// // allowed.
+ /// cache.reset(&dfa2);
+ /// assert_eq!(
+ /// Some(HalfMatch::must(0, 3)),
+ /// dfa2.find_leftmost_fwd(&mut cache, "☃".as_bytes())?,
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn reset(&mut self, dfa: &DFA) {
+ Lazy::new(dfa, self).reset_cache()
+ }
+
+ /// Returns the total number of times this cache has been cleared since it
+ /// was either created or last reset.
+ ///
+ /// This is useful for informational purposes or if you want to change
+ /// search strategies based on the number of times the cache has been
+ /// cleared.
+ pub fn clear_count(&self) -> usize {
+ self.clear_count
+ }
+
+ /// Returns the heap memory usage, in bytes, of this cache.
+ ///
+ /// This does **not** include the stack size used up by this cache. To
+ /// compute that, use `std::mem::size_of::<Cache>()`.
+ pub fn memory_usage(&self) -> usize {
+ const ID_SIZE: usize = size_of::<LazyStateID>();
+ const STATE_SIZE: usize = size_of::<State>();
+
+ self.trans.len() * ID_SIZE
+ + self.starts.len() * ID_SIZE
+ + self.states.len() * STATE_SIZE
+ // Maps likely use more memory than this, but it's probably close.
+ + self.states_to_id.len() * (STATE_SIZE + ID_SIZE)
+ + self.sparses.memory_usage()
+ + self.stack.capacity() * ID_SIZE
+ + self.scratch_state_builder.capacity()
+ // Heap memory used by 'State' in both 'states' and 'states_to_id'.
+ + self.memory_usage_state
+ }
+}
+
+/// A map from states to state identifiers. When using std, we use a standard
+/// hashmap, since it's a bit faster for this use case. (Other maps, like
+/// one's based on FNV, have not yet been benchmarked.)
+///
+/// The main purpose of this map is to reuse states where possible. This won't
+/// fully minimize the DFA, but it works well in a lot of cases.
+#[cfg(feature = "std")]
+type StateMap = std::collections::HashMap<State, LazyStateID>;
+#[cfg(not(feature = "std"))]
+type StateMap = alloc::collections::BTreeMap<State, LazyStateID>;
+
+/// A type that groups methods that require the base NFA/DFA and writable
+/// access to the cache.
+#[derive(Debug)]
+struct Lazy<'i, 'c> {
+ dfa: &'i DFA,
+ cache: &'c mut Cache,
+}
+
+impl<'i, 'c> Lazy<'i, 'c> {
+ /// Creates a new 'Lazy' wrapper for a DFA and its corresponding cache.
+ fn new(dfa: &'i DFA, cache: &'c mut Cache) -> Lazy<'i, 'c> {
+ Lazy { dfa, cache }
+ }
+
+ /// Return an immutable view by downgrading a writable cache to a read-only
+ /// cache.
+ fn as_ref<'a>(&'a self) -> LazyRef<'i, 'a> {
+ LazyRef::new(self.dfa, self.cache)
+ }
+
+ /// This is marked as 'inline(never)' to avoid bloating methods on 'DFA'
+ /// like 'next_state' and 'next_eoi_state' that are called in critical
+ /// areas. The idea is to let the optimizer focus on the other areas of
+ /// those methods as the hot path.
+ ///
+ /// Here's an example that justifies 'inline(never)'
+ ///
+ /// ```ignore
+ /// regex-cli find hybrid dfa \
+ /// @all-codepoints-utf8-100x '\pL{100}' --cache-capacity 10000000
+ /// ```
+ ///
+ /// Where 'all-codepoints-utf8-100x' is the UTF-8 encoding of every
+ /// codepoint, in sequence, repeated 100 times.
+ ///
+ /// With 'inline(never)' hyperfine reports 1.1s per run. With
+ /// 'inline(always)', hyperfine reports 1.23s. So that's a 10% improvement.
+ #[inline(never)]
+ fn cache_next_state(
+ &mut self,
+ mut current: LazyStateID,
+ unit: alphabet::Unit,
+ ) -> Result<LazyStateID, CacheError> {
+ let stride2 = self.dfa.stride2();
+ let empty_builder = self.get_state_builder();
+ let builder = determinize::next(
+ &self.dfa.nfa,
+ self.dfa.match_kind,
+ &mut self.cache.sparses,
+ &mut self.cache.stack,
+ &self.cache.states[current.as_usize_untagged() >> stride2],
+ unit,
+ empty_builder,
+ );
+ let save_state = !self.as_ref().state_builder_fits_in_cache(&builder);
+ if save_state {
+ self.save_state(current);
+ }
+ let next = self.add_builder_state(builder, |sid| sid)?;
+ if save_state {
+ current = self.saved_state_id();
+ }
+ // This is the payoff. The next time 'next_state' is called with this
+ // state and alphabet unit, it will find this transition and avoid
+ // having to re-determinize this transition.
+ self.set_transition(current, unit, next);
+ Ok(next)
+ }
+
+ /// Compute and cache the starting state for the given pattern ID (if
+ /// present) and the starting configuration.
+ ///
+ /// This panics if a pattern ID is given and the DFA isn't configured to
+ /// build anchored start states for each pattern.
+ ///
+ /// This will never return an unknown lazy state ID.
+ ///
+ /// If caching this state would otherwise result in a cache that has been
+ /// cleared too many times, then an error is returned.
+ fn cache_start_group(
+ &mut self,
+ pattern_id: Option<PatternID>,
+ start: Start,
+ ) -> Result<LazyStateID, CacheError> {
+ let nfa_start_id = match pattern_id {
+ Some(pid) => {
+ assert!(
+ self.dfa.starts_for_each_pattern,
+ "attempted to search for a specific pattern \
+ without enabling starts_for_each_pattern",
+ );
+ self.dfa.nfa.start_pattern(pid)
+ }
+ None if self.dfa.anchored => self.dfa.nfa.start_anchored(),
+ None => self.dfa.nfa.start_unanchored(),
+ };
+
+ let id = self.cache_start_one(nfa_start_id, start)?;
+ self.set_start_state(pattern_id, start, id);
+ Ok(id)
+ }
+
+ /// Compute and cache the starting state for the given NFA state ID and the
+ /// starting configuration. The NFA state ID might be one of the following:
+ ///
+ /// 1) An unanchored start state to match any pattern.
+ /// 2) An anchored start state to match any pattern.
+ /// 3) An anchored start state for a particular pattern.
+ ///
+ /// This will never return an unknown lazy state ID.
+ ///
+ /// If caching this state would otherwise result in a cache that has been
+ /// cleared too many times, then an error is returned.
+ fn cache_start_one(
+ &mut self,
+ nfa_start_id: NFAStateID,
+ start: Start,
+ ) -> Result<LazyStateID, CacheError> {
+ let mut builder_matches = self.get_state_builder().into_matches();
+ determinize::set_lookbehind_from_start(&start, &mut builder_matches);
+ self.cache.sparses.set1.clear();
+ determinize::epsilon_closure(
+ self.dfa.nfa.borrow(),
+ nfa_start_id,
+ *builder_matches.look_have(),
+ &mut self.cache.stack,
+ &mut self.cache.sparses.set1,
+ );
+ let mut builder = builder_matches.into_nfa();
+ determinize::add_nfa_states(
+ self.dfa.nfa.borrow(),
+ &self.cache.sparses.set1,
+ &mut builder,
+ );
+ self.add_builder_state(builder, |id| id.to_start())
+ }
+
+ /// Either add the given builder state to this cache, or return an ID to an
+ /// equivalent state already in this cache.
+ ///
+ /// In the case where no equivalent state exists, the idmap function given
+ /// may be used to transform the identifier allocated. This is useful if
+ /// the caller needs to tag the ID with additional information.
+ ///
+ /// This will never return an unknown lazy state ID.
+ ///
+ /// If caching this state would otherwise result in a cache that has been
+ /// cleared too many times, then an error is returned.
+ fn add_builder_state(
+ &mut self,
+ builder: StateBuilderNFA,
+ idmap: impl Fn(LazyStateID) -> LazyStateID,
+ ) -> Result<LazyStateID, CacheError> {
+ if let Some(&cached_id) =
+ self.cache.states_to_id.get(builder.as_bytes())
+ {
+ // Since we have a cached state, put the constructed state's
+ // memory back into our scratch space, so that it can be reused.
+ self.put_state_builder(builder);
+ return Ok(cached_id);
+ }
+ let result = self.add_state(builder.to_state(), idmap);
+ self.put_state_builder(builder);
+ result
+ }
+
+ /// Allocate a new state ID and add the given state to this cache.
+ ///
+ /// The idmap function given may be used to transform the identifier
+ /// allocated. This is useful if the caller needs to tag the ID with
+ /// additional information.
+ ///
+ /// This will never return an unknown lazy state ID.
+ ///
+ /// If caching this state would otherwise result in a cache that has been
+ /// cleared too many times, then an error is returned.
+ fn add_state(
+ &mut self,
+ state: State,
+ idmap: impl Fn(LazyStateID) -> LazyStateID,
+ ) -> Result<LazyStateID, CacheError> {
+ if !self.as_ref().state_fits_in_cache(&state) {
+ self.try_clear_cache()?;
+ }
+ // It's important for this to come second, since the above may clear
+ // the cache. If we clear the cache after ID generation, then the ID
+ // is likely bunk since it would have been generated based on a larger
+ // transition table.
+ let mut id = idmap(self.next_state_id()?);
+ if state.is_match() {
+ id = id.to_match();
+ }
+ // Add room in the transition table. Since this is a fresh state, all
+ // of its transitions are unknown.
