From 20431706a863f92cb37dc512fef6e48d192aaf2c Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:11:38 +0200 Subject: Merging upstream version 1.66.0+dfsg1. Signed-off-by: Daniel Baumann --- compiler/rustc_hir_analysis/src/check/check.rs | 1443 ++++++++++++++++++++++++ 1 file changed, 1443 insertions(+) create mode 100644 compiler/rustc_hir_analysis/src/check/check.rs (limited to 'compiler/rustc_hir_analysis/src/check/check.rs') diff --git a/compiler/rustc_hir_analysis/src/check/check.rs b/compiler/rustc_hir_analysis/src/check/check.rs new file mode 100644 index 000000000..b70ac0205 --- /dev/null +++ b/compiler/rustc_hir_analysis/src/check/check.rs @@ -0,0 +1,1443 @@ +use crate::check::intrinsicck::InlineAsmCtxt; + +use super::compare_method::check_type_bounds; +use super::compare_method::{compare_impl_method, compare_ty_impl}; +use super::*; +use rustc_attr as attr; +use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan}; +use rustc_hir as hir; +use rustc_hir::def::{DefKind, Res}; +use rustc_hir::def_id::{DefId, LocalDefId}; +use rustc_hir::intravisit::Visitor; +use rustc_hir::{ItemKind, Node, PathSegment}; +use rustc_infer::infer::outlives::env::OutlivesEnvironment; +use rustc_infer::infer::{DefiningAnchor, RegionVariableOrigin, TyCtxtInferExt}; +use rustc_infer::traits::Obligation; +use rustc_lint::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS; +use rustc_middle::hir::nested_filter; +use rustc_middle::middle::stability::EvalResult; +use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES}; +use rustc_middle::ty::subst::GenericArgKind; +use rustc_middle::ty::util::{Discr, IntTypeExt}; +use rustc_middle::ty::{ + self, ParamEnv, ToPredicate, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, +}; +use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS}; +use rustc_span::symbol::sym; +use rustc_span::{self, Span}; +use rustc_target::spec::abi::Abi; +use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _; +use rustc_trait_selection::traits::{self, ObligationCtxt}; + +use std::ops::ControlFlow; + +pub fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) { + match tcx.sess.target.is_abi_supported(abi) { + Some(true) => (), + Some(false) => { + struct_span_err!( + tcx.sess, + span, + E0570, + "`{abi}` is not a supported ABI for the current target", + ) + .emit(); + } + None => { + tcx.struct_span_lint_hir( + UNSUPPORTED_CALLING_CONVENTIONS, + hir_id, + span, + "use of calling convention not supported on this target", + |lint| lint, + ); + } + } + + // This ABI is only allowed on function pointers + if abi == Abi::CCmseNonSecureCall { + struct_span_err!( + tcx.sess, + span, + E0781, + "the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers" + ) + .emit(); + } +} + +fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) { + let def = tcx.adt_def(def_id); + let span = tcx.def_span(def_id); + def.destructor(tcx); // force the destructor to be evaluated + + if def.repr().simd() { + check_simd(tcx, span, def_id); + } + + check_transparent(tcx, span, def); + check_packed(tcx, span, def); +} + +fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) { + let def = tcx.adt_def(def_id); + let span = tcx.def_span(def_id); + def.destructor(tcx); // force the destructor to be evaluated + check_transparent(tcx, span, def); + check_union_fields(tcx, span, def_id); + check_packed(tcx, span, def); +} + +/// Check that the fields of the `union` do not need dropping. +fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool { + let item_type = tcx.type_of(item_def_id); + if let ty::Adt(def, substs) = item_type.kind() { + assert!