summaryrefslogtreecommitdiffstats
path: root/vendor/tokio/src/io
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/tokio/src/io')
-rw-r--r--vendor/tokio/src/io/async_buf_read.rs117
-rw-r--r--vendor/tokio/src/io/async_fd.rs659
-rw-r--r--vendor/tokio/src/io/async_read.rs131
-rw-r--r--vendor/tokio/src/io/async_seek.rs90
-rw-r--r--vendor/tokio/src/io/async_write.rs408
-rw-r--r--vendor/tokio/src/io/blocking.rs279
-rw-r--r--vendor/tokio/src/io/driver/interest.rs112
-rw-r--r--vendor/tokio/src/io/driver/mod.rs353
-rw-r--r--vendor/tokio/src/io/driver/platform.rs44
-rw-r--r--vendor/tokio/src/io/driver/ready.rs239
-rw-r--r--vendor/tokio/src/io/driver/registration.rs262
-rw-r--r--vendor/tokio/src/io/driver/scheduled_io.rs544
-rw-r--r--vendor/tokio/src/io/mod.rs267
-rw-r--r--vendor/tokio/src/io/poll_evented.rs210
-rw-r--r--vendor/tokio/src/io/read_buf.rs285
-rw-r--r--vendor/tokio/src/io/seek.rs57
-rw-r--r--vendor/tokio/src/io/split.rs180
-rw-r--r--vendor/tokio/src/io/stderr.rs109
-rw-r--r--vendor/tokio/src/io/stdin.rs73
-rw-r--r--vendor/tokio/src/io/stdio_common.rs220
-rw-r--r--vendor/tokio/src/io/stdout.rs108
-rw-r--r--vendor/tokio/src/io/util/async_buf_read_ext.rs259
-rw-r--r--vendor/tokio/src/io/util/async_read_ext.rs1141
-rw-r--r--vendor/tokio/src/io/util/async_seek_ext.rs83
-rw-r--r--vendor/tokio/src/io/util/async_write_ext.rs1141
-rw-r--r--vendor/tokio/src/io/util/buf_reader.rs312
-rw-r--r--vendor/tokio/src/io/util/buf_stream.rs207
-rw-r--r--vendor/tokio/src/io/util/buf_writer.rs310
-rw-r--r--vendor/tokio/src/io/util/chain.rs144
-rw-r--r--vendor/tokio/src/io/util/copy.rs149
-rw-r--r--vendor/tokio/src/io/util/copy_bidirectional.rs120
-rw-r--r--vendor/tokio/src/io/util/copy_buf.rs102
-rw-r--r--vendor/tokio/src/io/util/empty.rs84
-rw-r--r--vendor/tokio/src/io/util/flush.rs46
-rw-r--r--vendor/tokio/src/io/util/lines.rs143
-rw-r--r--vendor/tokio/src/io/util/mem.rs243
-rw-r--r--vendor/tokio/src/io/util/mod.rs96
-rw-r--r--vendor/tokio/src/io/util/read.rs55
-rw-r--r--vendor/tokio/src/io/util/read_buf.rs72
-rw-r--r--vendor/tokio/src/io/util/read_exact.rs69
-rw-r--r--vendor/tokio/src/io/util/read_int.rs153
-rw-r--r--vendor/tokio/src/io/util/read_line.rs119
-rw-r--r--vendor/tokio/src/io/util/read_to_end.rs112
-rw-r--r--vendor/tokio/src/io/util/read_to_string.rs78
-rw-r--r--vendor/tokio/src/io/util/read_until.rs79
-rw-r--r--vendor/tokio/src/io/util/repeat.rs72
-rw-r--r--vendor/tokio/src/io/util/shutdown.rs46
-rw-r--r--vendor/tokio/src/io/util/sink.rs87
-rw-r--r--vendor/tokio/src/io/util/split.rs121
-rw-r--r--vendor/tokio/src/io/util/take.rs133
-rw-r--r--vendor/tokio/src/io/util/vec_with_initialized.rs132
-rw-r--r--vendor/tokio/src/io/util/write.rs46
-rw-r--r--vendor/tokio/src/io/util/write_all.rs55
-rw-r--r--vendor/tokio/src/io/util/write_all_buf.rs56
-rw-r--r--vendor/tokio/src/io/util/write_buf.rs55
-rw-r--r--vendor/tokio/src/io/util/write_int.rs146
-rw-r--r--vendor/tokio/src/io/util/write_vectored.rs47
57 files changed, 11060 insertions, 0 deletions
diff --git a/vendor/tokio/src/io/async_buf_read.rs b/vendor/tokio/src/io/async_buf_read.rs
new file mode 100644
index 000000000..ecaafba4c
--- /dev/null
+++ b/vendor/tokio/src/io/async_buf_read.rs
@@ -0,0 +1,117 @@
+use crate::io::AsyncRead;
+
+use std::io;
+use std::ops::DerefMut;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+/// Reads bytes asynchronously.
+///
+/// This trait is analogous to [`std::io::BufRead`], but integrates with
+/// the asynchronous task system. In particular, the [`poll_fill_buf`] method,
+/// unlike [`BufRead::fill_buf`], will automatically queue the current task for wakeup
+/// and return if data is not yet available, rather than blocking the calling
+/// thread.
+///
+/// Utilities for working with `AsyncBufRead` values are provided by
+/// [`AsyncBufReadExt`].
+///
+/// [`std::io::BufRead`]: std::io::BufRead
+/// [`poll_fill_buf`]: AsyncBufRead::poll_fill_buf
+/// [`BufRead::fill_buf`]: std::io::BufRead::fill_buf
+/// [`AsyncBufReadExt`]: crate::io::AsyncBufReadExt
+pub trait AsyncBufRead: AsyncRead {
+ /// Attempts to return the contents of the internal buffer, filling it with more data
+ /// from the inner reader if it is empty.
+ ///
+ /// On success, returns `Poll::Ready(Ok(buf))`.
+ ///
+ /// If no data is available for reading, the method returns
+ /// `Poll::Pending` and arranges for the current task (via
+ /// `cx.waker().wake_by_ref()`) to receive a notification when the object becomes
+ /// readable or is closed.
+ ///
+ /// This function is a lower-level call. It needs to be paired with the
+ /// [`consume`] method to function properly. When calling this
+ /// method, none of the contents will be "read" in the sense that later
+ /// calling [`poll_read`] may return the same contents. As such, [`consume`] must
+ /// be called with the number of bytes that are consumed from this buffer to
+ /// ensure that the bytes are never returned twice.
+ ///
+ /// An empty buffer returned indicates that the stream has reached EOF.
+ ///
+ /// [`poll_read`]: AsyncRead::poll_read
+ /// [`consume`]: AsyncBufRead::consume
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>>;
+
+ /// Tells this buffer that `amt` bytes have been consumed from the buffer,
+ /// so they should no longer be returned in calls to [`poll_read`].
+ ///
+ /// This function is a lower-level call. It needs to be paired with the
+ /// [`poll_fill_buf`] method to function properly. This function does
+ /// not perform any I/O, it simply informs this object that some amount of
+ /// its buffer, returned from [`poll_fill_buf`], has been consumed and should
+ /// no longer be returned. As such, this function may do odd things if
+ /// [`poll_fill_buf`] isn't called before calling it.
+ ///
+ /// The `amt` must be `<=` the number of bytes in the buffer returned by
+ /// [`poll_fill_buf`].
+ ///
+ /// [`poll_read`]: AsyncRead::poll_read
+ /// [`poll_fill_buf`]: AsyncBufRead::poll_fill_buf
+ fn consume(self: Pin<&mut Self>, amt: usize);
+}
+
+macro_rules! deref_async_buf_read {
+ () => {
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ Pin::new(&mut **self.get_mut()).poll_fill_buf(cx)
+ }
+
+ fn consume(mut self: Pin<&mut Self>, amt: usize) {
+ Pin::new(&mut **self).consume(amt)
+ }
+ };
+}
+
+impl<T: ?Sized + AsyncBufRead + Unpin> AsyncBufRead for Box<T> {
+ deref_async_buf_read!();
+}
+
+impl<T: ?Sized + AsyncBufRead + Unpin> AsyncBufRead for &mut T {
+ deref_async_buf_read!();
+}
+
+impl<P> AsyncBufRead for Pin<P>
+where
+ P: DerefMut + Unpin,
+ P::Target: AsyncBufRead,
+{
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ self.get_mut().as_mut().poll_fill_buf(cx)
+ }
+
+ fn consume(self: Pin<&mut Self>, amt: usize) {
+ self.get_mut().as_mut().consume(amt)
+ }
+}
+
+impl AsyncBufRead for &[u8] {
+ fn poll_fill_buf(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ Poll::Ready(Ok(*self))
+ }
+
+ fn consume(mut self: Pin<&mut Self>, amt: usize) {
+ *self = &self[amt..];
+ }
+}
+
+impl<T: AsRef<[u8]> + Unpin> AsyncBufRead for io::Cursor<T> {
+ fn poll_fill_buf(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ Poll::Ready(io::BufRead::fill_buf(self.get_mut()))
+ }
+
+ fn consume(self: Pin<&mut Self>, amt: usize) {
+ io::BufRead::consume(self.get_mut(), amt)
+ }
+}
diff --git a/vendor/tokio/src/io/async_fd.rs b/vendor/tokio/src/io/async_fd.rs
new file mode 100644
index 000000000..fa5bec530
--- /dev/null
+++ b/vendor/tokio/src/io/async_fd.rs
@@ -0,0 +1,659 @@
+use crate::io::driver::{Handle, Interest, ReadyEvent, Registration};
+
+use mio::unix::SourceFd;
+use std::io;
+use std::os::unix::io::{AsRawFd, RawFd};
+use std::{task::Context, task::Poll};
+
+/// Associates an IO object backed by a Unix file descriptor with the tokio
+/// reactor, allowing for readiness to be polled. The file descriptor must be of
+/// a type that can be used with the OS polling facilities (ie, `poll`, `epoll`,
+/// `kqueue`, etc), such as a network socket or pipe, and the file descriptor
+/// must have the nonblocking mode set to true.
+///
+/// Creating an AsyncFd registers the file descriptor with the current tokio
+/// Reactor, allowing you to directly await the file descriptor being readable
+/// or writable. Once registered, the file descriptor remains registered until
+/// the AsyncFd is dropped.
+///
+/// The AsyncFd takes ownership of an arbitrary object to represent the IO
+/// object. It is intended that this object will handle closing the file
+/// descriptor when it is dropped, avoiding resource leaks and ensuring that the
+/// AsyncFd can clean up the registration before closing the file descriptor.
+/// The [`AsyncFd::into_inner`] function can be used to extract the inner object
+/// to retake control from the tokio IO reactor.
+///
+/// The inner object is required to implement [`AsRawFd`]. This file descriptor
+/// must not change while [`AsyncFd`] owns the inner object, i.e. the
+/// [`AsRawFd::as_raw_fd`] method on the inner type must always return the same
+/// file descriptor when called multiple times. Failure to uphold this results
+/// in unspecified behavior in the IO driver, which may include breaking
+/// notifications for other sockets/etc.
+///
+/// Polling for readiness is done by calling the async functions [`readable`]
+/// and [`writable`]. These functions complete when the associated readiness
+/// condition is observed. Any number of tasks can query the same `AsyncFd` in
+/// parallel, on the same or different conditions.
+///
+/// On some platforms, the readiness detecting mechanism relies on
+/// edge-triggered notifications. This means that the OS will only notify Tokio
+/// when the file descriptor transitions from not-ready to ready. For this to
+/// work you should first try to read or write and only poll for readiness
+/// if that fails with an error of [`std::io::ErrorKind::WouldBlock`].
+///
+/// Tokio internally tracks when it has received a ready notification, and when
+/// readiness checking functions like [`readable`] and [`writable`] are called,
+/// if the readiness flag is set, these async functions will complete
+/// immediately. This however does mean that it is critical to ensure that this
+/// ready flag is cleared when (and only when) the file descriptor ceases to be
+/// ready. The [`AsyncFdReadyGuard`] returned from readiness checking functions
+/// serves this function; after calling a readiness-checking async function,
+/// you must use this [`AsyncFdReadyGuard`] to signal to tokio whether the file
+/// descriptor is no longer in a ready state.
+///
+/// ## Use with to a poll-based API
+///
+/// In some cases it may be desirable to use `AsyncFd` from APIs similar to
+/// [`TcpStream::poll_read_ready`]. The [`AsyncFd::poll_read_ready`] and
+/// [`AsyncFd::poll_write_ready`] functions are provided for this purpose.
+/// Because these functions don't create a future to hold their state, they have
+/// the limitation that only one task can wait on each direction (read or write)
+/// at a time.
+///
+/// # Examples
+///
+/// This example shows how to turn [`std::net::TcpStream`] asynchronous using
+/// `AsyncFd`. It implements `read` as an async fn, and `AsyncWrite` as a trait
+/// to show how to implement both approaches.
+///
+/// ```no_run
+/// use futures::ready;
+/// use std::io::{self, Read, Write};
+/// use std::net::TcpStream;
+/// use std::pin::Pin;
+/// use std::task::{Context, Poll};
+/// use tokio::io::AsyncWrite;
+/// use tokio::io::unix::AsyncFd;
+///
+/// pub struct AsyncTcpStream {
+/// inner: AsyncFd<TcpStream>,
+/// }
+///
+/// impl AsyncTcpStream {
+/// pub fn new(tcp: TcpStream) -> io::Result<Self> {
+/// Ok(Self {
+/// inner: AsyncFd::new(tcp)?,
+/// })
+/// }
+///
+/// pub async fn read(&self, out: &mut [u8]) -> io::Result<usize> {
+/// loop {
+/// let mut guard = self.inner.readable().await?;
+///
+/// match guard.try_io(|inner| inner.get_ref().read(out)) {
+/// Ok(result) => return result,
+/// Err(_would_block) => continue,
+/// }
+/// }
+/// }
+/// }
+///
+/// impl AsyncWrite for AsyncTcpStream {
+/// fn poll_write(
+/// self: Pin<&mut Self>,
+/// cx: &mut Context<'_>,
+/// buf: &[u8]
+/// ) -> Poll<io::Result<usize>> {
+/// loop {
+/// let mut guard = ready!(self.inner.poll_write_ready(cx))?;
+///
+/// match guard.try_io(|inner| inner.get_ref().write(buf)) {
+/// Ok(result) => return Poll::Ready(result),
+/// Err(_would_block) => continue,
+/// }
+/// }
+/// }
+///
+/// fn poll_flush(
+/// self: Pin<&mut Self>,
+/// cx: &mut Context<'_>,
+/// ) -> Poll<io::Result<()>> {
+/// // tcp flush is a no-op
+/// Poll::Ready(Ok(()))
+/// }
+///
+/// fn poll_shutdown(
+/// self: Pin<&mut Self>,
+/// cx: &mut Context<'_>,
+/// ) -> Poll<io::Result<()>> {
+/// self.inner.get_ref().shutdown(std::net::Shutdown::Write)?;
+/// Poll::Ready(Ok(()))
+/// }
+/// }
+/// ```
+///
+/// [`readable`]: method@Self::readable
+/// [`writable`]: method@Self::writable
+/// [`AsyncFdReadyGuard`]: struct@self::AsyncFdReadyGuard
+/// [`TcpStream::poll_read_ready`]: struct@crate::net::TcpStream
+pub struct AsyncFd<T: AsRawFd> {
+ registration: Registration,
+ inner: Option<T>,
+}
+
+/// Represents an IO-ready event detected on a particular file descriptor that
+/// has not yet been acknowledged. This is a `must_use` structure to help ensure
+/// that you do not forget to explicitly clear (or not clear) the event.
+///
+/// This type exposes an immutable reference to the underlying IO object.
+#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
+pub struct AsyncFdReadyGuard<'a, T: AsRawFd> {
+ async_fd: &'a AsyncFd<T>,
+ event: Option<ReadyEvent>,
+}
+
+/// Represents an IO-ready event detected on a particular file descriptor that
+/// has not yet been acknowledged. This is a `must_use` structure to help ensure
+/// that you do not forget to explicitly clear (or not clear) the event.
+///
+/// This type exposes a mutable reference to the underlying IO object.
+#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
+pub struct AsyncFdReadyMutGuard<'a, T: AsRawFd> {
+ async_fd: &'a mut AsyncFd<T>,
+ event: Option<ReadyEvent>,
+}
+
+const ALL_INTEREST: Interest = Interest::READABLE.add(Interest::WRITABLE);
+
+impl<T: AsRawFd> AsyncFd<T> {
+ #[inline]
+ /// Creates an AsyncFd backed by (and taking ownership of) an object
+ /// implementing [`AsRawFd`]. The backing file descriptor is cached at the
+ /// time of creation.
+ ///
+ /// This method must be called in the context of a tokio runtime.
+ pub fn new(inner: T) -> io::Result<Self>
+ where
+ T: AsRawFd,
+ {
+ Self::with_interest(inner, ALL_INTEREST)
+ }
+
+ #[inline]
+ /// Creates new instance as `new` with additional ability to customize interest,
+ /// allowing to specify whether file descriptor will be polled for read, write or both.
+ pub fn with_interest(inner: T, interest: Interest) -> io::Result<Self>
+ where
+ T: AsRawFd,
+ {
+ Self::new_with_handle_and_interest(inner, Handle::current(), interest)
+ }
+
+ pub(crate) fn new_with_handle_and_interest(
+ inner: T,
+ handle: Handle,
+ interest: Interest,
+ ) -> io::Result<Self> {
+ let fd = inner.as_raw_fd();
+
+ let registration =
+ Registration::new_with_interest_and_handle(&mut SourceFd(&fd), interest, handle)?;
+
+ Ok(AsyncFd {
+ registration,
+ inner: Some(inner),
+ })
+ }
+
+ /// Returns a shared reference to the backing object of this [`AsyncFd`]
+ #[inline]
+ pub fn get_ref(&self) -> &T {
+ self.inner.as_ref().unwrap()
+ }
+
+ /// Returns a mutable reference to the backing object of this [`AsyncFd`]
+ #[inline]
+ pub fn get_mut(&mut self) -> &mut T {
+ self.inner.as_mut().unwrap()
+ }
+
+ fn take_inner(&mut self) -> Option<T> {
+ let fd = self.inner.as_ref().map(AsRawFd::as_raw_fd);
+
+ if let Some(fd) = fd {
+ let _ = self.registration.deregister(&mut SourceFd(&fd));
+ }
+
+ self.inner.take()
+ }
+
+ /// Deregisters this file descriptor and returns ownership of the backing
+ /// object.
+ pub fn into_inner(mut self) -> T {
+ self.take_inner().unwrap()
+ }
+
+ /// Polls for read readiness.
+ ///
+ /// If the file descriptor is not currently ready for reading, this method
+ /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
+ /// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
+ ///
+ /// Note that on multiple calls to [`poll_read_ready`] or
+ /// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
+ /// most recent call is scheduled to receive a wakeup. (However,
+ /// [`poll_write_ready`] retains a second, independent waker).
+ ///
+ /// This method is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// This method takes `&self`, so it is possible to call this method
+ /// concurrently with other methods on this struct. This method only
+ /// provides shared access to the inner IO resource when handling the
+ /// [`AsyncFdReadyGuard`].
+ ///
+ /// [`poll_read_ready`]: method@Self::poll_read_ready
+ /// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
+ /// [`poll_write_ready`]: method@Self::poll_write_ready
+ /// [`readable`]: method@Self::readable
+ /// [`Context`]: struct@std::task::Context
+ /// [`Waker`]: struct@std::task::Waker
+ /// [`Waker::wake`]: method@std::task::Waker::wake
+ pub fn poll_read_ready<'a>(
+ &'a self,
+ cx: &mut Context<'_>,
+ ) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
+ let event = ready!(self.registration.poll_read_ready(cx))?;
+
+ Ok(AsyncFdReadyGuard {
+ async_fd: self,
+ event: Some(event),
+ })
+ .into()
+ }
+
+ /// Polls for read readiness.
+ ///
+ /// If the file descriptor is not currently ready for reading, this method
+ /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
+ /// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
+ ///
+ /// Note that on multiple calls to [`poll_read_ready`] or
+ /// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
+ /// most recent call is scheduled to receive a wakeup. (However,
+ /// [`poll_write_ready`] retains a second, independent waker).
+ ///
+ /// This method is intended for cases where creating and pinning a future
+ /// via [`readable`] is not feasible. Where possible, using [`readable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// This method takes `&mut self`, so it is possible to access the inner IO
+ /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
+ ///
+ /// [`poll_read_ready`]: method@Self::poll_read_ready
+ /// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
+ /// [`poll_write_ready`]: method@Self::poll_write_ready
+ /// [`readable`]: method@Self::readable
+ /// [`Context`]: struct@std::task::Context
+ /// [`Waker`]: struct@std::task::Waker
+ /// [`Waker::wake`]: method@std::task::Waker::wake
+ pub fn poll_read_ready_mut<'a>(
+ &'a mut self,
+ cx: &mut Context<'_>,
+ ) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
+ let event = ready!(self.registration.poll_read_ready(cx))?;
+
+ Ok(AsyncFdReadyMutGuard {
+ async_fd: self,
+ event: Some(event),
+ })
+ .into()
+ }
+
+ /// Polls for write readiness.
+ ///
+ /// If the file descriptor is not currently ready for writing, this method
+ /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
+ /// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
+ ///
+ /// Note that on multiple calls to [`poll_write_ready`] or
+ /// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
+ /// most recent call is scheduled to receive a wakeup. (However,
+ /// [`poll_read_ready`] retains a second, independent waker).
+ ///
+ /// This method is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// This method takes `&self`, so it is possible to call this method
+ /// concurrently with other methods on this struct. This method only
+ /// provides shared access to the inner IO resource when handling the
+ /// [`AsyncFdReadyGuard`].
+ ///
+ /// [`poll_read_ready`]: method@Self::poll_read_ready
+ /// [`poll_write_ready`]: method@Self::poll_write_ready
+ /// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
+ /// [`writable`]: method@Self::readable
+ /// [`Context`]: struct@std::task::Context
+ /// [`Waker`]: struct@std::task::Waker
+ /// [`Waker::wake`]: method@std::task::Waker::wake
+ pub fn poll_write_ready<'a>(
+ &'a self,
+ cx: &mut Context<'_>,
+ ) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
+ let event = ready!(self.registration.poll_write_ready(cx))?;
+
+ Ok(AsyncFdReadyGuard {
+ async_fd: self,
+ event: Some(event),
+ })
+ .into()
+ }
+
+ /// Polls for write readiness.
+ ///
+ /// If the file descriptor is not currently ready for writing, this method
+ /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
+ /// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
+ ///
+ /// Note that on multiple calls to [`poll_write_ready`] or
+ /// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
+ /// most recent call is scheduled to receive a wakeup. (However,
+ /// [`poll_read_ready`] retains a second, independent waker).
+ ///
+ /// This method is intended for cases where creating and pinning a future
+ /// via [`writable`] is not feasible. Where possible, using [`writable`] is
+ /// preferred, as this supports polling from multiple tasks at once.
+ ///
+ /// This method takes `&mut self`, so it is possible to access the inner IO
+ /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
+ ///
+ /// [`poll_read_ready`]: method@Self::poll_read_ready
+ /// [`poll_write_ready`]: method@Self::poll_write_ready
+ /// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
+ /// [`writable`]: method@Self::readable
+ /// [`Context`]: struct@std::task::Context
+ /// [`Waker`]: struct@std::task::Waker
+ /// [`Waker::wake`]: method@std::task::Waker::wake
+ pub fn poll_write_ready_mut<'a>(
+ &'a mut self,
+ cx: &mut Context<'_>,
+ ) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
+ let event = ready!(self.registration.poll_write_ready(cx))?;
+
+ Ok(AsyncFdReadyMutGuard {
+ async_fd: self,
+ event: Some(event),
+ })
+ .into()
+ }
+
+ async fn readiness(&self, interest: Interest) -> io::Result<AsyncFdReadyGuard<'_, T>> {
+ let event = self.registration.readiness(interest).await?;
+
+ Ok(AsyncFdReadyGuard {
+ async_fd: self,
+ event: Some(event),
+ })
+ }
+
+ async fn readiness_mut(
+ &mut self,
+ interest: Interest,
+ ) -> io::Result<AsyncFdReadyMutGuard<'_, T>> {
+ let event = self.registration.readiness(interest).await?;
+
+ Ok(AsyncFdReadyMutGuard {
+ async_fd: self,
+ event: Some(event),
+ })
+ }
+
+ /// Waits for the file descriptor to become readable, returning a
+ /// [`AsyncFdReadyGuard`] that must be dropped to resume read-readiness
+ /// polling.
+ ///
+ /// This method takes `&self`, so it is possible to call this method
+ /// concurrently with other methods on this struct. This method only
+ /// provides shared access to the inner IO resource when handling the
+ /// [`AsyncFdReadyGuard`].
+ #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
+ pub async fn readable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
+ self.readiness(Interest::READABLE).await
+ }
+
+ /// Waits for the file descriptor to become readable, returning a
+ /// [`AsyncFdReadyMutGuard`] that must be dropped to resume read-readiness
+ /// polling.
+ ///
+ /// This method takes `&mut self`, so it is possible to access the inner IO
+ /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
+ #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
+ pub async fn readable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
+ self.readiness_mut(Interest::READABLE).await
+ }
+
+ /// Waits for the file descriptor to become writable, returning a
+ /// [`AsyncFdReadyGuard`] that must be dropped to resume write-readiness
+ /// polling.
+ ///
+ /// This method takes `&self`, so it is possible to call this method
+ /// concurrently with other methods on this struct. This method only
+ /// provides shared access to the inner IO resource when handling the
+ /// [`AsyncFdReadyGuard`].
+ #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
+ pub async fn writable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
+ self.readiness(Interest::WRITABLE).await
+ }
+
+ /// Waits for the file descriptor to become writable, returning a
+ /// [`AsyncFdReadyMutGuard`] that must be dropped to resume write-readiness
+ /// polling.
+ ///
+ /// This method takes `&mut self`, so it is possible to access the inner IO
+ /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
+ #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
+ pub async fn writable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
+ self.readiness_mut(Interest::WRITABLE).await
+ }
+}
+
+impl<T: AsRawFd> AsRawFd for AsyncFd<T> {
+ fn as_raw_fd(&self) -> RawFd {
+ self.inner.as_ref().unwrap().as_raw_fd()
+ }
+}
+
+impl<T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFd<T> {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ f.debug_struct("AsyncFd")
+ .field("inner", &self.inner)
+ .finish()
+ }
+}
+
+impl<T: AsRawFd> Drop for AsyncFd<T> {
+ fn drop(&mut self) {
+ let _ = self.take_inner();
+ }
+}
+
+impl<'a, Inner: AsRawFd> AsyncFdReadyGuard<'a, Inner> {
+ /// Indicates to tokio that the file descriptor is no longer ready. The
+ /// internal readiness flag will be cleared, and tokio will wait for the
+ /// next edge-triggered readiness notification from the OS.
+ ///
+ /// It is critical that this function not be called unless your code
+ /// _actually observes_ that the file descriptor is _not_ ready. Do not call
+ /// it simply because, for example, a read succeeded; it should be called
+ /// when a read is observed to block.
+ ///
+ /// [`drop`]: method@std::mem::drop
+ pub fn clear_ready(&mut self) {
+ if let Some(event) = self.event.take() {
+ self.async_fd.registration.clear_readiness(event);
+ }
+ }
+
+ /// This method should be invoked when you intentionally want to keep the
+ /// ready flag asserted.
+ ///
+ /// While this function is itself a no-op, it satisfies the `#[must_use]`
+ /// constraint on the [`AsyncFdReadyGuard`] type.
+ pub fn retain_ready(&mut self) {
+ // no-op
+ }
+
+ /// Performs the provided IO operation.
+ ///
+ /// If `f` returns a [`WouldBlock`] error, the readiness state associated
+ /// with this file descriptor is cleared, and the method returns
+ /// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
+ /// `AsyncFd` again when this happens.
+ ///
+ /// This method helps ensure that the readiness state of the underlying file
+ /// descriptor remains in sync with the tokio-side readiness state, by
+ /// clearing the tokio-side state only when a [`WouldBlock`] condition
+ /// occurs. It is the responsibility of the caller to ensure that `f`
+ /// returns [`WouldBlock`] only if the file descriptor that originated this
+ /// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
+ /// create this `AsyncFdReadyGuard`.
+ ///
+ /// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
+ // Alias for old name in 0.x
+ #[cfg_attr(docsrs, doc(alias = "with_io"))]
+ pub fn try_io<R>(
+ &mut self,
+ f: impl FnOnce(&AsyncFd<Inner>) -> io::Result<R>,
+ ) -> Result<io::Result<R>, TryIoError> {
+ let result = f(self.async_fd);
+
+ if let Err(e) = result.as_ref() {
+ if e.kind() == io::ErrorKind::WouldBlock {
+ self.clear_ready();
+ }
+ }
+
+ match result {
+ Err(err) if err.kind() == io::ErrorKind::WouldBlock => Err(TryIoError(())),
+ result => Ok(result),
+ }
+ }
+
+ /// Returns a shared reference to the inner [`AsyncFd`].
+ pub fn get_ref(&self) -> &AsyncFd<Inner> {
+ self.async_fd
+ }
+
+ /// Returns a shared reference to the backing object of the inner [`AsyncFd`].
+ pub fn get_inner(&self) -> &Inner {
+ self.get_ref().get_ref()
+ }
+}
+
+impl<'a, Inner: AsRawFd> AsyncFdReadyMutGuard<'a, Inner> {
+ /// Indicates to tokio that the file descriptor is no longer ready. The
+ /// internal readiness flag will be cleared, and tokio will wait for the
+ /// next edge-triggered readiness notification from the OS.
+ ///
+ /// It is critical that this function not be called unless your code
+ /// _actually observes_ that the file descriptor is _not_ ready. Do not call
+ /// it simply because, for example, a read succeeded; it should be called
+ /// when a read is observed to block.
+ ///
+ /// [`drop`]: method@std::mem::drop
+ pub fn clear_ready(&mut self) {
+ if let Some(event) = self.event.take() {
+ self.async_fd.registration.clear_readiness(event);
+ }
+ }
+
+ /// This method should be invoked when you intentionally want to keep the
+ /// ready flag asserted.
+ ///
+ /// While this function is itself a no-op, it satisfies the `#[must_use]`
+ /// constraint on the [`AsyncFdReadyGuard`] type.
+ pub fn retain_ready(&mut self) {
+ // no-op
+ }
+
+ /// Performs the provided IO operation.
+ ///
+ /// If `f` returns a [`WouldBlock`] error, the readiness state associated
+ /// with this file descriptor is cleared, and the method returns
+ /// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
+ /// `AsyncFd` again when this happens.
+ ///
+ /// This method helps ensure that the readiness state of the underlying file
+ /// descriptor remains in sync with the tokio-side readiness state, by
+ /// clearing the tokio-side state only when a [`WouldBlock`] condition
+ /// occurs. It is the responsibility of the caller to ensure that `f`
+ /// returns [`WouldBlock`] only if the file descriptor that originated this
+ /// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
+ /// create this `AsyncFdReadyGuard`.
+ ///
+ /// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
+ pub fn try_io<R>(
+ &mut self,
+ f: impl FnOnce(&mut AsyncFd<Inner>) -> io::Result<R>,
+ ) -> Result<io::Result<R>, TryIoError> {
+ let result = f(&mut self.async_fd);
+
+ if let Err(e) = result.as_ref() {
+ if e.kind() == io::ErrorKind::WouldBlock {
+ self.clear_ready();
+ }
+ }
+
+ match result {
+ Err(err) if err.kind() == io::ErrorKind::WouldBlock => Err(TryIoError(())),
+ result => Ok(result),
+ }
+ }
+
+ /// Returns a shared reference to the inner [`AsyncFd`].
+ pub fn get_ref(&self) -> &AsyncFd<Inner> {
+ self.async_fd
+ }
+
+ /// Returns a mutable reference to the inner [`AsyncFd`].
+ pub fn get_mut(&mut self) -> &mut AsyncFd<Inner> {
+ self.async_fd
+ }
+
+ /// Returns a shared reference to the backing object of the inner [`AsyncFd`].
+ pub fn get_inner(&self) -> &Inner {
+ self.get_ref().get_ref()
+ }
+
+ /// Returns a mutable reference to the backing object of the inner [`AsyncFd`].
+ pub fn get_inner_mut(&mut self) -> &mut Inner {
+ self.get_mut().get_mut()
+ }
+}
+
+impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyGuard<'a, T> {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ f.debug_struct("ReadyGuard")
+ .field("async_fd", &self.async_fd)
+ .finish()
+ }
+}
+
+impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyMutGuard<'a, T> {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ f.debug_struct("MutReadyGuard")
+ .field("async_fd", &self.async_fd)
+ .finish()
+ }
+}
+
+/// The error type returned by [`try_io`].
+///
+/// This error indicates that the IO resource returned a [`WouldBlock`] error.
+///
+/// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
+/// [`try_io`]: method@AsyncFdReadyGuard::try_io
+#[derive(Debug)]
+pub struct TryIoError(());
diff --git a/vendor/tokio/src/io/async_read.rs b/vendor/tokio/src/io/async_read.rs
new file mode 100644
index 000000000..93e5d3e66
--- /dev/null
+++ b/vendor/tokio/src/io/async_read.rs
@@ -0,0 +1,131 @@
+use super::ReadBuf;
+use std::io;
+use std::ops::DerefMut;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+/// Reads bytes from a source.
+///
+/// This trait is analogous to the [`std::io::Read`] trait, but integrates with
+/// the asynchronous task system. In particular, the [`poll_read`] method,
+/// unlike [`Read::read`], will automatically queue the current task for wakeup
+/// and return if data is not yet available, rather than blocking the calling
+/// thread.
+///
+/// Specifically, this means that the `poll_read` function will return one of
+/// the following:
+///
+/// * `Poll::Ready(Ok(()))` means that data was immediately read and placed into
+/// the output buffer. The amount of data read can be determined by the
+/// increase in the length of the slice returned by `ReadBuf::filled`. If the
+/// difference is 0, EOF has been reached.
+///
+/// * `Poll::Pending` means that no data was read into the buffer
+/// provided. The I/O object is not currently readable but may become readable
+/// in the future. Most importantly, **the current future's task is scheduled
+/// to get unparked when the object is readable**. This means that like
+/// `Future::poll` you'll receive a notification when the I/O object is
+/// readable again.
+///
+/// * `Poll::Ready(Err(e))` for other errors are standard I/O errors coming from the
+/// underlying object.
+///
+/// This trait importantly means that the `read` method only works in the
+/// context of a future's task. The object may panic if used outside of a task.
+///
+/// Utilities for working with `AsyncRead` values are provided by
+/// [`AsyncReadExt`].
+///
+/// [`poll_read`]: AsyncRead::poll_read
+/// [`std::io::Read`]: std::io::Read
+/// [`Read::read`]: std::io::Read::read
+/// [`AsyncReadExt`]: crate::io::AsyncReadExt
+pub trait AsyncRead {
+ /// Attempts to read from the `AsyncRead` into `buf`.
+ ///
+ /// On success, returns `Poll::Ready(Ok(()))` and places data in the
+ /// unfilled portion of `buf`. If no data was read (`buf.filled().len()` is
+ /// unchanged), it implies that EOF has been reached.
+ ///
+ /// If no data is available for reading, the method returns `Poll::Pending`
+ /// and arranges for the current task (via `cx.waker()`) to receive a
+ /// notification when the object becomes readable or is closed.
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>>;
+}
+
+macro_rules! deref_async_read {
+ () => {
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ Pin::new(&mut **self).poll_read(cx, buf)
+ }
+ };
+}
+
+impl<T: ?Sized + AsyncRead + Unpin> AsyncRead for Box<T> {
+ deref_async_read!();
+}
+
+impl<T: ?Sized + AsyncRead + Unpin> AsyncRead for &mut T {
+ deref_async_read!();
+}
+
+impl<P> AsyncRead for Pin<P>
+where
+ P: DerefMut + Unpin,
+ P::Target: AsyncRead,
+{
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.get_mut().as_mut().poll_read(cx, buf)
+ }
+}
+
+impl AsyncRead for &[u8] {
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ _cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ let amt = std::cmp::min(self.len(), buf.remaining());
+ let (a, b) = self.split_at(amt);
+ buf.put_slice(a);
+ *self = b;
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl<T: AsRef<[u8]> + Unpin> AsyncRead for io::Cursor<T> {
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ _cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ let pos = self.position();
+ let slice: &[u8] = (*self).get_ref().as_ref();
+
+ // The position could technically be out of bounds, so don't panic...
+ if pos > slice.len() as u64 {
+ return Poll::Ready(Ok(()));
+ }
+
+ let start = pos as usize;
+ let amt = std::cmp::min(slice.len() - start, buf.remaining());
+ // Add won't overflow because of pos check above.
+ let end = start + amt;
+ buf.put_slice(&slice[start..end]);
+ self.set_position(end as u64);
+
+ Poll::Ready(Ok(()))
+ }
+}
diff --git a/vendor/tokio/src/io/async_seek.rs b/vendor/tokio/src/io/async_seek.rs
new file mode 100644
index 000000000..bd7a992e4
--- /dev/null
+++ b/vendor/tokio/src/io/async_seek.rs
@@ -0,0 +1,90 @@
+use std::io::{self, SeekFrom};
+use std::ops::DerefMut;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+/// Seek bytes asynchronously.
+///
+/// This trait is analogous to the [`std::io::Seek`] trait, but integrates
+/// with the asynchronous task system. In particular, the `start_seek`
+/// method, unlike [`Seek::seek`], will not block the calling thread.
+///
+/// Utilities for working with `AsyncSeek` values are provided by
+/// [`AsyncSeekExt`].
+///
+/// [`std::io::Seek`]: std::io::Seek
+/// [`Seek::seek`]: std::io::Seek::seek()
+/// [`AsyncSeekExt`]: crate::io::AsyncSeekExt
+pub trait AsyncSeek {
+ /// Attempts to seek to an offset, in bytes, in a stream.
+ ///
+ /// A seek beyond the end of a stream is allowed, but behavior is defined
+ /// by the implementation.
+ ///
+ /// If this function returns successfully, then the job has been submitted.
+ /// To find out when it completes, call `poll_complete`.
+ ///
+ /// # Errors
+ ///
+ /// This function can return [`io::ErrorKind::Other`] in case there is
+ /// another seek in progress. To avoid this, it is advisable that any call
+ /// to `start_seek` is preceded by a call to `poll_complete` to ensure all
+ /// pending seeks have completed.
+ fn start_seek(self: Pin<&mut Self>, position: SeekFrom) -> io::Result<()>;
+
+ /// Waits for a seek operation to complete.
+ ///
+ /// If the seek operation completed successfully,
+ /// this method returns the new position from the start of the stream.
+ /// That position can be used later with [`SeekFrom::Start`]. Repeatedly
+ /// calling this function without calling `start_seek` might return the
+ /// same result.
+ ///
+ /// # Errors
+ ///
+ /// Seeking to a negative offset is considered an error.
