summaryrefslogtreecommitdiffstats
path: root/vendor/unicode-ident/benches/xid.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/unicode-ident/benches/xid.rs')
-rw-r--r--vendor/unicode-ident/benches/xid.rs124
1 files changed, 124 insertions, 0 deletions
diff --git a/vendor/unicode-ident/benches/xid.rs b/vendor/unicode-ident/benches/xid.rs
new file mode 100644
index 000000000..040c4e181
--- /dev/null
+++ b/vendor/unicode-ident/benches/xid.rs
@@ -0,0 +1,124 @@
+// To run:
+//
+// cargo criterion --features criterion/real_blackbox
+//
+// This benchmarks each of the different libraries at several ratios of ASCII to
+// non-ASCII content. There is one additional benchmark labeled "baseline" which
+// just iterates over characters in a string, converting UTF-8 to 32-bit chars.
+//
+// Criterion will show a time in milliseconds. The non-baseline bench functions
+// each make one million function calls (2 calls per character, 500K characters
+// in the strings created by gen_string). The "time per call" listed in our
+// readme is computed by subtracting this baseline from the other bench
+// functions' time, then dividing by one million (ms -> ns).
+
+#![allow(clippy::needless_pass_by_value)]
+
+#[path = "../tests/fst/mod.rs"]
+mod fst;
+#[path = "../tests/roaring/mod.rs"]
+mod roaring;
+#[path = "../tests/trie/mod.rs"]
+mod trie;
+
+use criterion::{black_box, criterion_group, criterion_main, Criterion};
+use rand::distributions::{Bernoulli, Distribution, Uniform};
+use rand::rngs::SmallRng;
+use rand::SeedableRng;
+use std::time::Duration;
+
+fn gen_string(p_nonascii: u32) -> String {
+ let mut rng = SmallRng::from_seed([b'!'; 32]);
+ let pick_nonascii = Bernoulli::from_ratio(p_nonascii, 100).unwrap();
+ let ascii = Uniform::new_inclusive('\0', '\x7f');
+ let nonascii = Uniform::new_inclusive(0x80 as char, char::MAX);
+
+ let mut string = String::new();
+ for _ in 0..500_000 {
+ let distribution = if pick_nonascii.sample(&mut rng) {
+ nonascii
+ } else {
+ ascii
+ };
+ string.push(distribution.sample(&mut rng));
+ }
+
+ string
+}
+
+fn bench(c: &mut Criterion, group_name: &str, string: String) {
+ let mut group = c.benchmark_group(group_name);
+ group.measurement_time(Duration::from_secs(10));
+ group.bench_function("baseline", |b| {
+ b.iter(|| {
+ for ch in string.chars() {
+ black_box(ch);
+ }
+ });
+ });
+ group.bench_function("unicode-ident", |b| {
+ b.iter(|| {
+ for ch in string.chars() {
+ black_box(unicode_ident::is_xid_start(ch));
+ black_box(unicode_ident::is_xid_continue(ch));
+ }
+ });
+ });
+ group.bench_function("unicode-xid", |b| {
+ b.iter(|| {
+ for ch in string.chars() {
+ black_box(unicode_xid::UnicodeXID::is_xid_start(ch));
+ black_box(unicode_xid::UnicodeXID::is_xid_continue(ch));
+ }
+ });
+ });
+ group.bench_function("ucd-trie", |b| {
+ b.iter(|| {
+ for ch in string.chars() {
+ black_box(trie::XID_START.contains_char(ch));
+ black_box(trie::XID_CONTINUE.contains_char(ch));
+ }
+ });
+ });
+ group.bench_function("fst", |b| {
+ let xid_start_fst = fst::xid_start_fst();
+ let xid_continue_fst = fst::xid_continue_fst();
+ b.iter(|| {
+ for ch in string.chars() {
+ let ch_bytes = (ch as u32).to_be_bytes();
+ black_box(xid_start_fst.contains(ch_bytes));
+ black_box(xid_continue_fst.contains(ch_bytes));
+ }
+ });
+ });
+ group.bench_function("roaring", |b| {
+ let xid_start_bitmap = roaring::xid_start_bitmap();
+ let xid_continue_bitmap = roaring::xid_continue_bitmap();
+ b.iter(|| {
+ for ch in string.chars() {
+ black_box(xid_start_bitmap.contains(ch as u32));
+ black_box(xid_continue_bitmap.contains(ch as u32));
+ }
+ });
+ });
+ group.finish();
+}
+
+fn bench0(c: &mut Criterion) {
+ bench(c, "0%-nonascii", gen_string(0));
+}
+
+fn bench1(c: &mut Criterion) {
+ bench(c, "1%-nonascii", gen_string(1));
+}
+
+fn bench10(c: &mut Criterion) {
+ bench(c, "10%-nonascii", gen_string(10));
+}
+
+fn bench100(c: &mut Criterion) {
+ bench(c, "100%-nonascii", gen_string(100));
+}
+
+criterion_group!(benches, bench0, bench1, bench10, bench100);
+criterion_main!(benches);