+ self.cache.trans.extend(
+ iter::repeat(self.as_ref().unknown_id()).take(self.dfa.stride()),
+ );
+ // When we add a sentinel state, we never want to set any quit
+ // transitions. Technically, this is harmless, since sentinel states
+ // have all of their transitions set to loop back to themselves. But
+ // when creating sentinel states before the quit sentinel state,
+ // this will try to call 'set_transition' on a state ID that doesn't
+ // actually exist yet, which isn't allowed. So we just skip doing so
+ // entirely.
+ if !self.dfa.quitset.is_empty() && !self.as_ref().is_sentinel(id) {
+ let quit_id = self.as_ref().quit_id();
+ for b in self.dfa.quitset.iter() {
+ self.set_transition(id, alphabet::Unit::u8(b), quit_id);
+ }
+ }
+ self.cache.memory_usage_state += state.memory_usage();
+ self.cache.states.push(state.clone());
+ self.cache.states_to_id.insert(state, id);
+ Ok(id)
+ }
+
+ /// Allocate a new state ID.
+ ///
+ /// This will never return an unknown lazy state ID.
+ ///
+ /// If caching this state would otherwise result in a cache that has been
+ /// cleared too many times, then an error is returned.
+ fn next_state_id(&mut self) -> Result<LazyStateID, CacheError> {
+ let sid = match LazyStateID::new(self.cache.trans.len()) {
+ Ok(sid) => sid,
+ Err(_) => {
+ self.try_clear_cache()?;
+ // This has to pass since we check that ID capacity at
+ // construction time can fit at least MIN_STATES states.
+ LazyStateID::new(self.cache.trans.len()).unwrap()
+ }
+ };
+ Ok(sid)
+ }
+
+ /// Attempt to clear the cache used by this lazy DFA.
+ ///
+ /// If clearing the cache exceeds the minimum number of required cache
+ /// clearings, then this will return a cache error. In this case,
+ /// callers should bubble this up as the cache can't be used until it is
+ /// reset. Implementations of search should convert this error into a
+ /// `MatchError::GaveUp`.
+ ///
+ /// If 'self.state_saver' is set to save a state, then this state is
+ /// persisted through cache clearing. Otherwise, the cache is returned to
+ /// its state after initialization with two exceptions: its clear count
+ /// is incremented and some of its memory likely has additional capacity.
+ /// That is, clearing a cache does _not_ release memory.
+ ///
+ /// Otherwise, any lazy state ID generated by the cache prior to resetting
+ /// it is invalid after the reset.
+ fn try_clear_cache(&mut self) -> Result<(), CacheError> {
+ // Currently, the only heuristic we use is the minimum cache clear
+ // count. If we pass that minimum, then we give up.
+ //
+ // It would be good to also add a heuristic based on "bytes searched
+ // per generated state," but this requires API design work. Namely,
+ // we really do not want to add a counter increment to the transition
+ // function, which implies we need to expose APIs to update the number
+ // of bytes searched by implementers of the search routines. And that
+ // doesn't seem great... But we should do it if this heuristic isn't
+ // enough. (The original lazy DFA implementation in the 'regex' crate
+ // had this heuristic, since the lazy DFA was coupled with the search
+ // routines.)
+ if let Some(min_count) = self.dfa.minimum_cache_clear_count {
+ if self.cache.clear_count >= min_count {
+ return Err(CacheError::too_many_cache_clears());
+ }
+ }
+ self.clear_cache();
+ Ok(())
+ }
+
+ /// Clears _and_ resets the cache. Resetting the cache means that no
+ /// states are persisted and the clear count is reset to 0. No heap memory
+ /// is released.
+ ///
+ /// Note that the caller may reset a cache with a different DFA than what
+ /// it was created from. In which case, the cache can now be used with the
+ /// new DFA (and not the old DFA).
+ fn reset_cache(&mut self) {
+ self.cache.state_saver = StateSaver::none();
+ self.clear_cache();
+ // If a new DFA is used, it might have a different number of NFA
+ // states, so we need to make sure our sparse sets have the appropriate
+ // size.
+ self.cache.sparses.resize(self.dfa.nfa.len());
+ self.cache.clear_count = 0;
+ }
+
+ /// Clear the cache used by this lazy DFA.
+ ///
+ /// If clearing the cache exceeds the minimum number of required cache
+ /// clearings, then this will return a cache error. In this case,
+ /// callers should bubble this up as the cache can't be used until it is
+ /// reset. Implementations of search should convert this error into a
+ /// `MatchError::GaveUp`.
+ ///
+ /// If 'self.state_saver' is set to save a state, then this state is
+ /// persisted through cache clearing. Otherwise, the cache is returned to
+ /// its state after initialization with two exceptions: its clear count
+ /// is incremented and some of its memory likely has additional capacity.
+ /// That is, clearing a cache does _not_ release memory.
+ ///
+ /// Otherwise, any lazy state ID generated by the cache prior to resetting
+ /// it is invalid after the reset.
+ fn clear_cache(&mut self) {
+ self.cache.trans.clear();
+ self.cache.starts.clear();
+ self.cache.states.clear();
+ self.cache.states_to_id.clear();
+ self.cache.memory_usage_state = 0;
+ self.cache.clear_count += 1;
+ trace!(
+ "lazy DFA cache has been cleared (count: {})",
+ self.cache.clear_count
+ );
+ self.init_cache();
+ // If the state we want to save is one of the sentinel
+ // (unknown/dead/quit) states, then 'init_cache' adds those back, and
+ // their identifier values remains invariant. So there's no need to add
+ // it again. (And indeed, doing so would be incorrect!)
+ if let Some((old_id, state)) = self.cache.state_saver.take_to_save() {
+ // If the state is one of the special sentinel states, then it is
+ // automatically added by cache initialization and its ID always
+ // remains the same. With that said, this should never occur since
+ // the sentinel states are all loop states back to themselves. So
+ // we should never be in a position where we're attempting to save
+ // a sentinel state since we never compute transitions out of a
+ // sentinel state.
+ assert!(
+ !self.as_ref().is_sentinel(old_id),
+ "cannot save sentinel state"
+ );
+ let new_id = self
+ .add_state(state, |id| {
+ if old_id.is_start() {
+ id.to_start()
+ } else {
+ id
+ }
+ })
+ // The unwrap here is OK because lazy DFA creation ensures that
+ // we have room in the cache to add MIN_STATES states. Since
+ // 'init_cache' above adds 3, this adds a 4th.
+ .expect("adding one state after cache clear must work");
+ self.cache.state_saver = StateSaver::Saved(new_id);
+ }
+ }
+
+ /// Initialize this cache from emptiness to a place where it can be used
+ /// for search.
+ ///
+ /// This is called both at cache creation time and after the cache has been
+ /// cleared.
+ ///
+ /// Primarily, this adds the three sentinel states and allocates some
+ /// initial memory.
+ fn init_cache(&mut self) {
+ let mut starts_len = Start::count();
+ if self.dfa.starts_for_each_pattern {
+ starts_len += Start::count() * self.dfa.pattern_count();
+ }
+ self.cache
+ .starts
+ .extend(iter::repeat(self.as_ref().unknown_id()).take(starts_len));
+ // This is the set of NFA states that corresponds to each of our three
+ // sentinel states: the empty set.
+ let dead = State::dead();
+ // This sets up some states that we use as sentinels that are present
+ // in every DFA. While it would be technically possible to implement
+ // this DFA without explicitly putting these states in the transition
+ // table, this is convenient to do to make `next_state` correct for all
+ // valid state IDs without needing explicit conditionals to special
+ // case these sentinel states.
+ //
+ // All three of these states are "dead" states. That is, all of
+ // them transition only to themselves. So once you enter one of
+ // these states, it's impossible to leave them. Thus, any correct
+ // search routine must explicitly check for these state types. (Sans
+ // `unknown`, since that is only used internally to represent missing
+ // states.)
+ let unk_id =
+ self.add_state(dead.clone(), |id| id.to_unknown()).unwrap();
+ let dead_id = self.add_state(dead.clone(), |id| id.to_dead()).unwrap();
+ let quit_id = self.add_state(dead.clone(), |id| id.to_quit()).unwrap();
+ assert_eq!(unk_id, self.as_ref().unknown_id());
+ assert_eq!(dead_id, self.as_ref().dead_id());
+ assert_eq!(quit_id, self.as_ref().quit_id());
+ // The idea here is that if you start in an unknown/dead/quit state and
+ // try to transition on them, then you should end up where you started.
+ self.set_all_transitions(unk_id, unk_id);
+ self.set_all_transitions(dead_id, dead_id);
+ self.set_all_transitions(quit_id, quit_id);
+ // All of these states are technically equivalent from the FSM
+ // perspective, so putting all three of them in the cache isn't
+ // possible. (They are distinct merely because we use their
+ // identifiers as sentinels to mean something, as indicated by the
+ // names.) Moreover, we wouldn't want to do that. Unknown and quit
+ // states are special in that they are artificial constructions
+ // this implementation. But dead states are a natural part of
+ // determinization. When you reach a point in the NFA where you cannot
+ // go anywhere else, a dead state will naturally arise and we MUST
+ // reuse the canonical dead state that we've created here. Why? Because
+ // it is the state ID that tells the search routine whether a state is
+ // dead or not, and thus, whether to stop the search. Having a bunch of
+ // distinct dead states would be quite wasteful!
+ self.cache.states_to_id.insert(dead, dead_id);
+ }
+
+ /// Save the state corresponding to the ID given such that the state
+ /// persists through a cache clearing.
+ ///
+ /// While the state may persist, the ID may not. In order to discover the
+ /// new state ID, one must call 'saved_state_id' after a cache clearing.
+ fn save_state(&mut self, id: LazyStateID) {
+ let state = self.as_ref().get_cached_state(id).clone();
+ self.cache.state_saver = StateSaver::ToSave { id, state };
+ }
+
+ /// Returns the updated lazy state ID for a state that was persisted
+ /// through a cache clearing.
+ ///
+ /// It is only correct to call this routine when both a state has been
+ /// saved and the cache has just been cleared. Otherwise, this panics.