+ fn poll_complete(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>>;
+}
+
+macro_rules! deref_async_seek {
+ () => {
+ fn start_seek(mut self: Pin<&mut Self>, pos: SeekFrom) -> io::Result<()> {
+ Pin::new(&mut **self).start_seek(pos)
+ }
+
+ fn poll_complete(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
+ Pin::new(&mut **self).poll_complete(cx)
+ }
+ };
+}
+
+impl<T: ?Sized + AsyncSeek + Unpin> AsyncSeek for Box<T> {
+ deref_async_seek!();
+}
+
+impl<T: ?Sized + AsyncSeek + Unpin> AsyncSeek for &mut T {
+ deref_async_seek!();
+}
+
+impl<P> AsyncSeek for Pin<P>
+where
+ P: DerefMut + Unpin,
+ P::Target: AsyncSeek,
+{
+ fn start_seek(self: Pin<&mut Self>, pos: SeekFrom) -> io::Result<()> {
+ self.get_mut().as_mut().start_seek(pos)
+ }
+
+ fn poll_complete(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
+ self.get_mut().as_mut().poll_complete(cx)
+ }
+}
+
+impl<T: AsRef<[u8]> + Unpin> AsyncSeek for io::Cursor<T> {
+ fn start_seek(mut self: Pin<&mut Self>, pos: SeekFrom) -> io::Result<()> {
+ io::Seek::seek(&mut *self, pos).map(drop)
+ }
+ fn poll_complete(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<u64>> {
+ Poll::Ready(Ok(self.get_mut().position()))
+ }
+}
diff --git a/vendor/tokio/src/io/async_write.rs b/vendor/tokio/src/io/async_write.rs
new file mode 100644
index 000000000..7ec1a302e
--- /dev/null
+++ b/vendor/tokio/src/io/async_write.rs
@@ -0,0 +1,408 @@
+use std::io::{self, IoSlice};
+use std::ops::DerefMut;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+/// Writes bytes asynchronously.
+///
+/// The trait inherits from [`std::io::Write`] and indicates that an I/O object is
+/// **nonblocking**. All non-blocking I/O objects must return an error when
+/// bytes cannot be written instead of blocking the current thread.
+///
+/// Specifically, this means that the [`poll_write`] function will return one of
+/// the following:
+///
+/// * `Poll::Ready(Ok(n))` means that `n` bytes of data was immediately
+/// written.
+///
+/// * `Poll::Pending` means that no data was written from the buffer
+/// provided. The I/O object is not currently writable but may become writable
+/// in the future. Most importantly, **the current future's task is scheduled
+/// to get unparked when the object is writable**. This means that like
+/// `Future::poll` you'll receive a notification when the I/O object is
+/// writable again.
+///
+/// * `Poll::Ready(Err(e))` for other errors are standard I/O errors coming from the
+/// underlying object.
+///
+/// This trait importantly means that the [`write`][stdwrite] method only works in
+/// the context of a future's task. The object may panic if used outside of a task.
+///
+/// Note that this trait also represents that the [`Write::flush`][stdflush] method
+/// works very similarly to the `write` method, notably that `Ok(())` means that the
+/// writer has successfully been flushed, a "would block" error means that the
+/// current task is ready to receive a notification when flushing can make more
+/// progress, and otherwise normal errors can happen as well.
+///
+/// Utilities for working with `AsyncWrite` values are provided by
+/// [`AsyncWriteExt`].
+///
+/// [`std::io::Write`]: std::io::Write
+/// [`poll_write`]: AsyncWrite::poll_write()
+/// [stdwrite]: std::io::Write::write()
+/// [stdflush]: std::io::Write::flush()
+/// [`AsyncWriteExt`]: crate::io::AsyncWriteExt
+pub trait AsyncWrite {
+ /// Attempt to write bytes from `buf` into the object.
+ ///
+ /// On success, returns `Poll::Ready(Ok(num_bytes_written))`. If successful,
+ /// then it must be guaranteed that `n <= buf.len()`. A return value of `0`
+ /// typically means that the underlying object is no longer able to accept
+ /// bytes and will likely not be able to in the future as well, or that the
+ /// buffer provided is empty.
+ ///
+ /// If the object is not ready for writing, the method returns
+ /// `Poll::Pending` and arranges for the current task (via
+ /// `cx.waker()`) to receive a notification when the object becomes
+ /// writable or is closed.
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<Result<usize, io::Error>>;
+
+ /// Attempts to flush the object, ensuring that any buffered data reach
+ /// their destination.
+ ///
+ /// On success, returns `Poll::Ready(Ok(()))`.
+ ///
+ /// If flushing cannot immediately complete, this method returns
+ /// `Poll::Pending` and arranges for the current task (via
+ /// `cx.waker()`) to receive a notification when the object can make
+ /// progress towards flushing.
+ fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>>;
+
+ /// Initiates or attempts to shut down this writer, returning success when
+ /// the I/O connection has completely shut down.
+ ///
+ /// This method is intended to be used for asynchronous shutdown of I/O
+ /// connections. For example this is suitable for implementing shutdown of a
+ /// TLS connection or calling `TcpStream::shutdown` on a proxied connection.
+ /// Protocols sometimes need to flush out final pieces of data or otherwise
+ /// perform a graceful shutdown handshake, reading/writing more data as
+ /// appropriate. This method is the hook for such protocols to implement the
+ /// graceful shutdown logic.
+ ///
+ /// This `shutdown` method is required by implementers of the
+ /// `AsyncWrite` trait. Wrappers typically just want to proxy this call
+ /// through to the wrapped type, and base types will typically implement
+ /// shutdown logic here or just return `Ok(().into())`. Note that if you're
+ /// wrapping an underlying `AsyncWrite` a call to `shutdown` implies that
+ /// transitively the entire stream has been shut down. After your wrapper's
+ /// shutdown logic has been executed you should shut down the underlying
+ /// stream.
+ ///
+ /// Invocation of a `shutdown` implies an invocation of `flush`. Once this
+ /// method returns `Ready` it implies that a flush successfully happened
+ /// before the shutdown happened. That is, callers don't need to call
+ /// `flush` before calling `shutdown`. They can rely that by calling
+ /// `shutdown` any pending buffered data will be written out.
+ ///
+ /// # Return value
+ ///
+ /// This function returns a `Poll<io::Result<()>>` classified as such:
+ ///
+ /// * `Poll::Ready(Ok(()))` - indicates that the connection was
+ /// successfully shut down and is now safe to deallocate/drop/close
+ /// resources associated with it. This method means that the current task
+ /// will no longer receive any notifications due to this method and the
+ /// I/O object itself is likely no longer usable.
+ ///
+ /// * `Poll::Pending` - indicates that shutdown is initiated but could
+ /// not complete just yet. This may mean that more I/O needs to happen to
+ /// continue this shutdown operation. The current task is scheduled to
+ /// receive a notification when it's otherwise ready to continue the
+ /// shutdown operation. When woken up this method should be called again.
+ ///
+ /// * `Poll::Ready(Err(e))` - indicates a fatal error has happened with shutdown,
+ /// indicating that the shutdown operation did not complete successfully.
+ /// This typically means that the I/O object is no longer usable.
+ ///
+ /// # Errors
+ ///
+ /// This function can return normal I/O errors through `Err`, described
+ /// above. Additionally this method may also render the underlying
+ /// `Write::write` method no longer usable (e.g. will return errors in the
+ /// future). It's recommended that once `shutdown` is called the
+ /// `write` method is no longer called.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if not called within the context of a future's
+ /// task.
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>>;
+
+ /// Like [`poll_write`], except that it writes from a slice of buffers.
+ ///
+ /// Data is copied from each buffer in order, with the final buffer
+ /// read from possibly being only partially consumed. This method must
+ /// behave as a call to [`write`] with the buffers concatenated would.
+ ///
+ /// The default implementation calls [`poll_write`] with either the first nonempty
+ /// buffer provided, or an empty one if none exists.
+ ///
+ /// On success, returns `Poll::Ready(Ok(num_bytes_written))`.
+ ///
+ /// If the object is not ready for writing, the method returns
+ /// `Poll::Pending` and arranges for the current task (via
+ /// `cx.waker()`) to receive a notification when the object becomes
+ /// writable or is closed.
+ ///
+ /// # Note
+ ///
+ /// This should be implemented as a single "atomic" write action. If any
+ /// data has been partially written, it is wrong to return an error or
+ /// pending.
+ ///
+ /// [`poll_write`]: AsyncWrite::poll_write
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<Result<usize, io::Error>> {
+ let buf = bufs
+ .iter()
+ .find(|b| !b.is_empty())
+ .map_or(&[][..], |b| &**b);
+ self.poll_write(cx, buf)
+ }
+
+ /// Determines if this writer has an efficient [`poll_write_vectored`]
+ /// implementation.
+ ///
+ /// If a writer does not override the default [`poll_write_vectored`]
+ /// implementation, code using it may want to avoid the method all together
+ /// and coalesce writes into a single buffer for higher performance.
+ ///
+ /// The default implementation returns `false`.
+ ///
+ /// [`poll_write_vectored`]: AsyncWrite::poll_write_vectored
+ fn is_write_vectored(&self) -> bool {
+ false
+ }
+}
+
+macro_rules! deref_async_write {
+ () => {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ Pin::new(&mut **self).poll_write(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ Pin::new(&mut **self).poll_write_vectored(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ (**self).is_write_vectored()
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Pin::new(&mut **self).poll_flush(cx)
+ }
+
+ fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Pin::new(&mut **self).poll_shutdown(cx)
+ }
+ };
+}
+
+impl<T: ?Sized + AsyncWrite + Unpin> AsyncWrite for Box<T> {
+ deref_async_write!();
+}
+
+impl<T: ?Sized + AsyncWrite + Unpin> AsyncWrite for &mut T {
+ deref_async_write!();
+}
+
+impl<P> AsyncWrite for Pin<P>
+where
+ P: DerefMut + Unpin,
+ P::Target: AsyncWrite,
+{
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.get_mut().as_mut().poll_write(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.get_mut().as_mut().poll_write_vectored(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ (**self).is_write_vectored()
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.get_mut().as_mut().poll_flush(cx)
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.get_mut().as_mut().poll_shutdown(cx)
+ }
+}
+
+impl AsyncWrite for Vec<u8> {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ _cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.get_mut().extend_from_slice(buf);
+ Poll::Ready(Ok(buf.len()))
+ }
+
+ fn poll_write_vectored(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write_vectored(&mut *self, bufs))
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl AsyncWrite for io::Cursor<&mut [u8]> {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write(&mut *self, buf))
+ }
+
+ fn poll_write_vectored(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write_vectored(&mut *self, bufs))
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(io::Write::flush(&mut *self))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.poll_flush(cx)
+ }
+}
+
+impl AsyncWrite for io::Cursor<&mut Vec<u8>> {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write(&mut *self, buf))
+ }
+
+ fn poll_write_vectored(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write_vectored(&mut *self, bufs))
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(io::Write::flush(&mut *self))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.poll_flush(cx)
+ }
+}
+
+impl AsyncWrite for io::Cursor<Vec<u8>> {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write(&mut *self, buf))
+ }
+
+ fn poll_write_vectored(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write_vectored(&mut *self, bufs))
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(io::Write::flush(&mut *self))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.poll_flush(cx)
+ }
+}
+
+impl AsyncWrite for io::Cursor<Box<[u8]>> {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write(&mut *self, buf))
+ }
+
+ fn poll_write_vectored(
+ mut self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ Poll::Ready(io::Write::write_vectored(&mut *self, bufs))
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
+ Poll::Ready(io::Write::flush(&mut *self))
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.poll_flush(cx)
+ }
+}
diff --git a/vendor/tokio/src/io/blocking.rs b/vendor/tokio/src/io/blocking.rs
new file mode 100644
index 000000000..94a3484ff
--- /dev/null
+++ b/vendor/tokio/src/io/blocking.rs
@@ -0,0 +1,279 @@
+use crate::io::sys;
+use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
+
+use std::cmp;
+use std::future::Future;
+use std::io;
+use std::io::prelude::*;
+use std::pin::Pin;
+use std::task::Poll::*;
+use std::task::{Context, Poll};
+
+use self::State::*;
+
+/// `T` should not implement _both_ Read and Write.
+#[derive(Debug)]
+pub(crate) struct Blocking<T> {
+ inner: Option<T>,
+ state: State<T>,
+ /// `true` if the lower IO layer needs flushing
+ need_flush: bool,
+}
+
+#[derive(Debug)]
+pub(crate) struct Buf {
+ buf: Vec<u8>,
+ pos: usize,
+}
+
+pub(crate) const MAX_BUF: usize = 16 * 1024;
+
+#[derive(Debug)]
+enum State<T> {
+ Idle(Option<Buf>),
+ Busy(sys::Blocking<(io::Result<usize>, Buf, T)>),
+}
+
+cfg_io_std! {
+ impl<T> Blocking<T> {
+ pub(crate) fn new(inner: T) -> Blocking<T> {
+ Blocking {
+ inner: Some(inner),
+ state: State::Idle(Some(Buf::with_capacity(0))),
+ need_flush: false,
+ }
+ }
+ }
+}
+
+impl<T> AsyncRead for Blocking<T>
+where
+ T: Read + Unpin + Send + 'static,
+{
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ dst: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ loop {
+ match self.state {
+ Idle(ref mut buf_cell) => {
+ let mut buf = buf_cell.take().unwrap();
+
+ if !buf.is_empty() {
+ buf.copy_to(dst);
+ *buf_cell = Some(buf);
+ return Ready(Ok(()));
+ }
+
+ buf.ensure_capacity_for(dst);
+ let mut inner = self.inner.take().unwrap();
+
+ self.state = Busy(sys::run(move || {
+ let res = buf.read_from(&mut inner);
+ (res, buf, inner)
+ }));
+ }
+ Busy(ref mut rx) => {
+ let (res, mut buf, inner) = ready!(Pin::new(rx).poll(cx))?;
+ self.inner = Some(inner);
+
+ match res {
+ Ok(_) => {
+ buf.copy_to(dst);
+ self.state = Idle(Some(buf));
+ return Ready(Ok(()));
+ }
+ Err(e) => {
+ assert!(buf.is_empty());
+
+ self.state = Idle(Some(buf));
+ return Ready(Err(e));
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+impl<T> AsyncWrite for Blocking<T>
+where
+ T: Write + Unpin + Send + 'static,
+{
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ src: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ loop {
+ match self.state {
+ Idle(ref mut buf_cell) => {
+ let mut buf = buf_cell.take().unwrap();
+
+ assert!(buf.is_empty());
+
+ let n = buf.copy_from(src);
+ let mut inner = self.inner.take().unwrap();
+
+ self.state = Busy(sys::run(move || {
+ let n = buf.len();
+ let res = buf.write_to(&mut inner).map(|_| n);
+
+ (res, buf, inner)
+ }));
+ self.need_flush = true;
+
+ return Ready(Ok(n));
+ }
+ Busy(ref mut rx) => {
+ let (res, buf, inner) = ready!(Pin::new(rx).poll(cx))?;
+ self.state = Idle(Some(buf));
+ self.inner = Some(inner);
+
+ // If error, return
+ res?;
+ }
+ }
+ }
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ loop {
+ let need_flush = self.need_flush;
+ match self.state {
+ // The buffer is not used here
+ Idle(ref mut buf_cell) => {
+ if need_flush {
+ let buf = buf_cell.take().unwrap();
+ let mut inner = self.inner.take().unwrap();
+
+ self.state = Busy(sys::run(move || {
+ let res = inner.flush().map(|_| 0);
+ (res, buf, inner)
+ }));
+
+ self.need_flush = false;
+ } else {
+ return Ready(Ok(()));
+ }
+ }
+ Busy(ref mut rx) => {
+ let (res, buf, inner) = ready!(Pin::new(rx).poll(cx))?;
+ self.state = Idle(Some(buf));
+ self.inner = Some(inner);
+
+ // If error, return
+ res?;
+ }
+ }
+ }
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ Poll::Ready(Ok(()))
+ }
+}
+
+/// Repeats operations that are interrupted
+macro_rules! uninterruptibly {
+ ($e:expr) => {{
+ loop {
+ match $e {
+ Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
+ res => break res,
+ }
+ }
+ }};
+}
+
+impl Buf {
+ pub(crate) fn with_capacity(n: usize) -> Buf {
+ Buf {
+ buf: Vec::with_capacity(n),
+ pos: 0,
+ }
+ }
+
+ pub(crate) fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ pub(crate) fn len(&self) -> usize {
+ self.buf.len() - self.pos
+ }
+
+ pub(crate) fn copy_to(&mut self, dst: &mut ReadBuf<'_>) -> usize {
+ let n = cmp::min(self.len(), dst.remaining());
+ dst.put_slice(&self.bytes()[..n]);
+ self.pos += n;
+
+ if self.pos == self.buf.len() {
+ self.buf.truncate(0);
+ self.pos = 0;
+ }
+
+ n
+ }
+
+ pub(crate) fn copy_from(&mut self, src: &[u8]) -> usize {
+ assert!(self.is_empty());
+
+ let n = cmp::min(src.len(), MAX_BUF);
+
+ self.buf.extend_from_slice(&src[..n]);
+ n
+ }
+
+ pub(crate) fn bytes(&self) -> &[u8] {
+ &self.buf[self.pos..]
+ }
+
+ pub(crate) fn ensure_capacity_for(&mut self, bytes: &ReadBuf<'_>) {
+ assert!(self.is_empty());
+
+ let len = cmp::min(bytes.remaining(), MAX_BUF);
+
+ if self.buf.len() < len {
+ self.buf.reserve(len - self.buf.len());
+ }
+
+ unsafe {
+ self.buf.set_len(len);
+ }
+ }
+
+ pub(crate) fn read_from<T: Read>(&mut self, rd: &mut T) -> io::Result<usize> {
+ let res = uninterruptibly!(rd.read(&mut self.buf));
+
+ if let Ok(n) = res {
+ self.buf.truncate(n);
+ } else {
+ self.buf.clear();
+ }
+
+ assert_eq!(self.pos, 0);
+
+ res
+ }
+
+ pub(crate) fn write_to<T: Write>(&mut self, wr: &mut T) -> io::Result<()> {
+ assert_eq!(self.pos, 0);
+
+ // `write_all` already ignores interrupts
+ let res = wr.write_all(&self.buf);
+ self.buf.clear();
+ res
+ }
+}
+
+cfg_fs! {
+ impl Buf {
+ pub(crate) fn discard_read(&mut self) -> i64 {
+ let ret = -(self.bytes().len() as i64);
+ self.pos = 0;
+ self.buf.truncate(0);
+ ret
+ }
+ }
+}
diff --git a/vendor/tokio/src/io/driver/interest.rs b/vendor/tokio/src/io/driver/interest.rs
new file mode 100644
index 000000000..36951cf5a
--- /dev/null
+++ b/vendor/tokio/src/io/driver/interest.rs
@@ -0,0 +1,112 @@
+#![cfg_attr(not(feature = "net"), allow(dead_code, unreachable_pub))]
+
+use crate::io::driver::Ready;
+
+use std::fmt;
+use std::ops;
+
+/// Readiness event interest
+///
+/// Specifies the readiness events the caller is interested in when awaiting on
+/// I/O resource readiness states.
+#[cfg_attr(docsrs, doc(cfg(feature = "net")))]
+#[derive(Clone, Copy, Eq, PartialEq)]
+pub struct Interest(mio::Interest);
+
+impl Interest {
+ /// Interest in all readable events.
+ ///
+ /// Readable interest includes read-closed events.
+ pub const READABLE: Interest = Interest(mio::Interest::READABLE);
+
+ /// Interest in all writable events
+ ///
+ /// Writable interest includes write-closed events.
+ pub const WRITABLE: Interest = Interest(mio::Interest::WRITABLE);
+
+ /// Returns true if the value includes readable interest.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Interest;
+ ///
+ /// assert!(Interest::READABLE.is_readable());
+ /// assert!(!Interest::WRITABLE.is_readable());
+ ///
+ /// let both = Interest::READABLE | Interest::WRITABLE;
+ /// assert!(both.is_readable());
+ /// ```
+ pub const fn is_readable(self) -> bool {
+ self.0.is_readable()
+ }
+
+ /// Returns true if the value includes writable interest.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Interest;
+ ///
+ /// assert!(!Interest::READABLE.is_writable());
+ /// assert!(Interest::WRITABLE.is_writable());
+ ///
+ /// let both = Interest::READABLE | Interest::WRITABLE;
+ /// assert!(both.is_writable());
+ /// ```
+ pub const fn is_writable(self) -> bool {
+ self.0.is_writable()
+ }
+
+ /// Add together two `Interest` values.
+ ///
+ /// This function works from a `const` context.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Interest;
+ ///
+ /// const BOTH: Interest = Interest::READABLE.add(Interest::WRITABLE);
+ ///
+ /// assert!(BOTH.is_readable());
+ /// assert!(BOTH.is_writable());
+ pub const fn add(self, other: Interest) -> Interest {
+ Interest(self.0.add(other.0))
+ }
+
+ // This function must be crate-private to avoid exposing a `mio` dependency.
+ pub(crate) const fn to_mio(self) -> mio::Interest {
+ self.0
+ }
+
+ pub(super) fn mask(self) -> Ready {
+ match self {
+ Interest::READABLE => Ready::READABLE | Ready::READ_CLOSED,
+ Interest::WRITABLE => Ready::WRITABLE | Ready::WRITE_CLOSED,
+ _ => Ready::EMPTY,
+ }
+ }
+}
+
+impl ops::BitOr for Interest {
+ type Output = Self;
+
+ #[inline]
+ fn bitor(self, other: Self) -> Self {
+ self.add(other)
+ }
+}
+
+impl ops::BitOrAssign for Interest {
+ #[inline]
+ fn bitor_assign(&mut self, other: Self) {
+ self.0 = (*self | other).0;
+ }
+}
+
+impl fmt::Debug for Interest {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.0.fmt(fmt)
+ }
+}
diff --git a/vendor/tokio/src/io/driver/mod.rs b/vendor/tokio/src/io/driver/mod.rs
new file mode 100644
index 000000000..3aa0cfbb2
--- /dev/null
+++ b/vendor/tokio/src/io/driver/mod.rs
@@ -0,0 +1,353 @@
+#![cfg_attr(not(feature = "rt"), allow(dead_code))]
+
+mod interest;
+#[allow(unreachable_pub)]
+pub use interest::Interest;
+
+mod ready;
+#[allow(unreachable_pub)]
+pub use ready::Ready;
+
+mod registration;
+pub(crate) use registration::Registration;
+
+mod scheduled_io;
+use scheduled_io::ScheduledIo;
+
+use crate::park::{Park, Unpark};
+use crate::util::slab::{self, Slab};
+use crate::{loom::sync::Mutex, util::bit};
+
+use std::fmt;
+use std::io;
+use std::sync::{Arc, Weak};
+use std::time::Duration;
+
+/// I/O driver, backed by Mio
+pub(crate) struct Driver {
+ /// Tracks the number of times `turn` is called. It is safe for this to wrap
+ /// as it is mostly used to determine when to call `compact()`
+ tick: u8,
+
+ /// Reuse the `mio::Events` value across calls to poll.
+ events: Option<mio::Events>,
+
+ /// Primary slab handle containing the state for each resource registered
+ /// with this driver. During Drop this is moved into the Inner structure, so
+ /// this is an Option to allow it to be vacated (until Drop this is always
+ /// Some)
+ resources: Option<Slab<ScheduledIo>>,
+
+ /// The system event queue
+ poll: mio::Poll,
+
+ /// State shared between the reactor and the handles.
+ inner: Arc<Inner>,
+}
+
+/// A reference to an I/O driver
+#[derive(Clone)]
+pub(crate) struct Handle {
+ inner: Weak<Inner>,
+}
+
+pub(crate) struct ReadyEvent {
+ tick: u8,
+ pub(crate) ready: Ready,
+}
+
+pub(super) struct Inner {
+ /// Primary slab handle containing the state for each resource registered
+ /// with this driver.
+ ///
+ /// The ownership of this slab is moved into this structure during
+ /// `Driver::drop`, so that `Inner::drop` can notify all outstanding handles
+ /// without risking new ones being registered in the meantime.
+ resources: Mutex<Option<Slab<ScheduledIo>>>,
+
+ /// Registers I/O resources
+ registry: mio::Registry,
+
+ /// Allocates `ScheduledIo` handles when creating new resources.
+ pub(super) io_dispatch: slab::Allocator<ScheduledIo>,
+
+ /// Used to wake up the reactor from a call to `turn`
+ waker: mio::Waker,
+}
+
+#[derive(Debug, Eq, PartialEq, Clone, Copy)]
+enum Direction {
+ Read,
+ Write,
+}
+
+enum Tick {
+ Set(u8),
+ Clear(u8),
+}
+
+// TODO: Don't use a fake token. Instead, reserve a slot entry for the wakeup
+// token.
+const TOKEN_WAKEUP: mio::Token = mio::Token(1 << 31);
+
+const ADDRESS: bit::Pack = bit::Pack::least_significant(24);
+
+// Packs the generation value in the `readiness` field.
+//
+// The generation prevents a race condition where a slab slot is reused for a
+// new socket while the I/O driver is about to apply a readiness event. The
+// generation value is checked when setting new readiness. If the generation do
+// not match, then the readiness event is discarded.
+const GENERATION: bit::Pack = ADDRESS.then(7);
+
+fn _assert_kinds() {
+ fn _assert<T: Send + Sync>() {}
+
+ _assert::<Handle>();
+}
+
+// ===== impl Driver =====
+
+impl Driver {
+ /// Creates a new event loop, returning any error that happened during the
+ /// creation.
+ pub(crate) fn new() -> io::Result<Driver> {
+ let poll = mio::Poll::new()?;
+ let waker = mio::Waker::new(poll.registry(), TOKEN_WAKEUP)?;
+ let registry = poll.registry().try_clone()?;
+
+ let slab = Slab::new();
+ let allocator = slab.allocator();
+
+ Ok(Driver {
+ tick: 0,
+ events: Some(mio::Events::with_capacity(1024)),
+ poll,
+ resources: Some(slab),
+ inner: Arc::new(Inner {
+ resources: Mutex::new(None),
+ registry,
+ io_dispatch: allocator,
+ waker,
+ }),
+ })
+ }
+
+ /// Returns a handle to this event loop which can be sent across threads
+ /// and can be used as a proxy to the event loop itself.
+ ///
+ /// Handles are cloneable and clones always refer to the same event loop.
+ /// This handle is typically passed into functions that create I/O objects
+ /// to bind them to this event loop.
+ pub(crate) fn handle(&self) -> Handle {
+ Handle {
+ inner: Arc::downgrade(&self.inner),
+ }
+ }
+
+ fn turn(&mut self, max_wait: Option<Duration>) -> io::Result<()> {
+ // How often to call `compact()` on the resource slab
+ const COMPACT_INTERVAL: u8 = 255;
+
+ self.tick = self.tick.wrapping_add(1);
+
+ if self.tick == COMPACT_INTERVAL {
+ self.resources.as_mut().unwrap().compact()
+ }
+
+ let mut events = self.events.take().expect("i/o driver event store missing");
+
+ // Block waiting for an event to happen, peeling out how many events
+ // happened.
+ match self.poll.poll(&mut events, max_wait) {
+ Ok(_) => {}
+ Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
+ Err(e) => return Err(e),
+ }
+
+ // Process all the events that came in, dispatching appropriately
+ for event in events.iter() {
+ let token = event.token();
+
+ if token != TOKEN_WAKEUP {
+ self.dispatch(token, Ready::from_mio(event));
+ }
+ }
+
+ self.events = Some(events);
+
+ Ok(())
+ }
+
+ fn dispatch(&mut self, token: mio::Token, ready: Ready) {
+ let addr = slab::Address::from_usize(ADDRESS.unpack(token.0));
+
+ let resources = self.resources.as_mut().unwrap();
+
+ let io = match resources.get(addr) {
+ Some(io) => io,
+ None => return,
+ };
+
+ let res = io.set_readiness(Some(token.0), Tick::Set(self.tick), |curr| curr | ready);
+
+ if res.is_err() {
+ // token no longer valid!
+ return;
+ }
+
+ io.wake(ready);
+ }
+}
+
+impl Drop for Driver {
+ fn drop(&mut self) {
+ (*self.inner.resources.lock()) = self.resources.take();
+ }
+}
+
+impl Drop for Inner {
+ fn drop(&mut self) {
+ let resources = self.resources.lock().take();
+
+ if let Some(mut slab) = resources {
+ slab.for_each(|io| {
+ // If a task is waiting on the I/O resource, notify it. The task
+ // will then attempt to use the I/O resource and fail due to the
+ // driver being shutdown.
+ io.shutdown();
+ });
+ }
+ }
+}
+
+impl Park for Driver {
+ type Unpark = Handle;
+ type Error = io::Error;
+
+ fn unpark(&self) -> Self::Unpark {
+ self.handle()
+ }
+
+ fn park(&mut self) -> io::Result<()> {
+ self.turn(None)?;
+ Ok(())
+ }
+
+ fn park_timeout(&mut self, duration: Duration) -> io::Result<()> {
+ self.turn(Some(duration))?;
+ Ok(())
+ }
+
+ fn shutdown(&mut self) {}
+}
+
+impl fmt::Debug for Driver {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "Driver")
+ }
+}
+
+// ===== impl Handle =====
+
+cfg_rt! {
+ impl Handle {
+ /// Returns a handle to the current reactor
+ ///
+ /// # Panics
+ ///
+ /// This function panics if there is no current reactor set and `rt` feature
+ /// flag is not enabled.
+ pub(super) fn current() -> Self {
+ crate::runtime::context::io_handle().expect("A Tokio 1.x context was found, but IO is disabled. Call `enable_io` on the runtime builder to enable IO.")
+ }
+ }
+}
+
+cfg_not_rt! {
+ impl Handle {
+ /// Returns a handle to the current reactor
+ ///
+ /// # Panics
+ ///
+ /// This function panics if there is no current reactor set, or if the `rt`
+ /// feature flag is not enabled.
+ pub(super) fn current() -> Self {
+ panic!("{}", crate::util::error::CONTEXT_MISSING_ERROR)
+ }
+ }
+}
+
+impl Handle {
+ /// Forces a reactor blocked in a call to `turn` to wakeup, or otherwise
+ /// makes the next call to `turn` return immediately.
+ ///
+ /// This method is intended to be used in situations where a notification
+ /// needs to otherwise be sent to the main reactor. If the reactor is
+ /// currently blocked inside of `turn` then it will wake up and soon return
+ /// after this method has been called. If the reactor is not currently
+ /// blocked in `turn`, then the next call to `turn` will not block and
+ /// return immediately.
+ fn wakeup(&self) {
+ if let Some(inner) = self.inner() {
+ inner.waker.wake().expect("failed to wake I/O driver");
+ }
+ }
+
+ pub(super) fn inner(&self) -> Option<Arc<Inner>> {
+ self.inner.upgrade()
+ }
+}
+
+impl Unpark for Handle {
+ fn unpark(&self) {
+ self.wakeup();
+ }
+}
+
+impl fmt::Debug for Handle {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "Handle")
+ }
+}
+
+// ===== impl Inner =====
+
+impl Inner {
+ /// Registers an I/O resource with the reactor for a given `mio::Ready` state.
+ ///
+ /// The registration token is returned.
+ pub(super) fn add_source(
+ &self,
+ source: &mut impl mio::event::Source,
+ interest: Interest,
+ ) -> io::Result<slab::Ref<ScheduledIo>> {
+ let (address, shared) = self.io_dispatch.allocate().ok_or_else(|| {
+ io::Error::new(
+ io::ErrorKind::Other,
+ "reactor at max registered I/O resources",
+ )
+ })?;
+
+ let token = GENERATION.pack(shared.generation(), ADDRESS.pack(address.as_usize(), 0));
+
+ self.registry
+ .register(source, mio::Token(token), interest.to_mio())?;
+
+ Ok(shared)
+ }
+
+ /// Deregisters an I/O resource from the reactor.
+ pub(super) fn deregister_source(&self, source: &mut impl mio::event::Source) -> io::Result<()> {
+ self.registry.deregister(source)
+ }
+}
+
+impl Direction {
+ pub(super) fn mask(self) -> Ready {
+ match self {
+ Direction::Read => Ready::READABLE | Ready::READ_CLOSED,
+ Direction::Write => Ready::WRITABLE | Ready::WRITE_CLOSED,
+ }
+ }
+}
diff --git a/vendor/tokio/src/io/driver/platform.rs b/vendor/tokio/src/io/driver/platform.rs
new file mode 100644
index 000000000..6b27988ce
--- /dev/null
+++ b/vendor/tokio/src/io/driver/platform.rs
@@ -0,0 +1,44 @@
+pub(crate) use self::sys::*;
+
+#[cfg(unix)]
+mod sys {
+ use mio::unix::UnixReady;
+ use mio::Ready;
+
+ pub(crate) fn hup() -> Ready {
+ UnixReady::hup().into()
+ }
+
+ pub(crate) fn is_hup(ready: Ready) -> bool {
+ UnixReady::from(ready).is_hup()
+ }
+
+ pub(crate) fn error() -> Ready {
+ UnixReady::error().into()
+ }
+
+ pub(crate) fn is_error(ready: Ready) -> bool {
+ UnixReady::from(ready).is_error()
+ }
+}
+
+#[cfg(windows)]
+mod sys {
+ use mio::Ready;
+
+ pub(crate) fn hup() -> Ready {
+ Ready::empty()
+ }
+
+ pub(crate) fn is_hup(_: Ready) -> bool {
+ false
+ }
+
+ pub(crate) fn error() -> Ready {
+ Ready::empty()
+ }
+
+ pub(crate) fn is_error(_: Ready) -> bool {
+ false
+ }
+}
diff --git a/vendor/tokio/src/io/driver/ready.rs b/vendor/tokio/src/io/driver/ready.rs
new file mode 100644
index 000000000..2ac01bdbe
--- /dev/null
+++ b/vendor/tokio/src/io/driver/ready.rs
@@ -0,0 +1,239 @@
+#![cfg_attr(not(feature = "net"), allow(unreachable_pub))]
+
+use std::fmt;
+use std::ops;
+
+const READABLE: usize = 0b0_01;
+const WRITABLE: usize = 0b0_10;
+const READ_CLOSED: usize = 0b0_0100;
+const WRITE_CLOSED: usize = 0b0_1000;
+
+/// Describes the readiness state of an I/O resources.
+///
+/// `Ready` tracks which operation an I/O resource is ready to perform.
+#[cfg_attr(docsrs, doc(cfg(feature = "net")))]
+#[derive(Clone, Copy, PartialEq, PartialOrd)]
+pub struct Ready(usize);
+
+impl Ready {
+ /// Returns the empty `Ready` set.
+ pub const EMPTY: Ready = Ready(0);
+
+ /// Returns a `Ready` representing readable readiness.
+ pub const READABLE: Ready = Ready(READABLE);
+
+ /// Returns a `Ready` representing writable readiness.
+ pub const WRITABLE: Ready = Ready(WRITABLE);
+
+ /// Returns a `Ready` representing read closed readiness.
+ pub const READ_CLOSED: Ready = Ready(READ_CLOSED);
+
+ /// Returns a `Ready` representing write closed readiness.
+ pub const WRITE_CLOSED: Ready = Ready(WRITE_CLOSED);
+
+ /// Returns a `Ready` representing readiness for all operations.
+ pub const ALL: Ready = Ready(READABLE | WRITABLE | READ_CLOSED | WRITE_CLOSED);
+
+ // Must remain crate-private to avoid adding a public dependency on Mio.
+ pub(crate) fn from_mio(event: &mio::event::Event) -> Ready {
+ let mut ready = Ready::EMPTY;
+
+ if event.is_readable() {
+ ready |= Ready::READABLE;
+ }
+
+ if event.is_writable() {
+ ready |= Ready::WRITABLE;
+ }
+
+ if event.is_read_closed() {
+ ready |= Ready::READ_CLOSED;
+ }
+
+ if event.is_write_closed() {
+ ready |= Ready::WRITE_CLOSED;
+ }
+
+ ready
+ }
+
+ /// Returns true if `Ready` is the empty set
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Ready;
+ ///
+ /// assert!(Ready::EMPTY.is_empty());
+ /// assert!(!Ready::READABLE.is_empty());
+ /// ```
+ pub fn is_empty(self) -> bool {
+ self == Ready::EMPTY
+ }
+
+ /// Returns `true` if the value includes `readable`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Ready;
+ ///
+ /// assert!(!Ready::EMPTY.is_readable());
+ /// assert!(Ready::READABLE.is_readable());
+ /// assert!(Ready::READ_CLOSED.is_readable());
+ /// assert!(!Ready::WRITABLE.is_readable());
+ /// ```
+ pub fn is_readable(self) -> bool {
+ self.contains(Ready::READABLE) || self.is_read_closed()
+ }
+
+ /// Returns `true` if the value includes writable `readiness`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Ready;
+ ///
+ /// assert!(!Ready::EMPTY.is_writable());
+ /// assert!(!Ready::READABLE.is_writable());
+ /// assert!(Ready::WRITABLE.is_writable());
+ /// assert!(Ready::WRITE_CLOSED.is_writable());
+ /// ```
+ pub fn is_writable(self) -> bool {
+ self.contains(Ready::WRITABLE) || self.is_write_closed()
+ }
+
+ /// Returns `true` if the value includes read-closed `readiness`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Ready;
+ ///
+ /// assert!(!Ready::EMPTY.is_read_closed());
+ /// assert!(!Ready::READABLE.is_read_closed());
+ /// assert!(Ready::READ_CLOSED.is_read_closed());
+ /// ```
+ pub fn is_read_closed(self) -> bool {
+ self.contains(Ready::READ_CLOSED)
+ }
+
+ /// Returns `true` if the value includes write-closed `readiness`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::Ready;
+ ///
+ /// assert!(!Ready::EMPTY.is_write_closed());
+ /// assert!(!Ready::WRITABLE.is_write_closed());
+ /// assert!(Ready::WRITE_CLOSED.is_write_closed());
+ /// ```
+ pub fn is_write_closed(self) -> bool {
+ self.contains(Ready::WRITE_CLOSED)
+ }
+
+ /// Returns true if `self` is a superset of `other`.
+ ///
+ /// `other` may represent more than one readiness operations, in which case
+ /// the function only returns true if `self` contains all readiness
+ /// specified in `other`.
+ pub(crate) fn contains<T: Into<Self>>(self, other: T) -> bool {
+ let other = other.into();
+ (self & other) == other
+ }
+
+ /// Create a `Ready` instance using the given `usize` representation.
+ ///
+ /// The `usize` representation must have been obtained from a call to
+ /// `Readiness::as_usize`.
+ ///
+ /// This function is mainly provided to allow the caller to get a
+ /// readiness value from an `AtomicUsize`.
+ pub(crate) fn from_usize(val: usize) -> Ready {
+ Ready(val & Ready::ALL.as_usize())
+ }
+
+ /// Returns a `usize` representation of the `Ready` value.
+ ///
+ /// This function is mainly provided to allow the caller to store a
+ /// readiness value in an `AtomicUsize`.
+ pub(crate) fn as_usize(self) -> usize {
+ self.0
+ }
+}
+
+cfg_io_readiness! {
+ use crate::io::Interest;
+
+ impl Ready {
+ pub(crate) fn from_interest(interest: Interest) -> Ready {
+ let mut ready = Ready::EMPTY;
+
+ if interest.is_readable() {
+ ready |= Ready::READABLE;
+ ready |= Ready::READ_CLOSED;
+ }
+
+ if interest.is_writable() {
+ ready |= Ready::WRITABLE;
+ ready |= Ready::WRITE_CLOSED;
+ }
+
+ ready
+ }
+
+ pub(crate) fn intersection(self, interest: Interest) -> Ready {
+ Ready(self.0 & Ready::from_interest(interest).0)
+ }
+
+ pub(crate) fn satisfies(self, interest: Interest) -> bool {
+ self.0 & Ready::from_interest(interest).0 != 0
+ }
+ }
+}
+
+impl ops::BitOr<Ready> for Ready {
+ type Output = Ready;
+
+ #[inline]
+ fn bitor(self, other: Ready) -> Ready {
+ Ready(self.0 | other.0)
+ }
+}
+
+impl ops::BitOrAssign<Ready> for Ready {
+ #[inline]
+ fn bitor_assign(&mut self, other: Ready) {
+ self.0 |= other.0;
+ }
+}
+
+impl ops::BitAnd<Ready> for Ready {
+ type Output = Ready;
+
+ #[inline]
+ fn bitand(self, other: Ready) -> Ready {
+ Ready(self.0 & other.0)
+ }
+}
+
+impl ops::Sub<Ready> for Ready {
+ type Output = Ready;
+
+ #[inline]
+ fn sub(self, other: Ready) -> Ready {
+ Ready(self.0 & !other.0)
+ }
+}
+
+impl fmt::Debug for Ready {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Ready")
+ .field("is_readable", &self.is_readable())
+ .field("is_writable", &self.is_writable())
+ .field("is_read_closed", &self.is_read_closed())
+ .field("is_write_closed", &self.is_write_closed())
+ .finish()
+ }
+}
diff --git a/vendor/tokio/src/io/driver/registration.rs b/vendor/tokio/src/io/driver/registration.rs
new file mode 100644
index 000000000..7350be634
--- /dev/null
+++ b/vendor/tokio/src/io/driver/registration.rs
@@ -0,0 +1,262 @@
+#![cfg_attr(not(feature = "net"), allow(dead_code))]
+
+use crate::io::driver::{Direction, Handle, Interest, ReadyEvent, ScheduledIo};
+use crate::util::slab;
+
+use mio::event::Source;
+use std::io;
+use std::task::{Context, Poll};
+
+cfg_io_driver! {
+ /// Associates an I/O resource with the reactor instance that drives it.
+ ///
+ /// A registration represents an I/O resource registered with a Reactor such
+ /// that it will receive task notifications on readiness. This is the lowest
+ /// level API for integrating with a reactor.
+ ///
+ /// The association between an I/O resource is made by calling
+ /// [`new_with_interest_and_handle`].
+ /// Once the association is established, it remains established until the
+ /// registration instance is dropped.
+ ///
+ /// A registration instance represents two separate readiness streams. One
+ /// for the read readiness and one for write readiness. These streams are
+ /// independent and can be consumed from separate tasks.
+ ///
+ /// **Note**: while `Registration` is `Sync`, the caller must ensure that
+ /// there are at most two tasks that use a registration instance
+ /// concurrently. One task for [`poll_read_ready`] and one task for
+ /// [`poll_write_ready`]. While violating this requirement is "safe" from a
+ /// Rust memory safety point of view, it will result in unexpected behavior
+ /// in the form of lost notifications and tasks hanging.
+ ///
+ /// ## Platform-specific events
+ ///
+ /// `Registration` also allows receiving platform-specific `mio::Ready`
+ /// events. These events are included as part of the read readiness event
+ /// stream. The write readiness event stream is only for `Ready::writable()`
+ /// events.
+ ///
+ /// [`new_with_interest_and_handle`]: method@Self::new_with_interest_and_handle
+ /// [`poll_read_ready`]: method@Self::poll_read_ready`
+ /// [`poll_write_ready`]: method@Self::poll_write_ready`
+ #[derive(Debug)]
+ pub(crate) struct Registration {
+ /// Handle to the associated driver.
+ handle: Handle,
+
+ /// Reference to state stored by the driver.
+ shared: slab::Ref<ScheduledIo>,
+ }
+}
+
+unsafe impl Send for Registration {}
+unsafe impl Sync for Registration {}
+
+// ===== impl Registration =====
+
+impl Registration {
+ /// Registers the I/O resource with the default reactor, for a specific
+ /// `Interest`. `new_with_interest` should be used over `new` when you need
+ /// control over the readiness state, such as when a file descriptor only
+ /// allows reads. This does not add `hup` or `error` so if you are
+ /// interested in those states, you will need to add them to the readiness
+ /// state passed to this function.
+ ///
+ /// # Return
+ ///
+ /// - `Ok` if the registration happened successfully
+ /// - `Err` if an error was encountered during registration
+ pub(crate) fn new_with_interest_and_handle(
+ io: &mut impl Source,
+ interest: Interest,
+ handle: Handle,
+ ) -> io::Result<Registration> {
+ let shared = if let Some(inner) = handle.inner() {
+ inner.add_source(io, interest)?
+ } else {
+ return Err(io::Error::new(
+ io::ErrorKind::Other,
+ "failed to find event loop",
+ ));
+ };
+
+ Ok(Registration { handle, shared })
+ }
+
+ /// Deregisters the I/O resource from the reactor it is associated with.
+ ///
+ /// This function must be called before the I/O resource associated with the
+ /// registration is dropped.
+ ///
+ /// Note that deregistering does not guarantee that the I/O resource can be
+ /// registered with a different reactor. Some I/O resource types can only be
+ /// associated with a single reactor instance for their lifetime.
+ ///
+ /// # Return
+ ///
+ /// If the deregistration was successful, `Ok` is returned. Any calls to
+ /// `Reactor::turn` that happen after a successful call to `deregister` will
+ /// no longer result in notifications getting sent for this registration.
+ ///
+ /// `Err` is returned if an error is encountered.
+ pub(crate) fn deregister(&mut self, io: &mut impl Source) -> io::Result<()> {
+ let inner = match self.handle.inner() {
+ Some(inner) => inner,
+ None => return Err(io::Error::new(io::ErrorKind::Other, "reactor gone")),
+ };
+ inner.deregister_source(io)
+ }
+
+ pub(crate) fn clear_readiness(&self, event: ReadyEvent) {
+ self.shared.clear_readiness(event);
+ }
+
+ // Uses the poll path, requiring the caller to ensure mutual exclusion for
+ // correctness. Only the last task to call this function is notified.
+ pub(crate) fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<ReadyEvent>> {
+ self.poll_ready(cx, Direction::Read)
+ }
+
+ // Uses the poll path, requiring the caller to ensure mutual exclusion for
+ // correctness. Only the last task to call this function is notified.
+ pub(crate) fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<ReadyEvent>> {
+ self.poll_ready(cx, Direction::Write)
+ }
+
+ // Uses the poll path, requiring the caller to ensure mutual exclusion for
+ // correctness. Only the last task to call this function is notified.
+ pub(crate) fn poll_read_io<R>(
+ &self,
+ cx: &mut Context<'_>,
+ f: impl FnMut() -> io::Result<R>,
+ ) -> Poll<io::Result<R>> {
+ self.poll_io(cx, Direction::Read, f)
+ }
+
+ // Uses the poll path, requiring the caller to ensure mutual exclusion for
+ // correctness. Only the last task to call this function is notified.
+ pub(crate) fn poll_write_io<R>(
+ &self,
+ cx: &mut Context<'_>,
+ f: impl FnMut() -> io::Result<R>,
+ ) -> Poll<io::Result<R>> {
+ self.poll_io(cx, Direction::Write, f)
+ }
+
+ /// Polls for events on the I/O resource's `direction` readiness stream.
+ ///
+ /// If called with a task context, notify the task when a new event is
+ /// received.
+ fn poll_ready(
+ &self,
+ cx: &mut Context<'_>,
+ direction: Direction,
+ ) -> Poll<io::Result<ReadyEvent>> {
+ // Keep track of task budget
+ let coop = ready!(crate::coop::poll_proceed(cx));
+ let ev = ready!(self.shared.poll_readiness(cx, direction));
+
+ if self.handle.inner().is_none() {
+ return Poll::Ready(Err(gone()));
+ }
+
+ coop.made_progress();
+ Poll::Ready(Ok(ev))
+ }
+
+ fn poll_io<R>(
+ &self,
+ cx: &mut Context<'_>,
+ direction: Direction,
+ mut f: impl FnMut() -> io::Result<R>,
+ ) -> Poll<io::Result<R>> {
+ loop {
+ let ev = ready!(self.poll_ready(cx, direction))?;
+
+ match f() {
+ Ok(ret) => {
+ return Poll::Ready(Ok(ret));
+ }
+ Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ self.clear_readiness(ev);
+ }
+ Err(e) => return Poll::Ready(Err(e)),
+ }
+ }
+ }
+
+ pub(crate) fn try_io<R>(
+ &self,
+ interest: Interest,
+ f: impl FnOnce() -> io::Result<R>,
+ ) -> io::Result<R> {
+ let ev = self.shared.ready_event(interest);
+
+ // Don't attempt the operation if the resource is not ready.
+ if ev.ready.is_empty() {
+ return Err(io::ErrorKind::WouldBlock.into());
+ }
+
+ match f() {
+ Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ self.clear_readiness(ev);
+ Err(io::ErrorKind::WouldBlock.into())
+ }
+ res => res,
+ }
+ }
+}
+
+impl Drop for Registration {
+ fn drop(&mut self) {
+ // It is possible for a cycle to be created between wakers stored in
+ // `ScheduledIo` instances and `Arc<driver::Inner>`. To break this
+ // cycle, wakers are cleared. This is an imperfect solution as it is
+ // possible to store a `Registration` in a waker. In this case, the
+ // cycle would remain.
+ //
+ // See tokio-rs/tokio#3481 for more details.
+ self.shared.clear_wakers();
+ }
+}
+
+fn gone() -> io::Error {
+ io::Error::new(io::ErrorKind::Other, "IO driver has terminated")
+}
+
+cfg_io_readiness! {
+ impl Registration {
+ pub(crate) async fn readiness(&self, interest: Interest) -> io::Result<ReadyEvent> {
+ use std::future::Future;
+ use std::pin::Pin;
+
+ let fut = self.shared.readiness(interest);
+ pin!(fut);
+
+ crate::future::poll_fn(|cx| {
+ if self.handle.inner().is_none() {
+ return Poll::Ready(Err(io::Error::new(
+ io::ErrorKind::Other,
+ crate::util::error::RUNTIME_SHUTTING_DOWN_ERROR
+ )));
+ }
+
+ Pin::new(&mut fut).poll(cx).map(Ok)
+ }).await
+ }
+
+ pub(crate) async fn async_io<R>(&self, interest: Interest, mut f: impl FnMut() -> io::Result<R>) -> io::Result<R> {
+ loop {
+ let event = self.readiness(interest).await?;
+
+ match f() {
+ Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
+ self.clear_readiness(event);
+ }
+ x => return x,
+ }
+ }
+ }
+ }
+}
diff --git a/vendor/tokio/src/io/driver/scheduled_io.rs b/vendor/tokio/src/io/driver/scheduled_io.rs
new file mode 100644
index 000000000..517801079
--- /dev/null
+++ b/vendor/tokio/src/io/driver/scheduled_io.rs
@@ -0,0 +1,544 @@
+use super::{Interest, Ready, ReadyEvent, Tick};
+use crate::loom::sync::atomic::AtomicUsize;
+use crate::loom::sync::Mutex;
+use crate::util::bit;
+use crate::util::slab::Entry;
+
+use std::sync::atomic::Ordering::{AcqRel, Acquire, Release};
+use std::task::{Context, Poll, Waker};
+
+use super::Direction;
+
+cfg_io_readiness! {
+ use crate::util::linked_list::{self, LinkedList};
+
+ use std::cell::UnsafeCell;
+ use std::future::Future;
+ use std::marker::PhantomPinned;
+ use std::pin::Pin;
+ use std::ptr::NonNull;
+}
+
+/// Stored in the I/O driver resource slab.
+#[derive(Debug)]
+pub(crate) struct ScheduledIo {
+ /// Packs the resource's readiness with the resource's generation.
+ readiness: AtomicUsize,
+
+ waiters: Mutex<Waiters>,
+}
+
+cfg_io_readiness! {
+ type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>;
+}
+
+#[derive(Debug, Default)]
+struct Waiters {
+ #[cfg(feature = "net")]
+ /// List of all current waiters
+ list: WaitList,
+
+ /// Waker used for AsyncRead
+ reader: Option<Waker>,
+
+ /// Waker used for AsyncWrite
+ writer: Option<Waker>,
+
+ /// True if this ScheduledIo has been killed due to IO driver shutdown
+ is_shutdown: bool,
+}
+
+cfg_io_readiness! {
+ #[derive(Debug)]
+ struct Waiter {
+ pointers: linked_list::Pointers<Waiter>,
+
+ /// The waker for this task
+ waker: Option<Waker>,
+
+ /// The interest this waiter is waiting on
+ interest: Interest,
+
+ is_ready: bool,
+
+ /// Should never be `!Unpin`
+ _p: PhantomPinned,
+ }
+
+ /// Future returned by `readiness()`
+ struct Readiness<'a> {
+ scheduled_io: &'a ScheduledIo,
+
+ state: State,
+
+ /// Entry in the waiter `LinkedList`.
+ waiter: UnsafeCell<Waiter>,
+ }
+
+ enum State {
+ Init,
+ Waiting,
+ Done,
+ }
+}
+
+// The `ScheduledIo::readiness` (`AtomicUsize`) is packed full of goodness.
+//
+// | reserved | generation | driver tick | readiness |
+// |----------+------------+--------------+-----------|
+// | 1 bit | 7 bits + 8 bits + 16 bits |
+
+const READINESS: bit::Pack = bit::Pack::least_significant(16);
+
+const TICK: bit::Pack = READINESS.then(8);
+
+const GENERATION: bit::Pack = TICK.then(7);
+
+#[test]
+fn test_generations_assert_same() {
+ assert_eq!(super::GENERATION, GENERATION);
+}
+
+// ===== impl ScheduledIo =====
+
+impl Entry for ScheduledIo {
+ fn reset(&self) {
+ let state = self.readiness.load(Acquire);
+
+ let generation = GENERATION.unpack(state);
+ let next = GENERATION.pack_lossy(generation + 1, 0);
+
+ self.readiness.store(next, Release);
+ }
+}
+
+impl Default for ScheduledIo {
+ fn default() -> ScheduledIo {
+ ScheduledIo {
+ readiness: AtomicUsize::new(0),
+ waiters: Mutex::new(Default::default()),
+ }
+ }
+}
+
+impl ScheduledIo {
+ pub(crate) fn generation(&self) -> usize {
+ GENERATION.unpack(self.readiness.load(Acquire))
+ }
+
+ /// Invoked when the IO driver is shut down; forces this ScheduledIo into a
+ /// permanently ready state.
+ pub(super) fn shutdown(&self) {
+ self.wake0(Ready::ALL, true)
+ }
+
+ /// Sets the readiness on this `ScheduledIo` by invoking the given closure on
+ /// the current value, returning the previous readiness value.
+ ///
+ /// # Arguments
+ /// - `token`: the token for this `ScheduledIo`.
+ /// - `tick`: whether setting the tick or trying to clear readiness for a
+ /// specific tick.
+ /// - `f`: a closure returning a new readiness value given the previous
+ /// readiness.
+ ///
+ /// # Returns
+ ///
+ /// If the given token's generation no longer matches the `ScheduledIo`'s
+ /// generation, then the corresponding IO resource has been removed and
+ /// replaced with a new resource. In that case, this method returns `Err`.
+ /// Otherwise, this returns the previous readiness.
+ pub(super) fn set_readiness(
+ &self,
+ token: Option<usize>,
+ tick: Tick,
+ f: impl Fn(Ready) -> Ready,
+ ) -> Result<(), ()> {
+ let mut current = self.readiness.load(Acquire);
+
+ loop {
+ let current_generation = GENERATION.unpack(current);
+
+ if let Some(token) = token {
+ // Check that the generation for this access is still the
+ // current one.
+ if GENERATION.unpack(token) != current_generation {
+ return Err(());
+ }
+ }
+
+ // Mask out the tick/generation bits so that the modifying
+ // function doesn't see them.
+ let current_readiness = Ready::from_usize(current);
+ let new = f(current_readiness);
+
+ let packed = match tick {
+ Tick::Set(t) => TICK.pack(t as usize, new.as_usize()),
+ Tick::Clear(t) => {
+ if TICK.unpack(current) as u8 != t {
+ // Trying to clear readiness with an old event!
+ return Err(());
+ }
+
+ TICK.pack(t as usize, new.as_usize())
+ }
+ };
+
+ let next = GENERATION.pack(current_generation, packed);
+
+ match self
+ .readiness
+ .compare_exchange(current, next, AcqRel, Acquire)
+ {
+ Ok(_) => return Ok(()),
+ // we lost the race, retry!
+ Err(actual) => current = actual,
+ }
+ }
+ }
+
+ /// Notifies all pending waiters that have registered interest in `ready`.
+ ///
+ /// There may be many waiters to notify. Waking the pending task **must** be
+ /// done from outside of the lock otherwise there is a potential for a
+ /// deadlock.
+ ///
+ /// A stack array of wakers is created and filled with wakers to notify, the
+ /// lock is released, and the wakers are notified. Because there may be more
+ /// than 32 wakers to notify, if the stack array fills up, the lock is
+ /// released, the array is cleared, and the iteration continues.
+ pub(super) fn wake(&self, ready: Ready) {
+ self.wake0(ready, false);
+ }
+
+ fn wake0(&self, ready: Ready, shutdown: bool) {
+ const NUM_WAKERS: usize = 32;
+
+ let mut wakers: [Option<Waker>; NUM_WAKERS] = Default::default();
+ let mut curr = 0;
+
+ let mut waiters = self.waiters.lock();
+
+ waiters.is_shutdown |= shutdown;
+
+ // check for AsyncRead slot
+ if ready.is_readable() {
+ if let Some(waker) = waiters.reader.take() {
+ wakers[curr] = Some(waker);
+ curr += 1;
+ }
+ }
+
+ // check for AsyncWrite slot
+ if ready.is_writable() {
+ if let Some(waker) = waiters.writer.take() {
+ wakers[curr] = Some(waker);
+ curr += 1;
+ }
+ }
+
+ #[cfg(feature = "net")]
+ 'outer: loop {
+ let mut iter = waiters.list.drain_filter(|w| ready.satisfies(w.interest));
+
+ while curr < NUM_WAKERS {
+ match iter.next() {
+ Some(waiter) => {
+ let waiter = unsafe { &mut *waiter.as_ptr() };
+
+ if let Some(waker) = waiter.waker.take() {
+ waiter.is_ready = true;
+ wakers[curr] = Some(waker);
+ curr += 1;
+ }
+ }
+ None => {
+ break 'outer;
+ }
+ }
+ }
+
+ drop(waiters);
+
+ for waker in wakers.iter_mut().take(curr) {
+ waker.take().unwrap().wake();
+ }
+
+ curr = 0;
+
+ // Acquire the lock again.
+ waiters = self.waiters.lock();
+ }
+
+ // Release the lock before notifying
+ drop(waiters);
+
+ for waker in wakers.iter_mut().take(curr) {
+ waker.take().unwrap().wake();
+ }
+ }
+
+ pub(super) fn ready_event(&self, interest: Interest) -> ReadyEvent {
+ let curr = self.readiness.load(Acquire);
+
+ ReadyEvent {
+ tick: TICK.unpack(curr) as u8,
+ ready: interest.mask() & Ready::from_usize(READINESS.unpack(curr)),
+ }
+ }
+
+ /// Poll version of checking readiness for a certain direction.
+ ///
+ /// These are to support `AsyncRead` and `AsyncWrite` polling methods,
+ /// which cannot use the `async fn` version. This uses reserved reader
+ /// and writer slots.
+ pub(super) fn poll_readiness(
+ &self,
+ cx: &mut Context<'_>,
+ direction: Direction,
+ ) -> Poll<ReadyEvent> {
+ let curr = self.readiness.load(Acquire);
+
+ let ready = direction.mask() & Ready::from_usize(READINESS.unpack(curr));
+
+ if ready.is_empty() {
+ // Update the task info
+ let mut waiters = self.waiters.lock();
+ let slot = match direction {
+ Direction::Read => &mut waiters.reader,
+ Direction::Write => &mut waiters.writer,
+ };
+
+ // Avoid cloning the waker if one is already stored that matches the
+ // current task.
+ match slot {
+ Some(existing) => {
+ if !existing.will_wake(cx.waker()) {
+ *existing = cx.waker().clone();
+ }
+ }
+ None => {
+ *slot = Some(cx.waker().clone());
+ }
+ }
+
+ // Try again, in case the readiness was changed while we were
+ // taking the waiters lock
+ let curr = self.readiness.load(Acquire);
+ let ready = direction.mask() & Ready::from_usize(READINESS.unpack(curr));
+ if waiters.is_shutdown {
+ Poll::Ready(ReadyEvent {
+ tick: TICK.unpack(curr) as u8,
+ ready: direction.mask(),
+ })
+ } else if ready.is_empty() {
+ Poll::Pending
+ } else {
+ Poll::Ready(ReadyEvent {
+ tick: TICK.unpack(curr) as u8,
+ ready,
+ })
+ }
+ } else {
+ Poll::Ready(ReadyEvent {
+ tick: TICK.unpack(curr) as u8,
+ ready,
+ })
+ }
+ }
+
+ pub(crate) fn clear_readiness(&self, event: ReadyEvent) {
+ // This consumes the current readiness state **except** for closed
+ // states. Closed states are excluded because they are final states.
+ let mask_no_closed = event.ready - Ready::READ_CLOSED - Ready::WRITE_CLOSED;
+
+ // result isn't important
+ let _ = self.set_readiness(None, Tick::Clear(event.tick), |curr| curr - mask_no_closed);
+ }
+
+ pub(crate) fn clear_wakers(&self) {
+ let mut waiters = self.waiters.lock();
+ waiters.reader.take();
+ waiters.writer.take();
+ }
+}
+
+impl Drop for ScheduledIo {
+ fn drop(&mut self) {
+ self.wake(Ready::ALL);
+ }
+}
+
+unsafe impl Send for ScheduledIo {}
+unsafe impl Sync for ScheduledIo {}
+
+cfg_io_readiness! {
+ impl ScheduledIo {
+ /// An async version of `poll_readiness` which uses a linked list of wakers
+ pub(crate) async fn readiness(&self, interest: Interest) -> ReadyEvent {
+ self.readiness_fut(interest).await
+ }
+
+ // This is in a separate function so that the borrow checker doesn't think
+ // we are borrowing the `UnsafeCell` possibly over await boundaries.
+ //
+ // Go figure.
+ fn readiness_fut(&self, interest: Interest) -> Readiness<'_> {
+ Readiness {
+ scheduled_io: self,
+ state: State::Init,
+ waiter: UnsafeCell::new(Waiter {
+ pointers: linked_list::Pointers::new(),
+ waker: None,
+ is_ready: false,
+ interest,
+ _p: PhantomPinned,
+ }),
+ }
+ }
+ }
+
+ unsafe impl linked_list::Link for Waiter {
+ type Handle = NonNull<Waiter>;
+ type Target = Waiter;
+
+ fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
+ *handle
+ }
+
+ unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
+ ptr
+ }
+
+ unsafe fn pointers(mut target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
+ NonNull::from(&mut target.as_mut().pointers)
+ }
+ }
+
+ // ===== impl Readiness =====
+
+ impl Future for Readiness<'_> {
+ type Output = ReadyEvent;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ use std::sync::atomic::Ordering::SeqCst;
+
+ let (scheduled_io, state, waiter) = unsafe {
+ let me = self.get_unchecked_mut();
+ (&me.scheduled_io, &mut me.state, &me.waiter)
+ };
+
+ loop {
+ match *state {
+ State::Init => {
+ // Optimistically check existing readiness
+ let curr = scheduled_io.readiness.load(SeqCst);
+ let ready = Ready::from_usize(READINESS.unpack(curr));
+
+ // Safety: `waiter.interest` never changes
+ let interest = unsafe { (*waiter.get()).interest };
+ let ready = ready.intersection(interest);
+
+ if !ready.is_empty() {
+ // Currently ready!
+ let tick = TICK.unpack(curr) as u8;
+ *state = State::Done;
+ return Poll::Ready(ReadyEvent { tick, ready });
+ }
+
+ // Wasn't ready, take the lock (and check again while locked).
+ let mut waiters = scheduled_io.waiters.lock();
+
+ let curr = scheduled_io.readiness.load(SeqCst);
+ let mut ready = Ready::from_usize(READINESS.unpack(curr));
+
+ if waiters.is_shutdown {
+ ready = Ready::ALL;
+ }
+
+ let ready = ready.intersection(interest);
+
+ if !ready.is_empty() {
+ // Currently ready!
+ let tick = TICK.unpack(curr) as u8;
+ *state = State::Done;
+ return Poll::Ready(ReadyEvent { tick, ready });
+ }
+
+ // Not ready even after locked, insert into list...
+
+ // Safety: called while locked
+ unsafe {
+ (*waiter.get()).waker = Some(cx.waker().clone());
+ }
+
+ // Insert the waiter into the linked list
+ //
+ // safety: pointers from `UnsafeCell` are never null.
+ waiters
+ .list
+ .push_front(unsafe { NonNull::new_unchecked(waiter.get()) });
+ *state = State::Waiting;
+ }
+ State::Waiting => {
+ // Currently in the "Waiting" state, implying the caller has
+ // a waiter stored in the waiter list (guarded by
+ // `notify.waiters`). In order to access the waker fields,
+ // we must hold the lock.
+
+ let waiters = scheduled_io.waiters.lock();
+
+ // Safety: called while locked
+ let w = unsafe { &mut *waiter.get() };
+
+ if w.is_ready {
+ // Our waker has been notified.
+ *state = State::Done;
+ } else {
+ // Update the waker, if necessary.
+ if !w.waker.as_ref().unwrap().will_wake(cx.waker()) {
+ w.waker = Some(cx.waker().clone());
+ }
+
+ return Poll::Pending;
+ }
+
+ // Explicit drop of the lock to indicate the scope that the
+ // lock is held. Because holding the lock is required to
+ // ensure safe access to fields not held within the lock, it
+ // is helpful to visualize the scope of the critical
+ // section.
+ drop(waiters);
+ }
+ State::Done => {
+ let tick = TICK.unpack(scheduled_io.readiness.load(Acquire)) as u8;
+
+ // Safety: State::Done means it is no longer shared
+ let w = unsafe { &mut *waiter.get() };
+
+ return Poll::Ready(ReadyEvent {
+ tick,
+ ready: Ready::from_interest(w.interest),
+ });
+ }
+ }
+ }
+ }
+ }
+
+ impl Drop for Readiness<'_> {
+ fn drop(&mut self) {
+ let mut waiters = self.scheduled_io.waiters.lock();
+
+ // Safety: `waiter` is only ever stored in `waiters`
+ unsafe {
+ waiters
+ .list
+ .remove(NonNull::new_unchecked(self.waiter.get()))
+ };
+ }
+ }
+
+ unsafe impl Send for Readiness<'_> {}
+ unsafe impl Sync for Readiness<'_> {}
+}
diff --git a/vendor/tokio/src/io/mod.rs b/vendor/tokio/src/io/mod.rs
new file mode 100644
index 000000000..14a4a6304
--- /dev/null
+++ b/vendor/tokio/src/io/mod.rs
@@ -0,0 +1,267 @@
+#![cfg_attr(loom, allow(dead_code, unreachable_pub))]
+
+//! Traits, helpers, and type definitions for asynchronous I/O functionality.
+//!
+//! This module is the asynchronous version of `std::io`. Primarily, it
+//! defines two traits, [`AsyncRead`] and [`AsyncWrite`], which are asynchronous
+//! versions of the [`Read`] and [`Write`] traits in the standard library.
+//!
+//! # AsyncRead and AsyncWrite
+//!
+//! Like the standard library's [`Read`] and [`Write`] traits, [`AsyncRead`] and
+//! [`AsyncWrite`] provide the most general interface for reading and writing
+//! input and output. Unlike the standard library's traits, however, they are
+//! _asynchronous_ &mdash; meaning that reading from or writing to a `tokio::io`
+//! type will _yield_ to the Tokio scheduler when IO is not ready, rather than
+//! blocking. This allows other tasks to run while waiting on IO.
+//!
+//! Another difference is that `AsyncRead` and `AsyncWrite` only contain
+//! core methods needed to provide asynchronous reading and writing
+//! functionality. Instead, utility methods are defined in the [`AsyncReadExt`]
+//! and [`AsyncWriteExt`] extension traits. These traits are automatically
+//! implemented for all values that implement `AsyncRead` and `AsyncWrite`
+//! respectively.
+//!
+//! End users will rarely interact directly with `AsyncRead` and
+//! `AsyncWrite`. Instead, they will use the async functions defined in the
+//! extension traits. Library authors are expected to implement `AsyncRead`
+//! and `AsyncWrite` in order to provide types that behave like byte streams.
+//!
+//! Even with these differences, Tokio's `AsyncRead` and `AsyncWrite` traits
+//! can be used in almost exactly the same manner as the standard library's
+//! `Read` and `Write`. Most types in the standard library that implement `Read`
+//! and `Write` have asynchronous equivalents in `tokio` that implement
+//! `AsyncRead` and `AsyncWrite`, such as [`File`] and [`TcpStream`].
+//!
+//! For example, the standard library documentation introduces `Read` by
+//! [demonstrating][std_example] reading some bytes from a [`std::fs::File`]. We
+//! can do the same with [`tokio::fs::File`][`File`]:
+//!
+//! ```no_run
+//! use tokio::io::{self, AsyncReadExt};
+//! use tokio::fs::File;
+//!
+//! #[tokio::main]
+//! async fn main() -> io::Result<()> {
+//! let mut f = File::open("foo.txt").await?;
+//! let mut buffer = [0; 10];
+//!
+//! // read up to 10 bytes
+//! let n = f.read(&mut buffer).await?;
+//!
+//! println!("The bytes: {:?}", &buffer[..n]);
+//! Ok(())
+//! }
+//! ```
+//!
+//! [`File`]: crate::fs::File
+//! [`TcpStream`]: crate::net::TcpStream
+//! [`std::fs::File`]: std::fs::File
+//! [std_example]: std::io#read-and-write
+//!
+//! ## Buffered Readers and Writers
+//!
+//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
+//! making near-constant calls to the operating system. To help with this,
+//! `std::io` comes with [support for _buffered_ readers and writers][stdbuf],
+//! and therefore, `tokio::io` does as well.
+//!
+//! Tokio provides an async version of the [`std::io::BufRead`] trait,
+//! [`AsyncBufRead`]; and async [`BufReader`] and [`BufWriter`] structs, which
+//! wrap readers and writers. These wrappers use a buffer, reducing the number
+//! of calls and providing nicer methods for accessing exactly what you want.
+//!
+//! For example, [`BufReader`] works with the [`AsyncBufRead`] trait to add
+//! extra methods to any async reader:
+//!
+//! ```no_run
+//! use tokio::io::{self, BufReader, AsyncBufReadExt};
+//! use tokio::fs::File;
+//!
+//! #[tokio::main]
+//! async fn main() -> io::Result<()> {
+//! let f = File::open("foo.txt").await?;
+//! let mut reader = BufReader::new(f);
+//! let mut buffer = String::new();
+//!
+//! // read a line into buffer
+//! reader.read_line(&mut buffer).await?;
+//!
+//! println!("{}", buffer);
+//! Ok(())
+//! }
+//! ```
+//!
+//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
+//! to [`write`](crate::io::AsyncWriteExt::write). However, you **must** flush
+//! [`BufWriter`] to ensure that any buffered data is written.
+//!
+//! ```no_run
+//! use tokio::io::{self, BufWriter, AsyncWriteExt};
+//! use tokio::fs::File;
+//!
+//! #[tokio::main]
+//! async fn main() -> io::Result<()> {
+//! let f = File::create("foo.txt").await?;
+//! {
+//! let mut writer = BufWriter::new(f);
+//!
+//! // Write a byte to the buffer.
+//! writer.write(&[42u8]).await?;
+//!
+//! // Flush the buffer before it goes out of scope.
+//! writer.flush().await?;
+//!
+//! } // Unless flushed or shut down, the contents of the buffer is discarded on drop.
+//!
+//! Ok(())
+//! }
+//! ```
+//!
+//! [stdbuf]: std::io#bufreader-and-bufwriter
+//! [`std::io::BufRead`]: std::io::BufRead
+//! [`AsyncBufRead`]: crate::io::AsyncBufRead
+//! [`BufReader`]: crate::io::BufReader
+//! [`BufWriter`]: crate::io::BufWriter
+//!
+//! ## Implementing AsyncRead and AsyncWrite
+//!
+//! Because they are traits, we can implement [`AsyncRead`] and [`AsyncWrite`] for
+//! our own types, as well. Note that these traits must only be implemented for
+//! non-blocking I/O types that integrate with the futures type system. In
+//! other words, these types must never block the thread, and instead the
+//! current task is notified when the I/O resource is ready.
+//!
+//! ## Conversion to and from Sink/Stream
+//!
+//! It is often convenient to encapsulate the reading and writing of
+//! bytes and instead work with a [`Sink`] or [`Stream`] of some data
+//! type that is encoded as bytes and/or decoded from bytes. Tokio
+//! provides some utility traits in the [tokio-util] crate that
+//! abstract the asynchronous buffering that is required and allows
+//! you to write [`Encoder`] and [`Decoder`] functions working with a
+//! buffer of bytes, and then use that ["codec"] to transform anything
+//! that implements [`AsyncRead`] and [`AsyncWrite`] into a `Sink`/`Stream` of
+//! your structured data.
+//!
+//! [tokio-util]: https://docs.rs/tokio-util/0.6/tokio_util/codec/index.html
+//!
+//! # Standard input and output
+//!
+//! Tokio provides asynchronous APIs to standard [input], [output], and [error].
+//! These APIs are very similar to the ones provided by `std`, but they also
+//! implement [`AsyncRead`] and [`AsyncWrite`].
+//!
+//! Note that the standard input / output APIs **must** be used from the
+//! context of the Tokio runtime, as they require Tokio-specific features to
+//! function. Calling these functions outside of a Tokio runtime will panic.
+//!
+//! [input]: fn@stdin
+//! [output]: fn@stdout
+//! [error]: fn@stderr
+//!
+//! # `std` re-exports
+//!
+//! Additionally, [`Error`], [`ErrorKind`], [`Result`], and [`SeekFrom`] are
+//! re-exported from `std::io` for ease of use.
+//!
+//! [`AsyncRead`]: trait@AsyncRead
+//! [`AsyncWrite`]: trait@AsyncWrite
+//! [`AsyncReadExt`]: trait@AsyncReadExt
+//! [`AsyncWriteExt`]: trait@AsyncWriteExt
+//! ["codec"]: https://docs.rs/tokio-util/0.6/tokio_util/codec/index.html
+//! [`Encoder`]: https://docs.rs/tokio-util/0.6/tokio_util/codec/trait.Encoder.html
+//! [`Decoder`]: https://docs.rs/tokio-util/0.6/tokio_util/codec/trait.Decoder.html
+//! [`Error`]: struct@Error
+//! [`ErrorKind`]: enum@ErrorKind
+//! [`Result`]: type@Result
+//! [`Read`]: std::io::Read
+//! [`SeekFrom`]: enum@SeekFrom
+//! [`Sink`]: https://docs.rs/futures/0.3/futures/sink/trait.Sink.html
+//! [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html
+//! [`Write`]: std::io::Write
+cfg_io_blocking! {
+ pub(crate) mod blocking;
+}
+
+mod async_buf_read;
+pub use self::async_buf_read::AsyncBufRead;
+
+mod async_read;
+pub use self::async_read::AsyncRead;
+
+mod async_seek;
+pub use self::async_seek::AsyncSeek;
+
+mod async_write;
+pub use self::async_write::AsyncWrite;
+
+mod read_buf;
+pub use self::read_buf::ReadBuf;
+
+// Re-export some types from `std::io` so that users don't have to deal
+// with conflicts when `use`ing `tokio::io` and `std::io`.
+#[doc(no_inline)]
+pub use std::io::{Error, ErrorKind, Result, SeekFrom};
+
+cfg_io_driver_impl! {
+ pub(crate) mod driver;
+
+ cfg_net! {
+ pub use driver::{Interest, Ready};
+ }
+
+ mod poll_evented;
+
+ #[cfg(not(loom))]
+ pub(crate) use poll_evented::PollEvented;
+}
+
+cfg_net_unix! {
+ mod async_fd;
+
+ pub mod unix {
+ //! Asynchronous IO structures specific to Unix-like operating systems.
+ pub use super::async_fd::{AsyncFd, AsyncFdReadyGuard, AsyncFdReadyMutGuard, TryIoError};
+ }
+}
+
+cfg_io_std! {
+ mod stdio_common;
+
+ mod stderr;
+ pub use stderr::{stderr, Stderr};
+
+ mod stdin;
+ pub use stdin::{stdin, Stdin};
+
+ mod stdout;
+ pub use stdout::{stdout, Stdout};
+}
+
+cfg_io_util! {
+ mod split;
+ pub use split::{split, ReadHalf, WriteHalf};
+
+ pub(crate) mod seek;
+ pub(crate) mod util;
+ pub use util::{
+ copy, copy_bidirectional, copy_buf, duplex, empty, repeat, sink, AsyncBufReadExt, AsyncReadExt, AsyncSeekExt, AsyncWriteExt,
+ BufReader, BufStream, BufWriter, DuplexStream, Empty, Lines, Repeat, Sink, Split, Take,
+ };
+}
+
+cfg_not_io_util! {
+ cfg_process! {
+ pub(crate) mod util;
+ }
+}
+
+cfg_io_blocking! {
+ /// Types in this module can be mocked out in tests.
+ mod sys {
+ // TODO: don't rename
+ pub(crate) use crate::blocking::spawn_blocking as run;
+ pub(crate) use crate::blocking::JoinHandle as Blocking;
+ }
+}
diff --git a/vendor/tokio/src/io/poll_evented.rs b/vendor/tokio/src/io/poll_evented.rs
new file mode 100644
index 000000000..a31e6db7b
--- /dev/null
+++ b/vendor/tokio/src/io/poll_evented.rs
@@ -0,0 +1,210 @@
+use crate::io::driver::{Handle, Interest, Registration};
+
+use mio::event::Source;
+use std::fmt;
+use std::io;
+use std::ops::Deref;
+
+cfg_io_driver! {
+ /// Associates an I/O resource that implements the [`std::io::Read`] and/or
+ /// [`std::io::Write`] traits with the reactor that drives it.
+ ///
+ /// `PollEvented` uses [`Registration`] internally to take a type that
+ /// implements [`mio::event::Source`] as well as [`std::io::Read`] and or
+ /// [`std::io::Write`] and associate it with a reactor that will drive it.
+ ///
+ /// Once the [`mio::event::Source`] type is wrapped by `PollEvented`, it can be
+ /// used from within the future's execution model. As such, the
+ /// `PollEvented` type provides [`AsyncRead`] and [`AsyncWrite`]
+ /// implementations using the underlying I/O resource as well as readiness
+ /// events provided by the reactor.
+ ///
+ /// **Note**: While `PollEvented` is `Sync` (if the underlying I/O type is
+ /// `Sync`), the caller must ensure that there are at most two tasks that
+ /// use a `PollEvented` instance concurrently. One for reading and one for
+ /// writing. While violating this requirement is "safe" from a Rust memory
+ /// model point of view, it will result in unexpected behavior in the form
+ /// of lost notifications and tasks hanging.
+ ///
+ /// ## Readiness events
+ ///
+ /// Besides just providing [`AsyncRead`] and [`AsyncWrite`] implementations,
+ /// this type also supports access to the underlying readiness event stream.
+ /// While similar in function to what [`Registration`] provides, the
+ /// semantics are a bit different.
+ ///
+ /// Two functions are provided to access the readiness events:
+ /// [`poll_read_ready`] and [`poll_write_ready`]. These functions return the
+ /// current readiness state of the `PollEvented` instance. If
+ /// [`poll_read_ready`] indicates read readiness, immediately calling
+ /// [`poll_read_ready`] again will also indicate read readiness.
+ ///
+ /// When the operation is attempted and is unable to succeed due to the I/O
+ /// resource not being ready, the caller must call `clear_read_ready` or
+ /// `clear_write_ready`. This clears the readiness state until a new
+ /// readiness event is received.
+ ///
+ /// This allows the caller to implement additional functions. For example,
+ /// [`TcpListener`] implements poll_accept by using [`poll_read_ready`] and
+ /// `clear_read_ready`.
+ ///
+ /// ## Platform-specific events
+ ///
+ /// `PollEvented` also allows receiving platform-specific `mio::Ready` events.
+ /// These events are included as part of the read readiness event stream. The
+ /// write readiness event stream is only for `Ready::writable()` events.