+ fn saved_state_id(&mut self) -> LazyStateID {
+ self.cache
+ .state_saver
+ .take_saved()
+ .expect("state saver does not have saved state ID")
+ }
+
+ /// Set all transitions on the state 'from' to 'to'.
+ fn set_all_transitions(&mut self, from: LazyStateID, to: LazyStateID) {
+ for unit in self.dfa.classes.representatives() {
+ self.set_transition(from, unit, to);
+ }
+ }
+
+ /// Set the transition on 'from' for 'unit' to 'to'.
+ ///
+ /// This panics if either 'from' or 'to' is invalid.
+ ///
+ /// All unit values are OK.
+ fn set_transition(
+ &mut self,
+ from: LazyStateID,
+ unit: alphabet::Unit,
+ to: LazyStateID,
+ ) {
+ assert!(self.as_ref().is_valid(from), "invalid 'from' id: {:?}", from);
+ assert!(self.as_ref().is_valid(to), "invalid 'to' id: {:?}", to);
+ let offset =
+ from.as_usize_untagged() + self.dfa.classes.get_by_unit(unit);
+ self.cache.trans[offset] = to;
+ }
+
+ /// Set the start ID for the given pattern ID (if given) and starting
+ /// configuration to the ID given.
+ ///
+ /// This panics if 'id' is not valid or if a pattern ID is given and
+ /// 'starts_for_each_pattern' is not enabled.
+ fn set_start_state(
+ &mut self,
+ pattern_id: Option<PatternID>,
+ start: Start,
+ id: LazyStateID,
+ ) {
+ assert!(self.as_ref().is_valid(id));
+ let start_index = start.as_usize();
+ let index = match pattern_id {
+ None => start_index,
+ Some(pid) => {
+ assert!(
+ self.dfa.starts_for_each_pattern,
+ "attempted to search for a specific pattern \
+ without enabling starts_for_each_pattern",
+ );
+ let pid = pid.as_usize();
+ Start::count() + (Start::count() * pid) + start_index
+ }
+ };
+ self.cache.starts[index] = id;
+ }
+
+ /// Returns a state builder from this DFA that might have existing
+ /// capacity. This helps avoid allocs in cases where a state is built that
+ /// turns out to already be cached.
+ ///
+ /// Callers must put the state builder back with 'put_state_builder',
+ /// otherwise the allocation reuse won't work.
+ fn get_state_builder(&mut self) -> StateBuilderEmpty {
+ core::mem::replace(
+ &mut self.cache.scratch_state_builder,
+ StateBuilderEmpty::new(),
+ )
+ }
+
+ /// Puts the given state builder back into this DFA for reuse.
+ ///
+ /// Note that building a 'State' from a builder always creates a new alloc,
+ /// so callers should always put the builder back.
+ fn put_state_builder(&mut self, builder: StateBuilderNFA) {
+ let _ = core::mem::replace(
+ &mut self.cache.scratch_state_builder,
+ builder.clear(),
+ );
+ }
+}
+
+/// A type that groups methods that require the base NFA/DFA and read-only
+/// access to the cache.
+#[derive(Debug)]
+struct LazyRef<'i, 'c> {
+ dfa: &'i DFA,
+ cache: &'c Cache,
+}
+
+impl<'i, 'c> LazyRef<'i, 'c> {
+ /// Creates a new 'Lazy' wrapper for a DFA and its corresponding cache.
+ fn new(dfa: &'i DFA, cache: &'c Cache) -> LazyRef<'i, 'c> {
+ LazyRef { dfa, cache }
+ }
+
+ /// Return the ID of the start state for the given configuration.
+ ///
+ /// If the start state has not yet been computed, then this returns an
+ /// unknown lazy state ID.
+ fn get_cached_start_id(
+ &self,
+ pattern_id: Option<PatternID>,
+ start: Start,
+ ) -> LazyStateID {
+ let start_index = start.as_usize();
+ let index = match pattern_id {
+ None => start_index,
+ Some(pid) => {
+ let pid = pid.as_usize();
+ assert!(
+ pid < self.dfa.pattern_count(),
+ "invalid pattern ID: {:?}",
+ pid
+ );
+ Start::count() + (Start::count() * pid) + start_index
+ }
+ };
+ self.cache.starts[index]
+ }
+
+ /// Return the cached NFA/DFA powerset state for the given ID.
+ ///
+ /// This panics if the given ID does not address a valid state.
+ fn get_cached_state(&self, sid: LazyStateID) -> &State {
+ let index = sid.as_usize_untagged() >> self.dfa.stride2();
+ &self.cache.states[index]
+ }
+
+ /// Returns true if and only if the given ID corresponds to a "sentinel"
+ /// state.
+ ///
+ /// A sentinel state is a state that signifies a special condition of
+ /// search, and where every transition maps back to itself. See LazyStateID
+ /// for more details. Note that start and match states are _not_ sentinels
+ /// since they may otherwise be real states with non-trivial transitions.
+ /// The purposes of sentinel states is purely to indicate something. Their
+ /// transitions are not meant to be followed.
+ fn is_sentinel(&self, id: LazyStateID) -> bool {
+ id == self.unknown_id() || id == self.dead_id() || id == self.quit_id()
+ }
+
+ /// Returns the ID of the unknown state for this lazy DFA.
+ fn unknown_id(&self) -> LazyStateID {
+ // This unwrap is OK since 0 is always a valid state ID.
+ LazyStateID::new(0).unwrap().to_unknown()
+ }
+
+ /// Returns the ID of the dead state for this lazy DFA.
+ fn dead_id(&self) -> LazyStateID {
+ // This unwrap is OK since the maximum value here is 1 * 512 = 512,
+ // which is <= 2047 (the maximum state ID on 16-bit systems). Where
+ // 512 is the worst case for our equivalence classes (every byte is a
+ // distinct class).
+ LazyStateID::new(1 << self.dfa.stride2()).unwrap().to_dead()
+ }
+
+ /// Returns the ID of the quit state for this lazy DFA.
+ fn quit_id(&self) -> LazyStateID {
+ // This unwrap is OK since the maximum value here is 2 * 512 = 1024,
+ // which is <= 2047 (the maximum state ID on 16-bit systems). Where
+ // 512 is the worst case for our equivalence classes (every byte is a
+ // distinct class).
+ LazyStateID::new(2 << self.dfa.stride2()).unwrap().to_quit()
+ }
+
+ /// Returns true if and only if the given ID is valid.
+ ///
+ /// An ID is valid if it is both a valid index into the transition table
+ /// and is a multiple of the DFA's stride.
+ fn is_valid(&self, id: LazyStateID) -> bool {
+ let id = id.as_usize_untagged();
+ id < self.cache.trans.len() && id % self.dfa.stride() == 0
+ }
+
+ /// Returns true if adding the state given would fit in this cache.
+ fn state_fits_in_cache(&self, state: &State) -> bool {
+ let needed = self.cache.memory_usage()
+ + self.memory_usage_for_one_more_state(state.memory_usage());
+ needed <= self.dfa.cache_capacity
+ }
+
+ /// Returns true if adding the state to be built by the given builder would
+ /// fit in this cache.
+ fn state_builder_fits_in_cache(&self, state: &StateBuilderNFA) -> bool {
+ let needed = self.cache.memory_usage()
+ + self.memory_usage_for_one_more_state(state.as_bytes().len());
+ needed <= self.dfa.cache_capacity
+ }
+
+ /// Returns the additional memory usage, in bytes, required to add one more
+ /// state to this cache. The given size should be the heap size, in bytes,
+ /// that would be used by the new state being added.
+ fn memory_usage_for_one_more_state(
+ &self,
+ state_heap_size: usize,
+ ) -> usize {
+ const ID_SIZE: usize = size_of::<LazyStateID>();
+ const STATE_SIZE: usize = size_of::<State>();
+
+ self.dfa.stride() * ID_SIZE // additional space needed in trans table
+ + STATE_SIZE // space in cache.states
+ + (STATE_SIZE + ID_SIZE) // space in cache.states_to_id
+ + state_heap_size // heap memory used by state itself
+ }
+}
+
+/// A simple type that encapsulates the saving of a state ID through a cache
+/// clearing.
+///
+/// A state ID can be marked for saving with ToSave, while a state ID can be
+/// saved itself with Saved.
+#[derive(Clone, Debug)]
+enum StateSaver {
+ /// An empty state saver. In this case, no states (other than the special
+ /// sentinel states) are preserved after clearing the cache.
+ None,
+ /// An ID of a state (and the state itself) that should be preserved after
+ /// the lazy DFA's cache has been cleared. After clearing, the updated ID
+ /// is stored in 'Saved' since it may have changed.
+ ToSave { id: LazyStateID, state: State },
+ /// An ID that of a state that has been persisted through a lazy DFA
+ /// cache clearing. The ID recorded here corresonds to an ID that was
+ /// once marked as ToSave. The IDs are likely not equivalent even though
+ /// the states they point to are.
+ Saved(LazyStateID),
+}
+
+impl StateSaver {
+ /// Create an empty state saver.
+ fn none() -> StateSaver {
+ StateSaver::None
+ }
+
+ /// Replace this state saver with an empty saver, and if this saver is a
+ /// request to save a state, return that request.
+ fn take_to_save(&mut self) -> Option<(LazyStateID, State)> {
+ match core::mem::replace(self, StateSaver::None) {
+ StateSaver::None | StateSaver::Saved(_) => None,
+ StateSaver::ToSave { id, state } => Some((id, state)),
+ }
+ }
+
+ /// Replace this state saver with an empty saver, and if this saver is a
+ /// saved state (or a request to save a state), return that state's ID.
+ ///
+ /// The idea here is that a request to save a state isn't necessarily
+ /// honored because it might not be needed. e.g., Some higher level code
+ /// might request a state to be saved on the off chance that the cache gets
+ /// cleared when a new state is added at a lower level. But if that new
+ /// state is never added, then the cache is never cleared and the state and
+ /// its ID remain unchanged.