+ ///
+ /// [`AsyncRead`]: crate::io::AsyncRead
+ /// [`AsyncWrite`]: crate::io::AsyncWrite
+ /// [`TcpListener`]: crate::net::TcpListener
+ /// [`poll_read_ready`]: Registration::poll_read_ready
+ /// [`poll_write_ready`]: Registration::poll_write_ready
+ pub(crate) struct PollEvented<E: Source> {
+ io: Option<E>,
+ registration: Registration,
+ }
+}
+
+// ===== impl PollEvented =====
+
+impl<E: Source> PollEvented<E> {
+ /// Creates a new `PollEvented` associated with the default reactor.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called
+ /// from a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
+ #[cfg_attr(feature = "signal", allow(unused))]
+ pub(crate) fn new(io: E) -> io::Result<Self> {
+ PollEvented::new_with_interest(io, Interest::READABLE | Interest::WRITABLE)
+ }
+
+ /// Creates a new `PollEvented` associated with the default reactor, for
+ /// specific `Interest` state. `new_with_interest` should be used over `new`
+ /// when you need control over the readiness state, such as when a file
+ /// descriptor only allows reads. This does not add `hup` or `error` so if
+ /// you are interested in those states, you will need to add them to the
+ /// readiness state passed to this function.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if thread-local runtime is not set.
+ ///
+ /// The runtime is usually set implicitly when this function is called from
+ /// a future driven by a tokio runtime, otherwise runtime can be set
+ /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter)
+ /// function.
+ #[cfg_attr(feature = "signal", allow(unused))]
+ pub(crate) fn new_with_interest(io: E, interest: Interest) -> io::Result<Self> {
+ Self::new_with_interest_and_handle(io, interest, Handle::current())
+ }
+
+ pub(crate) fn new_with_interest_and_handle(
+ mut io: E,
+ interest: Interest,
+ handle: Handle,
+ ) -> io::Result<Self> {
+ let registration = Registration::new_with_interest_and_handle(&mut io, interest, handle)?;
+ Ok(Self {
+ io: Some(io),
+ registration,
+ })
+ }
+
+ /// Returns a reference to the registration
+ #[cfg(any(
+ feature = "net",
+ all(unix, feature = "process"),
+ all(unix, feature = "signal"),
+ ))]
+ pub(crate) fn registration(&self) -> &Registration {
+ &self.registration
+ }
+
+ /// Deregister the inner io from the registration and returns a Result containing the inner io
+ #[cfg(any(feature = "net", feature = "process"))]
+ pub(crate) fn into_inner(mut self) -> io::Result<E> {
+ let mut inner = self.io.take().unwrap(); // As io shouldn't ever be None, just unwrap here.
+ self.registration.deregister(&mut inner)?;
+ Ok(inner)
+ }
+}
+
+feature! {
+ #![any(feature = "net", feature = "process")]
+
+ use crate::io::ReadBuf;
+ use std::task::{Context, Poll};
+
+ impl<E: Source> PollEvented<E> {
+ // Safety: The caller must ensure that `E` can read into uninitialized memory
+ pub(crate) unsafe fn poll_read<'a>(
+ &'a self,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>>
+ where
+ &'a E: io::Read + 'a,
+ {
+ use std::io::Read;
+
+ let n = ready!(self.registration.poll_read_io(cx, || {
+ let b = &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]);
+ self.io.as_ref().unwrap().read(b)
+ }))?;
+
+ // Safety: We trust `TcpStream::read` to have filled up `n` bytes in the
+ // buffer.
+ buf.assume_init(n);
+ buf.advance(n);
+ Poll::Ready(Ok(()))
+ }
+
+ pub(crate) fn poll_write<'a>(&'a self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>>
+ where
+ &'a E: io::Write + 'a,
+ {
+ use std::io::Write;
+ self.registration.poll_write_io(cx, || self.io.as_ref().unwrap().write(buf))
+ }
+
+ #[cfg(feature = "net")]
+ pub(crate) fn poll_write_vectored<'a>(
+ &'a self,
+ cx: &mut Context<'_>,
+ bufs: &[io::IoSlice<'_>],
+ ) -> Poll<io::Result<usize>>
+ where
+ &'a E: io::Write + 'a,
+ {
+ use std::io::Write;
+ self.registration.poll_write_io(cx, || self.io.as_ref().unwrap().write_vectored(bufs))
+ }
+ }
+}
+
+impl<E: Source> Deref for PollEvented<E> {
+ type Target = E;
+
+ fn deref(&self) -> &E {
+ self.io.as_ref().unwrap()
+ }
+}
+
+impl<E: Source + fmt::Debug> fmt::Debug for PollEvented<E> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("PollEvented").field("io", &self.io).finish()
+ }
+}
+
+impl<E: Source> Drop for PollEvented<E> {
+ fn drop(&mut self) {
+ if let Some(mut io) = self.io.take() {
+ // Ignore errors
+ let _ = self.registration.deregister(&mut io);
+ }
+ }
+}
diff --git a/vendor/tokio/src/io/read_buf.rs b/vendor/tokio/src/io/read_buf.rs
new file mode 100644
index 000000000..ad58cbe75
--- /dev/null
+++ b/vendor/tokio/src/io/read_buf.rs
@@ -0,0 +1,285 @@
+// This lint claims ugly casting is somehow safer than transmute, but there's
+// no evidence that is the case. Shush.
+#![allow(clippy::transmute_ptr_to_ptr)]
+
+use std::fmt;
+use std::mem::{self, MaybeUninit};
+
+/// A wrapper around a byte buffer that is incrementally filled and initialized.
+///
+/// This type is a sort of "double cursor". It tracks three regions in the
+/// buffer: a region at the beginning of the buffer that has been logically
+/// filled with data, a region that has been initialized at some point but not
+/// yet logically filled, and a region at the end that may be uninitialized.
+/// The filled region is guaranteed to be a subset of the initialized region.
+///
+/// In summary, the contents of the buffer can be visualized as:
+///
+/// ```not_rust
+/// [ capacity ]
+/// [ filled | unfilled ]
+/// [ initialized | uninitialized ]
+/// ```
+///
+/// It is undefined behavior to de-initialize any bytes from the uninitialized
+/// region, since it is merely unknown whether this region is uninitialized or
+/// not, and if part of it turns out to be initialized, it must stay initialized.
+pub struct ReadBuf<'a> {
+ buf: &'a mut [MaybeUninit<u8>],
+ filled: usize,
+ initialized: usize,
+}
+
+impl<'a> ReadBuf<'a> {
+ /// Creates a new `ReadBuf` from a fully initialized buffer.
+ #[inline]
+ pub fn new(buf: &'a mut [u8]) -> ReadBuf<'a> {
+ let initialized = buf.len();
+ let buf = unsafe { mem::transmute::<&mut [u8], &mut [MaybeUninit<u8>]>(buf) };
+ ReadBuf {
+ buf,
+ filled: 0,
+ initialized,
+ }
+ }
+
+ /// Creates a new `ReadBuf` from a fully uninitialized buffer.
+ ///
+ /// Use `assume_init` if part of the buffer is known to be already initialized.
+ #[inline]
+ pub fn uninit(buf: &'a mut [MaybeUninit<u8>]) -> ReadBuf<'a> {
+ ReadBuf {
+ buf,
+ filled: 0,
+ initialized: 0,
+ }
+ }
+
+ /// Returns the total capacity of the buffer.
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.buf.len()
+ }
+
+ /// Returns a shared reference to the filled portion of the buffer.
+ #[inline]
+ pub fn filled(&self) -> &[u8] {
+ let slice = &self.buf[..self.filled];
+ // safety: filled describes how far into the buffer that the
+ // user has filled with bytes, so it's been initialized.
+ // TODO: This could use `MaybeUninit::slice_get_ref` when it is stable.
+ unsafe { mem::transmute::<&[MaybeUninit<u8>], &[u8]>(slice) }
+ }
+
+ /// Returns a mutable reference to the filled portion of the buffer.
+ #[inline]
+ pub fn filled_mut(&mut self) -> &mut [u8] {
+ let slice = &mut self.buf[..self.filled];
+ // safety: filled describes how far into the buffer that the
+ // user has filled with bytes, so it's been initialized.
+ // TODO: This could use `MaybeUninit::slice_get_mut` when it is stable.
+ unsafe { mem::transmute::<&mut [MaybeUninit<u8>], &mut [u8]>(slice) }
+ }
+
+ /// Returns a new `ReadBuf` comprised of the unfilled section up to `n`.
+ #[inline]
+ pub fn take(&mut self, n: usize) -> ReadBuf<'_> {
+ let max = std::cmp::min(self.remaining(), n);
+ // Safety: We don't set any of the `unfilled_mut` with `MaybeUninit::uninit`.
+ unsafe { ReadBuf::uninit(&mut self.unfilled_mut()[..max]) }
+ }
+
+ /// Returns a shared reference to the initialized portion of the buffer.
+ ///
+ /// This includes the filled portion.
+ #[inline]
+ pub fn initialized(&self) -> &[u8] {
+ let slice = &self.buf[..self.initialized];
+ // safety: initialized describes how far into the buffer that the
+ // user has at some point initialized with bytes.
+ // TODO: This could use `MaybeUninit::slice_get_ref` when it is stable.
+ unsafe { mem::transmute::<&[MaybeUninit<u8>], &[u8]>(slice) }
+ }
+
+ /// Returns a mutable reference to the initialized portion of the buffer.
+ ///
+ /// This includes the filled portion.
+ #[inline]
+ pub fn initialized_mut(&mut self) -> &mut [u8] {
+ let slice = &mut self.buf[..self.initialized];
+ // safety: initialized describes how far into the buffer that the
+ // user has at some point initialized with bytes.
+ // TODO: This could use `MaybeUninit::slice_get_mut` when it is stable.
+ unsafe { mem::transmute::<&mut [MaybeUninit<u8>], &mut [u8]>(slice) }
+ }
+
+ /// Returns a mutable reference to the entire buffer, without ensuring that it has been fully
+ /// initialized.
+ ///
+ /// The elements between 0 and `self.filled().len()` are filled, and those between 0 and
+ /// `self.initialized().len()` are initialized (and so can be transmuted to a `&mut [u8]`).
+ ///
+ /// The caller of this method must ensure that these invariants are upheld. For example, if the
+ /// caller initializes some of the uninitialized section of the buffer, it must call
+ /// [`assume_init`](Self::assume_init) with the number of bytes initialized.
+ ///
+ /// # Safety
+ ///
+ /// The caller must not de-initialize portions of the buffer that have already been initialized.
+ /// This includes any bytes in the region marked as uninitialized by `ReadBuf`.
+ #[inline]
+ pub unsafe fn inner_mut(&mut self) -> &mut [MaybeUninit<u8>] {
+ self.buf
+ }
+
+ /// Returns a mutable reference to the unfilled part of the buffer without ensuring that it has been fully
+ /// initialized.
+ ///
+ /// # Safety
+ ///
+ /// The caller must not de-initialize portions of the buffer that have already been initialized.
+ /// This includes any bytes in the region marked as uninitialized by `ReadBuf`.
+ #[inline]
+ pub unsafe fn unfilled_mut(&mut self) -> &mut [MaybeUninit<u8>] {
+ &mut self.buf[self.filled..]
+ }
+
+ /// Returns a mutable reference to the unfilled part of the buffer, ensuring it is fully initialized.
+ ///
+ /// Since `ReadBuf` tracks the region of the buffer that has been initialized, this is effectively "free" after
+ /// the first use.
+ #[inline]
+ pub fn initialize_unfilled(&mut self) -> &mut [u8] {
+ self.initialize_unfilled_to(self.remaining())
+ }
+
+ /// Returns a mutable reference to the first `n` bytes of the unfilled part of the buffer, ensuring it is
+ /// fully initialized.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `self.remaining()` is less than `n`.
+ #[inline]
+ pub fn initialize_unfilled_to(&mut self, n: usize) -> &mut [u8] {
+ assert!(self.remaining() >= n, "n overflows remaining");
+
+ // This can't overflow, otherwise the assert above would have failed.
+ let end = self.filled + n;
+
+ if self.initialized < end {
+ unsafe {
+ self.buf[self.initialized..end]
+ .as_mut_ptr()
+ .write_bytes(0, end - self.initialized);
+ }
+ self.initialized = end;
+ }
+
+ let slice = &mut self.buf[self.filled..end];
+ // safety: just above, we checked that the end of the buf has
+ // been initialized to some value.
+ unsafe { mem::transmute::<&mut [MaybeUninit<u8>], &mut [u8]>(slice) }
+ }
+
+ /// Returns the number of bytes at the end of the slice that have not yet been filled.
+ #[inline]
+ pub fn remaining(&self) -> usize {
+ self.capacity() - self.filled
+ }
+
+ /// Clears the buffer, resetting the filled region to empty.
+ ///
+ /// The number of initialized bytes is not changed, and the contents of the buffer are not modified.
+ #[inline]
+ pub fn clear(&mut self) {
+ self.filled = 0;
+ }
+
+ /// Advances the size of the filled region of the buffer.
+ ///
+ /// The number of initialized bytes is not changed.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the filled region of the buffer would become larger than the initialized region.
+ #[inline]
+ pub fn advance(&mut self, n: usize) {
+ let new = self.filled.checked_add(n).expect("filled overflow");
+ self.set_filled(new);
+ }
+
+ /// Sets the size of the filled region of the buffer.
+ ///
+ /// The number of initialized bytes is not changed.
+ ///
+ /// Note that this can be used to *shrink* the filled region of the buffer in addition to growing it (for
+ /// example, by a `AsyncRead` implementation that compresses data in-place).
+ ///
+ /// # Panics
+ ///
+ /// Panics if the filled region of the buffer would become larger than the initialized region.
+ #[inline]
+ pub fn set_filled(&mut self, n: usize) {
+ assert!(
+ n <= self.initialized,
+ "filled must not become larger than initialized"
+ );
+ self.filled = n;
+ }
+
+ /// Asserts that the first `n` unfilled bytes of the buffer are initialized.
+ ///
+ /// `ReadBuf` assumes that bytes are never de-initialized, so this method does nothing when called with fewer
+ /// bytes than are already known to be initialized.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `n` unfilled bytes of the buffer have already been initialized.
+ #[inline]
+ pub unsafe fn assume_init(&mut self, n: usize) {
+ let new = self.filled + n;
+ if new > self.initialized {
+ self.initialized = new;
+ }
+ }
+
+ /// Appends data to the buffer, advancing the written position and possibly also the initialized position.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `self.remaining()` is less than `buf.len()`.
+ #[inline]
+ pub fn put_slice(&mut self, buf: &[u8]) {
+ assert!(
+ self.remaining() >= buf.len(),
+ "buf.len() must fit in remaining()"
+ );
+
+ let amt = buf.len();
+ // Cannot overflow, asserted above
+ let end = self.filled + amt;
+
+ // Safety: the length is asserted above
+ unsafe {
+ self.buf[self.filled..end]
+ .as_mut_ptr()
+ .cast::<u8>()
+ .copy_from_nonoverlapping(buf.as_ptr(), amt);
+ }
+
+ if self.initialized < end {
+ self.initialized = end;
+ }
+ self.filled = end;
+ }
+}
+
+impl fmt::Debug for ReadBuf<'_> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("ReadBuf")
+ .field("filled", &self.filled)
+ .field("initialized", &self.initialized)
+ .field("capacity", &self.capacity())
+ .finish()
+ }
+}
diff --git a/vendor/tokio/src/io/seek.rs b/vendor/tokio/src/io/seek.rs
new file mode 100644
index 000000000..e64205d9c
--- /dev/null
+++ b/vendor/tokio/src/io/seek.rs
@@ -0,0 +1,57 @@
+use crate::io::AsyncSeek;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io::{self, SeekFrom};
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Future for the [`seek`](crate::io::AsyncSeekExt::seek) method.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct Seek<'a, S: ?Sized> {
+ seek: &'a mut S,
+ pos: Option<SeekFrom>,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+pub(crate) fn seek<S>(seek: &mut S, pos: SeekFrom) -> Seek<'_, S>
+where
+ S: AsyncSeek + ?Sized + Unpin,
+{
+ Seek {
+ seek,
+ pos: Some(pos),
+ _pin: PhantomPinned,
+ }
+}
+
+impl<S> Future for Seek<'_, S>
+where
+ S: AsyncSeek + ?Sized + Unpin,
+{
+ type Output = io::Result<u64>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+ match me.pos {
+ Some(pos) => {
+ // ensure no seek in progress
+ ready!(Pin::new(&mut *me.seek).poll_complete(cx))?;
+ match Pin::new(&mut *me.seek).start_seek(*pos) {
+ Ok(()) => {
+ *me.pos = None;
+ Pin::new(&mut *me.seek).poll_complete(cx)
+ }
+ Err(e) => Poll::Ready(Err(e)),
+ }
+ }
+ None => Pin::new(&mut *me.seek).poll_complete(cx),
+ }
+ }
+}
diff --git a/vendor/tokio/src/io/split.rs b/vendor/tokio/src/io/split.rs
new file mode 100644
index 000000000..732eb3b3a
--- /dev/null
+++ b/vendor/tokio/src/io/split.rs
@@ -0,0 +1,180 @@
+//! Split a single value implementing `AsyncRead + AsyncWrite` into separate
+//! `AsyncRead` and `AsyncWrite` handles.
+//!
+//! To restore this read/write object from its `split::ReadHalf` and
+//! `split::WriteHalf` use `unsplit`.
+
+use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
+
+use std::cell::UnsafeCell;
+use std::fmt;
+use std::io;
+use std::pin::Pin;
+use std::sync::atomic::AtomicBool;
+use std::sync::atomic::Ordering::{Acquire, Release};
+use std::sync::Arc;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ /// The readable half of a value returned from [`split`](split()).
+ pub struct ReadHalf<T> {
+ inner: Arc<Inner<T>>,
+ }
+
+ /// The writable half of a value returned from [`split`](split()).
+ pub struct WriteHalf<T> {
+ inner: Arc<Inner<T>>,
+ }
+
+ /// Splits a single value implementing `AsyncRead + AsyncWrite` into separate
+ /// `AsyncRead` and `AsyncWrite` handles.
+ ///
+ /// To restore this read/write object from its `ReadHalf` and
+ /// `WriteHalf` use [`unsplit`](ReadHalf::unsplit()).
+ pub fn split<T>(stream: T) -> (ReadHalf<T>, WriteHalf<T>)
+ where
+ T: AsyncRead + AsyncWrite,
+ {
+ let inner = Arc::new(Inner {
+ locked: AtomicBool::new(false),
+ stream: UnsafeCell::new(stream),
+ });
+
+ let rd = ReadHalf {
+ inner: inner.clone(),
+ };
+
+ let wr = WriteHalf { inner };
+
+ (rd, wr)
+ }
+}
+
+struct Inner<T> {
+ locked: AtomicBool,
+ stream: UnsafeCell<T>,
+}
+
+struct Guard<'a, T> {
+ inner: &'a Inner<T>,
+}
+
+impl<T> ReadHalf<T> {
+ /// Checks if this `ReadHalf` and some `WriteHalf` were split from the same
+ /// stream.
+ pub fn is_pair_of(&self, other: &WriteHalf<T>) -> bool {
+ other.is_pair_of(&self)
+ }
+
+ /// Reunites with a previously split `WriteHalf`.
+ ///
+ /// # Panics
+ ///
+ /// If this `ReadHalf` and the given `WriteHalf` do not originate from the
+ /// same `split` operation this method will panic.
+ /// This can be checked ahead of time by comparing the stream ID
+ /// of the two halves.
+ pub fn unsplit(self, wr: WriteHalf<T>) -> T {
+ if self.is_pair_of(&wr) {
+ drop(wr);
+
+ let inner = Arc::try_unwrap(self.inner)
+ .ok()
+ .expect("`Arc::try_unwrap` failed");
+
+ inner.stream.into_inner()
+ } else {
+ panic!("Unrelated `split::Write` passed to `split::Read::unsplit`.")
+ }
+ }
+}
+
+impl<T> WriteHalf<T> {
+ /// Check if this `WriteHalf` and some `ReadHalf` were split from the same
+ /// stream.
+ pub fn is_pair_of(&self, other: &ReadHalf<T>) -> bool {
+ Arc::ptr_eq(&self.inner, &other.inner)
+ }
+}
+
+impl<T: AsyncRead> AsyncRead for ReadHalf<T> {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ let mut inner = ready!(self.inner.poll_lock(cx));
+ inner.stream_pin().poll_read(cx, buf)
+ }
+}
+
+impl<T: AsyncWrite> AsyncWrite for WriteHalf<T> {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<Result<usize, io::Error>> {
+ let mut inner = ready!(self.inner.poll_lock(cx));
+ inner.stream_pin().poll_write(cx, buf)
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ let mut inner = ready!(self.inner.poll_lock(cx));
+ inner.stream_pin().poll_flush(cx)
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ let mut inner = ready!(self.inner.poll_lock(cx));
+ inner.stream_pin().poll_shutdown(cx)
+ }
+}
+
+impl<T> Inner<T> {
+ fn poll_lock(&self, cx: &mut Context<'_>) -> Poll<Guard<'_, T>> {
+ if self
+ .locked
+ .compare_exchange(false, true, Acquire, Acquire)
+ .is_ok()
+ {
+ Poll::Ready(Guard { inner: self })
+ } else {
+ // Spin... but investigate a better strategy
+
+ std::thread::yield_now();
+ cx.waker().wake_by_ref();
+
+ Poll::Pending
+ }
+ }
+}
+
+impl<T> Guard<'_, T> {
+ fn stream_pin(&mut self) -> Pin<&mut T> {
+ // safety: the stream is pinned in `Arc` and the `Guard` ensures mutual
+ // exclusion.
+ unsafe { Pin::new_unchecked(&mut *self.inner.stream.get()) }
+ }
+}
+
+impl<T> Drop for Guard<'_, T> {
+ fn drop(&mut self) {
+ self.inner.locked.store(false, Release);
+ }
+}
+
+unsafe impl<T: Send> Send for ReadHalf<T> {}
+unsafe impl<T: Send> Send for WriteHalf<T> {}
+unsafe impl<T: Sync> Sync for ReadHalf<T> {}
+unsafe impl<T: Sync> Sync for WriteHalf<T> {}
+
+impl<T: fmt::Debug> fmt::Debug for ReadHalf<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("split::ReadHalf").finish()
+ }
+}
+
+impl<T: fmt::Debug> fmt::Debug for WriteHalf<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("split::WriteHalf").finish()
+ }
+}
diff --git a/vendor/tokio/src/io/stderr.rs b/vendor/tokio/src/io/stderr.rs
new file mode 100644
index 000000000..2f624fba9
--- /dev/null
+++ b/vendor/tokio/src/io/stderr.rs
@@ -0,0 +1,109 @@
+use crate::io::blocking::Blocking;
+use crate::io::stdio_common::SplitByUtf8BoundaryIfWindows;
+use crate::io::AsyncWrite;
+
+use std::io;
+use std::pin::Pin;
+use std::task::Context;
+use std::task::Poll;
+
+cfg_io_std! {
+ /// A handle to the standard error stream of a process.
+ ///
+ /// Concurrent writes to stderr must be executed with care: Only individual
+ /// writes to this [`AsyncWrite`] are guaranteed to be intact. In particular
+ /// you should be aware that writes using [`write_all`] are not guaranteed
+ /// to occur as a single write, so multiple threads writing data with
+ /// [`write_all`] may result in interleaved output.
+ ///
+ /// Created by the [`stderr`] function.
+ ///
+ /// [`stderr`]: stderr()
+ /// [`AsyncWrite`]: AsyncWrite
+ /// [`write_all`]: crate::io::AsyncWriteExt::write_all()
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut stderr = io::stdout();
+ /// stderr.write_all(b"Print some error here.").await?;
+ /// Ok(())
+ /// }
+ /// ```
+ #[derive(Debug)]
+ pub struct Stderr {
+ std: SplitByUtf8BoundaryIfWindows<Blocking<std::io::Stderr>>,
+ }
+
+ /// Constructs a new handle to the standard error of the current process.
+ ///
+ /// The returned handle allows writing to standard error from the within the
+ /// Tokio runtime.
+ ///
+ /// Concurrent writes to stderr must be executed with care: Only individual
+ /// writes to this [`AsyncWrite`] are guaranteed to be intact. In particular
+ /// you should be aware that writes using [`write_all`] are not guaranteed
+ /// to occur as a single write, so multiple threads writing data with
+ /// [`write_all`] may result in interleaved output.
+ ///
+ /// [`AsyncWrite`]: AsyncWrite
+ /// [`write_all`]: crate::io::AsyncWriteExt::write_all()
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut stderr = io::stderr();
+ /// stderr.write_all(b"Print some error here.").await?;
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn stderr() -> Stderr {
+ let std = io::stderr();
+ Stderr {
+ std: SplitByUtf8BoundaryIfWindows::new(Blocking::new(std)),
+ }
+ }
+}
+
+#[cfg(unix)]
+impl std::os::unix::io::AsRawFd for Stderr {
+ fn as_raw_fd(&self) -> std::os::unix::io::RawFd {
+ std::io::stderr().as_raw_fd()
+ }
+}
+
+#[cfg(windows)]
+impl std::os::windows::io::AsRawHandle for Stderr {
+ fn as_raw_handle(&self) -> std::os::windows::io::RawHandle {
+ std::io::stderr().as_raw_handle()
+ }
+}
+
+impl AsyncWrite for Stderr {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ Pin::new(&mut self.std).poll_write(cx, buf)
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ Pin::new(&mut self.std).poll_flush(cx)
+ }
+
+ fn poll_shutdown(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ ) -> Poll<Result<(), io::Error>> {
+ Pin::new(&mut self.std).poll_shutdown(cx)
+ }
+}
diff --git a/vendor/tokio/src/io/stdin.rs b/vendor/tokio/src/io/stdin.rs
new file mode 100644
index 000000000..c9578f17b
--- /dev/null
+++ b/vendor/tokio/src/io/stdin.rs
@@ -0,0 +1,73 @@
+use crate::io::blocking::Blocking;
+use crate::io::{AsyncRead, ReadBuf};
+
+use std::io;
+use std::pin::Pin;
+use std::task::Context;
+use std::task::Poll;
+
+cfg_io_std! {
+ /// A handle to the standard input stream of a process.
+ ///
+ /// The handle implements the [`AsyncRead`] trait, but beware that concurrent
+ /// reads of `Stdin` must be executed with care.
+ ///
+ /// This handle is best used for non-interactive uses, such as when a file
+ /// is piped into the application. For technical reasons, `stdin` is
+ /// implemented by using an ordinary blocking read on a separate thread, and
+ /// it is impossible to cancel that read. This can make shutdown of the
+ /// runtime hang until the user presses enter.
+ ///
+ /// For interactive uses, it is recommended to spawn a thread dedicated to
+ /// user input and use blocking IO directly in that thread.
+ ///
+ /// Created by the [`stdin`] function.
+ ///
+ /// [`stdin`]: fn@stdin
+ /// [`AsyncRead`]: trait@AsyncRead
+ #[derive(Debug)]
+ pub struct Stdin {
+ std: Blocking<std::io::Stdin>,
+ }
+
+ /// Constructs a new handle to the standard input of the current process.
+ ///
+ /// This handle is best used for non-interactive uses, such as when a file
+ /// is piped into the application. For technical reasons, `stdin` is
+ /// implemented by using an ordinary blocking read on a separate thread, and
+ /// it is impossible to cancel that read. This can make shutdown of the
+ /// runtime hang until the user presses enter.
+ ///
+ /// For interactive uses, it is recommended to spawn a thread dedicated to
+ /// user input and use blocking IO directly in that thread.
+ pub fn stdin() -> Stdin {
+ let std = io::stdin();
+ Stdin {
+ std: Blocking::new(std),
+ }
+ }
+}
+
+#[cfg(unix)]
+impl std::os::unix::io::AsRawFd for Stdin {
+ fn as_raw_fd(&self) -> std::os::unix::io::RawFd {
+ std::io::stdin().as_raw_fd()
+ }
+}
+
+#[cfg(windows)]
+impl std::os::windows::io::AsRawHandle for Stdin {
+ fn as_raw_handle(&self) -> std::os::windows::io::RawHandle {
+ std::io::stdin().as_raw_handle()
+ }
+}
+
+impl AsyncRead for Stdin {
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ Pin::new(&mut self.std).poll_read(cx, buf)
+ }
+}
diff --git a/vendor/tokio/src/io/stdio_common.rs b/vendor/tokio/src/io/stdio_common.rs
new file mode 100644
index 000000000..56c4520c6
--- /dev/null
+++ b/vendor/tokio/src/io/stdio_common.rs
@@ -0,0 +1,220 @@
+//! Contains utilities for stdout and stderr.
+use crate::io::AsyncWrite;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+/// # Windows
+/// AsyncWrite adapter that finds last char boundary in given buffer and does not write the rest,
+/// if buffer contents seems to be utf8. Otherwise it only trims buffer down to MAX_BUF.
+/// That's why, wrapped writer will always receive well-formed utf-8 bytes.
+/// # Other platforms
+/// passes data to `inner` as is
+#[derive(Debug)]
+pub(crate) struct SplitByUtf8BoundaryIfWindows<W> {
+ inner: W,
+}
+
+impl<W> SplitByUtf8BoundaryIfWindows<W> {
+ pub(crate) fn new(inner: W) -> Self {
+ Self { inner }
+ }
+}
+
+// this constant is defined by Unicode standard.
+const MAX_BYTES_PER_CHAR: usize = 4;
+
+// Subject for tweaking here
+const MAGIC_CONST: usize = 8;
+
+impl<W> crate::io::AsyncWrite for SplitByUtf8BoundaryIfWindows<W>
+where
+ W: AsyncWrite + Unpin,
+{
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ mut buf: &[u8],
+ ) -> Poll<Result<usize, std::io::Error>> {
+ // just a closure to avoid repetitive code
+ let mut call_inner = move |buf| Pin::new(&mut self.inner).poll_write(cx, buf);
+
+ // 1. Only windows stdio can suffer from non-utf8.
+ // We also check for `test` so that we can write some tests
+ // for further code. Since `AsyncWrite` can always shrink
+ // buffer at its discretion, excessive (i.e. in tests) shrinking
+ // does not break correctness.
+ // 2. If buffer is small, it will not be shrinked.
+ // That's why, it's "textness" will not change, so we don't have
+ // to fixup it.
+ if cfg!(not(any(target_os = "windows", test))) || buf.len() <= crate::io::blocking::MAX_BUF
+ {
+ return call_inner(buf);
+ }
+
+ buf = &buf[..crate::io::blocking::MAX_BUF];
+
+ // Now there are two possibilities.
+ // If caller gave is binary buffer, we **should not** shrink it
+ // anymore, because excessive shrinking hits performance.
+ // If caller gave as binary buffer, we **must** additionally
+ // shrink it to strip incomplete char at the end of buffer.
+ // that's why check we will perform now is allowed to have
+ // false-positive.
+
+ // Now let's look at the first MAX_BYTES_PER_CHAR * MAGIC_CONST bytes.
+ // if they are (possibly incomplete) utf8, then we can be quite sure
+ // that input buffer was utf8.
+
+ let have_to_fix_up = match std::str::from_utf8(&buf[..MAX_BYTES_PER_CHAR * MAGIC_CONST]) {
+ Ok(_) => true,
+ Err(err) => {
+ let incomplete_bytes = MAX_BYTES_PER_CHAR * MAGIC_CONST - err.valid_up_to();
+ incomplete_bytes < MAX_BYTES_PER_CHAR
+ }
+ };
+
+ if have_to_fix_up {
+ // We must pop several bytes at the end which form incomplete
+ // character. To achieve it, we exploit UTF8 encoding:
+ // for any code point, all bytes except first start with 0b10 prefix.
+ // see https://en.wikipedia.org/wiki/UTF-8#Encoding for details
+ let trailing_incomplete_char_size = buf
+ .iter()
+ .rev()
+ .take(MAX_BYTES_PER_CHAR)
+ .position(|byte| *byte < 0b1000_0000 || *byte >= 0b1100_0000)
+ .unwrap_or(0)
+ + 1;
+ buf = &buf[..buf.len() - trailing_incomplete_char_size];
+ }
+
+ call_inner(buf)
+ }
+
+ fn poll_flush(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ ) -> Poll<Result<(), std::io::Error>> {
+ Pin::new(&mut self.inner).poll_flush(cx)
+ }
+
+ fn poll_shutdown(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ ) -> Poll<Result<(), std::io::Error>> {
+ Pin::new(&mut self.inner).poll_shutdown(cx)
+ }
+}
+
+#[cfg(test)]
+#[cfg(not(loom))]
+mod tests {
+ use crate::io::AsyncWriteExt;
+ use std::io;
+ use std::pin::Pin;
+ use std::task::Context;
+ use std::task::Poll;
+
+ const MAX_BUF: usize = 16 * 1024;
+
+ struct TextMockWriter;
+
+ impl crate::io::AsyncWrite for TextMockWriter {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ _cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<Result<usize, io::Error>> {
+ assert!(buf.len() <= MAX_BUF);
+ assert!(std::str::from_utf8(buf).is_ok());
+ Poll::Ready(Ok(buf.len()))
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(
+ self: Pin<&mut Self>,
+ _cx: &mut Context<'_>,
+ ) -> Poll<Result<(), io::Error>> {
+ Poll::Ready(Ok(()))
+ }
+ }
+
+ struct LoggingMockWriter {
+ write_history: Vec<usize>,
+ }
+
+ impl LoggingMockWriter {
+ fn new() -> Self {
+ LoggingMockWriter {
+ write_history: Vec::new(),
+ }
+ }
+ }
+
+ impl crate::io::AsyncWrite for LoggingMockWriter {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ _cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<Result<usize, io::Error>> {
+ assert!(buf.len() <= MAX_BUF);
+ self.write_history.push(buf.len());
+ Poll::Ready(Ok(buf.len()))
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(
+ self: Pin<&mut Self>,
+ _cx: &mut Context<'_>,
+ ) -> Poll<Result<(), io::Error>> {
+ Poll::Ready(Ok(()))
+ }
+ }
+
+ #[test]
+ fn test_splitter() {
+ let data = str::repeat("â–ˆ", MAX_BUF);
+ let mut wr = super::SplitByUtf8BoundaryIfWindows::new(TextMockWriter);
+ let fut = async move {
+ wr.write_all(data.as_bytes()).await.unwrap();
+ };
+ crate::runtime::Builder::new_current_thread()
+ .build()
+ .unwrap()
+ .block_on(fut);
+ }
+
+ #[test]
+ fn test_pseudo_text() {
+ // In this test we write a piece of binary data, whose beginning is
+ // text though. We then validate that even in this corner case buffer
+ // was not shrinked too much.
+ let checked_count = super::MAGIC_CONST * super::MAX_BYTES_PER_CHAR;
+ let mut data: Vec<u8> = str::repeat("a", checked_count).into();
+ data.extend(std::iter::repeat(0b1010_1010).take(MAX_BUF - checked_count + 1));
+ let mut writer = LoggingMockWriter::new();
+ let mut splitter = super::SplitByUtf8BoundaryIfWindows::new(&mut writer);
+ crate::runtime::Builder::new_current_thread()
+ .build()
+ .unwrap()
+ .block_on(async {
+ splitter.write_all(&data).await.unwrap();
+ });
+ // Check that at most two writes were performed
+ assert!(writer.write_history.len() <= 2);
+ // Check that all has been written
+ assert_eq!(
+ writer.write_history.iter().copied().sum::<usize>(),
+ data.len()
+ );
+ // Check that at most MAX_BYTES_PER_CHAR + 1 (i.e. 5) bytes were shrinked
+ // from the buffer: one because it was outside of MAX_BUF boundary, and
+ // up to one "utf8 code point".
+ assert!(data.len() - writer.write_history[0] <= super::MAX_BYTES_PER_CHAR + 1);
+ }
+}
diff --git a/vendor/tokio/src/io/stdout.rs b/vendor/tokio/src/io/stdout.rs
new file mode 100644
index 000000000..a08ed01ee
--- /dev/null
+++ b/vendor/tokio/src/io/stdout.rs
@@ -0,0 +1,108 @@
+use crate::io::blocking::Blocking;
+use crate::io::stdio_common::SplitByUtf8BoundaryIfWindows;
+use crate::io::AsyncWrite;
+use std::io;
+use std::pin::Pin;
+use std::task::Context;
+use std::task::Poll;
+
+cfg_io_std! {
+ /// A handle to the standard output stream of a process.
+ ///
+ /// Concurrent writes to stdout must be executed with care: Only individual
+ /// writes to this [`AsyncWrite`] are guaranteed to be intact. In particular
+ /// you should be aware that writes using [`write_all`] are not guaranteed
+ /// to occur as a single write, so multiple threads writing data with
+ /// [`write_all`] may result in interleaved output.
+ ///
+ /// Created by the [`stdout`] function.
+ ///
+ /// [`stdout`]: stdout()
+ /// [`AsyncWrite`]: AsyncWrite
+ /// [`write_all`]: crate::io::AsyncWriteExt::write_all()
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut stdout = io::stdout();
+ /// stdout.write_all(b"Hello world!").await?;
+ /// Ok(())
+ /// }
+ /// ```
+ #[derive(Debug)]
+ pub struct Stdout {
+ std: SplitByUtf8BoundaryIfWindows<Blocking<std::io::Stdout>>,
+ }
+
+ /// Constructs a new handle to the standard output of the current process.
+ ///
+ /// The returned handle allows writing to standard out from the within the
+ /// Tokio runtime.
+ ///
+ /// Concurrent writes to stdout must be executed with care: Only individual
+ /// writes to this [`AsyncWrite`] are guaranteed to be intact. In particular
+ /// you should be aware that writes using [`write_all`] are not guaranteed
+ /// to occur as a single write, so multiple threads writing data with
+ /// [`write_all`] may result in interleaved output.
+ ///
+ /// [`AsyncWrite`]: AsyncWrite
+ /// [`write_all`]: crate::io::AsyncWriteExt::write_all()
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut stdout = io::stdout();
+ /// stdout.write_all(b"Hello world!").await?;
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn stdout() -> Stdout {
+ let std = io::stdout();
+ Stdout {
+ std: SplitByUtf8BoundaryIfWindows::new(Blocking::new(std)),
+ }
+ }
+}
+
+#[cfg(unix)]
+impl std::os::unix::io::AsRawFd for Stdout {
+ fn as_raw_fd(&self) -> std::os::unix::io::RawFd {
+ std::io::stdout().as_raw_fd()
+ }
+}
+
+#[cfg(windows)]
+impl std::os::windows::io::AsRawHandle for Stdout {
+ fn as_raw_handle(&self) -> std::os::windows::io::RawHandle {
+ std::io::stdout().as_raw_handle()
+ }
+}
+
+impl AsyncWrite for Stdout {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ Pin::new(&mut self.std).poll_write(cx, buf)
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ Pin::new(&mut self.std).poll_flush(cx)
+ }
+
+ fn poll_shutdown(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ ) -> Poll<Result<(), io::Error>> {
+ Pin::new(&mut self.std).poll_shutdown(cx)
+ }
+}
diff --git a/vendor/tokio/src/io/util/async_buf_read_ext.rs b/vendor/tokio/src/io/util/async_buf_read_ext.rs
new file mode 100644
index 000000000..233ac31c4
--- /dev/null
+++ b/vendor/tokio/src/io/util/async_buf_read_ext.rs
@@ -0,0 +1,259 @@
+use crate::io::util::lines::{lines, Lines};
+use crate::io::util::read_line::{read_line, ReadLine};
+use crate::io::util::read_until::{read_until, ReadUntil};
+use crate::io::util::split::{split, Split};
+use crate::io::AsyncBufRead;
+
+cfg_io_util! {
+ /// An extension trait which adds utility methods to [`AsyncBufRead`] types.
+ ///
+ /// [`AsyncBufRead`]: crate::io::AsyncBufRead
+ pub trait AsyncBufReadExt: AsyncBufRead {
+ /// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize>;
+ /// ```
+ ///
+ /// This function will read bytes from the underlying stream until the
+ /// delimiter or EOF is found. Once found, all bytes up to, and including,
+ /// the delimiter (if found) will be appended to `buf`.
+ ///
+ /// If successful, this function will return the total number of bytes read.
+ ///
+ /// If this function returns `Ok(0)`, the stream has reached EOF.
+ ///
+ /// # Errors
+ ///
+ /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
+ /// will otherwise return any errors returned by [`fill_buf`].
+ ///
+ /// If an I/O error is encountered then all bytes read so far will be
+ /// present in `buf` and its length will have been adjusted appropriately.
+ ///
+ /// [`fill_buf`]: AsyncBufRead::poll_fill_buf
+ /// [`ErrorKind::Interrupted`]: std::io::ErrorKind::Interrupted
+ ///
+ /// # Examples
+ ///
+ /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
+ /// this example, we use [`Cursor`] to read all the bytes in a byte slice
+ /// in hyphen delimited segments:
+ ///
+ /// [`Cursor`]: std::io::Cursor
+ ///
+ /// ```
+ /// use tokio::io::AsyncBufReadExt;
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let mut cursor = Cursor::new(b"lorem-ipsum");
+ /// let mut buf = vec![];
+ ///
+ /// // cursor is at 'l'
+ /// let num_bytes = cursor.read_until(b'-', &mut buf)
+ /// .await
+ /// .expect("reading from cursor won't fail");
+ ///
+ /// assert_eq!(num_bytes, 6);
+ /// assert_eq!(buf, b"lorem-");
+ /// buf.clear();
+ ///
+ /// // cursor is at 'i'
+ /// let num_bytes = cursor.read_until(b'-', &mut buf)
+ /// .await
+ /// .expect("reading from cursor won't fail");
+ ///
+ /// assert_eq!(num_bytes, 5);
+ /// assert_eq!(buf, b"ipsum");
+ /// buf.clear();
+ ///
+ /// // cursor is at EOF
+ /// let num_bytes = cursor.read_until(b'-', &mut buf)
+ /// .await
+ /// .expect("reading from cursor won't fail");
+ /// assert_eq!(num_bytes, 0);
+ /// assert_eq!(buf, b"");
+ /// }
+ /// ```
+ fn read_until<'a>(&'a mut self, byte: u8, buf: &'a mut Vec<u8>) -> ReadUntil<'a, Self>
+ where
+ Self: Unpin,
+ {
+ read_until(self, byte, buf)
+ }
+
+ /// Reads all bytes until a newline (the 0xA byte) is reached, and append
+ /// them to the provided buffer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_line(&mut self, buf: &mut String) -> io::Result<usize>;
+ /// ```
+ ///
+ /// This function will read bytes from the underlying stream until the
+ /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes
+ /// up to, and including, the delimiter (if found) will be appended to
+ /// `buf`.
+ ///
+ /// If successful, this function will return the total number of bytes read.
+ ///
+ /// If this function returns `Ok(0)`, the stream has reached EOF.
+ ///
+ /// # Errors
+ ///
+ /// This function has the same error semantics as [`read_until`] and will
+ /// also return an error if the read bytes are not valid UTF-8. If an I/O
+ /// error is encountered then `buf` may contain some bytes already read in
+ /// the event that all data read so far was valid UTF-8.
+ ///
+ /// [`read_until`]: AsyncBufReadExt::read_until
+ ///
+ /// # Examples
+ ///
+ /// [`std::io::Cursor`][`Cursor`] is a type that implements
+ /// `AsyncBufRead`. In this example, we use [`Cursor`] to read all the
+ /// lines in a byte slice:
+ ///
+ /// [`Cursor`]: std::io::Cursor
+ ///
+ /// ```
+ /// use tokio::io::AsyncBufReadExt;
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let mut cursor = Cursor::new(b"foo\nbar");
+ /// let mut buf = String::new();
+ ///
+ /// // cursor is at 'f'
+ /// let num_bytes = cursor.read_line(&mut buf)
+ /// .await
+ /// .expect("reading from cursor won't fail");
+ ///
+ /// assert_eq!(num_bytes, 4);
+ /// assert_eq!(buf, "foo\n");
+ /// buf.clear();
+ ///
+ /// // cursor is at 'b'
+ /// let num_bytes = cursor.read_line(&mut buf)
+ /// .await
+ /// .expect("reading from cursor won't fail");
+ ///
+ /// assert_eq!(num_bytes, 3);
+ /// assert_eq!(buf, "bar");
+ /// buf.clear();
+ ///
+ /// // cursor is at EOF
+ /// let num_bytes = cursor.read_line(&mut buf)
+ /// .await
+ /// .expect("reading from cursor won't fail");
+ ///
+ /// assert_eq!(num_bytes, 0);
+ /// assert_eq!(buf, "");
+ /// }
+ /// ```
+ fn read_line<'a>(&'a mut self, buf: &'a mut String) -> ReadLine<'a, Self>
+ where
+ Self: Unpin,
+ {
+ read_line(self, buf)
+ }
+
+ /// Returns a stream of the contents of this reader split on the byte
+ /// `byte`.
+ ///
+ /// This method is the asynchronous equivalent to
+ /// [`BufRead::split`](std::io::BufRead::split).
+ ///
+ /// The stream returned from this function will yield instances of
+ /// [`io::Result`]`<`[`Vec<u8>`]`>`. Each vector returned will *not* have
+ /// the delimiter byte at the end.
+ ///
+ /// [`io::Result`]: std::io::Result
+ /// [`Vec<u8>`]: std::vec::Vec
+ ///
+ /// # Errors
+ ///
+ /// Each item of the stream has the same error semantics as
+ /// [`AsyncBufReadExt::read_until`](AsyncBufReadExt::read_until).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::io::AsyncBufRead;
+ /// use tokio::io::AsyncBufReadExt;
+ ///
+ /// # async fn dox(my_buf_read: impl AsyncBufRead + Unpin) -> std::io::Result<()> {
+ /// let mut segments = my_buf_read.split(b'f');
+ ///
+ /// while let Some(segment) = segments.next_segment().await? {
+ /// println!("length = {}", segment.len())
+ /// }
+ /// # Ok(())
+ /// # }
+ /// ```
+ fn split(self, byte: u8) -> Split<Self>
+ where
+ Self: Sized + Unpin,
+ {
+ split(self, byte)
+ }
+
+ /// Returns a stream over the lines of this reader.
+ /// This method is the async equivalent to [`BufRead::lines`](std::io::BufRead::lines).
+ ///
+ /// The stream returned from this function will yield instances of
+ /// [`io::Result`]`<`[`String`]`>`. Each string returned will *not* have a newline
+ /// byte (the 0xA byte) or CRLF (0xD, 0xA bytes) at the end.
+ ///
+ /// [`io::Result`]: std::io::Result
+ /// [`String`]: String
+ ///
+ /// # Errors
+ ///
+ /// Each line of the stream has the same error semantics as [`AsyncBufReadExt::read_line`].
+ ///
+ /// # Examples
+ ///
+ /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
+ /// this example, we use [`Cursor`] to iterate over all the lines in a byte
+ /// slice.
+ ///
+ /// [`Cursor`]: std::io::Cursor
+ ///
+ /// ```
+ /// use tokio::io::AsyncBufReadExt;
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let cursor = Cursor::new(b"lorem\nipsum\r\ndolor");
+ ///
+ /// let mut lines = cursor.lines();
+ ///
+ /// assert_eq!(lines.next_line().await.unwrap(), Some(String::from("lorem")));
+ /// assert_eq!(lines.next_line().await.unwrap(), Some(String::from("ipsum")));
+ /// assert_eq!(lines.next_line().await.unwrap(), Some(String::from("dolor")));
+ /// assert_eq!(lines.next_line().await.unwrap(), None);
+ /// }
+ /// ```
+ ///
+ /// [`AsyncBufReadExt::read_line`]: AsyncBufReadExt::read_line
+ fn lines(self) -> Lines<Self>
+ where
+ Self: Sized,
+ {
+ lines(self)
+ }
+ }
+}
+
+impl<R: AsyncBufRead + ?Sized> AsyncBufReadExt for R {}
diff --git a/vendor/tokio/src/io/util/async_read_ext.rs b/vendor/tokio/src/io/util/async_read_ext.rs
new file mode 100644
index 000000000..10f641744
--- /dev/null
+++ b/vendor/tokio/src/io/util/async_read_ext.rs
@@ -0,0 +1,1141 @@
+use crate::io::util::chain::{chain, Chain};
+use crate::io::util::read::{read, Read};
+use crate::io::util::read_buf::{read_buf, ReadBuf};
+use crate::io::util::read_exact::{read_exact, ReadExact};
+use crate::io::util::read_int::{
+ ReadI128, ReadI128Le, ReadI16, ReadI16Le, ReadI32, ReadI32Le, ReadI64, ReadI64Le, ReadI8,
+};
+use crate::io::util::read_int::{
+ ReadU128, ReadU128Le, ReadU16, ReadU16Le, ReadU32, ReadU32Le, ReadU64, ReadU64Le, ReadU8,
+};
+use crate::io::util::read_to_end::{read_to_end, ReadToEnd};
+use crate::io::util::read_to_string::{read_to_string, ReadToString};
+use crate::io::util::take::{take, Take};
+use crate::io::AsyncRead;
+
+use bytes::BufMut;
+
+cfg_io_util! {
+ /// Defines numeric reader
+ macro_rules! read_impl {
+ (
+ $(
+ $(#[$outer:meta])*
+ fn $name:ident(&mut self) -> $($fut:ident)*;
+ )*
+ ) => {
+ $(
+ $(#[$outer])*
+ fn $name<'a>(&'a mut self) -> $($fut)*<&'a mut Self> where Self: Unpin {
+ $($fut)*::new(self)
+ }
+ )*
+ }
+ }
+
+ /// Reads bytes from a source.
+ ///
+ /// Implemented as an extension trait, adding utility methods to all
+ /// [`AsyncRead`] types. Callers will tend to import this trait instead of
+ /// [`AsyncRead`].
+ ///
+ /// ```no_run
+ /// use tokio::fs::File;
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut f = File::open("foo.txt").await?;
+ /// let mut buffer = [0; 10];
+ ///
+ /// // The `read` method is defined by this trait.
+ /// let n = f.read(&mut buffer[..]).await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// See [module][crate::io] documentation for more details.
+ ///
+ /// [`AsyncRead`]: AsyncRead
+ pub trait AsyncReadExt: AsyncRead {
+ /// Creates a new `AsyncRead` instance that chains this stream with
+ /// `next`.
+ ///
+ /// The returned `AsyncRead` instance will first read all bytes from this object
+ /// until EOF is encountered. Afterwards the output is equivalent to the
+ /// output of `next`.
+ ///
+ /// # Examples
+ ///
+ /// [`File`][crate::fs::File]s implement `AsyncRead`:
+ ///
+ /// ```no_run
+ /// use tokio::fs::File;
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let f1 = File::open("foo.txt").await?;
+ /// let f2 = File::open("bar.txt").await?;
+ ///
+ /// let mut handle = f1.chain(f2);
+ /// let mut buffer = String::new();
+ ///
+ /// // read the value into a String. We could use any AsyncRead
+ /// // method here, this is just one example.
+ /// handle.read_to_string(&mut buffer).await?;
+ /// Ok(())
+ /// }
+ /// ```
+ fn chain<R>(self, next: R) -> Chain<Self, R>
+ where
+ Self: Sized,
+ R: AsyncRead,
+ {
+ chain(self, next)
+ }
+
+ /// Pulls some bytes from this source into the specified buffer,
+ /// returning how many bytes were read.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read(&mut self, buf: &mut [u8]) -> io::Result<usize>;
+ /// ```
+ ///
+ /// This method does not provide any guarantees about whether it
+ /// completes immediately or asynchronously.
+ ///
+ /// # Return
+ ///
+ /// If the return value of this method is `Ok(n)`, then it must be
+ /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates
+ /// that the buffer `buf` has been filled in with `n` bytes of data from
+ /// this source. If `n` is `0`, then it can indicate one of two
+ /// scenarios:
+ ///
+ /// 1. This reader has reached its "end of file" and will likely no longer
+ /// be able to produce bytes. Note that this does not mean that the
+ /// reader will *always* no longer be able to produce bytes.
+ /// 2. The buffer specified was 0 bytes in length.
+ ///
+ /// No guarantees are provided about the contents of `buf` when this
+ /// function is called, implementations cannot rely on any property of the
+ /// contents of `buf` being `true`. It is recommended that *implementations*
+ /// only write data to `buf` instead of reading its contents.
+ ///
+ /// Correspondingly, however, *callers* of this method may not assume
+ /// any guarantees about how the implementation uses `buf`. It is
+ /// possible that the code that's supposed to write to the buffer might
+ /// also read from it. It is your responsibility to make sure that `buf`
+ /// is initialized before calling `read`.
+ ///
+ /// # Errors
+ ///
+ /// If this function encounters any form of I/O or other error, an error
+ /// variant will be returned. If an error is returned then it must be
+ /// guaranteed that no bytes were read.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If you use it as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that no data was read.
+ ///
+ /// # Examples
+ ///
+ /// [`File`][crate::fs::File]s implement `Read`:
+ ///
+ /// ```no_run
+ /// use tokio::fs::File;
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut f = File::open("foo.txt").await?;
+ /// let mut buffer = [0; 10];
+ ///
+ /// // read up to 10 bytes
+ /// let n = f.read(&mut buffer[..]).await?;
+ ///
+ /// println!("The bytes: {:?}", &buffer[..n]);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Read<'a, Self>
+ where
+ Self: Unpin,
+ {
+ read(self, buf)
+ }
+
+ /// Pulls some bytes from this source into the specified buffer,
+ /// advancing the buffer's internal cursor.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> io::Result<usize>;
+ /// ```
+ ///
+ /// Usually, only a single `read` syscall is issued, even if there is
+ /// more space in the supplied buffer.
+ ///
+ /// This method does not provide any guarantees about whether it
+ /// completes immediately or asynchronously.
+ ///
+ /// # Return
+ ///
+ /// A nonzero `n` value indicates that the buffer `buf` has been filled
+ /// in with `n` bytes of data from this source. If `n` is `0`, then it
+ /// can indicate one of two scenarios:
+ ///
+ /// 1. This reader has reached its "end of file" and will likely no longer
+ /// be able to produce bytes. Note that this does not mean that the
+ /// reader will *always* no longer be able to produce bytes.
+ /// 2. The buffer specified had a remaining capacity of zero.
+ ///
+ /// # Errors
+ ///
+ /// If this function encounters any form of I/O or other error, an error
+ /// variant will be returned. If an error is returned then it must be
+ /// guaranteed that no bytes were read.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancel safe. If you use it as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then it is guaranteed that no data was read.
+ ///
+ /// # Examples
+ ///
+ /// [`File`] implements `Read` and [`BytesMut`] implements [`BufMut`]:
+ ///
+ /// [`File`]: crate::fs::File
+ /// [`BytesMut`]: bytes::BytesMut
+ /// [`BufMut`]: bytes::BufMut
+ ///
+ /// ```no_run
+ /// use tokio::fs::File;
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use bytes::BytesMut;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut f = File::open("foo.txt").await?;
+ /// let mut buffer = BytesMut::with_capacity(10);
+ ///
+ /// assert!(buffer.is_empty());
+ ///
+ /// // read up to 10 bytes, note that the return value is not needed
+ /// // to access the data that was read as `buffer`'s internal
+ /// // cursor is updated.
+ /// f.read_buf(&mut buffer).await?;
+ ///
+ /// println!("The bytes: {:?}", &buffer[..]);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_buf<'a, B>(&'a mut self, buf: &'a mut B) -> ReadBuf<'a, Self, B>
+ where
+ Self: Sized + Unpin,
+ B: BufMut,
+ {
+ read_buf(self, buf)
+ }
+
+ /// Reads the exact number of bytes required to fill `buf`.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<usize>;
+ /// ```
+ ///
+ /// This function reads as many bytes as necessary to completely fill
+ /// the specified buffer `buf`.
+ ///
+ /// # Errors
+ ///
+ /// If the operation encounters an "end of file" before completely
+ /// filling the buffer, it returns an error of the kind
+ /// [`ErrorKind::UnexpectedEof`]. The contents of `buf` are unspecified
+ /// in this case.
+ ///
+ /// If any other read error is encountered then the operation
+ /// immediately returns. The contents of `buf` are unspecified in this
+ /// case.
+ ///
+ /// If this operation returns an error, it is unspecified how many bytes
+ /// it has read, but it will never read more than would be necessary to
+ /// completely fill the buffer.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is not cancellation safe. If the method is used as the
+ /// event in a [`tokio::select!`](crate::select) statement and some
+ /// other branch completes first, then some data may already have been
+ /// read into `buf`.
+ ///
+ /// # Examples
+ ///
+ /// [`File`][crate::fs::File]s implement `Read`:
+ ///
+ /// ```no_run
+ /// use tokio::fs::File;
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut f = File::open("foo.txt").await?;
+ /// let mut buffer = [0; 10];
+ ///
+ /// // read exactly 10 bytes
+ /// f.read_exact(&mut buffer).await?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`ErrorKind::UnexpectedEof`]: std::io::ErrorKind::UnexpectedEof
+ fn read_exact<'a>(&'a mut self, buf: &'a mut [u8]) -> ReadExact<'a, Self>
+ where
+ Self: Unpin,
+ {
+ read_exact(self, buf)
+ }
+
+ read_impl! {
+ /// Reads an unsigned 8 bit integer from the underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u8(&mut self) -> io::Result<u8>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 8 bit integers from an `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![2, 5]);
+ ///
+ /// assert_eq!(2, reader.read_u8().await?);
+ /// assert_eq!(5, reader.read_u8().await?);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u8(&mut self) -> ReadU8;
+
+ /// Reads a signed 8 bit integer from the underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i8(&mut self) -> io::Result<i8>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 8 bit integers from an `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0x02, 0xfb]);
+ ///
+ /// assert_eq!(2, reader.read_i8().await?);
+ /// assert_eq!(-5, reader.read_i8().await?);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i8(&mut self) -> ReadI8;
+
+ /// Reads an unsigned 16-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u16(&mut self) -> io::Result<u16>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 16 bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![2, 5, 3, 0]);
+ ///
+ /// assert_eq!(517, reader.read_u16().await?);
+ /// assert_eq!(768, reader.read_u16().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u16(&mut self) -> ReadU16;
+
+ /// Reads a signed 16-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i16(&mut self) -> io::Result<i16>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 16 bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0x00, 0xc1, 0xff, 0x7c]);
+ ///
+ /// assert_eq!(193, reader.read_i16().await?);
+ /// assert_eq!(-132, reader.read_i16().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i16(&mut self) -> ReadI16;
+
+ /// Reads an unsigned 32-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u32(&mut self) -> io::Result<u32>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 32-bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0x00, 0x00, 0x01, 0x0b]);
+ ///
+ /// assert_eq!(267, reader.read_u32().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u32(&mut self) -> ReadU32;
+
+ /// Reads a signed 32-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i32(&mut self) -> io::Result<i32>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 32-bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0xff, 0xff, 0x7a, 0x33]);
+ ///
+ /// assert_eq!(-34253, reader.read_i32().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i32(&mut self) -> ReadI32;
+
+ /// Reads an unsigned 64-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u64(&mut self) -> io::Result<u64>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 64-bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83
+ /// ]);
+ ///
+ /// assert_eq!(918733457491587, reader.read_u64().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u64(&mut self) -> ReadU64;
+
+ /// Reads an signed 64-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i64(&mut self) -> io::Result<i64>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 64-bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0x80, 0, 0, 0, 0, 0, 0, 0]);
+ ///
+ /// assert_eq!(i64::MIN, reader.read_i64().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i64(&mut self) -> ReadI64;
+
+ /// Reads an unsigned 128-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u128(&mut self) -> io::Result<u128>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 128-bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83,
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83
+ /// ]);
+ ///
+ /// assert_eq!(16947640962301618749969007319746179, reader.read_u128().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u128(&mut self) -> ReadU128;
+
+ /// Reads an signed 128-bit integer in big-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i128(&mut self) -> io::Result<i128>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 128-bit big-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![
+ /// 0x80, 0, 0, 0, 0, 0, 0, 0,
+ /// 0, 0, 0, 0, 0, 0, 0, 0
+ /// ]);
+ ///
+ /// assert_eq!(i128::MIN, reader.read_i128().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i128(&mut self) -> ReadI128;
+
+ /// Reads an unsigned 16-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u16_le(&mut self) -> io::Result<u16>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 16 bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![2, 5, 3, 0]);
+ ///
+ /// assert_eq!(1282, reader.read_u16_le().await?);
+ /// assert_eq!(3, reader.read_u16_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u16_le(&mut self) -> ReadU16Le;
+
+ /// Reads a signed 16-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i16_le(&mut self) -> io::Result<i16>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 16 bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0x00, 0xc1, 0xff, 0x7c]);
+ ///
+ /// assert_eq!(-16128, reader.read_i16_le().await?);
+ /// assert_eq!(31999, reader.read_i16_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i16_le(&mut self) -> ReadI16Le;
+
+ /// Reads an unsigned 32-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u32_le(&mut self) -> io::Result<u32>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 32-bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0x00, 0x00, 0x01, 0x0b]);
+ ///
+ /// assert_eq!(184614912, reader.read_u32_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u32_le(&mut self) -> ReadU32Le;
+
+ /// Reads a signed 32-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i32_le(&mut self) -> io::Result<i32>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 32-bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0xff, 0xff, 0x7a, 0x33]);
+ ///
+ /// assert_eq!(863698943, reader.read_i32_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i32_le(&mut self) -> ReadI32Le;
+
+ /// Reads an unsigned 64-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u64_le(&mut self) -> io::Result<u64>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 64-bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83
+ /// ]);
+ ///
+ /// assert_eq!(9477368352180732672, reader.read_u64_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u64_le(&mut self) -> ReadU64Le;
+
+ /// Reads an signed 64-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i64_le(&mut self) -> io::Result<i64>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 64-bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![0x80, 0, 0, 0, 0, 0, 0, 0]);
+ ///
+ /// assert_eq!(128, reader.read_i64_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i64_le(&mut self) -> ReadI64Le;
+
+ /// Reads an unsigned 128-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_u128_le(&mut self) -> io::Result<u128>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read unsigned 128-bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83,
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83
+ /// ]);
+ ///
+ /// assert_eq!(174826588484952389081207917399662330624, reader.read_u128_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_u128_le(&mut self) -> ReadU128Le;
+
+ /// Reads an signed 128-bit integer in little-endian order from the
+ /// underlying reader.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_i128_le(&mut self) -> io::Result<i128>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered reader to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncReadExt::read_exact`].
+ ///
+ /// [`AsyncReadExt::read_exact`]: AsyncReadExt::read_exact
+ ///
+ /// # Examples
+ ///
+ /// Read signed 128-bit little-endian integers from a `AsyncRead`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut reader = Cursor::new(vec![
+ /// 0x80, 0, 0, 0, 0, 0, 0, 0,
+ /// 0, 0, 0, 0, 0, 0, 0, 0
+ /// ]);
+ ///
+ /// assert_eq!(128, reader.read_i128_le().await?);
+ /// Ok(())
+ /// }
+ /// ```
+ fn read_i128_le(&mut self) -> ReadI128Le;
+ }
+
+ /// Reads all bytes until EOF in this source, placing them into `buf`.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize>;
+ /// ```
+ ///
+ /// All bytes read from this source will be appended to the specified
+ /// buffer `buf`. This function will continuously call [`read()`] to
+ /// append more data to `buf` until [`read()`] returns `Ok(0)`.
+ ///
+ /// If successful, the total number of bytes read is returned.
+ ///
+ /// [`read()`]: AsyncReadExt::read
+ ///
+ /// # Errors
+ ///
+ /// If a read error is encountered then the `read_to_end` operation
+ /// immediately completes. Any bytes which have already been read will
+ /// be appended to `buf`.
+ ///
+ /// # Examples
+ ///
+ /// [`File`][crate::fs::File]s implement `Read`:
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncReadExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut f = File::open("foo.txt").await?;
+ /// let mut buffer = Vec::new();
+ ///
+ /// // read the whole file
+ /// f.read_to_end(&mut buffer).await?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// (See also the [`tokio::fs::read`] convenience function for reading from a
+ /// file.)
+ ///
+ /// [`tokio::fs::read`]: fn@crate::fs::read
+ fn read_to_end<'a>(&'a mut self, buf: &'a mut Vec<u8>) -> ReadToEnd<'a, Self>
+ where
+ Self: Unpin,
+ {
+ read_to_end(self, buf)
+ }
+
+ /// Reads all bytes until EOF in this source, appending them to `buf`.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize>;
+ /// ```
+ ///
+ /// If successful, the number of bytes which were read and appended to
+ /// `buf` is returned.
+ ///
+ /// # Errors
+ ///
+ /// If the data in this stream is *not* valid UTF-8 then an error is
+ /// returned and `buf` is unchanged.
+ ///
+ /// See [`read_to_end`][AsyncReadExt::read_to_end] for other error semantics.
+ ///
+ /// # Examples
+ ///
+ /// [`File`][crate::fs::File]s implement `Read`:
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncReadExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut f = File::open("foo.txt").await?;
+ /// let mut buffer = String::new();
+ ///
+ /// f.read_to_string(&mut buffer).await?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// (See also the [`crate::fs::read_to_string`] convenience function for
+ /// reading from a file.)
+ ///
+ /// [`crate::fs::read_to_string`]: fn@crate::fs::read_to_string
+ fn read_to_string<'a>(&'a mut self, dst: &'a mut String) -> ReadToString<'a, Self>
+ where
+ Self: Unpin,
+ {
+ read_to_string(self, dst)
+ }
+
+ /// Creates an adaptor which reads at most `limit` bytes from it.
+ ///
+ /// This function returns a new instance of `AsyncRead` which will read
+ /// at most `limit` bytes, after which it will always return EOF
+ /// (`Ok(0)`). Any read errors will not count towards the number of
+ /// bytes read and future calls to [`read()`] may succeed.
+ ///
+ /// [`read()`]: fn@crate::io::AsyncReadExt::read
+ ///
+ /// [read]: AsyncReadExt::read
+ ///
+ /// # Examples
+ ///
+ /// [`File`][crate::fs::File]s implement `Read`:
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncReadExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let f = File::open("foo.txt").await?;
+ /// let mut buffer = [0; 5];
+ ///
+ /// // read at most five bytes
+ /// let mut handle = f.take(5);
+ ///
+ /// handle.read(&mut buffer).await?;
+ /// Ok(())
+ /// }
+ /// ```
+ fn take(self, limit: u64) -> Take<Self>
+ where
+ Self: Sized,
+ {
+ take(self, limit)
+ }
+ }
+}
+
+impl<R: AsyncRead + ?Sized> AsyncReadExt for R {}
diff --git a/vendor/tokio/src/io/util/async_seek_ext.rs b/vendor/tokio/src/io/util/async_seek_ext.rs
new file mode 100644
index 000000000..297a4a61a
--- /dev/null
+++ b/vendor/tokio/src/io/util/async_seek_ext.rs
@@ -0,0 +1,83 @@
+use crate::io::seek::{seek, Seek};
+use crate::io::AsyncSeek;
+use std::io::SeekFrom;
+
+cfg_io_util! {
+ /// An extension trait that adds utility methods to [`AsyncSeek`] types.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::io::{self, Cursor, SeekFrom};
+ /// use tokio::io::{AsyncSeekExt, AsyncReadExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut cursor = Cursor::new(b"abcdefg");
+ ///
+ /// // the `seek` method is defined by this trait
+ /// cursor.seek(SeekFrom::Start(3)).await?;
+ ///
+ /// let mut buf = [0; 1];
+ /// let n = cursor.read(&mut buf).await?;
+ /// assert_eq!(n, 1);
+ /// assert_eq!(buf, [b'd']);
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// See [module][crate::io] documentation for more details.
+ ///
+ /// [`AsyncSeek`]: AsyncSeek
+ pub trait AsyncSeekExt: AsyncSeek {
+ /// Creates a future which will seek an IO object, and then yield the
+ /// new position in the object and the object itself.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn seek(&mut self, pos: SeekFrom) -> io::Result<u64>;
+ /// ```
+ ///
+ /// In the case of an error the buffer and the object will be discarded, with
+ /// the error yielded.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::fs::File;
+ /// use tokio::io::{AsyncSeekExt, AsyncReadExt};
+ ///
+ /// use std::io::SeekFrom;
+ ///
+ /// # async fn dox() -> std::io::Result<()> {
+ /// let mut file = File::open("foo.txt").await?;
+ /// file.seek(SeekFrom::Start(6)).await?;
+ ///
+ /// let mut contents = vec![0u8; 10];
+ /// file.read_exact(&mut contents).await?;
+ /// # Ok(())
+ /// # }
+ /// ```
+ fn seek(&mut self, pos: SeekFrom) -> Seek<'_, Self>
+ where
+ Self: Unpin,
+ {
+ seek(self, pos)
+ }
+
+ /// Creates a future which will return the current seek position from the
+ /// start of the stream.
+ ///
+ /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
+ fn stream_position(&mut self) -> Seek<'_, Self>
+ where
+ Self: Unpin,
+ {
+ self.seek(SeekFrom::Current(0))
+ }
+ }
+}
+
+impl<S: AsyncSeek + ?Sized> AsyncSeekExt for S {}
diff --git a/vendor/tokio/src/io/util/async_write_ext.rs b/vendor/tokio/src/io/util/async_write_ext.rs
new file mode 100644
index 000000000..e214321b7
--- /dev/null
+++ b/vendor/tokio/src/io/util/async_write_ext.rs
@@ -0,0 +1,1141 @@
+use crate::io::util::flush::{flush, Flush};
+use crate::io::util::shutdown::{shutdown, Shutdown};
+use crate::io::util::write::{write, Write};
+use crate::io::util::write_all::{write_all, WriteAll};
+use crate::io::util::write_all_buf::{write_all_buf, WriteAllBuf};
+use crate::io::util::write_buf::{write_buf, WriteBuf};
+use crate::io::util::write_int::{
+ WriteI128, WriteI128Le, WriteI16, WriteI16Le, WriteI32, WriteI32Le, WriteI64, WriteI64Le,
+ WriteI8,
+};
+use crate::io::util::write_int::{
+ WriteU128, WriteU128Le, WriteU16, WriteU16Le, WriteU32, WriteU32Le, WriteU64, WriteU64Le,
+ WriteU8,
+};
+use crate::io::util::write_vectored::{write_vectored, WriteVectored};
+use crate::io::AsyncWrite;
+use std::io::IoSlice;
+
+use bytes::Buf;
+
+cfg_io_util! {
+ /// Defines numeric writer
+ macro_rules! write_impl {
+ (
+ $(
+ $(#[$outer:meta])*
+ fn $name:ident(&mut self, n: $ty:ty) -> $($fut:ident)*;
+ )*
+ ) => {
+ $(
+ $(#[$outer])*
+ fn $name<'a>(&'a mut self, n: $ty) -> $($fut)*<&'a mut Self> where Self: Unpin {
+ $($fut)*::new(self, n)
+ }
+ )*
+ }
+ }
+
+ /// Writes bytes to a sink.
+ ///
+ /// Implemented as an extension trait, adding utility methods to all
+ /// [`AsyncWrite`] types. Callers will tend to import this trait instead of
+ /// [`AsyncWrite`].
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncWriteExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let data = b"some bytes";
+ ///
+ /// let mut pos = 0;
+ /// let mut buffer = File::create("foo.txt").await?;
+ ///
+ /// while pos < data.len() {
+ /// let bytes_written = buffer.write(&data[pos..]).await?;
+ /// pos += bytes_written;
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// See [module][crate::io] documentation for more details.
+ ///
+ /// [`AsyncWrite`]: AsyncWrite
+ pub trait AsyncWriteExt: AsyncWrite {
+ /// Writes a buffer into this writer, returning how many bytes were
+ /// written.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
+ /// ```
+ ///
+ /// This function will attempt to write the entire contents of `buf`, but
+ /// the entire write may not succeed, or the write may also generate an
+ /// error. A call to `write` represents *at most one* attempt to write to
+ /// any wrapped object.
+ ///
+ /// # Return
+ ///
+ /// If the return value is `Ok(n)` then it must be guaranteed that `n <=
+ /// buf.len()`. A return value of `0` typically means that the
+ /// underlying object is no longer able to accept bytes and will likely
+ /// not be able to in the future as well, or that the buffer provided is
+ /// empty.
+ ///
+ /// # Errors
+ ///
+ /// Each call to `write` may generate an I/O error indicating that the
+ /// operation could not be completed. If an error is returned then no bytes
+ /// in the buffer were written to this writer.
+ ///
+ /// It is **not** considered an error if the entire buffer could not be
+ /// written to this writer.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancellation safe in the sense that if it is used as
+ /// the event in a [`tokio::select!`](crate::select) statement and some
+ /// other branch completes first, then it is guaranteed that no data was
+ /// written to this `AsyncWrite`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncWriteExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut file = File::create("foo.txt").await?;
+ ///
+ /// // Writes some prefix of the byte string, not necessarily all of it.
+ /// file.write(b"some bytes").await?;
+ /// Ok(())
+ /// }
+ /// ```
+ fn write<'a>(&'a mut self, src: &'a [u8]) -> Write<'a, Self>
+ where
+ Self: Unpin,
+ {
+ write(self, src)
+ }
+
+ /// Like [`write`], except that it writes from a slice of buffers.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize>;
+ /// ```
+ ///
+ /// See [`AsyncWrite::poll_write_vectored`] for more details.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancellation safe in the sense that if it is used as
+ /// the event in a [`tokio::select!`](crate::select) statement and some
+ /// other branch completes first, then it is guaranteed that no data was
+ /// written to this `AsyncWrite`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncWriteExt};
+ /// use tokio::fs::File;
+ /// use std::io::IoSlice;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut file = File::create("foo.txt").await?;
+ ///
+ /// let bufs: &[_] = &[
+ /// IoSlice::new(b"hello"),
+ /// IoSlice::new(b" "),
+ /// IoSlice::new(b"world"),
+ /// ];
+ ///
+ /// file.write_vectored(&bufs).await?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`write`]: AsyncWriteExt::write
+ fn write_vectored<'a, 'b>(&'a mut self, bufs: &'a [IoSlice<'b>]) -> WriteVectored<'a, 'b, Self>
+ where
+ Self: Unpin,
+ {
+ write_vectored(self, bufs)
+ }
+
+ /// Writes a buffer into this writer, advancing the buffer's internal
+ /// cursor.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_buf<B: Buf>(&mut self, buf: &mut B) -> io::Result<usize>;
+ /// ```
+ ///
+ /// This function will attempt to write the entire contents of `buf`, but
+ /// the entire write may not succeed, or the write may also generate an
+ /// error. After the operation completes, the buffer's
+ /// internal cursor is advanced by the number of bytes written. A
+ /// subsequent call to `write_buf` using the **same** `buf` value will
+ /// resume from the point that the first call to `write_buf` completed.
+ /// A call to `write_buf` represents *at most one* attempt to write to any
+ /// wrapped object.
+ ///
+ /// # Return
+ ///
+ /// If the return value is `Ok(n)` then it must be guaranteed that `n <=
+ /// buf.len()`. A return value of `0` typically means that the
+ /// underlying object is no longer able to accept bytes and will likely
+ /// not be able to in the future as well, or that the buffer provided is
+ /// empty.
+ ///
+ /// # Errors
+ ///
+ /// Each call to `write` may generate an I/O error indicating that the
+ /// operation could not be completed. If an error is returned then no bytes
+ /// in the buffer were written to this writer.
+ ///
+ /// It is **not** considered an error if the entire buffer could not be
+ /// written to this writer.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is cancellation safe in the sense that if it is used as
+ /// the event in a [`tokio::select!`](crate::select) statement and some
+ /// other branch completes first, then it is guaranteed that no data was
+ /// written to this `AsyncWrite`.
+ ///
+ /// # Examples
+ ///
+ /// [`File`] implements [`AsyncWrite`] and [`Cursor`]`<&[u8]>` implements [`Buf`]:
+ ///
+ /// [`File`]: crate::fs::File
+ /// [`Buf`]: bytes::Buf
+ /// [`Cursor`]: std::io::Cursor
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncWriteExt};
+ /// use tokio::fs::File;
+ ///
+ /// use bytes::Buf;
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut file = File::create("foo.txt").await?;
+ /// let mut buffer = Cursor::new(b"data to write");
+ ///
+ /// // Loop until the entire contents of the buffer are written to
+ /// // the file.
+ /// while buffer.has_remaining() {
+ /// // Writes some prefix of the byte string, not necessarily
+ /// // all of it.
+ /// file.write_buf(&mut buffer).await?;
+ /// }
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_buf<'a, B>(&'a mut self, src: &'a mut B) -> WriteBuf<'a, Self, B>
+ where
+ Self: Sized + Unpin,
+ B: Buf,
+ {
+ write_buf(self, src)
+ }
+
+ /// Attempts to write an entire buffer into this writer
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_all_buf(&mut self, buf: impl Buf) -> Result<(), io::Error> {
+ /// while buf.has_remaining() {
+ /// self.write_buf(&mut buf).await?;
+ /// }
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// This method will continuously call [`write`] until
+ /// [`buf.has_remaining()`](bytes::Buf::has_remaining) returns false. This method will not
+ /// return until the entire buffer has been successfully written or an error occurs. The
+ /// first error generated will be returned.
+ ///
+ /// The buffer is advanced after each chunk is successfully written. After failure,
+ /// `src.chunk()` will return the chunk that failed to write.
+ ///
+ /// # Cancel safety
+ ///
+ /// If `write_all_buf` is used as the event in a
+ /// [`tokio::select!`](crate::select) statement and some other branch
+ /// completes first, then the data in the provided buffer may have been
+ /// partially written. However, it is guaranteed that the provided
+ /// buffer has been [advanced] by the amount of bytes that have been
+ /// partially written.
+ ///
+ /// # Examples
+ ///
+ /// [`File`] implements [`AsyncWrite`] and [`Cursor`]`<&[u8]>` implements [`Buf`]:
+ ///
+ /// [`File`]: crate::fs::File
+ /// [`Buf`]: bytes::Buf
+ /// [`Cursor`]: std::io::Cursor
+ /// [advanced]: bytes::Buf::advance
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncWriteExt};
+ /// use tokio::fs::File;
+ ///
+ /// use std::io::Cursor;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut file = File::create("foo.txt").await?;
+ /// let mut buffer = Cursor::new(b"data to write");
+ ///
+ /// file.write_all_buf(&mut buffer).await?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`write`]: AsyncWriteExt::write
+ fn write_all_buf<'a, B>(&'a mut self, src: &'a mut B) -> WriteAllBuf<'a, Self, B>
+ where
+ Self: Sized + Unpin,
+ B: Buf,
+ {
+ write_all_buf(self, src)
+ }
+
+ /// Attempts to write an entire buffer into this writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_all(&mut self, buf: &[u8]) -> io::Result<()>;
+ /// ```
+ ///
+ /// This method will continuously call [`write`] until there is no more data
+ /// to be written. This method will not return until the entire buffer
+ /// has been successfully written or such an error occurs. The first
+ /// error generated from this method will be returned.
+ ///
+ /// # Cancel safety
+ ///
+ /// This method is not cancellation safe. If it is used as the event
+ /// in a [`tokio::select!`](crate::select) statement and some other
+ /// branch completes first, then the provided buffer may have been
+ /// partially written, but future calls to `write_all` will start over
+ /// from the beginning of the buffer.