+ fn take_saved(&mut self) -> Option<LazyStateID> {
+ match core::mem::replace(self, StateSaver::None) {
+ StateSaver::None => None,
+ StateSaver::Saved(id) | StateSaver::ToSave { id, .. } => Some(id),
+ }
+ }
+}
+
+/// The configuration used for building a lazy DFA.
+///
+/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
+/// advantage of the former is that it often lets you avoid importing the
+/// `Config` type directly.
+///
+/// A lazy DFA configuration is a simple data object that is typically used
+/// with [`Builder::configure`].
+///
+/// The default configuration guarantees that a search will _never_ return
+/// a [`MatchError`] for any haystack or pattern. Setting a quit byte with
+/// [`Config::quit`], enabling heuristic support for Unicode word boundaries
+/// with [`Config::unicode_word_boundary`], or setting a minimum cache clear
+/// count with [`Config::minimum_cache_clear_count`] can in turn cause a search
+/// to return an error. See the corresponding configuration options for more
+/// details on when those error conditions arise.
+#[derive(Clone, Copy, Debug, Default)]
+pub struct Config {
+ // As with other configuration types in this crate, we put all our knobs
+ // in options so that we can distinguish between "default" and "not set."
+ // This makes it possible to easily combine multiple configurations
+ // without default values overwriting explicitly specified values. See the
+ // 'overwrite' method.
+ //
+ // For docs on the fields below, see the corresponding method setters.
+ anchored: Option<bool>,
+ match_kind: Option<MatchKind>,
+ starts_for_each_pattern: Option<bool>,
+ byte_classes: Option<bool>,
+ unicode_word_boundary: Option<bool>,
+ quitset: Option<ByteSet>,
+ cache_capacity: Option<usize>,
+ skip_cache_capacity_check: Option<bool>,
+ minimum_cache_clear_count: Option<Option<usize>>,
+}
+
+impl Config {
+ /// Return a new default lazy DFA builder configuration.
+ pub fn new() -> Config {
+ Config::default()
+ }
+
+ /// Set whether matching must be anchored at the beginning of the input.
+ ///
+ /// When enabled, a match must begin at the start of a search. When
+ /// disabled (the default), the lazy DFA will act as if the pattern started
+ /// with a `(?s:.)*?`, which enables a match to appear anywhere.
+ ///
+ /// Note that if you want to run both anchored and unanchored
+ /// searches without building multiple automatons, you can enable the
+ /// [`Config::starts_for_each_pattern`] configuration instead. This will
+ /// permit unanchored any-pattern searches and pattern-specific anchored
+ /// searches. See the documentation for that configuration for an example.
+ ///
+ /// By default this is disabled.
+ ///
+ /// **WARNING:** this is subtly different than using a `^` at the start of
+ /// your regex. A `^` forces a regex to match exclusively at the start of
+ /// input, regardless of where you begin your search. In contrast, enabling
+ /// this option will allow your regex to match anywhere in your input,
+ /// but the match must start at the beginning of a search. (Most of the
+ /// higher level convenience search routines make "start of input" and
+ /// "start of search" equivalent, but some routines allow treating these as
+ /// orthogonal.)
+ ///
+ /// For example, consider the haystack `aba` and the following searches:
+ ///
+ /// 1. The regex `^a` is compiled with `anchored=false` and searches
+ /// `aba` starting at position `2`. Since `^` requires the match to
+ /// start at the beginning of the input and `2 > 0`, no match is found.
+ /// 2. The regex `a` is compiled with `anchored=true` and searches `aba`
+ /// starting at position `2`. This reports a match at `[2, 3]` since
+ /// the match starts where the search started. Since there is no `^`,
+ /// there is no requirement for the match to start at the beginning of
+ /// the input.
+ /// 3. The regex `a` is compiled with `anchored=true` and searches `aba`
+ /// starting at position `1`. Since `b` corresponds to position `1` and
+ /// since the regex is anchored, it finds no match.
+ /// 4. The regex `a` is compiled with `anchored=false` and searches `aba`
+ /// startting at position `1`. Since the regex is neither anchored nor
+ /// starts with `^`, the regex is compiled with an implicit `(?s:.)*?`
+ /// prefix that permits it to match anywhere. Thus, it reports a match
+ /// at `[2, 3]`.
+ ///
+ /// # Example
+ ///
+ /// This demonstrates the differences between an anchored search and
+ /// a pattern that begins with `^` (as described in the above warning
+ /// message).
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch};
+ ///
+ /// let haystack = "aba".as_bytes();
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().anchored(false)) // default
+ /// .build(r"^a")?;
+ /// let mut cache = dfa.create_cache();
+ /// let got = dfa.find_leftmost_fwd_at(
+ /// &mut cache, None, None, haystack, 2, 3,
+ /// )?;
+ /// // No match is found because 2 is not the beginning of the haystack,
+ /// // which is what ^ requires.
+ /// let expected = None;
+ /// assert_eq!(expected, got);
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().anchored(true))
+ /// .build(r"a")?;
+ /// let mut cache = dfa.create_cache();
+ /// let got = dfa.find_leftmost_fwd_at(
+ /// &mut cache, None, None, haystack, 2, 3,
+ /// )?;
+ /// // An anchored search can still match anywhere in the haystack, it just
+ /// // must begin at the start of the search which is '2' in this case.
+ /// let expected = Some(HalfMatch::must(0, 3));
+ /// assert_eq!(expected, got);
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().anchored(true))
+ /// .build(r"a")?;
+ /// let mut cache = dfa.create_cache();
+ /// let got = dfa.find_leftmost_fwd_at(
+ /// &mut cache, None, None, haystack, 1, 3,
+ /// )?;
+ /// // No match is found since we start searching at offset 1 which
+ /// // corresponds to 'b'. Since there is no '(?s:.)*?' prefix, no match
+ /// // is found.
+ /// let expected = None;
+ /// assert_eq!(expected, got);
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().anchored(false))
+ /// .build(r"a")?;
+ /// let mut cache = dfa.create_cache();
+ /// let got = dfa.find_leftmost_fwd_at(
+ /// &mut cache, None, None, haystack, 1, 3,
+ /// )?;
+ /// // Since anchored=false, an implicit '(?s:.)*?' prefix was added to the
+ /// // pattern. Even though the search starts at 'b', the 'match anything'
+ /// // prefix allows the search to match 'a'.
+ /// let expected = Some(HalfMatch::must(0, 3));
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn anchored(mut self, yes: bool) -> Config {
+ self.anchored = Some(yes);
+ self
+ }
+
+ /// Set the desired match semantics.
+ ///
+ /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
+ /// match semantics of Perl-like regex engines. That is, when multiple
+ /// patterns would match at the same leftmost position, the pattern that
+ /// appears first in the concrete syntax is chosen.
+ ///
+ /// Currently, the only other kind of match semantics supported is
+ /// [`MatchKind::All`]. This corresponds to classical DFA construction
+ /// where all possible matches are added to the lazy DFA.
+ ///
+ /// Typically, `All` is used when one wants to execute an overlapping
+ /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
+ /// sense to use `All` with the various "leftmost" find routines, since the
+ /// leftmost routines depend on the `LeftmostFirst` automata construction
+ /// strategy. Specifically, `LeftmostFirst` adds dead states to the
+ /// lazy DFA as a way to terminate the search and report a match.
+ /// `LeftmostFirst` also supports non-greedy matches using this strategy
+ /// where as `All` does not.
+ ///
+ /// # Example: overlapping search
+ ///
+ /// This example shows the typical use of `MatchKind::All`, which is to
+ /// report overlapping matches.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// hybrid::{dfa::DFA, OverlappingState},
+ /// HalfMatch, MatchKind,
+ /// };
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().match_kind(MatchKind::All))
+ /// .build_many(&[r"\w+$", r"\S+$"])?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = "@foo".as_bytes();
+ /// let mut state = OverlappingState::start();
+ ///
+ /// let expected = Some(HalfMatch::must(1, 4));
+ /// let got = dfa.find_overlapping_fwd(&mut cache, haystack, &mut state)?;
+ /// assert_eq!(expected, got);
+ ///
+ /// // The first pattern also matches at the same position, so re-running
+ /// // the search will yield another match. Notice also that the first
+ /// // pattern is returned after the second. This is because the second
+ /// // pattern begins its match before the first, is therefore an earlier
+ /// // match and is thus reported first.
+ /// let expected = Some(HalfMatch::must(0, 4));
+ /// let got = dfa.find_overlapping_fwd(&mut cache, haystack, &mut state)?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// # Example: reverse automaton to find start of match
+ ///
+ /// Another example for using `MatchKind::All` is for constructing a
+ /// reverse automaton to find the start of a match. `All` semantics are
+ /// used for this in order to find the longest possible match, which
+ /// corresponds to the leftmost starting position.
+ ///
+ /// Note that if you need the starting position then
+ /// [`hybrid::regex::Regex`](crate::hybrid::regex::Regex) will handle this
+ /// for you, so it's usually not necessary to do this yourself.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, MatchKind};
+ ///
+ /// let haystack = "123foobar456".as_bytes();
+ /// let pattern = r"[a-z]+";
+ ///
+ /// let dfa_fwd = DFA::new(pattern)?;
+ /// let dfa_rev = DFA::builder()
+ /// .configure(DFA::config()
+ /// .anchored(true)
+ /// .match_kind(MatchKind::All)
+ /// )
+ /// .build(pattern)?;
+ /// let mut cache_fwd = dfa_fwd.create_cache();
+ /// let mut cache_rev = dfa_rev.create_cache();
+ ///
+ /// let expected_fwd = HalfMatch::must(0, 9);
+ /// let expected_rev = HalfMatch::must(0, 3);
+ /// let got_fwd = dfa_fwd.find_leftmost_fwd(
+ /// &mut cache_fwd, haystack,
+ /// )?.unwrap();
+ /// // Here we don't specify the pattern to search for since there's only
+ /// // one pattern and we're doing a leftmost search. But if this were an
+ /// // overlapping search, you'd need to specify the pattern that matched
+ /// // in the forward direction. (Otherwise, you might wind up finding the
+ /// // starting position of a match of some other pattern.) That in turn
+ /// // requires building the reverse automaton with starts_for_each_pattern
+ /// // enabled. Indeed, this is what Regex does internally.