+ ///
+ /// # Errors
+ ///
+ /// This function will return the first error that [`write`] returns.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, AsyncWriteExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut buffer = File::create("foo.txt").await?;
+ ///
+ /// buffer.write_all(b"some bytes").await?;
+ /// Ok(())
+ /// }
+ /// ```
+ ///
+ /// [`write`]: AsyncWriteExt::write
+ fn write_all<'a>(&'a mut self, src: &'a [u8]) -> WriteAll<'a, Self>
+ where
+ Self: Unpin,
+ {
+ write_all(self, src)
+ }
+
+ write_impl! {
+ /// Writes an unsigned 8-bit integer to the underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u8(&mut self, n: u8) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 8 bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u8(2).await?;
+ /// writer.write_u8(5).await?;
+ ///
+ /// assert_eq!(writer, b"\x02\x05");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u8(&mut self, n: u8) -> WriteU8;
+
+ /// Writes an unsigned 8-bit integer to the underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i8(&mut self, n: i8) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 8 bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u8(2).await?;
+ /// writer.write_u8(5).await?;
+ ///
+ /// assert_eq!(writer, b"\x02\x05");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i8(&mut self, n: i8) -> WriteI8;
+
+ /// Writes an unsigned 16-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u16(&mut self, n: u16) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 16-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u16(517).await?;
+ /// writer.write_u16(768).await?;
+ ///
+ /// assert_eq!(writer, b"\x02\x05\x03\x00");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u16(&mut self, n: u16) -> WriteU16;
+
+ /// Writes a signed 16-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i16(&mut self, n: i16) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 16-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i16(193).await?;
+ /// writer.write_i16(-132).await?;
+ ///
+ /// assert_eq!(writer, b"\x00\xc1\xff\x7c");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i16(&mut self, n: i16) -> WriteI16;
+
+ /// Writes an unsigned 32-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u32(&mut self, n: u32) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 32-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u32(267).await?;
+ /// writer.write_u32(1205419366).await?;
+ ///
+ /// assert_eq!(writer, b"\x00\x00\x01\x0b\x47\xd9\x3d\x66");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u32(&mut self, n: u32) -> WriteU32;
+
+ /// Writes a signed 32-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i32(&mut self, n: i32) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 32-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i32(267).await?;
+ /// writer.write_i32(1205419366).await?;
+ ///
+ /// assert_eq!(writer, b"\x00\x00\x01\x0b\x47\xd9\x3d\x66");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i32(&mut self, n: i32) -> WriteI32;
+
+ /// Writes an unsigned 64-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u64(&mut self, n: u64) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 64-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u64(918733457491587).await?;
+ /// writer.write_u64(143).await?;
+ ///
+ /// assert_eq!(writer, b"\x00\x03\x43\x95\x4d\x60\x86\x83\x00\x00\x00\x00\x00\x00\x00\x8f");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u64(&mut self, n: u64) -> WriteU64;
+
+ /// Writes an signed 64-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i64(&mut self, n: i64) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 64-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i64(i64::MIN).await?;
+ /// writer.write_i64(i64::MAX).await?;
+ ///
+ /// assert_eq!(writer, b"\x80\x00\x00\x00\x00\x00\x00\x00\x7f\xff\xff\xff\xff\xff\xff\xff");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i64(&mut self, n: i64) -> WriteI64;
+
+ /// Writes an unsigned 128-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u128(&mut self, n: u128) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 128-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u128(16947640962301618749969007319746179).await?;
+ ///
+ /// assert_eq!(writer, vec![
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83,
+ /// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83
+ /// ]);
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u128(&mut self, n: u128) -> WriteU128;
+
+ /// Writes an signed 128-bit integer in big-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i128(&mut self, n: i128) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 128-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i128(i128::MIN).await?;
+ ///
+ /// assert_eq!(writer, vec![
+ /// 0x80, 0, 0, 0, 0, 0, 0, 0,
+ /// 0, 0, 0, 0, 0, 0, 0, 0
+ /// ]);
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i128(&mut self, n: i128) -> WriteI128;
+
+
+ /// Writes an unsigned 16-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u16_le(&mut self, n: u16) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 16-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u16_le(517).await?;
+ /// writer.write_u16_le(768).await?;
+ ///
+ /// assert_eq!(writer, b"\x05\x02\x00\x03");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u16_le(&mut self, n: u16) -> WriteU16Le;
+
+ /// Writes a signed 16-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i16_le(&mut self, n: i16) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 16-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i16_le(193).await?;
+ /// writer.write_i16_le(-132).await?;
+ ///
+ /// assert_eq!(writer, b"\xc1\x00\x7c\xff");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i16_le(&mut self, n: i16) -> WriteI16Le;
+
+ /// Writes an unsigned 32-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u32_le(&mut self, n: u32) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 32-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u32_le(267).await?;
+ /// writer.write_u32_le(1205419366).await?;
+ ///
+ /// assert_eq!(writer, b"\x0b\x01\x00\x00\x66\x3d\xd9\x47");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u32_le(&mut self, n: u32) -> WriteU32Le;
+
+ /// Writes a signed 32-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i32_le(&mut self, n: i32) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 32-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i32_le(267).await?;
+ /// writer.write_i32_le(1205419366).await?;
+ ///
+ /// assert_eq!(writer, b"\x0b\x01\x00\x00\x66\x3d\xd9\x47");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i32_le(&mut self, n: i32) -> WriteI32Le;
+
+ /// Writes an unsigned 64-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u64_le(&mut self, n: u64) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 64-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u64_le(918733457491587).await?;
+ /// writer.write_u64_le(143).await?;
+ ///
+ /// assert_eq!(writer, b"\x83\x86\x60\x4d\x95\x43\x03\x00\x8f\x00\x00\x00\x00\x00\x00\x00");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u64_le(&mut self, n: u64) -> WriteU64Le;
+
+ /// Writes an signed 64-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i64_le(&mut self, n: i64) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 64-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i64_le(i64::MIN).await?;
+ /// writer.write_i64_le(i64::MAX).await?;
+ ///
+ /// assert_eq!(writer, b"\x00\x00\x00\x00\x00\x00\x00\x80\xff\xff\xff\xff\xff\xff\xff\x7f");
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i64_le(&mut self, n: i64) -> WriteI64Le;
+
+ /// Writes an unsigned 128-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_u128_le(&mut self, n: u128) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write unsigned 128-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_u128_le(16947640962301618749969007319746179).await?;
+ ///
+ /// assert_eq!(writer, vec![
+ /// 0x83, 0x86, 0x60, 0x4d, 0x95, 0x43, 0x03, 0x00,
+ /// 0x83, 0x86, 0x60, 0x4d, 0x95, 0x43, 0x03, 0x00,
+ /// ]);
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_u128_le(&mut self, n: u128) -> WriteU128Le;
+
+ /// Writes an signed 128-bit integer in little-endian order to the
+ /// underlying writer.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn write_i128_le(&mut self, n: i128) -> io::Result<()>;
+ /// ```
+ ///
+ /// It is recommended to use a buffered writer to avoid excessive
+ /// syscalls.
+ ///
+ /// # Errors
+ ///
+ /// This method returns the same errors as [`AsyncWriteExt::write_all`].
+ ///
+ /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
+ ///
+ /// # Examples
+ ///
+ /// Write signed 128-bit integers to a `AsyncWrite`:
+ ///
+ /// ```rust
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let mut writer = Vec::new();
+ ///
+ /// writer.write_i128_le(i128::MIN).await?;
+ ///
+ /// assert_eq!(writer, vec![
+ /// 0, 0, 0, 0, 0, 0, 0,
+ /// 0, 0, 0, 0, 0, 0, 0, 0, 0x80
+ /// ]);
+ /// Ok(())
+ /// }
+ /// ```
+ fn write_i128_le(&mut self, n: i128) -> WriteI128Le;
+ }
+
+ /// Flushes this output stream, ensuring that all intermediately buffered
+ /// contents reach their destination.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn flush(&mut self) -> io::Result<()>;
+ /// ```
+ ///
+ /// # Errors
+ ///
+ /// It is considered an error if not all bytes could be written due to
+ /// I/O errors or EOF being reached.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, BufWriter, AsyncWriteExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let f = File::create("foo.txt").await?;
+ /// let mut buffer = BufWriter::new(f);
+ ///
+ /// buffer.write_all(b"some bytes").await?;
+ /// buffer.flush().await?;
+ /// Ok(())
+ /// }
+ /// ```
+ fn flush(&mut self) -> Flush<'_, Self>
+ where
+ Self: Unpin,
+ {
+ flush(self)
+ }
+
+ /// Shuts down the output stream, ensuring that the value can be dropped
+ /// cleanly.
+ ///
+ /// Equivalent to:
+ ///
+ /// ```ignore
+ /// async fn shutdown(&mut self) -> io::Result<()>;
+ /// ```
+ ///
+ /// Similar to [`flush`], all intermediately buffered is written to the
+ /// underlying stream. Once the operation completes, the caller should
+ /// no longer attempt to write to the stream. For example, the
+ /// `TcpStream` implementation will issue a `shutdown(Write)` sys call.
+ ///
+ /// [`flush`]: fn@crate::io::AsyncWriteExt::flush
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use tokio::io::{self, BufWriter, AsyncWriteExt};
+ /// use tokio::fs::File;
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let f = File::create("foo.txt").await?;
+ /// let mut buffer = BufWriter::new(f);
+ ///
+ /// buffer.write_all(b"some bytes").await?;
+ /// buffer.shutdown().await?;
+ /// Ok(())
+ /// }
+ /// ```
+ fn shutdown(&mut self) -> Shutdown<'_, Self>
+ where
+ Self: Unpin,
+ {
+ shutdown(self)
+ }
+ }
+}
+
+impl<W: AsyncWrite + ?Sized> AsyncWriteExt for W {}
diff --git a/vendor/tokio/src/io/util/buf_reader.rs b/vendor/tokio/src/io/util/buf_reader.rs
new file mode 100644
index 000000000..7cfd46ce0
--- /dev/null
+++ b/vendor/tokio/src/io/util/buf_reader.rs
@@ -0,0 +1,312 @@
+use crate::io::util::DEFAULT_BUF_SIZE;
+use crate::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf};
+
+use pin_project_lite::pin_project;
+use std::io::{self, IoSlice, SeekFrom};
+use std::pin::Pin;
+use std::task::{Context, Poll};
+use std::{cmp, fmt, mem};
+
+pin_project! {
+ /// The `BufReader` struct adds buffering to any reader.
+ ///
+ /// It can be excessively inefficient to work directly with a [`AsyncRead`]
+ /// instance. A `BufReader` performs large, infrequent reads on the underlying
+ /// [`AsyncRead`] and maintains an in-memory buffer of the results.
+ ///
+ /// `BufReader` can improve the speed of programs that make *small* and
+ /// *repeated* read calls to the same file or network socket. It does not
+ /// help when reading very large amounts at once, or reading just one or a few
+ /// times. It also provides no advantage when reading from a source that is
+ /// already in memory, like a `Vec<u8>`.
+ ///
+ /// When the `BufReader` is dropped, the contents of its buffer will be
+ /// discarded. Creating multiple instances of a `BufReader` on the same
+ /// stream can cause data loss.
+ #[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+ pub struct BufReader<R> {
+ #[pin]
+ pub(super) inner: R,
+ pub(super) buf: Box<[u8]>,
+ pub(super) pos: usize,
+ pub(super) cap: usize,
+ pub(super) seek_state: SeekState,
+ }
+}
+
+impl<R: AsyncRead> BufReader<R> {
+ /// Creates a new `BufReader` with a default buffer capacity. The default is currently 8 KB,
+ /// but may change in the future.
+ pub fn new(inner: R) -> Self {
+ Self::with_capacity(DEFAULT_BUF_SIZE, inner)
+ }
+
+ /// Creates a new `BufReader` with the specified buffer capacity.
+ pub fn with_capacity(capacity: usize, inner: R) -> Self {
+ let buffer = vec![0; capacity];
+ Self {
+ inner,
+ buf: buffer.into_boxed_slice(),
+ pos: 0,
+ cap: 0,
+ seek_state: SeekState::Init,
+ }
+ }
+
+ /// Gets a reference to the underlying reader.
+ ///
+ /// It is inadvisable to directly read from the underlying reader.
+ pub fn get_ref(&self) -> &R {
+ &self.inner
+ }
+
+ /// Gets a mutable reference to the underlying reader.
+ ///
+ /// It is inadvisable to directly read from the underlying reader.
+ pub fn get_mut(&mut self) -> &mut R {
+ &mut self.inner
+ }
+
+ /// Gets a pinned mutable reference to the underlying reader.
+ ///
+ /// It is inadvisable to directly read from the underlying reader.
+ pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut R> {
+ self.project().inner
+ }
+
+ /// Consumes this `BufReader`, returning the underlying reader.
+ ///
+ /// Note that any leftover data in the internal buffer is lost.
+ pub fn into_inner(self) -> R {
+ self.inner
+ }
+
+ /// Returns a reference to the internally buffered data.
+ ///
+ /// Unlike `fill_buf`, this will not attempt to fill the buffer if it is empty.
+ pub fn buffer(&self) -> &[u8] {
+ &self.buf[self.pos..self.cap]
+ }
+
+ /// Invalidates all data in the internal buffer.
+ #[inline]
+ fn discard_buffer(self: Pin<&mut Self>) {
+ let me = self.project();
+ *me.pos = 0;
+ *me.cap = 0;
+ }
+}
+
+impl<R: AsyncRead> AsyncRead for BufReader<R> {
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ // If we don't have any buffered data and we're doing a massive read
+ // (larger than our internal buffer), bypass our internal buffer
+ // entirely.
+ if self.pos == self.cap && buf.remaining() >= self.buf.len() {
+ let res = ready!(self.as_mut().get_pin_mut().poll_read(cx, buf));
+ self.discard_buffer();
+ return Poll::Ready(res);
+ }
+ let rem = ready!(self.as_mut().poll_fill_buf(cx))?;
+ let amt = std::cmp::min(rem.len(), buf.remaining());
+ buf.put_slice(&rem[..amt]);
+ self.consume(amt);
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl<R: AsyncRead> AsyncBufRead for BufReader<R> {
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ let me = self.project();
+
+ // If we've reached the end of our internal buffer then we need to fetch
+ // some more data from the underlying reader.
+ // Branch using `>=` instead of the more correct `==`
+ // to tell the compiler that the pos..cap slice is always valid.
+ if *me.pos >= *me.cap {
+ debug_assert!(*me.pos == *me.cap);
+ let mut buf = ReadBuf::new(me.buf);
+ ready!(me.inner.poll_read(cx, &mut buf))?;
+ *me.cap = buf.filled().len();
+ *me.pos = 0;
+ }
+ Poll::Ready(Ok(&me.buf[*me.pos..*me.cap]))
+ }
+
+ fn consume(self: Pin<&mut Self>, amt: usize) {
+ let me = self.project();
+ *me.pos = cmp::min(*me.pos + amt, *me.cap);
+ }
+}
+
+#[derive(Debug, Clone, Copy)]
+pub(super) enum SeekState {
+ /// start_seek has not been called.
+ Init,
+ /// start_seek has been called, but poll_complete has not yet been called.
+ Start(SeekFrom),
+ /// Waiting for completion of the first poll_complete in the `n.checked_sub(remainder).is_none()` branch.
+ PendingOverflowed(i64),
+ /// Waiting for completion of poll_complete.
+ Pending,
+}
+
+/// Seek to an offset, in bytes, in the underlying reader.
+///
+/// The position used for seeking with `SeekFrom::Current(_)` is the
+/// position the underlying reader would be at if the `BufReader` had no
+/// internal buffer.
+///
+/// Seeking always discards the internal buffer, even if the seek position
+/// would otherwise fall within it. This guarantees that calling
+/// `.into_inner()` immediately after a seek yields the underlying reader
+/// at the same position.
+///
+/// See [`AsyncSeek`] for more details.
+///
+/// Note: In the edge case where you're seeking with `SeekFrom::Current(n)`
+/// where `n` minus the internal buffer length overflows an `i64`, two
+/// seeks will be performed instead of one. If the second seek returns
+/// `Err`, the underlying reader will be left at the same position it would
+/// have if you called `seek` with `SeekFrom::Current(0)`.
+impl<R: AsyncRead + AsyncSeek> AsyncSeek for BufReader<R> {
+ fn start_seek(self: Pin<&mut Self>, pos: SeekFrom) -> io::Result<()> {
+ // We needs to call seek operation multiple times.
+ // And we should always call both start_seek and poll_complete,
+ // as start_seek alone cannot guarantee that the operation will be completed.
+ // poll_complete receives a Context and returns a Poll, so it cannot be called
+ // inside start_seek.
+ *self.project().seek_state = SeekState::Start(pos);
+ Ok(())
+ }
+
+ fn poll_complete(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
+ let res = match mem::replace(self.as_mut().project().seek_state, SeekState::Init) {
+ SeekState::Init => {
+ // 1.x AsyncSeek recommends calling poll_complete before start_seek.
+ // We don't have to guarantee that the value returned by
+ // poll_complete called without start_seek is correct,
+ // so we'll return 0.
+ return Poll::Ready(Ok(0));
+ }
+ SeekState::Start(SeekFrom::Current(n)) => {
+ let remainder = (self.cap - self.pos) as i64;
+ // it should be safe to assume that remainder fits within an i64 as the alternative
+ // means we managed to allocate 8 exbibytes and that's absurd.
+ // But it's not out of the realm of possibility for some weird underlying reader to
+ // support seeking by i64::MIN so we need to handle underflow when subtracting
+ // remainder.
+ if let Some(offset) = n.checked_sub(remainder) {
+ self.as_mut()
+ .get_pin_mut()
+ .start_seek(SeekFrom::Current(offset))?;
+ self.as_mut().get_pin_mut().poll_complete(cx)?
+ } else {
+ // seek backwards by our remainder, and then by the offset
+ self.as_mut()
+ .get_pin_mut()
+ .start_seek(SeekFrom::Current(-remainder))?;
+ if self.as_mut().get_pin_mut().poll_complete(cx)?.is_pending() {
+ *self.as_mut().project().seek_state = SeekState::PendingOverflowed(n);
+ return Poll::Pending;
+ }
+
+ // https://github.com/rust-lang/rust/pull/61157#issuecomment-495932676
+ self.as_mut().discard_buffer();
+
+ self.as_mut()
+ .get_pin_mut()
+ .start_seek(SeekFrom::Current(n))?;
+ self.as_mut().get_pin_mut().poll_complete(cx)?
+ }
+ }
+ SeekState::PendingOverflowed(n) => {
+ if self.as_mut().get_pin_mut().poll_complete(cx)?.is_pending() {
+ *self.as_mut().project().seek_state = SeekState::PendingOverflowed(n);
+ return Poll::Pending;
+ }
+
+ // https://github.com/rust-lang/rust/pull/61157#issuecomment-495932676
+ self.as_mut().discard_buffer();
+
+ self.as_mut()
+ .get_pin_mut()
+ .start_seek(SeekFrom::Current(n))?;
+ self.as_mut().get_pin_mut().poll_complete(cx)?
+ }
+ SeekState::Start(pos) => {
+ // Seeking with Start/End doesn't care about our buffer length.
+ self.as_mut().get_pin_mut().start_seek(pos)?;
+ self.as_mut().get_pin_mut().poll_complete(cx)?
+ }
+ SeekState::Pending => self.as_mut().get_pin_mut().poll_complete(cx)?,
+ };
+
+ match res {
+ Poll::Ready(res) => {
+ self.discard_buffer();
+ Poll::Ready(Ok(res))
+ }
+ Poll::Pending => {
+ *self.as_mut().project().seek_state = SeekState::Pending;
+ Poll::Pending
+ }
+ }
+ }
+}
+
+impl<R: AsyncRead + AsyncWrite> AsyncWrite for BufReader<R> {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.get_pin_mut().poll_write(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.get_pin_mut().poll_write_vectored(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ self.get_ref().is_write_vectored()
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.get_pin_mut().poll_flush(cx)
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.get_pin_mut().poll_shutdown(cx)
+ }
+}
+
+impl<R: fmt::Debug> fmt::Debug for BufReader<R> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("BufReader")
+ .field("reader", &self.inner)
+ .field(
+ "buffer",
+ &format_args!("{}/{}", self.cap - self.pos, self.buf.len()),
+ )
+ .finish()
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<BufReader<()>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/buf_stream.rs b/vendor/tokio/src/io/util/buf_stream.rs
new file mode 100644
index 000000000..595c142ac
--- /dev/null
+++ b/vendor/tokio/src/io/util/buf_stream.rs
@@ -0,0 +1,207 @@
+use crate::io::util::{BufReader, BufWriter};
+use crate::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf};
+
+use pin_project_lite::pin_project;
+use std::io::{self, IoSlice, SeekFrom};
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Wraps a type that is [`AsyncWrite`] and [`AsyncRead`], and buffers its input and output.
+ ///
+ /// It can be excessively inefficient to work directly with something that implements [`AsyncWrite`]
+ /// and [`AsyncRead`]. For example, every `write`, however small, has to traverse the syscall
+ /// interface, and similarly, every read has to do the same. The [`BufWriter`] and [`BufReader`]
+ /// types aid with these problems respectively, but do so in only one direction. `BufStream` wraps
+ /// one in the other so that both directions are buffered. See their documentation for details.
+ #[derive(Debug)]
+ #[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+ pub struct BufStream<RW> {
+ #[pin]
+ inner: BufReader<BufWriter<RW>>,
+ }
+}
+
+impl<RW: AsyncRead + AsyncWrite> BufStream<RW> {
+ /// Wraps a type in both [`BufWriter`] and [`BufReader`].
+ ///
+ /// See the documentation for those types and [`BufStream`] for details.
+ pub fn new(stream: RW) -> BufStream<RW> {
+ BufStream {
+ inner: BufReader::new(BufWriter::new(stream)),
+ }
+ }
+
+ /// Creates a `BufStream` with the specified [`BufReader`] capacity and [`BufWriter`]
+ /// capacity.
+ ///
+ /// See the documentation for those types and [`BufStream`] for details.
+ pub fn with_capacity(
+ reader_capacity: usize,
+ writer_capacity: usize,
+ stream: RW,
+ ) -> BufStream<RW> {
+ BufStream {
+ inner: BufReader::with_capacity(
+ reader_capacity,
+ BufWriter::with_capacity(writer_capacity, stream),
+ ),
+ }
+ }
+
+ /// Gets a reference to the underlying I/O object.
+ ///
+ /// It is inadvisable to directly read from the underlying I/O object.
+ pub fn get_ref(&self) -> &RW {
+ self.inner.get_ref().get_ref()
+ }
+
+ /// Gets a mutable reference to the underlying I/O object.
+ ///
+ /// It is inadvisable to directly read from the underlying I/O object.
+ pub fn get_mut(&mut self) -> &mut RW {
+ self.inner.get_mut().get_mut()
+ }
+
+ /// Gets a pinned mutable reference to the underlying I/O object.
+ ///
+ /// It is inadvisable to directly read from the underlying I/O object.
+ pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut RW> {
+ self.project().inner.get_pin_mut().get_pin_mut()
+ }
+
+ /// Consumes this `BufStream`, returning the underlying I/O object.
+ ///
+ /// Note that any leftover data in the internal buffer is lost.
+ pub fn into_inner(self) -> RW {
+ self.inner.into_inner().into_inner()
+ }
+}
+
+impl<RW> From<BufReader<BufWriter<RW>>> for BufStream<RW> {
+ fn from(b: BufReader<BufWriter<RW>>) -> Self {
+ BufStream { inner: b }
+ }
+}
+
+impl<RW> From<BufWriter<BufReader<RW>>> for BufStream<RW> {
+ fn from(b: BufWriter<BufReader<RW>>) -> Self {
+ // we need to "invert" the reader and writer
+ let BufWriter {
+ inner:
+ BufReader {
+ inner,
+ buf: rbuf,
+ pos,
+ cap,
+ seek_state: rseek_state,
+ },
+ buf: wbuf,
+ written,
+ seek_state: wseek_state,
+ } = b;
+
+ BufStream {
+ inner: BufReader {
+ inner: BufWriter {
+ inner,
+ buf: wbuf,
+ written,
+ seek_state: wseek_state,
+ },
+ buf: rbuf,
+ pos,
+ cap,
+ seek_state: rseek_state,
+ },
+ }
+ }
+}
+
+impl<RW: AsyncRead + AsyncWrite> AsyncWrite for BufStream<RW> {
+ fn poll_write(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ self.project().inner.poll_write(cx, buf)
+ }
+
+ fn poll_write_vectored(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ self.project().inner.poll_write_vectored(cx, bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ self.inner.is_write_vectored()
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.project().inner.poll_flush(cx)
+ }
+
+ fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ self.project().inner.poll_shutdown(cx)
+ }
+}
+
+impl<RW: AsyncRead + AsyncWrite> AsyncRead for BufStream<RW> {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.project().inner.poll_read(cx, buf)
+ }
+}
+
+/// Seek to an offset, in bytes, in the underlying stream.
+///
+/// The position used for seeking with `SeekFrom::Current(_)` is the
+/// position the underlying stream would be at if the `BufStream` had no
+/// internal buffer.
+///
+/// Seeking always discards the internal buffer, even if the seek position
+/// would otherwise fall within it. This guarantees that calling
+/// `.into_inner()` immediately after a seek yields the underlying reader
+/// at the same position.
+///
+/// See [`AsyncSeek`] for more details.
+///
+/// Note: In the edge case where you're seeking with `SeekFrom::Current(n)`
+/// where `n` minus the internal buffer length overflows an `i64`, two
+/// seeks will be performed instead of one. If the second seek returns
+/// `Err`, the underlying reader will be left at the same position it would
+/// have if you called `seek` with `SeekFrom::Current(0)`.
+impl<RW: AsyncRead + AsyncWrite + AsyncSeek> AsyncSeek for BufStream<RW> {
+ fn start_seek(self: Pin<&mut Self>, position: SeekFrom) -> io::Result<()> {
+ self.project().inner.start_seek(position)
+ }
+
+ fn poll_complete(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
+ self.project().inner.poll_complete(cx)
+ }
+}
+
+impl<RW: AsyncRead + AsyncWrite> AsyncBufRead for BufStream<RW> {
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ self.project().inner.poll_fill_buf(cx)
+ }
+
+ fn consume(self: Pin<&mut Self>, amt: usize) {
+ self.project().inner.consume(amt)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<BufStream<()>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/buf_writer.rs b/vendor/tokio/src/io/util/buf_writer.rs
new file mode 100644
index 000000000..8dd1bba60
--- /dev/null
+++ b/vendor/tokio/src/io/util/buf_writer.rs
@@ -0,0 +1,310 @@
+use crate::io::util::DEFAULT_BUF_SIZE;
+use crate::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf};
+
+use pin_project_lite::pin_project;
+use std::fmt;
+use std::io::{self, IoSlice, SeekFrom, Write};
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Wraps a writer and buffers its output.
+ ///
+ /// It can be excessively inefficient to work directly with something that
+ /// implements [`AsyncWrite`]. A `BufWriter` keeps an in-memory buffer of data and
+ /// writes it to an underlying writer in large, infrequent batches.
+ ///
+ /// `BufWriter` can improve the speed of programs that make *small* and
+ /// *repeated* write calls to the same file or network socket. It does not
+ /// help when writing very large amounts at once, or writing just one or a few
+ /// times. It also provides no advantage when writing to a destination that is
+ /// in memory, like a `Vec<u8>`.
+ ///
+ /// When the `BufWriter` is dropped, the contents of its buffer will be
+ /// discarded. Creating multiple instances of a `BufWriter` on the same
+ /// stream can cause data loss. If you need to write out the contents of its
+ /// buffer, you must manually call flush before the writer is dropped.
+ ///
+ /// [`AsyncWrite`]: AsyncWrite
+ /// [`flush`]: super::AsyncWriteExt::flush
+ ///
+ #[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+ pub struct BufWriter<W> {
+ #[pin]
+ pub(super) inner: W,
+ pub(super) buf: Vec<u8>,
+ pub(super) written: usize,
+ pub(super) seek_state: SeekState,
+ }
+}
+
+impl<W: AsyncWrite> BufWriter<W> {
+ /// Creates a new `BufWriter` with a default buffer capacity. The default is currently 8 KB,
+ /// but may change in the future.
+ pub fn new(inner: W) -> Self {
+ Self::with_capacity(DEFAULT_BUF_SIZE, inner)
+ }
+
+ /// Creates a new `BufWriter` with the specified buffer capacity.
+ pub fn with_capacity(cap: usize, inner: W) -> Self {
+ Self {
+ inner,
+ buf: Vec::with_capacity(cap),
+ written: 0,
+ seek_state: SeekState::Init,
+ }
+ }
+
+ fn flush_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ let mut me = self.project();
+
+ let len = me.buf.len();
+ let mut ret = Ok(());
+ while *me.written < len {
+ match ready!(me.inner.as_mut().poll_write(cx, &me.buf[*me.written..])) {
+ Ok(0) => {
+ ret = Err(io::Error::new(
+ io::ErrorKind::WriteZero,
+ "failed to write the buffered data",
+ ));
+ break;
+ }
+ Ok(n) => *me.written += n,
+ Err(e) => {
+ ret = Err(e);
+ break;
+ }
+ }
+ }
+ if *me.written > 0 {
+ me.buf.drain(..*me.written);
+ }
+ *me.written = 0;
+ Poll::Ready(ret)
+ }
+
+ /// Gets a reference to the underlying writer.
+ pub fn get_ref(&self) -> &W {
+ &self.inner
+ }
+
+ /// Gets a mutable reference to the underlying writer.
+ ///
+ /// It is inadvisable to directly write to the underlying writer.
+ pub fn get_mut(&mut self) -> &mut W {
+ &mut self.inner
+ }
+
+ /// Gets a pinned mutable reference to the underlying writer.
+ ///
+ /// It is inadvisable to directly write to the underlying writer.
+ pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut W> {
+ self.project().inner
+ }
+
+ /// Consumes this `BufWriter`, returning the underlying writer.
+ ///
+ /// Note that any leftover data in the internal buffer is lost.
+ pub fn into_inner(self) -> W {
+ self.inner
+ }
+
+ /// Returns a reference to the internally buffered data.
+ pub fn buffer(&self) -> &[u8] {
+ &self.buf
+ }
+}
+
+impl<W: AsyncWrite> AsyncWrite for BufWriter<W> {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<io::Result<usize>> {
+ if self.buf.len() + buf.len() > self.buf.capacity() {
+ ready!(self.as_mut().flush_buf(cx))?;
+ }
+
+ let me = self.project();
+ if buf.len() >= me.buf.capacity() {
+ me.inner.poll_write(cx, buf)
+ } else {
+ Poll::Ready(me.buf.write(buf))
+ }
+ }
+
+ fn poll_write_vectored(
+ mut self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ mut bufs: &[IoSlice<'_>],
+ ) -> Poll<io::Result<usize>> {
+ if self.inner.is_write_vectored() {
+ let total_len = bufs
+ .iter()
+ .fold(0usize, |acc, b| acc.saturating_add(b.len()));
+ if total_len > self.buf.capacity() - self.buf.len() {
+ ready!(self.as_mut().flush_buf(cx))?;
+ }
+ let me = self.as_mut().project();
+ if total_len >= me.buf.capacity() {
+ // It's more efficient to pass the slices directly to the
+ // underlying writer than to buffer them.
+ // The case when the total_len calculation saturates at
+ // usize::MAX is also handled here.
+ me.inner.poll_write_vectored(cx, bufs)
+ } else {
+ bufs.iter().for_each(|b| me.buf.extend_from_slice(b));
+ Poll::Ready(Ok(total_len))
+ }
+ } else {
+ // Remove empty buffers at the beginning of bufs.
+ while bufs.first().map(|buf| buf.len()) == Some(0) {
+ bufs = &bufs[1..];
+ }
+ if bufs.is_empty() {
+ return Poll::Ready(Ok(0));
+ }
+ // Flush if the first buffer doesn't fit.
+ let first_len = bufs[0].len();
+ if first_len > self.buf.capacity() - self.buf.len() {
+ ready!(self.as_mut().flush_buf(cx))?;
+ debug_assert!(self.buf.is_empty());
+ }
+ let me = self.as_mut().project();
+ if first_len >= me.buf.capacity() {
+ // The slice is at least as large as the buffering capacity,
+ // so it's better to write it directly, bypassing the buffer.
+ debug_assert!(me.buf.is_empty());
+ return me.inner.poll_write(cx, &bufs[0]);
+ } else {
+ me.buf.extend_from_slice(&bufs[0]);
+ bufs = &bufs[1..];
+ }
+ let mut total_written = first_len;
+ debug_assert!(total_written != 0);
+ // Append the buffers that fit in the internal buffer.
+ for buf in bufs {
+ if buf.len() > me.buf.capacity() - me.buf.len() {
+ break;
+ } else {
+ me.buf.extend_from_slice(buf);
+ total_written += buf.len();
+ }
+ }
+ Poll::Ready(Ok(total_written))
+ }
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ true
+ }
+
+ fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ ready!(self.as_mut().flush_buf(cx))?;
+ self.get_pin_mut().poll_flush(cx)
+ }
+
+ fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ ready!(self.as_mut().flush_buf(cx))?;
+ self.get_pin_mut().poll_shutdown(cx)
+ }
+}
+
+#[derive(Debug, Clone, Copy)]
+pub(super) enum SeekState {
+ /// start_seek has not been called.
+ Init,
+ /// start_seek has been called, but poll_complete has not yet been called.
+ Start(SeekFrom),
+ /// Waiting for completion of poll_complete.
+ Pending,
+}
+
+/// Seek to the offset, in bytes, in the underlying writer.
+///
+/// Seeking always writes out the internal buffer before seeking.
+impl<W: AsyncWrite + AsyncSeek> AsyncSeek for BufWriter<W> {
+ fn start_seek(self: Pin<&mut Self>, pos: SeekFrom) -> io::Result<()> {
+ // We need to flush the internal buffer before seeking.
+ // It receives a `Context` and returns a `Poll`, so it cannot be called
+ // inside `start_seek`.
+ *self.project().seek_state = SeekState::Start(pos);
+ Ok(())
+ }
+
+ fn poll_complete(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
+ let pos = match self.seek_state {
+ SeekState::Init => {
+ return self.project().inner.poll_complete(cx);
+ }
+ SeekState::Start(pos) => Some(pos),
+ SeekState::Pending => None,
+ };
+
+ // Flush the internal buffer before seeking.
+ ready!(self.as_mut().flush_buf(cx))?;
+
+ let mut me = self.project();
+ if let Some(pos) = pos {
+ // Ensure previous seeks have finished before starting a new one
+ ready!(me.inner.as_mut().poll_complete(cx))?;
+ if let Err(e) = me.inner.as_mut().start_seek(pos) {
+ *me.seek_state = SeekState::Init;
+ return Poll::Ready(Err(e));
+ }
+ }
+ match me.inner.poll_complete(cx) {
+ Poll::Ready(res) => {
+ *me.seek_state = SeekState::Init;
+ Poll::Ready(res)
+ }
+ Poll::Pending => {
+ *me.seek_state = SeekState::Pending;
+ Poll::Pending
+ }
+ }
+ }
+}
+
+impl<W: AsyncWrite + AsyncRead> AsyncRead for BufWriter<W> {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ self.get_pin_mut().poll_read(cx, buf)
+ }
+}
+
+impl<W: AsyncWrite + AsyncBufRead> AsyncBufRead for BufWriter<W> {
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ self.get_pin_mut().poll_fill_buf(cx)
+ }
+
+ fn consume(self: Pin<&mut Self>, amt: usize) {
+ self.get_pin_mut().consume(amt)
+ }
+}
+
+impl<W: fmt::Debug> fmt::Debug for BufWriter<W> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("BufWriter")
+ .field("writer", &self.inner)
+ .field(
+ "buffer",
+ &format_args!("{}/{}", self.buf.len(), self.buf.capacity()),
+ )
+ .field("written", &self.written)
+ .finish()
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<BufWriter<()>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/chain.rs b/vendor/tokio/src/io/util/chain.rs
new file mode 100644
index 000000000..84f37fc7d
--- /dev/null
+++ b/vendor/tokio/src/io/util/chain.rs
@@ -0,0 +1,144 @@
+use crate::io::{AsyncBufRead, AsyncRead, ReadBuf};
+
+use pin_project_lite::pin_project;
+use std::fmt;
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Stream for the [`chain`](super::AsyncReadExt::chain) method.
+ #[must_use = "streams do nothing unless polled"]
+ #[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+ pub struct Chain<T, U> {
+ #[pin]
+ first: T,
+ #[pin]
+ second: U,
+ done_first: bool,
+ }
+}
+
+pub(super) fn chain<T, U>(first: T, second: U) -> Chain<T, U>
+where
+ T: AsyncRead,
+ U: AsyncRead,
+{
+ Chain {
+ first,
+ second,
+ done_first: false,
+ }
+}
+
+impl<T, U> Chain<T, U>
+where
+ T: AsyncRead,
+ U: AsyncRead,
+{
+ /// Gets references to the underlying readers in this `Chain`.
+ pub fn get_ref(&self) -> (&T, &U) {
+ (&self.first, &self.second)
+ }
+
+ /// Gets mutable references to the underlying readers in this `Chain`.
+ ///
+ /// Care should be taken to avoid modifying the internal I/O state of the
+ /// underlying readers as doing so may corrupt the internal state of this
+ /// `Chain`.
+ pub fn get_mut(&mut self) -> (&mut T, &mut U) {
+ (&mut self.first, &mut self.second)
+ }
+
+ /// Gets pinned mutable references to the underlying readers in this `Chain`.
+ ///
+ /// Care should be taken to avoid modifying the internal I/O state of the
+ /// underlying readers as doing so may corrupt the internal state of this
+ /// `Chain`.
+ pub fn get_pin_mut(self: Pin<&mut Self>) -> (Pin<&mut T>, Pin<&mut U>) {
+ let me = self.project();
+ (me.first, me.second)
+ }
+
+ /// Consumes the `Chain`, returning the wrapped readers.
+ pub fn into_inner(self) -> (T, U) {
+ (self.first, self.second)
+ }
+}
+
+impl<T, U> fmt::Debug for Chain<T, U>
+where
+ T: fmt::Debug,
+ U: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Chain")
+ .field("t", &self.first)
+ .field("u", &self.second)
+ .finish()
+ }
+}
+
+impl<T, U> AsyncRead for Chain<T, U>
+where
+ T: AsyncRead,
+ U: AsyncRead,
+{
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ let me = self.project();
+
+ if !*me.done_first {
+ let rem = buf.remaining();
+ ready!(me.first.poll_read(cx, buf))?;
+ if buf.remaining() == rem {
+ *me.done_first = true;
+ } else {
+ return Poll::Ready(Ok(()));
+ }
+ }
+ me.second.poll_read(cx, buf)
+ }
+}
+
+impl<T, U> AsyncBufRead for Chain<T, U>
+where
+ T: AsyncBufRead,
+ U: AsyncBufRead,
+{
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ let me = self.project();
+
+ if !*me.done_first {
+ match ready!(me.first.poll_fill_buf(cx)?) {
+ buf if buf.is_empty() => {
+ *me.done_first = true;
+ }
+ buf => return Poll::Ready(Ok(buf)),
+ }
+ }
+ me.second.poll_fill_buf(cx)
+ }
+
+ fn consume(self: Pin<&mut Self>, amt: usize) {
+ let me = self.project();
+ if !*me.done_first {
+ me.first.consume(amt)
+ } else {
+ me.second.consume(amt)
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<Chain<(), ()>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/copy.rs b/vendor/tokio/src/io/util/copy.rs
new file mode 100644
index 000000000..3cd425b34
--- /dev/null
+++ b/vendor/tokio/src/io/util/copy.rs
@@ -0,0 +1,149 @@
+use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
+
+use std::future::Future;
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+#[derive(Debug)]
+pub(super) struct CopyBuffer {
+ read_done: bool,
+ pos: usize,
+ cap: usize,
+ amt: u64,
+ buf: Box<[u8]>,
+}
+
+impl CopyBuffer {
+ pub(super) fn new() -> Self {
+ Self {
+ read_done: false,
+ pos: 0,
+ cap: 0,
+ amt: 0,
+ buf: vec![0; 2048].into_boxed_slice(),
+ }
+ }
+
+ pub(super) fn poll_copy<R, W>(
+ &mut self,
+ cx: &mut Context<'_>,
+ mut reader: Pin<&mut R>,
+ mut writer: Pin<&mut W>,
+ ) -> Poll<io::Result<u64>>
+ where
+ R: AsyncRead + ?Sized,
+ W: AsyncWrite + ?Sized,
+ {
+ loop {
+ // If our buffer is empty, then we need to read some data to
+ // continue.