+ /// let got_rev = dfa_rev.find_leftmost_rev_at(
+ /// &mut cache_rev, None, haystack, 0, got_fwd.offset(),
+ /// )?.unwrap();
+ /// assert_eq!(expected_fwd, got_fwd);
+ /// assert_eq!(expected_rev, got_rev);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn match_kind(mut self, kind: MatchKind) -> Config {
+ self.match_kind = Some(kind);
+ self
+ }
+
+ /// Whether to compile a separate start state for each pattern in the
+ /// lazy DFA.
+ ///
+ /// When enabled, a separate **anchored** start state is added for each
+ /// pattern in the lazy DFA. When this start state is used, then the DFA
+ /// will only search for matches for the pattern specified, even if there
+ /// are other patterns in the DFA.
+ ///
+ /// The main downside of this option is that it can potentially increase
+ /// the size of the DFA and/or increase the time it takes to build the
+ /// DFA at search time. However, since this is configuration for a lazy
+ /// DFA, these states aren't actually built unless they're used. Enabling
+ /// this isn't necessarily free, however, as it may result in higher cache
+ /// usage.
+ ///
+ /// There are a few reasons one might want to enable this (it's disabled
+ /// by default):
+ ///
+ /// 1. When looking for the start of an overlapping match (using a reverse
+ /// DFA), doing it correctly requires starting the reverse search using the
+ /// starting state of the pattern that matched in the forward direction.
+ /// Indeed, when building a [`Regex`](crate::hybrid::regex::Regex), it
+ /// will automatically enable this option when building the reverse DFA
+ /// internally.
+ /// 2. When you want to use a DFA with multiple patterns to both search
+ /// for matches of any pattern or to search for anchored matches of one
+ /// particular pattern while using the same DFA. (Otherwise, you would need
+ /// to compile a new DFA for each pattern.)
+ /// 3. Since the start states added for each pattern are anchored, if you
+ /// compile an unanchored DFA with one pattern while also enabling this
+ /// option, then you can use the same DFA to perform anchored or unanchored
+ /// searches. The latter you get with the standard search APIs. The former
+ /// you get from the various `_at` search methods that allow you specify a
+ /// pattern ID to search for.
+ ///
+ /// By default this is disabled.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use this option to permit the same lazy DFA
+ /// to run both anchored and unanchored searches for a single pattern.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, PatternID};
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().starts_for_each_pattern(true))
+ /// .build(r"foo[0-9]+")?;
+ /// let mut cache = dfa.create_cache();
+ /// let haystack = b"quux foo123";
+ ///
+ /// // Here's a normal unanchored search. Notice that we use 'None' for the
+ /// // pattern ID. Since the DFA was built as an unanchored machine, it
+ /// // uses its default unanchored starting state.
+ /// let expected = HalfMatch::must(0, 11);
+ /// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at(
+ /// &mut cache, None, None, haystack, 0, haystack.len(),
+ /// )?);
+ /// // But now if we explicitly specify the pattern to search ('0' being
+ /// // the only pattern in the DFA), then it will use the starting state
+ /// // for that specific pattern which is always anchored. Since the
+ /// // pattern doesn't have a match at the beginning of the haystack, we
+ /// // find nothing.
+ /// assert_eq!(None, dfa.find_leftmost_fwd_at(
+ /// &mut cache, None, Some(PatternID::must(0)), haystack, 0, haystack.len(),
+ /// )?);
+ /// // And finally, an anchored search is not the same as putting a '^' at
+ /// // beginning of the pattern. An anchored search can only match at the
+ /// // beginning of the *search*, which we can change:
+ /// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at(
+ /// &mut cache, None, Some(PatternID::must(0)), haystack, 5, haystack.len(),
+ /// )?);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
+ self.starts_for_each_pattern = Some(yes);
+ self
+ }
+
+ /// Whether to attempt to shrink the size of the lazy DFA's alphabet or
+ /// not.
+ ///
+ /// This option is enabled by default and should never be disabled unless
+ /// one is debugging the lazy DFA.
+ ///
+ /// When enabled, the lazy DFA will use a map from all possible bytes
+ /// to their corresponding equivalence class. Each equivalence class
+ /// represents a set of bytes that does not discriminate between a match
+ /// and a non-match in the DFA. For example, the pattern `[ab]+` has at
+ /// least two equivalence classes: a set containing `a` and `b` and a set
+ /// containing every byte except for `a` and `b`. `a` and `b` are in the
+ /// same equivalence classes because they never discriminate between a
+ /// match and a non-match.
+ ///
+ /// The advantage of this map is that the size of the transition table
+ /// can be reduced drastically from `#states * 256 * sizeof(LazyStateID)`
+ /// to `#states * k * sizeof(LazyStateID)` where `k` is the number of
+ /// equivalence classes (rounded up to the nearest power of 2). As a
+ /// result, total space usage can decrease substantially. Moreover, since a
+ /// smaller alphabet is used, DFA compilation during search becomes faster
+ /// as well since it will potentially be able to reuse a single transition
+ /// for multiple bytes.
+ ///
+ /// **WARNING:** This is only useful for debugging lazy DFAs. Disabling
+ /// this does not yield any speed advantages. Namely, even when this is
+ /// disabled, a byte class map is still used while searching. The only
+ /// difference is that every byte will be forced into its own distinct
+ /// equivalence class. This is useful for debugging the actual generated
+ /// transitions because it lets one see the transitions defined on actual
+ /// bytes instead of the equivalence classes.
+ pub fn byte_classes(mut self, yes: bool) -> Config {
+ self.byte_classes = Some(yes);
+ self
+ }
+
+ /// Heuristically enable Unicode word boundaries.
+ ///
+ /// When set, this will attempt to implement Unicode word boundaries as if
+ /// they were ASCII word boundaries. This only works when the search input
+ /// is ASCII only. If a non-ASCII byte is observed while searching, then a
+ /// [`MatchError::Quit`](crate::MatchError::Quit) error is returned.
+ ///
+ /// A possible alternative to enabling this option is to simply use an
+ /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
+ /// option is if you absolutely need Unicode support. This option lets one
+ /// use a fast search implementation (a DFA) for some potentially very
+ /// common cases, while providing the option to fall back to some other
+ /// regex engine to handle the general case when an error is returned.
+ ///
+ /// If the pattern provided has no Unicode word boundary in it, then this
+ /// option has no effect. (That is, quitting on a non-ASCII byte only
+ /// occurs when this option is enabled _and_ a Unicode word boundary is
+ /// present in the pattern.)
+ ///
+ /// This is almost equivalent to setting all non-ASCII bytes to be quit
+ /// bytes. The only difference is that this will cause non-ASCII bytes to
+ /// be quit bytes _only_ when a Unicode word boundary is present in the
+ /// pattern.
+ ///
+ /// When enabling this option, callers _must_ be prepared to handle
+ /// a [`MatchError`](crate::MatchError) error during search.
+ /// When using a [`Regex`](crate::hybrid::regex::Regex), this
+ /// corresponds to using the `try_` suite of methods. Alternatively,
+ /// if callers can guarantee that their input is ASCII only, then a
+ /// [`MatchError::Quit`](crate::MatchError::Quit) error will never be
+ /// returned while searching.
+ ///
+ /// This is disabled by default.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to heuristically enable Unicode word boundaries
+ /// in a pattern. It also shows what happens when a search comes across a
+ /// non-ASCII byte.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// hybrid::dfa::DFA,
+ /// HalfMatch, MatchError, MatchKind,
+ /// };
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().unicode_word_boundary(true))
+ /// .build(r"\b[0-9]+\b")?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// // The match occurs before the search ever observes the snowman
+ /// // character, so no error occurs.
+ /// let haystack = "foo 123 ☃".as_bytes();
+ /// let expected = Some(HalfMatch::must(0, 7));
+ /// let got = dfa.find_leftmost_fwd(&mut cache, haystack)?;
+ /// assert_eq!(expected, got);
+ ///
+ /// // Notice that this search fails, even though the snowman character
+ /// // occurs after the ending match offset. This is because search
+ /// // routines read one byte past the end of the search to account for
+ /// // look-around, and indeed, this is required here to determine whether
+ /// // the trailing \b matches.
+ /// let haystack = "foo 123☃".as_bytes();
+ /// let expected = MatchError::Quit { byte: 0xE2, offset: 7 };
+ /// let got = dfa.find_leftmost_fwd(&mut cache, haystack);
+ /// assert_eq!(Err(expected), got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
+ // We have a separate option for this instead of just setting the
+ // appropriate quit bytes here because we don't want to set quit bytes
+ // for every regex. We only want to set them when the regex contains a
+ // Unicode word boundary.
+ self.unicode_word_boundary = Some(yes);
+ self
+ }
+
+ /// Add a "quit" byte to the lazy DFA.
+ ///
+ /// When a quit byte is seen during search time, then search will return
+ /// a [`MatchError::Quit`](crate::MatchError::Quit) error indicating the
+ /// offset at which the search stopped.
+ ///
+ /// A quit byte will always overrule any other aspects of a regex. For
+ /// example, if the `x` byte is added as a quit byte and the regex `\w` is
+ /// used, then observing `x` will cause the search to quit immediately
+ /// despite the fact that `x` is in the `\w` class.
+ ///
+ /// This mechanism is primarily useful for heuristically enabling certain
+ /// features like Unicode word boundaries in a DFA. Namely, if the input
+ /// to search is ASCII, then a Unicode word boundary can be implemented
+ /// via an ASCII word boundary with no change in semantics. Thus, a DFA
+ /// can attempt to match a Unicode word boundary but give up as soon as it
+ /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
+ /// to be quit bytes, then Unicode word boundaries will be permitted when
+ /// building lazy DFAs. Of course, callers should enable
+ /// [`Config::unicode_word_boundary`] if they want this behavior instead.
+ /// (The advantage being that non-ASCII quit bytes will only be added if a
+ /// Unicode word boundary is in the pattern.)
+ ///
+ /// When enabling this option, callers _must_ be prepared to handle a
+ /// [`MatchError`](crate::MatchError) error during search. When using a
+ /// [`Regex`](crate::hybrid::regex::Regex), this corresponds to using the
+ /// `try_` suite of methods.
+ ///
+ /// By default, there are no quit bytes set.
+ ///
+ /// # Panics
+ ///
+ /// This panics if heuristic Unicode word boundaries are enabled and any
+ /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
+ /// Unicode word boundaries requires setting every non-ASCII byte to a quit
+ /// byte. So if the caller attempts to undo any of that, then this will
+ /// panic.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to cause a search to terminate if it sees a
+ /// `\n` byte. This could be useful if, for example, you wanted to prevent
+ /// a user supplied pattern from matching across a line boundary.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, MatchError};
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().quit(b'\n', true))
+ /// .build(r"foo\p{any}+bar")?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let haystack = "foo\nbar".as_bytes();
+ /// // Normally this would produce a match, since \p{any} contains '\n'.
+ /// // But since we instructed the automaton to enter a quit state if a
+ /// // '\n' is observed, this produces a match error instead.
+ /// let expected = MatchError::Quit { byte: 0x0A, offset: 3 };
+ /// let got = dfa.find_leftmost_fwd(&mut cache, haystack).unwrap_err();
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn quit(mut self, byte: u8, yes: bool) -> Config {
+ if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
+ panic!(
+ "cannot set non-ASCII byte to be non-quit when \
+ Unicode word boundaries are enabled"
+ );
+ }
+ if self.quitset.is_none() {
+ self.quitset = Some(ByteSet::empty());
+ }
+ if yes {
+ self.quitset.as_mut().unwrap().add(byte);
+ } else {
+ self.quitset.as_mut().unwrap().remove(byte);
+ }
+ self
+ }
+
+ /// Sets the maximum amount of heap memory, in bytes, to allocate to the
+ /// cache for use during a lazy DFA search. If the lazy DFA would otherwise
+ /// use more heap memory, then, depending on other configuration knobs,
+ /// either stop the search and return an error or clear the cache and
+ /// continue the search.
+ ///
+ /// The default cache capacity is some "reasonable" number that will
+ /// accommodate most regular expressions. You may find that if you need
+ /// to build a large DFA then it may be necessary to increase the cache
+ /// capacity.
+ ///
+ /// Note that while building a lazy DFA will do a "minimum" check to ensure
+ /// the capacity is big enough, this is more or less about correctness.
+ /// If the cache is bigger than the minimum but still too small, then the
+ /// lazy DFA could wind up spending a lot of time clearing the cache and
+ /// recomputing transitions, thus negating the performance benefits of a
+ /// lazy DFA. Thus, setting the cache capacity is mostly an experimental
+ /// endeavor. For most common patterns, however, the default should be
+ /// sufficient.
+ ///
+ /// For more details on how the lazy DFA's cache is used, see the
+ /// documentation for [`Cache`].
+ ///
+ /// # Example
+ ///
+ /// This example shows what happens if the configured cache capacity is
+ /// too small. In such cases, one can override the cache capacity to make
+ /// it bigger. Alternatively, one might want to use less memory by setting
+ /// a smaller cache capacity.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, MatchError};
+ ///
+ /// let pattern = r"\p{L}{1000}";
+ ///
+ /// // The default cache capacity is likely too small to deal with regexes
+ /// // that are very large. Large repetitions of large Unicode character
+ /// // classes are a common way to make very large regexes.
+ /// let _ = DFA::new(pattern).unwrap_err();
+ /// // Bump up the capacity to something bigger.
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().cache_capacity(100 * (1<<20))) // 100 MB
+ /// .build(pattern)?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let haystack = "ͰͲͶͿΆΈΉΊΌΎΏΑΒΓΔΕΖΗΘΙ".repeat(50);
+ /// let expected = Some(HalfMatch::must(0, 2000));
+ /// let got = dfa.find_leftmost_fwd(&mut cache, haystack.as_bytes())?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn cache_capacity(mut self, bytes: usize) -> Config {
+ self.cache_capacity = Some(bytes);
+ self
+ }
+
+ /// Configures construction of a lazy DFA to use the minimum cache capacity
+ /// if the configured capacity is otherwise too small for the provided NFA.
+ ///
+ /// This is useful if you never want lazy DFA construction to fail because
+ /// of a capacity that is too small.
+ ///
+ /// In general, this option is typically not a good idea. In particular,
+ /// while a minimum cache capacity does permit the lazy DFA to function
+ /// where it otherwise couldn't, it's plausible that it may not function
+ /// well if it's constantly running out of room. In that case, the speed
+ /// advantages of the lazy DFA may be negated.
+ ///
+ /// This is disabled by default.
+ ///
+ /// # Example
+ ///
+ /// This example shows what happens if the configured cache capacity is
+ /// too small. In such cases, one could override the capacity explicitly.
+ /// An alternative, demonstrated here, let's us force construction to use
+ /// the minimum cache capacity if the configured capacity is otherwise
+ /// too small.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, MatchError};
+ ///
+ /// let pattern = r"\p{L}{1000}";
+ ///
+ /// // The default cache capacity is likely too small to deal with regexes
+ /// // that are very large. Large repetitions of large Unicode character
+ /// // classes are a common way to make very large regexes.
+ /// let _ = DFA::new(pattern).unwrap_err();
+ /// // Configure construction such it automatically selects the minimum
+ /// // cache capacity if it would otherwise be too small.
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().skip_cache_capacity_check(true))
+ /// .build(pattern)?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let haystack = "ͰͲͶͿΆΈΉΊΌΎΏΑΒΓΔΕΖΗΘΙ".repeat(50);
+ /// let expected = Some(HalfMatch::must(0, 2000));
+ /// let got = dfa.find_leftmost_fwd(&mut cache, haystack.as_bytes())?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn skip_cache_capacity_check(mut self, yes: bool) -> Config {
+ self.skip_cache_capacity_check = Some(yes);
+ self
+ }
+
+ /// Configure a lazy DFA search to quit after a certain number of cache
+ /// clearings.
+ ///
+ /// When a minimum is set, then a lazy DFA search will "give up" after
+ /// the minimum number of cache clearings has occurred. This is typically
+ /// useful in scenarios where callers want to detect whether the lazy DFA
+ /// search is "efficient" or not. If the cache is cleared too many times,
+ /// this is a good indicator that it is not efficient, and thus, the caller
+ /// may wish to use some other regex engine.
+ ///
+ /// Note that the number of times a cache is cleared is a property of
+ /// the cache itself. Thus, if a cache is used in a subsequent search
+ /// with a similarly configured lazy DFA, then it would cause the
+ /// search to "give up" if the cache needed to be cleared. The cache
+ /// clear count can only be reset to `0` via [`DFA::reset_cache`] (or
+ /// [`Regex::reset_cache`](crate::hybrid::regex::Regex::reset_cache) if
+ /// you're using the `Regex` API).
+ ///
+ /// By default, no minimum is configured. Thus, a lazy DFA search will
+ /// never give up due to cache clearings.
+ ///
+ /// # Example
+ ///
+ /// This example uses a somewhat pathological configuration to demonstrate
+ /// the _possible_ behavior of cache clearing and how it might result
+ /// in a search that returns an error.
+ ///
+ /// It is important to note that the precise mechanics of how and when
+ /// a cache gets cleared is an implementation detail. Thus, the asserts
+ /// in the tests below with respect to the particular offsets at which a
+ /// search gave up should be viewed strictly as a demonstration. They are
+ /// not part of any API guarantees offered by this crate.
+ ///
+ /// ```
+ /// use regex_automata::{hybrid::dfa::DFA, MatchError};
+ ///
+ /// // This is a carefully chosen regex. The idea is to pick one
+ /// // that requires some decent number of states (hence the bounded
+ /// // repetition). But we specifically choose to create a class with an
+ /// // ASCII letter and a non-ASCII letter so that we can check that no new
+ /// // states are created once the cache is full. Namely, if we fill up the
+ /// // cache on a haystack of 'a's, then in order to match one 'β', a new
+ /// // state will need to be created since a 'β' is encoded with multiple
+ /// // bytes. Since there's no room for this state, the search should quit
+ /// // at the very first position.
+ /// let pattern = r"[aβ]{100}";
+ /// let dfa = DFA::builder()
+ /// .configure(
+ /// // Configure it so that we have the minimum cache capacity
+ /// // possible. And that if any clearings occur, the search quits.
+ /// DFA::config()
+ /// .skip_cache_capacity_check(true)
+ /// .cache_capacity(0)
+ /// .minimum_cache_clear_count(Some(0)),
+ /// )
+ /// .build(pattern)?;
+ /// let mut cache = dfa.create_cache();
+ ///
+ /// let haystack = "a".repeat(101).into_bytes();
+ /// assert_eq!(
+ /// dfa.find_leftmost_fwd(&mut cache, &haystack),
+ /// Err(MatchError::GaveUp { offset: 25 }),
+ /// );
+ ///
+ /// // Now that we know the cache is full, if we search a haystack that we
+ /// // know will require creating at least one new state, it should not
+ /// // be able to make any progress.