+ if self.pos == self.cap && !self.read_done {
+ let me = &mut *self;
+ let mut buf = ReadBuf::new(&mut me.buf);
+ ready!(reader.as_mut().poll_read(cx, &mut buf))?;
+ let n = buf.filled().len();
+ if n == 0 {
+ self.read_done = true;
+ } else {
+ self.pos = 0;
+ self.cap = n;
+ }
+ }
+
+ // If our buffer has some data, let's write it out!
+ while self.pos < self.cap {
+ let me = &mut *self;
+ let i = ready!(writer.as_mut().poll_write(cx, &me.buf[me.pos..me.cap]))?;
+ if i == 0 {
+ return Poll::Ready(Err(io::Error::new(
+ io::ErrorKind::WriteZero,
+ "write zero byte into writer",
+ )));
+ } else {
+ self.pos += i;
+ self.amt += i as u64;
+ }
+ }
+
+ // If we've written all the data and we've seen EOF, flush out the
+ // data and finish the transfer.
+ if self.pos == self.cap && self.read_done {
+ ready!(writer.as_mut().poll_flush(cx))?;
+ return Poll::Ready(Ok(self.amt));
+ }
+ }
+ }
+}
+
+/// A future that asynchronously copies the entire contents of a reader into a
+/// writer.
+#[derive(Debug)]
+#[must_use = "futures do nothing unless you `.await` or poll them"]
+struct Copy<'a, R: ?Sized, W: ?Sized> {
+ reader: &'a mut R,
+ writer: &'a mut W,
+ buf: CopyBuffer,
+}
+
+cfg_io_util! {
+ /// Asynchronously copies the entire contents of a reader into a writer.
+ ///
+ /// This function returns a future that will continuously read data from
+ /// `reader` and then write it into `writer` in a streaming fashion until
+ /// `reader` returns EOF.
+ ///
+ /// On success, the total number of bytes that were copied from `reader` to
+ /// `writer` is returned.
+ ///
+ /// This is an asynchronous version of [`std::io::copy`][std].
+ ///
+ /// [std]: std::io::copy
+ ///
+ /// # Errors
+ ///
+ /// The returned future will return an error immediately if any call to
+ /// `poll_read` or `poll_write` returns an error.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io;
+ ///
+ /// # async fn dox() -> std::io::Result<()> {
+ /// let mut reader: &[u8] = b"hello";
+ /// let mut writer: Vec<u8> = vec![];
+ ///
+ /// io::copy(&mut reader, &mut writer).await?;
+ ///
+ /// assert_eq!(&b"hello"[..], &writer[..]);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn copy<'a, R, W>(reader: &'a mut R, writer: &'a mut W) -> io::Result<u64>
+ where
+ R: AsyncRead + Unpin + ?Sized,
+ W: AsyncWrite + Unpin + ?Sized,
+ {
+ Copy {
+ reader,
+ writer,
+ buf: CopyBuffer::new()
+ }.await
+ }
+}
+
+impl<R, W> Future for Copy<'_, R, W>
+where
+ R: AsyncRead + Unpin + ?Sized,
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<u64>;
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
+ let me = &mut *self;
+
+ me.buf
+ .poll_copy(cx, Pin::new(&mut *me.reader), Pin::new(&mut *me.writer))
+ }
+}
diff --git a/vendor/tokio/src/io/util/copy_bidirectional.rs b/vendor/tokio/src/io/util/copy_bidirectional.rs
new file mode 100644
index 000000000..c93060b36
--- /dev/null
+++ b/vendor/tokio/src/io/util/copy_bidirectional.rs
@@ -0,0 +1,120 @@
+use super::copy::CopyBuffer;
+
+use crate::io::{AsyncRead, AsyncWrite};
+
+use std::future::Future;
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+enum TransferState {
+ Running(CopyBuffer),
+ ShuttingDown(u64),
+ Done(u64),
+}
+
+struct CopyBidirectional<'a, A: ?Sized, B: ?Sized> {
+ a: &'a mut A,
+ b: &'a mut B,
+ a_to_b: TransferState,
+ b_to_a: TransferState,
+}
+
+fn transfer_one_direction<A, B>(
+ cx: &mut Context<'_>,
+ state: &mut TransferState,
+ r: &mut A,
+ w: &mut B,
+) -> Poll<io::Result<u64>>
+where
+ A: AsyncRead + AsyncWrite + Unpin + ?Sized,
+ B: AsyncRead + AsyncWrite + Unpin + ?Sized,
+{
+ let mut r = Pin::new(r);
+ let mut w = Pin::new(w);
+
+ loop {
+ match state {
+ TransferState::Running(buf) => {
+ let count = ready!(buf.poll_copy(cx, r.as_mut(), w.as_mut()))?;
+ *state = TransferState::ShuttingDown(count);
+ }
+ TransferState::ShuttingDown(count) => {
+ ready!(w.as_mut().poll_shutdown(cx))?;
+
+ *state = TransferState::Done(*count);
+ }
+ TransferState::Done(count) => return Poll::Ready(Ok(*count)),
+ }
+ }
+}
+
+impl<'a, A, B> Future for CopyBidirectional<'a, A, B>
+where
+ A: AsyncRead + AsyncWrite + Unpin + ?Sized,
+ B: AsyncRead + AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<(u64, u64)>;
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ // Unpack self into mut refs to each field to avoid borrow check issues.
+ let CopyBidirectional {
+ a,
+ b,
+ a_to_b,
+ b_to_a,
+ } = &mut *self;
+
+ let a_to_b = transfer_one_direction(cx, a_to_b, &mut *a, &mut *b)?;
+ let b_to_a = transfer_one_direction(cx, b_to_a, &mut *b, &mut *a)?;
+
+ // It is not a problem if ready! returns early because transfer_one_direction for the
+ // other direction will keep returning TransferState::Done(count) in future calls to poll
+ let a_to_b = ready!(a_to_b);
+ let b_to_a = ready!(b_to_a);
+
+ Poll::Ready(Ok((a_to_b, b_to_a)))
+ }
+}
+
+/// Copies data in both directions between `a` and `b`.
+///
+/// This function returns a future that will read from both streams,
+/// writing any data read to the opposing stream.
+/// This happens in both directions concurrently.
+///
+/// If an EOF is observed on one stream, [`shutdown()`] will be invoked on
+/// the other, and reading from that stream will stop. Copying of data in
+/// the other direction will continue.
+///
+/// The future will complete successfully once both directions of communication has been shut down.
+/// A direction is shut down when the reader reports EOF,
+/// at which point [`shutdown()`] is called on the corresponding writer. When finished,
+/// it will return a tuple of the number of bytes copied from a to b
+/// and the number of bytes copied from b to a, in that order.
+///
+/// [`shutdown()`]: crate::io::AsyncWriteExt::shutdown
+///
+/// # Errors
+///
+/// The future will immediately return an error if any IO operation on `a`
+/// or `b` returns an error. Some data read from either stream may be lost (not
+/// written to the other stream) in this case.
+///
+/// # Return value
+///
+/// Returns a tuple of bytes copied `a` to `b` and bytes copied `b` to `a`.
+#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+pub async fn copy_bidirectional<A, B>(a: &mut A, b: &mut B) -> Result<(u64, u64), std::io::Error>
+where
+ A: AsyncRead + AsyncWrite + Unpin + ?Sized,
+ B: AsyncRead + AsyncWrite + Unpin + ?Sized,
+{
+ CopyBidirectional {
+ a,
+ b,
+ a_to_b: TransferState::Running(CopyBuffer::new()),
+ b_to_a: TransferState::Running(CopyBuffer::new()),
+ }
+ .await
+}
diff --git a/vendor/tokio/src/io/util/copy_buf.rs b/vendor/tokio/src/io/util/copy_buf.rs
new file mode 100644
index 000000000..6831580b4
--- /dev/null
+++ b/vendor/tokio/src/io/util/copy_buf.rs
@@ -0,0 +1,102 @@
+use crate::io::{AsyncBufRead, AsyncWrite};
+use std::future::Future;
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ /// A future that asynchronously copies the entire contents of a reader into a
+ /// writer.
+ ///
+ /// This struct is generally created by calling [`copy_buf`][copy_buf]. Please
+ /// see the documentation of `copy_buf()` for more details.
+ ///
+ /// [copy_buf]: copy_buf()
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ struct CopyBuf<'a, R: ?Sized, W: ?Sized> {
+ reader: &'a mut R,
+ writer: &'a mut W,
+ amt: u64,
+ }
+
+ /// Asynchronously copies the entire contents of a reader into a writer.
+ ///
+ /// This function returns a future that will continuously read data from
+ /// `reader` and then write it into `writer` in a streaming fashion until
+ /// `reader` returns EOF.
+ ///
+ /// On success, the total number of bytes that were copied from `reader` to
+ /// `writer` is returned.
+ ///
+ ///
+ /// # Errors
+ ///
+ /// The returned future will finish with an error will return an error
+ /// immediately if any call to `poll_fill_buf` or `poll_write` returns an
+ /// error.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io;
+ ///
+ /// # async fn dox() -> std::io::Result<()> {
+ /// let mut reader: &[u8] = b"hello";
+ /// let mut writer: Vec<u8> = vec![];
+ ///
+ /// io::copy_buf(&mut reader, &mut writer).await?;
+ ///
+ /// assert_eq!(b"hello", &writer[..]);
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn copy_buf<'a, R, W>(reader: &'a mut R, writer: &'a mut W) -> io::Result<u64>
+ where
+ R: AsyncBufRead + Unpin + ?Sized,
+ W: AsyncWrite + Unpin + ?Sized,
+ {
+ CopyBuf {
+ reader,
+ writer,
+ amt: 0,
+ }.await
+ }
+}
+
+impl<R, W> Future for CopyBuf<'_, R, W>
+where
+ R: AsyncBufRead + Unpin + ?Sized,
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<u64>;
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ loop {
+ let me = &mut *self;
+ let buffer = ready!(Pin::new(&mut *me.reader).poll_fill_buf(cx))?;
+ if buffer.is_empty() {
+ ready!(Pin::new(&mut self.writer).poll_flush(cx))?;
+ return Poll::Ready(Ok(self.amt));
+ }
+
+ let i = ready!(Pin::new(&mut *me.writer).poll_write(cx, buffer))?;
+ if i == 0 {
+ return Poll::Ready(Err(std::io::ErrorKind::WriteZero.into()));
+ }
+ self.amt += i as u64;
+ Pin::new(&mut *self.reader).consume(i);
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ use std::marker::PhantomPinned;
+ crate::is_unpin::<CopyBuf<'_, PhantomPinned, PhantomPinned>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/empty.rs b/vendor/tokio/src/io/util/empty.rs
new file mode 100644
index 000000000..f964d18e6
--- /dev/null
+++ b/vendor/tokio/src/io/util/empty.rs
@@ -0,0 +1,84 @@
+use crate::io::{AsyncBufRead, AsyncRead, ReadBuf};
+
+use std::fmt;
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ /// An async reader which is always at EOF.
+ ///
+ /// This struct is generally created by calling [`empty`]. Please see
+ /// the documentation of [`empty()`][`empty`] for more details.
+ ///
+ /// This is an asynchronous version of [`std::io::empty`][std].
+ ///
+ /// [`empty`]: fn@empty
+ /// [std]: std::io::empty
+ pub struct Empty {
+ _p: (),
+ }
+
+ /// Creates a new empty async reader.
+ ///
+ /// All reads from the returned reader will return `Poll::Ready(Ok(0))`.
+ ///
+ /// This is an asynchronous version of [`std::io::empty`][std].
+ ///
+ /// [std]: std::io::empty
+ ///
+ /// # Examples
+ ///
+ /// A slightly sad example of not reading anything into a buffer:
+ ///
+ /// ```
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let mut buffer = String::new();
+ /// io::empty().read_to_string(&mut buffer).await.unwrap();
+ /// assert!(buffer.is_empty());
+ /// }
+ /// ```
+ pub fn empty() -> Empty {
+ Empty { _p: () }
+ }
+}
+
+impl AsyncRead for Empty {
+ #[inline]
+ fn poll_read(
+ self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ _: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl AsyncBufRead for Empty {
+ #[inline]
+ fn poll_fill_buf(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ Poll::Ready(Ok(&[]))
+ }
+
+ #[inline]
+ fn consume(self: Pin<&mut Self>, _: usize) {}
+}
+
+impl fmt::Debug for Empty {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Empty { .. }")
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<Empty>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/flush.rs b/vendor/tokio/src/io/util/flush.rs
new file mode 100644
index 000000000..88d60b868
--- /dev/null
+++ b/vendor/tokio/src/io/util/flush.rs
@@ -0,0 +1,46 @@
+use crate::io::AsyncWrite;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// A future used to fully flush an I/O object.
+ ///
+ /// Created by the [`AsyncWriteExt::flush`][flush] function.
+ /// [flush]: crate::io::AsyncWriteExt::flush
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct Flush<'a, A: ?Sized> {
+ a: &'a mut A,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+/// Creates a future which will entirely flush an I/O object.
+pub(super) fn flush<A>(a: &mut A) -> Flush<'_, A>
+where
+ A: AsyncWrite + Unpin + ?Sized,
+{
+ Flush {
+ a,
+ _pin: PhantomPinned,
+ }
+}
+
+impl<A> Future for Flush<'_, A>
+where
+ A: AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<()>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+ Pin::new(&mut *me.a).poll_flush(cx)
+ }
+}
diff --git a/vendor/tokio/src/io/util/lines.rs b/vendor/tokio/src/io/util/lines.rs
new file mode 100644
index 000000000..d02a4538a
--- /dev/null
+++ b/vendor/tokio/src/io/util/lines.rs
@@ -0,0 +1,143 @@
+use crate::io::util::read_line::read_line_internal;
+use crate::io::AsyncBufRead;
+
+use pin_project_lite::pin_project;
+use std::io;
+use std::mem;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Read lines from an [`AsyncBufRead`].
+ ///
+ /// A `Lines` can be turned into a `Stream` with [`LinesStream`].
+ ///
+ /// This type is usually created using the [`lines`] method.
+ ///
+ /// [`AsyncBufRead`]: crate::io::AsyncBufRead
+ /// [`LinesStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.LinesStream.html
+ /// [`lines`]: crate::io::AsyncBufReadExt::lines
+ #[derive(Debug)]
+ #[must_use = "streams do nothing unless polled"]
+ #[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+ pub struct Lines<R> {
+ #[pin]
+ reader: R,
+ buf: String,
+ bytes: Vec<u8>,
+ read: usize,
+ }
+}
+
+pub(crate) fn lines<R>(reader: R) -> Lines<R>
+where
+ R: AsyncBufRead,
+{
+ Lines {
+ reader,
+ buf: String::new(),
+ bytes: Vec::new(),
+ read: 0,
+ }
+}
+
+impl<R> Lines<R>
+where
+ R: AsyncBufRead + Unpin,
+{
+ /// Returns the next line in the stream.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::io::AsyncBufRead;
+ /// use tokio::io::AsyncBufReadExt;
+ ///
+ /// # async fn dox(my_buf_read: impl AsyncBufRead + Unpin) -> std::io::Result<()> {
+ /// let mut lines = my_buf_read.lines();
+ ///
+ /// while let Some(line) = lines.next_line().await? {
+ /// println!("length = {}", line.len())
+ /// }
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn next_line(&mut self) -> io::Result<Option<String>> {
+ use crate::future::poll_fn;
+
+ poll_fn(|cx| Pin::new(&mut *self).poll_next_line(cx)).await
+ }
+
+ /// Obtain a mutable reference to the underlying reader
+ pub fn get_mut(&mut self) -> &mut R {
+ &mut self.reader
+ }
+
+ /// Obtain a reference to the underlying reader
+ pub fn get_ref(&mut self) -> &R {
+ &self.reader
+ }
+
+ /// Unwraps this `Lines<R>`, returning the underlying reader.
+ ///
+ /// Note that any leftover data in the internal buffer is lost.
+ /// Therefore, a following read from the underlying reader may lead to data loss.
+ pub fn into_inner(self) -> R {
+ self.reader
+ }
+}
+
+impl<R> Lines<R>
+where
+ R: AsyncBufRead,
+{
+ /// Polls for the next line in the stream.
+ ///
+ /// This method returns:
+ ///
+ /// * `Poll::Pending` if the next line is not yet available.
+ /// * `Poll::Ready(Ok(Some(line)))` if the next line is available.
+ /// * `Poll::Ready(Ok(None))` if there are no more lines in this stream.
+ /// * `Poll::Ready(Err(err))` if an IO error occurred while reading the next line.
+ ///
+ /// When the method returns `Poll::Pending`, the `Waker` in the provided
+ /// `Context` is scheduled to receive a wakeup when more bytes become
+ /// available on the underlying IO resource.
+ ///
+ /// Note that on multiple calls to `poll_next_line`, only the `Waker` from
+ /// the `Context` passed to the most recent call is scheduled to receive a
+ /// wakeup.
+ pub fn poll_next_line(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ ) -> Poll<io::Result<Option<String>>> {
+ let me = self.project();
+
+ let n = ready!(read_line_internal(me.reader, cx, me.buf, me.bytes, me.read))?;
+ debug_assert_eq!(*me.read, 0);
+
+ if n == 0 && me.buf.is_empty() {
+ return Poll::Ready(Ok(None));
+ }
+
+ if me.buf.ends_with('\n') {
+ me.buf.pop();
+
+ if me.buf.ends_with('\r') {
+ me.buf.pop();
+ }
+ }
+
+ Poll::Ready(Ok(Some(mem::take(me.buf))))
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<Lines<()>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/mem.rs b/vendor/tokio/src/io/util/mem.rs
new file mode 100644
index 000000000..4eefe7b26
--- /dev/null
+++ b/vendor/tokio/src/io/util/mem.rs
@@ -0,0 +1,243 @@
+//! In-process memory IO types.
+
+use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
+use crate::loom::sync::Mutex;
+
+use bytes::{Buf, BytesMut};
+use std::{
+ pin::Pin,
+ sync::Arc,
+ task::{self, Poll, Waker},
+};
+
+/// A bidirectional pipe to read and write bytes in memory.
+///
+/// A pair of `DuplexStream`s are created together, and they act as a "channel"
+/// that can be used as in-memory IO types. Writing to one of the pairs will
+/// allow that data to be read from the other, and vice versa.
+///
+/// # Closing a `DuplexStream`
+///
+/// If one end of the `DuplexStream` channel is dropped, any pending reads on
+/// the other side will continue to read data until the buffer is drained, then
+/// they will signal EOF by returning 0 bytes. Any writes to the other side,
+/// including pending ones (that are waiting for free space in the buffer) will
+/// return `Err(BrokenPipe)` immediately.
+///
+/// # Example
+///
+/// ```
+/// # async fn ex() -> std::io::Result<()> {
+/// # use tokio::io::{AsyncReadExt, AsyncWriteExt};
+/// let (mut client, mut server) = tokio::io::duplex(64);
+///
+/// client.write_all(b"ping").await?;
+///
+/// let mut buf = [0u8; 4];
+/// server.read_exact(&mut buf).await?;
+/// assert_eq!(&buf, b"ping");
+///
+/// server.write_all(b"pong").await?;
+///
+/// client.read_exact(&mut buf).await?;
+/// assert_eq!(&buf, b"pong");
+/// # Ok(())
+/// # }
+/// ```
+#[derive(Debug)]
+#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+pub struct DuplexStream {
+ read: Arc<Mutex<Pipe>>,
+ write: Arc<Mutex<Pipe>>,
+}
+
+/// A unidirectional IO over a piece of memory.
+///
+/// Data can be written to the pipe, and reading will return that data.
+#[derive(Debug)]
+struct Pipe {
+ /// The buffer storing the bytes written, also read from.
+ ///
+ /// Using a `BytesMut` because it has efficient `Buf` and `BufMut`
+ /// functionality already. Additionally, it can try to copy data in the
+ /// same buffer if there read index has advanced far enough.
+ buffer: BytesMut,
+ /// Determines if the write side has been closed.
+ is_closed: bool,
+ /// The maximum amount of bytes that can be written before returning
+ /// `Poll::Pending`.
+ max_buf_size: usize,
+ /// If the `read` side has been polled and is pending, this is the waker
+ /// for that parked task.
+ read_waker: Option<Waker>,
+ /// If the `write` side has filled the `max_buf_size` and returned
+ /// `Poll::Pending`, this is the waker for that parked task.
+ write_waker: Option<Waker>,
+}
+
+// ===== impl DuplexStream =====
+
+/// Create a new pair of `DuplexStream`s that act like a pair of connected sockets.
+///
+/// The `max_buf_size` argument is the maximum amount of bytes that can be
+/// written to a side before the write returns `Poll::Pending`.
+#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+pub fn duplex(max_buf_size: usize) -> (DuplexStream, DuplexStream) {
+ let one = Arc::new(Mutex::new(Pipe::new(max_buf_size)));
+ let two = Arc::new(Mutex::new(Pipe::new(max_buf_size)));
+
+ (
+ DuplexStream {
+ read: one.clone(),
+ write: two.clone(),
+ },
+ DuplexStream {
+ read: two,
+ write: one,
+ },
+ )
+}
+
+impl AsyncRead for DuplexStream {
+ // Previous rustc required this `self` to be `mut`, even though newer
+ // versions recognize it isn't needed to call `lock()`. So for
+ // compatibility, we include the `mut` and `allow` the lint.
+ //
+ // See https://github.com/rust-lang/rust/issues/73592
+ #[allow(unused_mut)]
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ cx: &mut task::Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<std::io::Result<()>> {
+ Pin::new(&mut *self.read.lock()).poll_read(cx, buf)
+ }
+}
+
+impl AsyncWrite for DuplexStream {
+ #[allow(unused_mut)]
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut task::Context<'_>,
+ buf: &[u8],
+ ) -> Poll<std::io::Result<usize>> {
+ Pin::new(&mut *self.write.lock()).poll_write(cx, buf)
+ }
+
+ #[allow(unused_mut)]
+ fn poll_flush(
+ mut self: Pin<&mut Self>,
+ cx: &mut task::Context<'_>,
+ ) -> Poll<std::io::Result<()>> {
+ Pin::new(&mut *self.write.lock()).poll_flush(cx)
+ }
+
+ #[allow(unused_mut)]
+ fn poll_shutdown(
+ mut self: Pin<&mut Self>,
+ cx: &mut task::Context<'_>,
+ ) -> Poll<std::io::Result<()>> {
+ Pin::new(&mut *self.write.lock()).poll_shutdown(cx)
+ }
+}
+
+impl Drop for DuplexStream {
+ fn drop(&mut self) {
+ // notify the other side of the closure
+ self.write.lock().close_write();
+ self.read.lock().close_read();
+ }
+}
+
+// ===== impl Pipe =====
+
+impl Pipe {
+ fn new(max_buf_size: usize) -> Self {
+ Pipe {
+ buffer: BytesMut::new(),
+ is_closed: false,
+ max_buf_size,
+ read_waker: None,
+ write_waker: None,
+ }
+ }
+
+ fn close_write(&mut self) {
+ self.is_closed = true;
+ // needs to notify any readers that no more data will come
+ if let Some(waker) = self.read_waker.take() {
+ waker.wake();
+ }
+ }
+
+ fn close_read(&mut self) {
+ self.is_closed = true;
+ // needs to notify any writers that they have to abort
+ if let Some(waker) = self.write_waker.take() {
+ waker.wake();
+ }
+ }
+}
+
+impl AsyncRead for Pipe {
+ fn poll_read(
+ mut self: Pin<&mut Self>,
+ cx: &mut task::Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<std::io::Result<()>> {
+ if self.buffer.has_remaining() {
+ let max = self.buffer.remaining().min(buf.remaining());
+ buf.put_slice(&self.buffer[..max]);
+ self.buffer.advance(max);
+ if max > 0 {
+ // The passed `buf` might have been empty, don't wake up if
+ // no bytes have been moved.
+ if let Some(waker) = self.write_waker.take() {
+ waker.wake();
+ }
+ }
+ Poll::Ready(Ok(()))
+ } else if self.is_closed {
+ Poll::Ready(Ok(()))
+ } else {
+ self.read_waker = Some(cx.waker().clone());
+ Poll::Pending
+ }
+ }
+}
+
+impl AsyncWrite for Pipe {
+ fn poll_write(
+ mut self: Pin<&mut Self>,
+ cx: &mut task::Context<'_>,
+ buf: &[u8],
+ ) -> Poll<std::io::Result<usize>> {
+ if self.is_closed {
+ return Poll::Ready(Err(std::io::ErrorKind::BrokenPipe.into()));
+ }
+ let avail = self.max_buf_size - self.buffer.len();
+ if avail == 0 {
+ self.write_waker = Some(cx.waker().clone());
+ return Poll::Pending;
+ }
+
+ let len = buf.len().min(avail);
+ self.buffer.extend_from_slice(&buf[..len]);
+ if let Some(waker) = self.read_waker.take() {
+ waker.wake();
+ }
+ Poll::Ready(Ok(len))
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> Poll<std::io::Result<()>> {
+ Poll::Ready(Ok(()))
+ }
+
+ fn poll_shutdown(
+ mut self: Pin<&mut Self>,
+ _: &mut task::Context<'_>,
+ ) -> Poll<std::io::Result<()>> {
+ self.close_write();
+ Poll::Ready(Ok(()))
+ }
+}
diff --git a/vendor/tokio/src/io/util/mod.rs b/vendor/tokio/src/io/util/mod.rs
new file mode 100644
index 000000000..fd3dd0dfc
--- /dev/null
+++ b/vendor/tokio/src/io/util/mod.rs
@@ -0,0 +1,96 @@
+#![allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
+
+cfg_io_util! {
+ mod async_buf_read_ext;
+ pub use async_buf_read_ext::AsyncBufReadExt;
+
+ mod async_read_ext;
+ pub use async_read_ext::AsyncReadExt;
+
+ mod async_seek_ext;
+ pub use async_seek_ext::AsyncSeekExt;
+
+ mod async_write_ext;
+ pub use async_write_ext::AsyncWriteExt;
+
+ mod buf_reader;
+ pub use buf_reader::BufReader;
+
+ mod buf_stream;
+ pub use buf_stream::BufStream;
+
+ mod buf_writer;
+ pub use buf_writer::BufWriter;
+
+ mod chain;
+
+ mod copy;
+ pub use copy::copy;
+
+ mod copy_bidirectional;
+ pub use copy_bidirectional::copy_bidirectional;
+
+ mod copy_buf;
+ pub use copy_buf::copy_buf;
+
+ mod empty;
+ pub use empty::{empty, Empty};
+
+ mod flush;
+
+ mod lines;
+ pub use lines::Lines;
+
+ mod mem;
+ pub use mem::{duplex, DuplexStream};
+
+ mod read;
+ mod read_buf;
+ mod read_exact;
+ mod read_int;
+ mod read_line;
+
+ mod read_to_end;
+ mod vec_with_initialized;
+ cfg_process! {
+ pub(crate) use read_to_end::read_to_end;
+ }
+
+ mod read_to_string;
+ mod read_until;
+
+ mod repeat;
+ pub use repeat::{repeat, Repeat};
+
+ mod shutdown;
+
+ mod sink;
+ pub use sink::{sink, Sink};
+
+ mod split;
+ pub use split::Split;
+
+ mod take;
+ pub use take::Take;
+
+ mod write;
+ mod write_vectored;
+ mod write_all;
+ mod write_buf;
+ mod write_all_buf;
+ mod write_int;
+
+
+ // used by `BufReader` and `BufWriter`
+ // https://github.com/rust-lang/rust/blob/master/library/std/src/sys_common/io.rs#L1
+ const DEFAULT_BUF_SIZE: usize = 8 * 1024;
+}
+
+cfg_not_io_util! {
+ cfg_process! {
+ mod vec_with_initialized;
+ mod read_to_end;
+ // Used by process
+ pub(crate) use read_to_end::read_to_end;
+ }
+}
diff --git a/vendor/tokio/src/io/util/read.rs b/vendor/tokio/src/io/util/read.rs
new file mode 100644
index 000000000..edc9d5a9e
--- /dev/null
+++ b/vendor/tokio/src/io/util/read.rs
@@ -0,0 +1,55 @@
+use crate::io::{AsyncRead, ReadBuf};
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::marker::Unpin;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+/// Tries to read some bytes directly into the given `buf` in asynchronous
+/// manner, returning a future type.
+///
+/// The returned future will resolve to both the I/O stream and the buffer
+/// as well as the number of bytes read once the read operation is completed.
+pub(crate) fn read<'a, R>(reader: &'a mut R, buf: &'a mut [u8]) -> Read<'a, R>
+where
+ R: AsyncRead + Unpin + ?Sized,
+{
+ Read {
+ reader,
+ buf,
+ _pin: PhantomPinned,
+ }
+}
+
+pin_project! {
+ /// A future which can be used to easily read available number of bytes to fill
+ /// a buffer.
+ ///
+ /// Created by the [`read`] function.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct Read<'a, R: ?Sized> {
+ reader: &'a mut R,
+ buf: &'a mut [u8],
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+impl<R> Future for Read<'_, R>
+where
+ R: AsyncRead + Unpin + ?Sized,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<usize>> {
+ let me = self.project();
+ let mut buf = ReadBuf::new(*me.buf);
+ ready!(Pin::new(me.reader).poll_read(cx, &mut buf))?;
+ Poll::Ready(Ok(buf.filled().len()))
+ }
+}
diff --git a/vendor/tokio/src/io/util/read_buf.rs b/vendor/tokio/src/io/util/read_buf.rs
new file mode 100644
index 000000000..8ec57c0d6
--- /dev/null
+++ b/vendor/tokio/src/io/util/read_buf.rs
@@ -0,0 +1,72 @@
+use crate::io::AsyncRead;
+
+use bytes::BufMut;
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pub(crate) fn read_buf<'a, R, B>(reader: &'a mut R, buf: &'a mut B) -> ReadBuf<'a, R, B>
+where
+ R: AsyncRead + Unpin,
+ B: BufMut,
+{
+ ReadBuf {
+ reader,
+ buf,
+ _pin: PhantomPinned,
+ }
+}
+
+pin_project! {
+ /// Future returned by [`read_buf`](crate::io::AsyncReadExt::read_buf).
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct ReadBuf<'a, R, B> {
+ reader: &'a mut R,
+ buf: &'a mut B,
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+impl<R, B> Future for ReadBuf<'_, R, B>
+where
+ R: AsyncRead + Unpin,
+ B: BufMut,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<usize>> {
+ use crate::io::ReadBuf;
+ use std::mem::MaybeUninit;
+
+ let me = self.project();
+
+ if !me.buf.has_remaining_mut() {
+ return Poll::Ready(Ok(0));
+ }
+
+ let n = {
+ let dst = me.buf.chunk_mut();
+ let dst = unsafe { &mut *(dst as *mut _ as *mut [MaybeUninit<u8>]) };
+ let mut buf = ReadBuf::uninit(dst);
+ let ptr = buf.filled().as_ptr();
+ ready!(Pin::new(me.reader).poll_read(cx, &mut buf)?);
+
+ // Ensure the pointer does not change from under us
+ assert_eq!(ptr, buf.filled().as_ptr());
+ buf.filled().len()
+ };
+
+ // Safety: This is guaranteed to be the number of initialized (and read)
+ // bytes due to the invariants provided by `ReadBuf::filled`.
+ unsafe {
+ me.buf.advance_mut(n);
+ }
+
+ Poll::Ready(Ok(n))
+ }
+}
diff --git a/vendor/tokio/src/io/util/read_exact.rs b/vendor/tokio/src/io/util/read_exact.rs
new file mode 100644
index 000000000..1e8150eb2
--- /dev/null
+++ b/vendor/tokio/src/io/util/read_exact.rs
@@ -0,0 +1,69 @@
+use crate::io::{AsyncRead, ReadBuf};
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::marker::Unpin;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+/// A future which can be used to easily read exactly enough bytes to fill
+/// a buffer.
+///
+/// Created by the [`AsyncReadExt::read_exact`][read_exact].
+/// [read_exact]: [crate::io::AsyncReadExt::read_exact]
+pub(crate) fn read_exact<'a, A>(reader: &'a mut A, buf: &'a mut [u8]) -> ReadExact<'a, A>
+where
+ A: AsyncRead + Unpin + ?Sized,
+{
+ ReadExact {
+ reader,
+ buf: ReadBuf::new(buf),
+ _pin: PhantomPinned,
+ }
+}
+
+pin_project! {
+ /// Creates a future which will read exactly enough bytes to fill `buf`,
+ /// returning an error if EOF is hit sooner.
+ ///
+ /// On success the number of bytes is returned
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct ReadExact<'a, A: ?Sized> {
+ reader: &'a mut A,
+ buf: ReadBuf<'a>,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+fn eof() -> io::Error {
+ io::Error::new(io::ErrorKind::UnexpectedEof, "early eof")
+}
+
+impl<A> Future for ReadExact<'_, A>
+where
+ A: AsyncRead + Unpin + ?Sized,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<usize>> {
+ let mut me = self.project();
+
+ loop {
+ // if our buffer is empty, then we need to read some data to continue.
+ let rem = me.buf.remaining();
+ if rem != 0 {
+ ready!(Pin::new(&mut *me.reader).poll_read(cx, &mut me.buf))?;
+ if me.buf.remaining() == rem {
+ return Err(eof()).into();
+ }
+ } else {
+ return Poll::Ready(Ok(me.buf.capacity()));
+ }
+ }
+ }
+}
diff --git a/vendor/tokio/src/io/util/read_int.rs b/vendor/tokio/src/io/util/read_int.rs
new file mode 100644
index 000000000..5b9fb7bf7
--- /dev/null
+++ b/vendor/tokio/src/io/util/read_int.rs
@@ -0,0 +1,153 @@
+use crate::io::{AsyncRead, ReadBuf};
+
+use bytes::Buf;
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::io::ErrorKind::UnexpectedEof;
+use std::marker::PhantomPinned;
+use std::mem::size_of;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+macro_rules! reader {
+ ($name:ident, $ty:ty, $reader:ident) => {
+ reader!($name, $ty, $reader, size_of::<$ty>());
+ };
+ ($name:ident, $ty:ty, $reader:ident, $bytes:expr) => {
+ pin_project! {
+ #[doc(hidden)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct $name<R> {
+ #[pin]
+ src: R,
+ buf: [u8; $bytes],
+ read: u8,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+ }
+
+ impl<R> $name<R> {
+ pub(crate) fn new(src: R) -> Self {
+ $name {
+ src,
+ buf: [0; $bytes],
+ read: 0,
+ _pin: PhantomPinned,
+ }
+ }
+ }
+
+ impl<R> Future for $name<R>
+ where
+ R: AsyncRead,
+ {
+ type Output = io::Result<$ty>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let mut me = self.project();
+
+ if *me.read == $bytes as u8 {
+ return Poll::Ready(Ok(Buf::$reader(&mut &me.buf[..])));
+ }
+
+ while *me.read < $bytes as u8 {
+ let mut buf = ReadBuf::new(&mut me.buf[*me.read as usize..]);
+
+ *me.read += match me.src.as_mut().poll_read(cx, &mut buf) {
+ Poll::Pending => return Poll::Pending,
+ Poll::Ready(Err(e)) => return Poll::Ready(Err(e.into())),
+ Poll::Ready(Ok(())) => {
+ let n = buf.filled().len();
+ if n == 0 {
+ return Poll::Ready(Err(UnexpectedEof.into()));
+ }
+
+ n as u8
+ }
+ };
+ }
+
+ let num = Buf::$reader(&mut &me.buf[..]);
+
+ Poll::Ready(Ok(num))
+ }
+ }
+ };
+}
+
+macro_rules! reader8 {
+ ($name:ident, $ty:ty) => {
+ pin_project! {
+ /// Future returned from `read_u8`
+ #[doc(hidden)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct $name<R> {
+ #[pin]
+ reader: R,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+ }
+
+ impl<R> $name<R> {
+ pub(crate) fn new(reader: R) -> $name<R> {
+ $name {
+ reader,
+ _pin: PhantomPinned,
+ }
+ }
+ }
+
+ impl<R> Future for $name<R>
+ where
+ R: AsyncRead,
+ {
+ type Output = io::Result<$ty>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+
+ let mut buf = [0; 1];
+ let mut buf = ReadBuf::new(&mut buf);
+ match me.reader.poll_read(cx, &mut buf) {
+ Poll::Pending => Poll::Pending,
+ Poll::Ready(Err(e)) => Poll::Ready(Err(e.into())),
+ Poll::Ready(Ok(())) => {
+ if buf.filled().len() == 0 {
+ return Poll::Ready(Err(UnexpectedEof.into()));
+ }
+
+ Poll::Ready(Ok(buf.filled()[0] as $ty))
+ }
+ }
+ }
+ }
+ };
+}
+
+reader8!(ReadU8, u8);
+reader8!(ReadI8, i8);
+
+reader!(ReadU16, u16, get_u16);
+reader!(ReadU32, u32, get_u32);
+reader!(ReadU64, u64, get_u64);
+reader!(ReadU128, u128, get_u128);
+
+reader!(ReadI16, i16, get_i16);
+reader!(ReadI32, i32, get_i32);
+reader!(ReadI64, i64, get_i64);
+reader!(ReadI128, i128, get_i128);
+
+reader!(ReadU16Le, u16, get_u16_le);
+reader!(ReadU32Le, u32, get_u32_le);
+reader!(ReadU64Le, u64, get_u64_le);
+reader!(ReadU128Le, u128, get_u128_le);
+
+reader!(ReadI16Le, i16, get_i16_le);
+reader!(ReadI32Le, i32, get_i32_le);
+reader!(ReadI64Le, i64, get_i64_le);
+reader!(ReadI128Le, i128, get_i128_le);
diff --git a/vendor/tokio/src/io/util/read_line.rs b/vendor/tokio/src/io/util/read_line.rs
new file mode 100644
index 000000000..e641f5153
--- /dev/null
+++ b/vendor/tokio/src/io/util/read_line.rs
@@ -0,0 +1,119 @@
+use crate::io::util::read_until::read_until_internal;
+use crate::io::AsyncBufRead;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::mem;
+use std::pin::Pin;
+use std::string::FromUtf8Error;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Future for the [`read_line`](crate::io::AsyncBufReadExt::read_line) method.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct ReadLine<'a, R: ?Sized> {
+ reader: &'a mut R,
+ // This is the buffer we were provided. It will be replaced with an empty string
+ // while reading to postpone utf-8 handling until after reading.
+ output: &'a mut String,
+ // The actual allocation of the string is moved into this vector instead.
+ buf: Vec<u8>,
+ // The number of bytes appended to buf. This can be less than buf.len() if
+ // the buffer was not empty when the operation was started.
+ read: usize,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+pub(crate) fn read_line<'a, R>(reader: &'a mut R, string: &'a mut String) -> ReadLine<'a, R>
+where
+ R: AsyncBufRead + ?Sized + Unpin,
+{
+ ReadLine {
+ reader,
+ buf: mem::take(string).into_bytes(),
+ output: string,
+ read: 0,
+ _pin: PhantomPinned,
+ }
+}
+
+fn put_back_original_data(output: &mut String, mut vector: Vec<u8>, num_bytes_read: usize) {
+ let original_len = vector.len() - num_bytes_read;
+ vector.truncate(original_len);
+ *output = String::from_utf8(vector).expect("The original data must be valid utf-8.");
+}
+
+/// This handles the various failure cases and puts the string back into `output`.