+ /// let haystack = "β".repeat(101).into_bytes();
+ /// assert_eq!(
+ /// dfa.find_leftmost_fwd(&mut cache, &haystack),
+ /// Err(MatchError::GaveUp { offset: 0 }),
+ /// );
+ ///
+ /// // If we reset the cache, then we should be able to create more states
+ /// // and make more progress with searching for betas.
+ /// cache.reset(&dfa);
+ /// let haystack = "β".repeat(101).into_bytes();
+ /// assert_eq!(
+ /// dfa.find_earliest_fwd(&mut cache, &haystack),
+ /// Err(MatchError::GaveUp { offset: 26 }),
+ /// );
+ ///
+ /// // ... switching back to ASCII still makes progress since it just needs
+ /// // to set transitions on existing states!
+ /// let haystack = "a".repeat(101).into_bytes();
+ /// assert_eq!(
+ /// dfa.find_earliest_fwd(&mut cache, &haystack),
+ /// Err(MatchError::GaveUp { offset: 13 }),
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn minimum_cache_clear_count(mut self, min: Option<usize>) -> Config {
+ self.minimum_cache_clear_count = Some(min);
+ self
+ }
+
+ /// Returns whether this configuration has enabled anchored searches.
+ pub fn get_anchored(&self) -> bool {
+ self.anchored.unwrap_or(false)
+ }
+
+ /// Returns the match semantics set in this configuration.
+ pub fn get_match_kind(&self) -> MatchKind {
+ self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
+ }
+
+ /// Returns whether this configuration has enabled anchored starting states
+ /// for every pattern in the DFA.
+ pub fn get_starts_for_each_pattern(&self) -> bool {
+ self.starts_for_each_pattern.unwrap_or(false)
+ }
+
+ /// Returns whether this configuration has enabled byte classes or not.
+ /// This is typically a debugging oriented option, as disabling it confers
+ /// no speed benefit.
+ pub fn get_byte_classes(&self) -> bool {
+ self.byte_classes.unwrap_or(true)
+ }
+
+ /// Returns whether this configuration has enabled heuristic Unicode word
+ /// boundary support. When enabled, it is possible for a search to return
+ /// an error.
+ pub fn get_unicode_word_boundary(&self) -> bool {
+ self.unicode_word_boundary.unwrap_or(false)
+ }
+
+ /// Returns whether this configuration will instruct the DFA to enter a
+ /// quit state whenever the given byte is seen during a search. When at
+ /// least one byte has this enabled, it is possible for a search to return
+ /// an error.
+ pub fn get_quit(&self, byte: u8) -> bool {
+ self.quitset.map_or(false, |q| q.contains(byte))
+ }
+
+ /// Returns the cache capacity set on this configuration.
+ pub fn get_cache_capacity(&self) -> usize {
+ self.cache_capacity.unwrap_or(2 * (1 << 20))
+ }
+
+ /// Returns whether the cache capacity check should be skipped.
+ pub fn get_skip_cache_capacity_check(&self) -> bool {
+ self.skip_cache_capacity_check.unwrap_or(false)
+ }
+
+ /// Returns, if set, the minimum number of times the cache must be cleared
+ /// before a lazy DFA search can give up. When no minimum is set, then a
+ /// search will never quit and will always clear the cache whenever it
+ /// fills up.
+ pub fn get_minimum_cache_clear_count(&self) -> Option<usize> {
+ self.minimum_cache_clear_count.unwrap_or(None)
+ }
+
+ /// Returns the minimum lazy DFA cache capacity required for the given NFA.
+ ///
+ /// The cache capacity required for a particular NFA may change without
+ /// notice. Callers should not rely on it being stable.
+ ///
+ /// This is useful for informational purposes, but can also be useful for
+ /// other reasons. For example, if one wants to check the minimum cache
+ /// capacity themselves or if one wants to set the capacity based on the
+ /// minimum.
+ ///
+ /// This may return an error if this configuration does not support all of
+ /// the instructions used in the given NFA. For example, if the NFA has a
+ /// Unicode word boundary but this configuration does not enable heuristic
+ /// support for Unicode word boundaries.
+ pub fn get_minimum_cache_capacity(
+ &self,
+ nfa: &thompson::NFA,
+ ) -> Result<usize, BuildError> {
+ let quitset = self.quit_set_from_nfa(nfa)?;
+ let classes = self.byte_classes_from_nfa(nfa, &quitset);
+ let starts = self.get_starts_for_each_pattern();
+ Ok(minimum_cache_capacity(nfa, &classes, starts))
+ }
+
+ /// Returns the byte class map used during search from the given NFA.
+ ///
+ /// If byte classes are disabled on this configuration, then a map is
+ /// returned that puts each byte in its own equivalent class.
+ fn byte_classes_from_nfa(
+ &self,
+ nfa: &thompson::NFA,
+ quit: &ByteSet,
+ ) -> ByteClasses {
+ if !self.get_byte_classes() {
+ // The lazy DFA will always use the equivalence class map, but
+ // enabling this option is useful for debugging. Namely, this will
+ // cause all transitions to be defined over their actual bytes
+ // instead of an opaque equivalence class identifier. The former is
+ // much easier to grok as a human.
+ ByteClasses::singletons()
+ } else {
+ let mut set = nfa.byte_class_set().clone();
+ // It is important to distinguish any "quit" bytes from all other
+ // bytes. Otherwise, a non-quit byte may end up in the same class
+ // as a quit byte, and thus cause the DFA stop when it shouldn't.
+ if !quit.is_empty() {
+ set.add_set(&quit);
+ }
+ set.byte_classes()
+ }
+ }
+
+ /// Return the quit set for this configuration and the given NFA.
+ ///
+ /// This may return an error if the NFA is incompatible with this
+ /// configuration's quit set. For example, if the NFA has a Unicode word
+ /// boundary and the quit set doesn't include non-ASCII bytes.
+ fn quit_set_from_nfa(
+ &self,
+ nfa: &thompson::NFA,
+ ) -> Result<ByteSet, BuildError> {
+ let mut quit = self.quitset.unwrap_or(ByteSet::empty());
+ if nfa.has_word_boundary_unicode() {
+ if self.get_unicode_word_boundary() {
+ for b in 0x80..=0xFF {
+ quit.add(b);
+ }
+ } else {
+ // If heuristic support for Unicode word boundaries wasn't
+ // enabled, then we can still check if our quit set is correct.
+ // If the caller set their quit bytes in a way that causes the
+ // DFA to quit on at least all non-ASCII bytes, then that's all
+ // we need for heuristic support to work.
+ if !quit.contains_range(0x80, 0xFF) {
+ return Err(
+ BuildError::unsupported_dfa_word_boundary_unicode(),
+ );
+ }
+ }
+ }
+ Ok(quit)
+ }
+
+ /// Overwrite the default configuration such that the options in `o` are
+ /// always used. If an option in `o` is not set, then the corresponding
+ /// option in `self` is used. If it's not set in `self` either, then it
+ /// remains not set.
+ fn overwrite(self, o: Config) -> Config {
+ Config {
+ anchored: o.anchored.or(self.anchored),
+ match_kind: o.match_kind.or(self.match_kind),
+ starts_for_each_pattern: o
+ .starts_for_each_pattern
+ .or(self.starts_for_each_pattern),
+ byte_classes: o.byte_classes.or(self.byte_classes),
+ unicode_word_boundary: o
+ .unicode_word_boundary
+ .or(self.unicode_word_boundary),
+ quitset: o.quitset.or(self.quitset),
+ cache_capacity: o.cache_capacity.or(self.cache_capacity),
+ skip_cache_capacity_check: o
+ .skip_cache_capacity_check
+ .or(self.skip_cache_capacity_check),
+ minimum_cache_clear_count: o
+ .minimum_cache_clear_count
+ .or(self.minimum_cache_clear_count),
+ }
+ }
+}
+
+/// A builder for constructing a lazy deterministic finite automaton from
+/// regular expressions.
+///
+/// As a convenience, [`DFA::builder`] is an alias for [`Builder::new`]. The
+/// advantage of the former is that it often lets you avoid importing the
+/// `Builder` type directly.
+///
+/// This builder provides two main things:
+///
+/// 1. It provides a few different `build` routines for actually constructing
+/// a DFA from different kinds of inputs. The most convenient is
+/// [`Builder::build`], which builds a DFA directly from a pattern string. The
+/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
+/// from an NFA.
+/// 2. The builder permits configuring a number of things.
+/// [`Builder::configure`] is used with [`Config`] to configure aspects of
+/// the DFA and the construction process itself. [`Builder::syntax`] and
+/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
+/// construction, respectively. The syntax and thompson configurations only
+/// apply when building from a pattern string.
+///
+/// This builder always constructs a *single* lazy DFA. As such, this builder
+/// can only be used to construct regexes that either detect the presence
+/// of a match or find the end location of a match. A single DFA cannot
+/// produce both the start and end of a match. For that information, use a
+/// [`Regex`](crate::hybrid::regex::Regex), which can be similarly configured
+/// using [`regex::Builder`](crate::hybrid::regex::Builder). The main reason
+/// to use a DFA directly is if the end location of a match is enough for your
+/// use case. Namely, a `Regex` will construct two lazy DFAs instead of one,
+/// since a second reverse DFA is needed to find the start of a match.
+///
+/// # Example
+///
+/// This example shows how to build a lazy DFA that uses a tiny cache capacity
+/// and completely disables Unicode. That is:
+///
+/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
+/// and `\b` are ASCII-only while `.` matches any byte except for `\n`
+/// (instead of any UTF-8 encoding of a Unicode scalar value except for
+/// `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
+/// * The pattern itself is permitted to match invalid UTF-8. For example,
+/// things like `[^a]` that match any byte except for `a` are permitted.