+///
+/// The `truncate_on_io_error` bool is necessary because `read_to_string` and `read_line`
+/// disagree on what should happen when an IO error occurs.
+pub(super) fn finish_string_read(
+ io_res: io::Result<usize>,
+ utf8_res: Result<String, FromUtf8Error>,
+ read: usize,
+ output: &mut String,
+ truncate_on_io_error: bool,
+) -> Poll<io::Result<usize>> {
+ match (io_res, utf8_res) {
+ (Ok(num_bytes), Ok(string)) => {
+ debug_assert_eq!(read, 0);
+ *output = string;
+ Poll::Ready(Ok(num_bytes))
+ }
+ (Err(io_err), Ok(string)) => {
+ *output = string;
+ if truncate_on_io_error {
+ let original_len = output.len() - read;
+ output.truncate(original_len);
+ }
+ Poll::Ready(Err(io_err))
+ }
+ (Ok(num_bytes), Err(utf8_err)) => {
+ debug_assert_eq!(read, 0);
+ put_back_original_data(output, utf8_err.into_bytes(), num_bytes);
+
+ Poll::Ready(Err(io::Error::new(
+ io::ErrorKind::InvalidData,
+ "stream did not contain valid UTF-8",
+ )))
+ }
+ (Err(io_err), Err(utf8_err)) => {
+ put_back_original_data(output, utf8_err.into_bytes(), read);
+
+ Poll::Ready(Err(io_err))
+ }
+ }
+}
+
+pub(super) fn read_line_internal<R: AsyncBufRead + ?Sized>(
+ reader: Pin<&mut R>,
+ cx: &mut Context<'_>,
+ output: &mut String,
+ buf: &mut Vec<u8>,
+ read: &mut usize,
+) -> Poll<io::Result<usize>> {
+ let io_res = ready!(read_until_internal(reader, cx, b'\n', buf, read));
+ let utf8_res = String::from_utf8(mem::take(buf));
+
+ // At this point both buf and output are empty. The allocation is in utf8_res.
+
+ debug_assert!(buf.is_empty());
+ debug_assert!(output.is_empty());
+ finish_string_read(io_res, utf8_res, *read, output, false)
+}
+
+impl<R: AsyncBufRead + ?Sized + Unpin> Future for ReadLine<'_, R> {
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+
+ read_line_internal(Pin::new(*me.reader), cx, me.output, me.buf, me.read)
+ }
+}
diff --git a/vendor/tokio/src/io/util/read_to_end.rs b/vendor/tokio/src/io/util/read_to_end.rs
new file mode 100644
index 000000000..f4a564d7d
--- /dev/null
+++ b/vendor/tokio/src/io/util/read_to_end.rs
@@ -0,0 +1,112 @@
+use crate::io::util::vec_with_initialized::{into_read_buf_parts, VecU8, VecWithInitialized};
+use crate::io::AsyncRead;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::mem;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct ReadToEnd<'a, R: ?Sized> {
+ reader: &'a mut R,
+ buf: VecWithInitialized<&'a mut Vec<u8>>,
+ // The number of bytes appended to buf. This can be less than buf.len() if
+ // the buffer was not empty when the operation was started.
+ read: usize,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+pub(crate) fn read_to_end<'a, R>(reader: &'a mut R, buffer: &'a mut Vec<u8>) -> ReadToEnd<'a, R>
+where
+ R: AsyncRead + Unpin + ?Sized,
+{
+ ReadToEnd {
+ reader,
+ buf: VecWithInitialized::new(buffer),
+ read: 0,
+ _pin: PhantomPinned,
+ }
+}
+
+pub(super) fn read_to_end_internal<V: VecU8, R: AsyncRead + ?Sized>(
+ buf: &mut VecWithInitialized<V>,
+ mut reader: Pin<&mut R>,
+ num_read: &mut usize,
+ cx: &mut Context<'_>,
+) -> Poll<io::Result<usize>> {
+ loop {
+ let ret = ready!(poll_read_to_end(buf, reader.as_mut(), cx));
+ match ret {
+ Err(err) => return Poll::Ready(Err(err)),
+ Ok(0) => return Poll::Ready(Ok(mem::replace(num_read, 0))),
+ Ok(num) => {
+ *num_read += num;
+ }
+ }
+ }
+}
+
+/// Tries to read from the provided AsyncRead.
+///
+/// The length of the buffer is increased by the number of bytes read.
+fn poll_read_to_end<V: VecU8, R: AsyncRead + ?Sized>(
+ buf: &mut VecWithInitialized<V>,
+ read: Pin<&mut R>,
+ cx: &mut Context<'_>,
+) -> Poll<io::Result<usize>> {
+ // This uses an adaptive system to extend the vector when it fills. We want to
+ // avoid paying to allocate and zero a huge chunk of memory if the reader only
+ // has 4 bytes while still making large reads if the reader does have a ton
+ // of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
+ // time is 4,500 times (!) slower than this if the reader has a very small
+ // amount of data to return.
+ buf.reserve(32);
+
+ // Get a ReadBuf into the vector.
+ let mut read_buf = buf.get_read_buf();
+
+ let filled_before = read_buf.filled().len();
+ let poll_result = read.poll_read(cx, &mut read_buf);
+ let filled_after = read_buf.filled().len();
+ let n = filled_after - filled_before;
+
+ // Update the length of the vector using the result of poll_read.
+ let read_buf_parts = into_read_buf_parts(read_buf);
+ buf.apply_read_buf(read_buf_parts);
+
+ match poll_result {
+ Poll::Pending => {
+ // In this case, nothing should have been read. However we still
+ // update the vector in case the poll_read call initialized parts of
+ // the vector's unused capacity.
+ debug_assert_eq!(filled_before, filled_after);
+ Poll::Pending
+ }
+ Poll::Ready(Err(err)) => {
+ debug_assert_eq!(filled_before, filled_after);
+ Poll::Ready(Err(err))
+ }
+ Poll::Ready(Ok(())) => Poll::Ready(Ok(n)),
+ }
+}
+
+impl<A> Future for ReadToEnd<'_, A>
+where
+ A: AsyncRead + ?Sized + Unpin,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+
+ read_to_end_internal(me.buf, Pin::new(*me.reader), me.read, cx)
+ }
+}
diff --git a/vendor/tokio/src/io/util/read_to_string.rs b/vendor/tokio/src/io/util/read_to_string.rs
new file mode 100644
index 000000000..b3d82a26b
--- /dev/null
+++ b/vendor/tokio/src/io/util/read_to_string.rs
@@ -0,0 +1,78 @@
+use crate::io::util::read_line::finish_string_read;
+use crate::io::util::read_to_end::read_to_end_internal;
+use crate::io::util::vec_with_initialized::VecWithInitialized;
+use crate::io::AsyncRead;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+use std::{io, mem};
+
+pin_project! {
+ /// Future for the [`read_to_string`](super::AsyncReadExt::read_to_string) method.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct ReadToString<'a, R: ?Sized> {
+ reader: &'a mut R,
+ // This is the buffer we were provided. It will be replaced with an empty string
+ // while reading to postpone utf-8 handling until after reading.
+ output: &'a mut String,
+ // The actual allocation of the string is moved into this vector instead.
+ buf: VecWithInitialized<Vec<u8>>,
+ // The number of bytes appended to buf. This can be less than buf.len() if
+ // the buffer was not empty when the operation was started.
+ read: usize,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+pub(crate) fn read_to_string<'a, R>(
+ reader: &'a mut R,
+ string: &'a mut String,
+) -> ReadToString<'a, R>
+where
+ R: AsyncRead + ?Sized + Unpin,
+{
+ let buf = mem::take(string).into_bytes();
+ ReadToString {
+ reader,
+ buf: VecWithInitialized::new(buf),
+ output: string,
+ read: 0,
+ _pin: PhantomPinned,
+ }
+}
+
+fn read_to_string_internal<R: AsyncRead + ?Sized>(
+ reader: Pin<&mut R>,
+ output: &mut String,
+ buf: &mut VecWithInitialized<Vec<u8>>,
+ read: &mut usize,
+ cx: &mut Context<'_>,
+) -> Poll<io::Result<usize>> {
+ let io_res = ready!(read_to_end_internal(buf, reader, read, cx));
+ let utf8_res = String::from_utf8(buf.take());
+
+ // At this point both buf and output are empty. The allocation is in utf8_res.
+
+ debug_assert!(buf.is_empty());
+ debug_assert!(output.is_empty());
+ finish_string_read(io_res, utf8_res, *read, output, true)
+}
+
+impl<A> Future for ReadToString<'_, A>
+where
+ A: AsyncRead + ?Sized + Unpin,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+
+ read_to_string_internal(Pin::new(*me.reader), me.output, me.buf, me.read, cx)
+ }
+}
diff --git a/vendor/tokio/src/io/util/read_until.rs b/vendor/tokio/src/io/util/read_until.rs
new file mode 100644
index 000000000..90a0e8a18
--- /dev/null
+++ b/vendor/tokio/src/io/util/read_until.rs
@@ -0,0 +1,79 @@
+use crate::io::AsyncBufRead;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::mem;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Future for the [`read_until`](crate::io::AsyncBufReadExt::read_until) method.
+ /// The delimiter is included in the resulting vector.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct ReadUntil<'a, R: ?Sized> {
+ reader: &'a mut R,
+ delimiter: u8,
+ buf: &'a mut Vec<u8>,
+ // The number of bytes appended to buf. This can be less than buf.len() if
+ // the buffer was not empty when the operation was started.
+ read: usize,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+pub(crate) fn read_until<'a, R>(
+ reader: &'a mut R,
+ delimiter: u8,
+ buf: &'a mut Vec<u8>,
+) -> ReadUntil<'a, R>
+where
+ R: AsyncBufRead + ?Sized + Unpin,
+{
+ ReadUntil {
+ reader,
+ delimiter,
+ buf,
+ read: 0,
+ _pin: PhantomPinned,
+ }
+}
+
+pub(super) fn read_until_internal<R: AsyncBufRead + ?Sized>(
+ mut reader: Pin<&mut R>,
+ cx: &mut Context<'_>,
+ delimiter: u8,
+ buf: &mut Vec<u8>,
+ read: &mut usize,
+) -> Poll<io::Result<usize>> {
+ loop {
+ let (done, used) = {
+ let available = ready!(reader.as_mut().poll_fill_buf(cx))?;
+ if let Some(i) = memchr::memchr(delimiter, available) {
+ buf.extend_from_slice(&available[..=i]);
+ (true, i + 1)
+ } else {
+ buf.extend_from_slice(available);
+ (false, available.len())
+ }
+ };
+ reader.as_mut().consume(used);
+ *read += used;
+ if done || used == 0 {
+ return Poll::Ready(Ok(mem::replace(read, 0)));
+ }
+ }
+}
+
+impl<R: AsyncBufRead + ?Sized + Unpin> Future for ReadUntil<'_, R> {
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+ read_until_internal(Pin::new(*me.reader), cx, *me.delimiter, me.buf, me.read)
+ }
+}
diff --git a/vendor/tokio/src/io/util/repeat.rs b/vendor/tokio/src/io/util/repeat.rs
new file mode 100644
index 000000000..1142765df
--- /dev/null
+++ b/vendor/tokio/src/io/util/repeat.rs
@@ -0,0 +1,72 @@
+use crate::io::{AsyncRead, ReadBuf};
+
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ /// An async reader which yields one byte over and over and over and over and
+ /// over and...
+ ///
+ /// This struct is generally created by calling [`repeat`][repeat]. Please
+ /// see the documentation of `repeat()` for more details.
+ ///
+ /// This is an asynchronous version of [`std::io::Repeat`][std].
+ ///
+ /// [repeat]: fn@repeat
+ /// [std]: std::io::Repeat
+ #[derive(Debug)]
+ pub struct Repeat {
+ byte: u8,
+ }
+
+ /// Creates an instance of an async reader that infinitely repeats one byte.
+ ///
+ /// All reads from this reader will succeed by filling the specified buffer with
+ /// the given byte.
+ ///
+ /// This is an asynchronous version of [`std::io::repeat`][std].
+ ///
+ /// [std]: std::io::repeat
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::{self, AsyncReadExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let mut buffer = [0; 3];
+ /// io::repeat(0b101).read_exact(&mut buffer).await.unwrap();
+ /// assert_eq!(buffer, [0b101, 0b101, 0b101]);
+ /// }
+ /// ```
+ pub fn repeat(byte: u8) -> Repeat {
+ Repeat { byte }
+ }
+}
+
+impl AsyncRead for Repeat {
+ #[inline]
+ fn poll_read(
+ self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<io::Result<()>> {
+ // TODO: could be faster, but should we unsafe it?
+ while buf.remaining() != 0 {
+ buf.put_slice(&[self.byte]);
+ }
+ Poll::Ready(Ok(()))
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<Repeat>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/shutdown.rs b/vendor/tokio/src/io/util/shutdown.rs
new file mode 100644
index 000000000..6d30b004b
--- /dev/null
+++ b/vendor/tokio/src/io/util/shutdown.rs
@@ -0,0 +1,46 @@
+use crate::io::AsyncWrite;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// A future used to shutdown an I/O object.
+ ///
+ /// Created by the [`AsyncWriteExt::shutdown`][shutdown] function.
+ /// [shutdown]: crate::io::AsyncWriteExt::shutdown
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ #[derive(Debug)]
+ pub struct Shutdown<'a, A: ?Sized> {
+ a: &'a mut A,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+/// Creates a future which will shutdown an I/O object.
+pub(super) fn shutdown<A>(a: &mut A) -> Shutdown<'_, A>
+where
+ A: AsyncWrite + Unpin + ?Sized,
+{
+ Shutdown {
+ a,
+ _pin: PhantomPinned,
+ }
+}
+
+impl<A> Future for Shutdown<'_, A>
+where
+ A: AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<()>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+ Pin::new(me.a).poll_shutdown(cx)
+ }
+}
diff --git a/vendor/tokio/src/io/util/sink.rs b/vendor/tokio/src/io/util/sink.rs
new file mode 100644
index 000000000..05ee773fa
--- /dev/null
+++ b/vendor/tokio/src/io/util/sink.rs
@@ -0,0 +1,87 @@
+use crate::io::AsyncWrite;
+
+use std::fmt;
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+cfg_io_util! {
+ /// An async writer which will move data into the void.
+ ///
+ /// This struct is generally created by calling [`sink`][sink]. Please
+ /// see the documentation of `sink()` for more details.
+ ///
+ /// This is an asynchronous version of [`std::io::Sink`][std].
+ ///
+ /// [sink]: sink()
+ /// [std]: std::io::Sink
+ pub struct Sink {
+ _p: (),
+ }
+
+ /// Creates an instance of an async writer which will successfully consume all
+ /// data.
+ ///
+ /// All calls to [`poll_write`] on the returned instance will return
+ /// `Poll::Ready(Ok(buf.len()))` and the contents of the buffer will not be
+ /// inspected.
+ ///
+ /// This is an asynchronous version of [`std::io::sink`][std].
+ ///
+ /// [`poll_write`]: crate::io::AsyncWrite::poll_write()
+ /// [std]: std::io::sink
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::io::{self, AsyncWriteExt};
+ ///
+ /// #[tokio::main]
+ /// async fn main() -> io::Result<()> {
+ /// let buffer = vec![1, 2, 3, 5, 8];
+ /// let num_bytes = io::sink().write(&buffer).await?;
+ /// assert_eq!(num_bytes, 5);
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn sink() -> Sink {
+ Sink { _p: () }
+ }
+}
+
+impl AsyncWrite for Sink {
+ #[inline]
+ fn poll_write(
+ self: Pin<&mut Self>,
+ _: &mut Context<'_>,
+ buf: &[u8],
+ ) -> Poll<Result<usize, io::Error>> {
+ Poll::Ready(Ok(buf.len()))
+ }
+
+ #[inline]
+ fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ Poll::Ready(Ok(()))
+ }
+
+ #[inline]
+ fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl fmt::Debug for Sink {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("Sink { .. }")
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<Sink>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/split.rs b/vendor/tokio/src/io/util/split.rs
new file mode 100644
index 000000000..7489c2428
--- /dev/null
+++ b/vendor/tokio/src/io/util/split.rs
@@ -0,0 +1,121 @@
+use crate::io::util::read_until::read_until_internal;
+use crate::io::AsyncBufRead;
+
+use pin_project_lite::pin_project;
+use std::io;
+use std::mem;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// Splitter for the [`split`](crate::io::AsyncBufReadExt::split) method.
+ ///
+ /// A `Split` can be turned into a `Stream` with [`SplitStream`].
+ ///
+ /// [`SplitStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.SplitStream.html
+ #[derive(Debug)]
+ #[must_use = "streams do nothing unless polled"]
+ #[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+ pub struct Split<R> {
+ #[pin]
+ reader: R,
+ buf: Vec<u8>,
+ delim: u8,
+ read: usize,
+ }
+}
+
+pub(crate) fn split<R>(reader: R, delim: u8) -> Split<R>
+where
+ R: AsyncBufRead,
+{
+ Split {
+ reader,
+ buf: Vec::new(),
+ delim,
+ read: 0,
+ }
+}
+
+impl<R> Split<R>
+where
+ R: AsyncBufRead + Unpin,
+{
+ /// Returns the next segment in the stream.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::io::AsyncBufRead;
+ /// use tokio::io::AsyncBufReadExt;
+ ///
+ /// # async fn dox(my_buf_read: impl AsyncBufRead + Unpin) -> std::io::Result<()> {
+ /// let mut segments = my_buf_read.split(b'f');
+ ///
+ /// while let Some(segment) = segments.next_segment().await? {
+ /// println!("length = {}", segment.len())
+ /// }
+ /// # Ok(())
+ /// # }
+ /// ```
+ pub async fn next_segment(&mut self) -> io::Result<Option<Vec<u8>>> {
+ use crate::future::poll_fn;
+
+ poll_fn(|cx| Pin::new(&mut *self).poll_next_segment(cx)).await
+ }
+}
+
+impl<R> Split<R>
+where
+ R: AsyncBufRead,
+{
+ /// Polls for the next segment in the stream.
+ ///
+ /// This method returns:
+ ///
+ /// * `Poll::Pending` if the next segment is not yet available.
+ /// * `Poll::Ready(Ok(Some(segment)))` if the next segment is available.
+ /// * `Poll::Ready(Ok(None))` if there are no more segments in this stream.
+ /// * `Poll::Ready(Err(err))` if an IO error occurred while reading the
+ /// next segment.
+ ///
+ /// When the method returns `Poll::Pending`, the `Waker` in the provided
+ /// `Context` is scheduled to receive a wakeup when more bytes become
+ /// available on the underlying IO resource.
+ ///
+ /// Note that on multiple calls to `poll_next_segment`, only the `Waker`
+ /// from the `Context` passed to the most recent call is scheduled to
+ /// receive a wakeup.
+ pub fn poll_next_segment(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ ) -> Poll<io::Result<Option<Vec<u8>>>> {
+ let me = self.project();
+
+ let n = ready!(read_until_internal(
+ me.reader, cx, *me.delim, me.buf, me.read,
+ ))?;
+ // read_until_internal resets me.read to zero once it finds the delimiter
+ debug_assert_eq!(*me.read, 0);
+
+ if n == 0 && me.buf.is_empty() {
+ return Poll::Ready(Ok(None));
+ }
+
+ if me.buf.last() == Some(me.delim) {
+ me.buf.pop();
+ }
+
+ Poll::Ready(Ok(Some(mem::take(me.buf))))
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<Split<()>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/take.rs b/vendor/tokio/src/io/util/take.rs
new file mode 100644
index 000000000..b5e90c936
--- /dev/null
+++ b/vendor/tokio/src/io/util/take.rs
@@ -0,0 +1,133 @@
+use crate::io::{AsyncBufRead, AsyncRead, ReadBuf};
+
+use pin_project_lite::pin_project;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+use std::{cmp, io};
+
+pin_project! {
+ /// Stream for the [`take`](super::AsyncReadExt::take) method.
+ #[derive(Debug)]
+ #[must_use = "streams do nothing unless you `.await` or poll them"]
+ #[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
+ pub struct Take<R> {
+ #[pin]
+ inner: R,
+ // Add '_' to avoid conflicts with `limit` method.
+ limit_: u64,
+ }
+}
+
+pub(super) fn take<R: AsyncRead>(inner: R, limit: u64) -> Take<R> {
+ Take {
+ inner,
+ limit_: limit,
+ }
+}
+
+impl<R: AsyncRead> Take<R> {
+ /// Returns the remaining number of bytes that can be
+ /// read before this instance will return EOF.
+ ///
+ /// # Note
+ ///
+ /// This instance may reach `EOF` after reading fewer bytes than indicated by
+ /// this method if the underlying [`AsyncRead`] instance reaches EOF.
+ pub fn limit(&self) -> u64 {
+ self.limit_
+ }
+
+ /// Sets the number of bytes that can be read before this instance will
+ /// return EOF. This is the same as constructing a new `Take` instance, so
+ /// the amount of bytes read and the previous limit value don't matter when
+ /// calling this method.
+ pub fn set_limit(&mut self, limit: u64) {
+ self.limit_ = limit
+ }
+
+ /// Gets a reference to the underlying reader.
+ pub fn get_ref(&self) -> &R {
+ &self.inner
+ }
+
+ /// Gets a mutable reference to the underlying reader.
+ ///
+ /// Care should be taken to avoid modifying the internal I/O state of the
+ /// underlying reader as doing so may corrupt the internal limit of this
+ /// `Take`.
+ pub fn get_mut(&mut self) -> &mut R {
+ &mut self.inner
+ }
+
+ /// Gets a pinned mutable reference to the underlying reader.
+ ///
+ /// Care should be taken to avoid modifying the internal I/O state of the
+ /// underlying reader as doing so may corrupt the internal limit of this
+ /// `Take`.
+ pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut R> {
+ self.project().inner
+ }
+
+ /// Consumes the `Take`, returning the wrapped reader.
+ pub fn into_inner(self) -> R {
+ self.inner
+ }
+}
+
+impl<R: AsyncRead> AsyncRead for Take<R> {
+ fn poll_read(
+ self: Pin<&mut Self>,
+ cx: &mut Context<'_>,
+ buf: &mut ReadBuf<'_>,
+ ) -> Poll<Result<(), io::Error>> {
+ if self.limit_ == 0 {
+ return Poll::Ready(Ok(()));
+ }
+
+ let me = self.project();
+ let mut b = buf.take(*me.limit_ as usize);
+ ready!(me.inner.poll_read(cx, &mut b))?;
+ let n = b.filled().len();
+
+ // We need to update the original ReadBuf
+ unsafe {
+ buf.assume_init(n);
+ }
+ buf.advance(n);
+ *me.limit_ -= n as u64;
+ Poll::Ready(Ok(()))
+ }
+}
+
+impl<R: AsyncBufRead> AsyncBufRead for Take<R> {
+ fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
+ let me = self.project();
+
+ // Don't call into inner reader at all at EOF because it may still block
+ if *me.limit_ == 0 {
+ return Poll::Ready(Ok(&[]));
+ }
+
+ let buf = ready!(me.inner.poll_fill_buf(cx)?);
+ let cap = cmp::min(buf.len() as u64, *me.limit_) as usize;
+ Poll::Ready(Ok(&buf[..cap]))
+ }
+
+ fn consume(self: Pin<&mut Self>, amt: usize) {
+ let me = self.project();
+ // Don't let callers reset the limit by passing an overlarge value
+ let amt = cmp::min(amt as u64, *me.limit_) as usize;
+ *me.limit_ -= amt as u64;
+ me.inner.consume(amt);
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn assert_unpin() {
+ crate::is_unpin::<Take<()>>();
+ }
+}
diff --git a/vendor/tokio/src/io/util/vec_with_initialized.rs b/vendor/tokio/src/io/util/vec_with_initialized.rs
new file mode 100644
index 000000000..208cc939c
--- /dev/null
+++ b/vendor/tokio/src/io/util/vec_with_initialized.rs
@@ -0,0 +1,132 @@
+use crate::io::ReadBuf;
+use std::mem::MaybeUninit;
+
+mod private {
+ pub trait Sealed {}
+
+ impl Sealed for Vec<u8> {}
+ impl Sealed for &mut Vec<u8> {}
+}
+
+/// A sealed trait that constrains the generic type parameter in `VecWithInitialized<V>`. That struct's safety relies
+/// on certain invariants upheld by `Vec<u8>`.
+pub(crate) trait VecU8: AsMut<Vec<u8>> + private::Sealed {}
+
+impl VecU8 for Vec<u8> {}
+impl VecU8 for &mut Vec<u8> {}
+/// This struct wraps a `Vec<u8>` or `&mut Vec<u8>`, combining it with a
+/// `num_initialized`, which keeps track of the number of initialized bytes
+/// in the unused capacity.
+///
+/// The purpose of this struct is to remember how many bytes were initialized
+/// through a `ReadBuf` from call to call.
+///
+/// This struct has the safety invariant that the first `num_initialized` of the
+/// vector's allocation must be initialized at any time.
+#[derive(Debug)]
+pub(crate) struct VecWithInitialized<V> {
+ vec: V,
+ // The number of initialized bytes in the vector.
+ // Always between `vec.len()` and `vec.capacity()`.
+ num_initialized: usize,
+}
+
+impl VecWithInitialized<Vec<u8>> {
+ #[cfg(feature = "io-util")]
+ pub(crate) fn take(&mut self) -> Vec<u8> {
+ self.num_initialized = 0;
+ std::mem::take(&mut self.vec)
+ }
+}
+
+impl<V> VecWithInitialized<V>
+where
+ V: VecU8,
+{
+ pub(crate) fn new(mut vec: V) -> Self {
+ // SAFETY: The safety invariants of vector guarantee that the bytes up
+ // to its length are initialized.
+ Self {
+ num_initialized: vec.as_mut().len(),
+ vec,
+ }
+ }
+
+ pub(crate) fn reserve(&mut self, num_bytes: usize) {
+ let vec = self.vec.as_mut();
+ if vec.capacity() - vec.len() >= num_bytes {
+ return;
+ }
+ // SAFETY: Setting num_initialized to `vec.len()` is correct as
+ // `reserve` does not change the length of the vector.
+ self.num_initialized = vec.len();
+ vec.reserve(num_bytes);
+ }
+
+ #[cfg(feature = "io-util")]
+ pub(crate) fn is_empty(&mut self) -> bool {
+ self.vec.as_mut().is_empty()
+ }
+
+ pub(crate) fn get_read_buf<'a>(&'a mut self) -> ReadBuf<'a> {
+ let num_initialized = self.num_initialized;
+
+ // SAFETY: Creating the slice is safe because of the safety invariants
+ // on Vec<u8>. The safety invariants of `ReadBuf` will further guarantee
+ // that no bytes in the slice are de-initialized.
+ let vec = self.vec.as_mut();
+ let len = vec.len();
+ let cap = vec.capacity();
+ let ptr = vec.as_mut_ptr().cast::<MaybeUninit<u8>>();
+ let slice = unsafe { std::slice::from_raw_parts_mut::<'a, MaybeUninit<u8>>(ptr, cap) };
+
+ // SAFETY: This is safe because the safety invariants of
+ // VecWithInitialized say that the first num_initialized bytes must be
+ // initialized.
+ let mut read_buf = ReadBuf::uninit(slice);
+ unsafe {
+ read_buf.assume_init(num_initialized);
+ }
+ read_buf.set_filled(len);
+
+ read_buf
+ }
+
+ pub(crate) fn apply_read_buf(&mut self, parts: ReadBufParts) {
+ let vec = self.vec.as_mut();
+ assert_eq!(vec.as_ptr(), parts.ptr);
+
+ // SAFETY:
+ // The ReadBufParts really does point inside `self.vec` due to the above
+ // check, and the safety invariants of `ReadBuf` guarantee that the
+ // first `parts.initialized` bytes of `self.vec` really have been
+ // initialized. Additionally, `ReadBuf` guarantees that `parts.len` is
+ // at most `parts.initialized`, so the first `parts.len` bytes are also
+ // initialized.
+ //
+ // Note that this relies on the fact that `V` is either `Vec<u8>` or
+ // `&mut Vec<u8>`, so the vector returned by `self.vec.as_mut()` cannot
+ // change from call to call.
+ unsafe {
+ self.num_initialized = parts.initialized;
+ vec.set_len(parts.len);
+ }
+ }
+}
+
+pub(crate) struct ReadBufParts {
+ // Pointer is only used to check that the ReadBuf actually came from the
+ // right VecWithInitialized.
+ ptr: *const u8,
+ len: usize,
+ initialized: usize,
+}
+
+// This is needed to release the borrow on `VecWithInitialized<V>`.
+pub(crate) fn into_read_buf_parts(rb: ReadBuf<'_>) -> ReadBufParts {
+ ReadBufParts {
+ ptr: rb.filled().as_ptr(),
+ len: rb.filled().len(),
+ initialized: rb.initialized().len(),
+ }
+}
diff --git a/vendor/tokio/src/io/util/write.rs b/vendor/tokio/src/io/util/write.rs
new file mode 100644
index 000000000..92169ebc1
--- /dev/null
+++ b/vendor/tokio/src/io/util/write.rs
@@ -0,0 +1,46 @@
+use crate::io::AsyncWrite;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// A future to write some of the buffer to an `AsyncWrite`.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct Write<'a, W: ?Sized> {
+ writer: &'a mut W,
+ buf: &'a [u8],
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+/// Tries to write some bytes from the given `buf` to the writer in an
+/// asynchronous manner, returning a future.
+pub(crate) fn write<'a, W>(writer: &'a mut W, buf: &'a [u8]) -> Write<'a, W>
+where
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ Write {
+ writer,
+ buf,
+ _pin: PhantomPinned,
+ }
+}
+
+impl<W> Future for Write<'_, W>
+where
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<usize>> {
+ let me = self.project();
+ Pin::new(&mut *me.writer).poll_write(cx, me.buf)
+ }
+}
diff --git a/vendor/tokio/src/io/util/write_all.rs b/vendor/tokio/src/io/util/write_all.rs
new file mode 100644
index 000000000..e59d41e4d
--- /dev/null
+++ b/vendor/tokio/src/io/util/write_all.rs
@@ -0,0 +1,55 @@
+use crate::io::AsyncWrite;
+
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::mem;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct WriteAll<'a, W: ?Sized> {
+ writer: &'a mut W,
+ buf: &'a [u8],
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+pub(crate) fn write_all<'a, W>(writer: &'a mut W, buf: &'a [u8]) -> WriteAll<'a, W>
+where
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ WriteAll {
+ writer,
+ buf,
+ _pin: PhantomPinned,
+ }
+}
+
+impl<W> Future for WriteAll<'_, W>
+where
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<()>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ let me = self.project();
+ while !me.buf.is_empty() {
+ let n = ready!(Pin::new(&mut *me.writer).poll_write(cx, me.buf))?;
+ {
+ let (_, rest) = mem::replace(&mut *me.buf, &[]).split_at(n);
+ *me.buf = rest;
+ }
+ if n == 0 {
+ return Poll::Ready(Err(io::ErrorKind::WriteZero.into()));
+ }
+ }
+
+ Poll::Ready(Ok(()))
+ }
+}
diff --git a/vendor/tokio/src/io/util/write_all_buf.rs b/vendor/tokio/src/io/util/write_all_buf.rs
new file mode 100644
index 000000000..05af7fe99
--- /dev/null
+++ b/vendor/tokio/src/io/util/write_all_buf.rs
@@ -0,0 +1,56 @@
+use crate::io::AsyncWrite;
+
+use bytes::Buf;
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// A future to write some of the buffer to an `AsyncWrite`.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct WriteAllBuf<'a, W, B> {
+ writer: &'a mut W,
+ buf: &'a mut B,
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+/// Tries to write some bytes from the given `buf` to the writer in an
+/// asynchronous manner, returning a future.
+pub(crate) fn write_all_buf<'a, W, B>(writer: &'a mut W, buf: &'a mut B) -> WriteAllBuf<'a, W, B>
+where
+ W: AsyncWrite + Unpin,
+ B: Buf,
+{
+ WriteAllBuf {
+ writer,
+ buf,
+ _pin: PhantomPinned,
+ }
+}
+
+impl<W, B> Future for WriteAllBuf<'_, W, B>
+where
+ W: AsyncWrite + Unpin,
+ B: Buf,
+{
+ type Output = io::Result<()>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
+ let me = self.project();
+ while me.buf.has_remaining() {
+ let n = ready!(Pin::new(&mut *me.writer).poll_write(cx, me.buf.chunk())?);
+ me.buf.advance(n);
+ if n == 0 {
+ return Poll::Ready(Err(io::ErrorKind::WriteZero.into()));
+ }
+ }
+
+ Poll::Ready(Ok(()))
+ }
+}
diff --git a/vendor/tokio/src/io/util/write_buf.rs b/vendor/tokio/src/io/util/write_buf.rs
new file mode 100644
index 000000000..82fd7a759
--- /dev/null
+++ b/vendor/tokio/src/io/util/write_buf.rs
@@ -0,0 +1,55 @@
+use crate::io::AsyncWrite;
+
+use bytes::Buf;
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// A future to write some of the buffer to an `AsyncWrite`.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct WriteBuf<'a, W, B> {
+ writer: &'a mut W,
+ buf: &'a mut B,
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+/// Tries to write some bytes from the given `buf` to the writer in an
+/// asynchronous manner, returning a future.
+pub(crate) fn write_buf<'a, W, B>(writer: &'a mut W, buf: &'a mut B) -> WriteBuf<'a, W, B>
+where
+ W: AsyncWrite + Unpin,
+ B: Buf,
+{
+ WriteBuf {
+ writer,
+ buf,
+ _pin: PhantomPinned,
+ }
+}
+
+impl<W, B> Future for WriteBuf<'_, W, B>
+where
+ W: AsyncWrite + Unpin,
+ B: Buf,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<usize>> {
+ let me = self.project();
+
+ if !me.buf.has_remaining() {
+ return Poll::Ready(Ok(0));
+ }
+
+ let n = ready!(Pin::new(me.writer).poll_write(cx, me.buf.chunk()))?;
+ me.buf.advance(n);
+ Poll::Ready(Ok(n))
+ }
+}
diff --git a/vendor/tokio/src/io/util/write_int.rs b/vendor/tokio/src/io/util/write_int.rs
new file mode 100644
index 000000000..13bc191ed
--- /dev/null
+++ b/vendor/tokio/src/io/util/write_int.rs
@@ -0,0 +1,146 @@
+use crate::io::AsyncWrite;
+
+use bytes::BufMut;
+use pin_project_lite::pin_project;
+use std::future::Future;
+use std::io;
+use std::marker::PhantomPinned;
+use std::mem::size_of;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+macro_rules! writer {
+ ($name:ident, $ty:ty, $writer:ident) => {
+ writer!($name, $ty, $writer, size_of::<$ty>());
+ };
+ ($name:ident, $ty:ty, $writer:ident, $bytes:expr) => {
+ pin_project! {
+ #[doc(hidden)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct $name<W> {
+ #[pin]
+ dst: W,
+ buf: [u8; $bytes],
+ written: u8,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+ }
+
+ impl<W> $name<W> {
+ pub(crate) fn new(w: W, value: $ty) -> Self {
+ let mut writer = Self {
+ buf: [0; $bytes],
+ written: 0,
+ dst: w,
+ _pin: PhantomPinned,
+ };
+ BufMut::$writer(&mut &mut writer.buf[..], value);
+ writer
+ }
+ }
+
+ impl<W> Future for $name<W>
+ where
+ W: AsyncWrite,
+ {
+ type Output = io::Result<()>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let mut me = self.project();
+
+ if *me.written == $bytes as u8 {
+ return Poll::Ready(Ok(()));
+ }
+
+ while *me.written < $bytes as u8 {
+ *me.written += match me
+ .dst
+ .as_mut()
+ .poll_write(cx, &me.buf[*me.written as usize..])
+ {
+ Poll::Pending => return Poll::Pending,
+ Poll::Ready(Err(e)) => return Poll::Ready(Err(e.into())),
+ Poll::Ready(Ok(0)) => {
+ return Poll::Ready(Err(io::ErrorKind::WriteZero.into()));
+ }
+ Poll::Ready(Ok(n)) => n as u8,
+ };
+ }
+ Poll::Ready(Ok(()))
+ }
+ }
+ };
+}
+
+macro_rules! writer8 {
+ ($name:ident, $ty:ty) => {
+ pin_project! {
+ #[doc(hidden)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct $name<W> {
+ #[pin]
+ dst: W,
+ byte: $ty,
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+ }
+
+ impl<W> $name<W> {
+ pub(crate) fn new(dst: W, byte: $ty) -> Self {
+ Self {
+ dst,
+ byte,
+ _pin: PhantomPinned,
+ }
+ }
+ }
+
+ impl<W> Future for $name<W>
+ where
+ W: AsyncWrite,
+ {
+ type Output = io::Result<()>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let me = self.project();
+
+ let buf = [*me.byte as u8];
+
+ match me.dst.poll_write(cx, &buf[..]) {
+ Poll::Pending => Poll::Pending,
+ Poll::Ready(Err(e)) => Poll::Ready(Err(e.into())),
+ Poll::Ready(Ok(0)) => Poll::Ready(Err(io::ErrorKind::WriteZero.into())),
+ Poll::Ready(Ok(1)) => Poll::Ready(Ok(())),
+ Poll::Ready(Ok(_)) => unreachable!(),
+ }
+ }
+ }
+ };
+}
+
+writer8!(WriteU8, u8);
+writer8!(WriteI8, i8);
+
+writer!(WriteU16, u16, put_u16);
+writer!(WriteU32, u32, put_u32);
+writer!(WriteU64, u64, put_u64);
+writer!(WriteU128, u128, put_u128);
+
+writer!(WriteI16, i16, put_i16);
+writer!(WriteI32, i32, put_i32);
+writer!(WriteI64, i64, put_i64);
+writer!(WriteI128, i128, put_i128);
+
+writer!(WriteU16Le, u16, put_u16_le);
+writer!(WriteU32Le, u32, put_u32_le);
+writer!(WriteU64Le, u64, put_u64_le);
+writer!(WriteU128Le, u128, put_u128_le);
+
+writer!(WriteI16Le, i16, put_i16_le);
+writer!(WriteI32Le, i32, put_i32_le);
+writer!(WriteI64Le, i64, put_i64_le);
+writer!(WriteI128Le, i128, put_i128_le);
diff --git a/vendor/tokio/src/io/util/write_vectored.rs b/vendor/tokio/src/io/util/write_vectored.rs
new file mode 100644
index 000000000..be4032294
--- /dev/null
+++ b/vendor/tokio/src/io/util/write_vectored.rs
@@ -0,0 +1,47 @@
+use crate::io::AsyncWrite;
+
+use pin_project_lite::pin_project;
+use std::io;
+use std::marker::PhantomPinned;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+use std::{future::Future, io::IoSlice};
+
+pin_project! {
+ /// A future to write a slice of buffers to an `AsyncWrite`.
+ #[derive(Debug)]
+ #[must_use = "futures do nothing unless you `.await` or poll them"]
+ pub struct WriteVectored<'a, 'b, W: ?Sized> {
+ writer: &'a mut W,
+ bufs: &'a [IoSlice<'b>],
+ // Make this future `!Unpin` for compatibility with async trait methods.
+ #[pin]
+ _pin: PhantomPinned,
+ }
+}
+
+pub(crate) fn write_vectored<'a, 'b, W>(
+ writer: &'a mut W,
+ bufs: &'a [IoSlice<'b>],
+) -> WriteVectored<'a, 'b, W>
+where
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ WriteVectored {
+ writer,
+ bufs,
+ _pin: PhantomPinned,
+ }
+}
+
+impl<W> Future for WriteVectored<'_, '_, W>
+where
+ W: AsyncWrite + Unpin + ?Sized,
+{
+ type Output = io::Result<usize>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<usize>> {
+ let me = self.project();
+ Pin::new(&mut *me.writer).poll_write_vectored(cx, me.bufs)
+ }
+}