+/// * Unanchored patterns can search through invalid UTF-8. That is, for
+/// unanchored patterns, the implicit prefix is `(?s-u:.)*?` instead of
+/// `(?s:.)*?`.
+///
+/// ```
+/// use regex_automata::{
+/// hybrid::dfa::DFA,
+/// nfa::thompson,
+/// HalfMatch, SyntaxConfig,
+/// };
+///
+/// let dfa = DFA::builder()
+/// .configure(DFA::config().cache_capacity(5_000))
+/// .syntax(SyntaxConfig::new().unicode(false).utf8(false))
+/// .thompson(thompson::Config::new().utf8(false))
+/// .build(r"foo[^b]ar.*")?;
+/// let mut cache = dfa.create_cache();
+///
+/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
+/// let expected = Some(HalfMatch::must(0, 10));
+/// let got = dfa.find_leftmost_fwd(&mut cache, haystack)?;
+/// assert_eq!(expected, got);
+///
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+#[derive(Clone, Debug)]
+pub struct Builder {
+ config: Config,
+ thompson: thompson::Builder,
+}
+
+impl Builder {
+ /// Create a new lazy DFA builder with the default configuration.
+ pub fn new() -> Builder {
+ Builder {
+ config: Config::default(),
+ thompson: thompson::Builder::new(),
+ }
+ }
+
+ /// Build a lazy DFA from the given pattern.
+ ///
+ /// If there was a problem parsing or compiling the pattern, then an error
+ /// is returned.
+ pub fn build(&self, pattern: &str) -> Result<DFA, BuildError> {
+ self.build_many(&[pattern])
+ }
+
+ /// Build a lazy DFA from the given patterns.
+ ///
+ /// When matches are returned, the pattern ID corresponds to the index of
+ /// the pattern in the slice given.
+ pub fn build_many<P: AsRef<str>>(
+ &self,
+ patterns: &[P],
+ ) -> Result<DFA, BuildError> {
+ let nfa =
+ self.thompson.build_many(patterns).map_err(BuildError::nfa)?;
+ self.build_from_nfa(Arc::new(nfa))
+ }
+
+ /// Build a DFA from the given NFA.
+ ///
+ /// Note that this requires an `Arc<thompson::NFA>` instead of a
+ /// `&thompson::NFA` because the lazy DFA builds itself from the NFA at
+ /// search time. This means that the lazy DFA must hold on to its source
+ /// NFA for the entirety of its lifetime. An `Arc` is used so that callers
+ /// aren't forced to clone the NFA if it is needed elsewhere.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to build a lazy DFA if you already have an NFA
+ /// in hand.
+ ///
+ /// ```
+ /// use std::sync::Arc;
+ /// use regex_automata::{hybrid::dfa::DFA, nfa::thompson, HalfMatch};
+ ///
+ /// let haystack = "foo123bar".as_bytes();
+ ///
+ /// // This shows how to set non-default options for building an NFA.
+ /// let nfa = thompson::Builder::new()
+ /// .configure(thompson::Config::new().shrink(false))
+ /// .build(r"[0-9]+")?;
+ /// let dfa = DFA::builder().build_from_nfa(Arc::new(nfa))?;
+ /// let mut cache = dfa.create_cache();
+ /// let expected = Some(HalfMatch::must(0, 6));
+ /// let got = dfa.find_leftmost_fwd(&mut cache, haystack)?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn build_from_nfa(
+ &self,
+ nfa: Arc<thompson::NFA>,
+ ) -> Result<DFA, BuildError> {
+ let quitset = self.config.quit_set_from_nfa(&nfa)?;
+ let classes = self.config.byte_classes_from_nfa(&nfa, &quitset);
+ // Check that we can fit at least a few states into our cache,
+ // otherwise it's pretty senseless to use the lazy DFA. This does have
+ // a possible failure mode though. This assumes the maximum size of a
+ // state in powerset space (so, the total number of NFA states), which
+ // may never actually materialize, and could be quite a bit larger
+ // than the actual biggest state. If this turns out to be a problem,
+ // we could expose a knob that disables this check. But if so, we have
+ // to be careful not to panic in other areas of the code (the cache
+ // clearing and init code) that tend to assume some minimum useful
+ // cache capacity.
+ let min_cache = minimum_cache_capacity(
+ &nfa,
+ &classes,
+ self.config.get_starts_for_each_pattern(),
+ );
+ let mut cache_capacity = self.config.get_cache_capacity();
+ if cache_capacity < min_cache {
+ // When the caller has asked us to skip the cache capacity check,
+ // then we simply force the cache capacity to its minimum amount
+ // and mush on.
+ if self.config.get_skip_cache_capacity_check() {
+ trace!(
+ "given capacity ({}) is too small, \
+ since skip_cache_capacity_check is enabled, \
+ setting cache capacity to minimum ({})",
+ cache_capacity,
+ min_cache,
+ );
+ cache_capacity = min_cache;
+ } else {
+ return Err(BuildError::insufficient_cache_capacity(
+ min_cache,
+ cache_capacity,
+ ));
+ }
+ }
+ // We also need to check that we can fit at least some small number
+ // of states in our state ID space. This is unlikely to trigger in
+ // >=32-bit systems, but 16-bit systems have a pretty small state ID
+ // space since a number of bits are used up as sentinels.
+ if let Err(err) = minimum_lazy_state_id(&nfa, &classes) {
+ return Err(BuildError::insufficient_state_id_capacity(err));
+ }
+ let stride2 = classes.stride2();
+ Ok(DFA {
+ nfa,
+ stride2,
+ classes,
+ quitset,
+ anchored: self.config.get_anchored(),
+ match_kind: self.config.get_match_kind(),
+ starts_for_each_pattern: self.config.get_starts_for_each_pattern(),
+ cache_capacity,
+ minimum_cache_clear_count: self
+ .config
+ .get_minimum_cache_clear_count(),
+ })
+ }
+
+ /// Apply the given lazy DFA configuration options to this builder.
+ pub fn configure(&mut self, config: Config) -> &mut Builder {
+ self.config = self.config.overwrite(config);
+ self
+ }
+
+ /// Set the syntax configuration for this builder using
+ /// [`SyntaxConfig`](crate::SyntaxConfig).
+ ///
+ /// This permits setting things like case insensitivity, Unicode and multi
+ /// line mode.
+ ///
+ /// These settings only apply when constructing a lazy DFA directly from a
+ /// pattern.
+ pub fn syntax(
+ &mut self,
+ config: crate::util::syntax::SyntaxConfig,
+ ) -> &mut Builder {
+ self.thompson.syntax(config);
+ self
+ }
+
+ /// Set the Thompson NFA configuration for this builder using
+ /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
+ ///
+ /// This permits setting things like whether the DFA should match the regex
+ /// in reverse or if additional time should be spent shrinking the size of
+ /// the NFA.
+ ///
+ /// These settings only apply when constructing a DFA directly from a
+ /// pattern.
+ pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
+ self.thompson.configure(config);
+ self
+ }
+}
+
+/// Based on the minimum number of states required for a useful lazy DFA cache,
+/// this returns the minimum lazy state ID that must be representable.
+///
+/// It's likely not plausible for this to impose constraints on 32-bit systems
+/// (or higher), but on 16-bit systems, the lazy state ID space is quite
+/// constrained and thus may be insufficient for bigger regexes.
+fn minimum_lazy_state_id(
+ nfa: &thompson::NFA,
+ classes: &ByteClasses,
+) -> Result<LazyStateID, LazyStateIDError> {
+ let stride = 1 << classes.stride2();
+ let min_state_index = MIN_STATES.checked_sub(1).unwrap();
+ LazyStateID::new(min_state_index * stride)
+}
+
+/// Based on the minimum number of states required for a useful lazy DFA cache,
+/// this returns a heuristic minimum number of bytes of heap space required.
+///
+/// This is a "heuristic" because the minimum it returns is likely bigger than
+/// the true minimum. Namely, it assumes that each powerset NFA/DFA state uses
+/// the maximum number of NFA states (all of them). This is likely bigger
+/// than what is required in practice. Computing the true minimum effectively
+/// requires determinization, which is probably too much work to do for a
+/// simple check like this.
+fn minimum_cache_capacity(
+ nfa: &thompson::NFA,
+ classes: &ByteClasses,
+ starts_for_each_pattern: bool,
+) -> usize {
+ const ID_SIZE: usize = size_of::<LazyStateID>();
+ let stride = 1 << classes.stride2();
+
+ let sparses = 2 * nfa.len() * NFAStateID::SIZE;
+ let trans = MIN_STATES * stride * ID_SIZE;
+
+ let mut starts = Start::count() * ID_SIZE;
+ if starts_for_each_pattern {
+ starts += (Start::count() * nfa.pattern_len()) * ID_SIZE;
+ }
+
+ // Every `State` has three bytes for flags, 4 bytes (max) for the number
+ // of patterns, followed by 32-bit encodings of patterns and then delta
+ // varint encodings of NFA state IDs. We use the worst case (which isn't
+ // technically possible) of 5 bytes for each NFA state ID.
+ //
+ // HOWEVER, three of the states needed by a lazy DFA are just the sentinel
+ // unknown, dead and quit states. Those states have a known size and it is
+ // small.
+ assert!(MIN_STATES >= 3, "minimum number of states has to be at least 3");
+ let dead_state_size = State::dead().memory_usage();
+ let max_state_size = 3 + 4 + (nfa.pattern_len() * 4) + (nfa.len() * 5);
+ let states = (3 * (size_of::<State>() + dead_state_size))
+ + ((MIN_STATES - 3) * (size_of::<State>() + max_state_size));
+ let states_to_sid = states + (MIN_STATES * ID_SIZE);
+ let stack = nfa.len() * NFAStateID::SIZE;
+ let scratch_state_builder = max_state_size;
+
+ trans
+ + starts
+ + states
+ + states_to_sid
+ + sparses
+ + stack
+ + scratch_state_builder
+}