(def.is_union()); + + fn allowed_union_field<'tcx>( + ty: Ty<'tcx>, + tcx: TyCtxt<'tcx>, + param_env: ty::ParamEnv<'tcx>, + span: Span, + ) -> bool { + // We don't just accept all !needs_drop fields, due to semver concerns. + match ty.kind() { + ty::Ref(..) => true, // references never drop (even mutable refs, which are non-Copy and hence fail the later check) + ty::Tuple(tys) => { + // allow tuples of allowed types + tys.iter().all(|ty| allowed_union_field(ty, tcx, param_env, span)) + } + ty::Array(elem, _len) => { + // Like `Copy`, we do *not* special-case length 0. + allowed_union_field(*elem, tcx, param_env, span) + } + _ => { + // Fallback case: allow `ManuallyDrop` and things that are `Copy`. + ty.ty_adt_def().is_some_and(|adt_def| adt_def.is_manually_drop()) + || ty.is_copy_modulo_regions(tcx, param_env) + } + } + } + + let param_env = tcx.param_env(item_def_id); + for field in &def.non_enum_variant().fields { + let field_ty = field.ty(tcx, substs); + + if !allowed_union_field(field_ty, tcx, param_env, span) { + let (field_span, ty_span) = match tcx.hir().get_if_local(field.did) { + // We are currently checking the type this field came from, so it must be local. + Some(Node::Field(field)) => (field.span, field.ty.span), + _ => unreachable!("mir field has to correspond to hir field"), + }; + struct_span_err!( + tcx.sess, + field_span, + E0740, + "unions cannot contain fields that may need dropping" + ) + .note( + "a type is guaranteed not to need dropping \ + when it implements `Copy`, or when it is the special `ManuallyDrop<_>` type", + ) + .multipart_suggestion_verbose( + "when the type does not implement `Copy`, \ + wrap it inside a `ManuallyDrop<_>` and ensure it is manually dropped", + vec![ + (ty_span.shrink_to_lo(), "std::mem::ManuallyDrop<".into()), + (ty_span.shrink_to_hi(), ">".into()), + ], + Applicability::MaybeIncorrect, + ) + .emit(); + return false; + } else if field_ty.needs_drop(tcx, param_env) { + // This should never happen. But we can get here e.g. in case of name resolution errors. + tcx.sess.delay_span_bug(span, "we should never accept maybe-dropping union fields"); + } + } + } else { + span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind()); + } + true +} + +/// Check that a `static` is inhabited. +fn check_static_inhabited<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) { + // Make sure statics are inhabited. + // Other parts of the compiler assume that there are no uninhabited places. In principle it + // would be enough to check this for `extern` statics, as statics with an initializer will + // have UB during initialization if they are uninhabited, but there also seems to be no good + // reason to allow any statics to be uninhabited. + let ty = tcx.type_of(def_id); + let span = tcx.def_span(def_id); + let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) { + Ok(l) => l, + // Foreign statics that overflow their allowed size should emit an error + Err(LayoutError::SizeOverflow(_)) + if { + let node = tcx.hir().get_by_def_id(def_id); + matches!( + node, + hir::Node::ForeignItem(hir::ForeignItem { + kind: hir::ForeignItemKind::Static(..), + .. + }) + ) + } => + { + tcx.sess + .struct_span_err(span, "extern static is too large for the current architecture") + .emit(); + return; + } + // Generic statics are rejected, but we still reach this case. + Err(e) => { + tcx.sess.delay_span_bug(span, &e.to_string()); + return; + } + }; + if layout.abi.is_uninhabited() { + tcx.struct_span_lint_hir( + UNINHABITED_STATIC, + tcx.hir().local_def_id_to_hir_id(def_id), + span, + "static of uninhabited type", + |lint| { + lint + .note("uninhabited statics cannot be initialized, and any access would be an immediate error") + }, + ); + } +} + +/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo` +/// projections that would result in "inheriting lifetimes". +fn check_opaque<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) { + let item = tcx.hir().item(id); + let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item.kind else { + tcx.sess.delay_span_bug(tcx.hir().span(id.hir_id()), "expected opaque item"); + return; + }; + + // HACK(jynelson): trying to infer the type of `impl trait` breaks documenting + // `async-std` (and `pub async fn` in general). + // Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it! + // See https://github.com/rust-lang/rust/issues/75100 + if tcx.sess.opts.actually_rustdoc { + return; + } + + let substs = InternalSubsts::identity_for_item(tcx, item.owner_id.to_def_id()); + let span = tcx.def_span(item.owner_id.def_id); + + check_opaque_for_inheriting_lifetimes(tcx, item.owner_id.def_id, span); + if tcx.type_of(item.owner_id.def_id).references_error() { + return; + } + if check_opaque_for_cycles(tcx, item.owner_id.def_id, substs, span, &origin).is_err() { + return; + } + check_opaque_meets_bounds(tcx, item.owner_id.def_id, substs, span, &origin); +} +/// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result +/// in "inheriting lifetimes". +#[instrument(level = "debug", skip(tcx, span))] +pub(super) fn check_opaque_for_inheriting_lifetimes<'tcx>( + tcx: TyCtxt<'tcx>, + def_id: LocalDefId, + span: Span, +) { + let item = tcx.hir().expect_item(def_id); + debug!(?item, ?span); + + struct FoundParentLifetime; + struct FindParentLifetimeVisitor<'tcx>(&'tcx ty::Generics); + impl<'tcx> ty::visit::TypeVisitor<'tcx> for FindParentLifetimeVisitor<'tcx> { + type BreakTy = FoundParentLifetime; + + fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow { + debug!("FindParentLifetimeVisitor: r={:?}", r); + if let ty::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = *r { + if index < self.0.parent_count as u32 { + return ControlFlow::Break(FoundParentLifetime); + } else { + return ControlFlow::CONTINUE; + } + } + + r.super_visit_with(self) + } + + fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow { + if let ty::ConstKind::Unevaluated(..) = c.kind() { + // FIXME(#72219) We currently don't detect lifetimes within substs + // which would violate this check. Even though the particular substitution is not used + // within the const, this should still be fixed. + return ControlFlow::CONTINUE; + } + c.super_visit_with(self) + } + } + + struct ProhibitOpaqueVisitor<'tcx> { + tcx: TyCtxt<'tcx>, + opaque_identity_ty: Ty<'tcx>, + generics: &'tcx ty::Generics, + selftys: Vec<(Span, Option)>, + } + + impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueVisitor<'tcx> { + type BreakTy = Ty<'tcx>; + + fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow { + debug!("check_opaque_for_inheriting_lifetimes: (visit_ty) t={:?}", t); + if t == self.opaque_identity_ty { + ControlFlow::CONTINUE + } else { + t.super_visit_with(&mut FindParentLifetimeVisitor(self.generics)) + .map_break(|FoundParentLifetime| t) + } + } + } + + impl<'tcx> Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> { + type NestedFilter = nested_filter::OnlyBodies; + + fn nested_visit_map(&mut self) -> Self::Map { + self.tcx.hir() + } + + fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) { + match arg.kind { + hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments { + [PathSegment { res: Res::SelfTyParam { .. }, .. }] => { + let impl_ty_name = None; + self.selftys.push((path.span, impl_ty_name)); + } + [PathSegment { res: Res::SelfTyAlias { alias_to: def_id, .. }, .. }] => { + let impl_ty_name = Some(self.tcx.def_path_str(*def_id)); + self.selftys.push((path.span, impl_ty_name)); + } + _ => {} + }, + _ => {} + } + hir::intravisit::walk_ty(self, arg); + } + } + + if let ItemKind::OpaqueTy(hir::OpaqueTy { + origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..), + .. + }) = item.kind + { + let mut visitor = ProhibitOpaqueVisitor { + opaque_identity_ty: tcx.mk_opaque( + def_id.to_def_id(), + InternalSubsts::identity_for_item(tcx, def_id.to_def_id()), + ), + generics: tcx.generics_of(def_id), + tcx, + selftys: vec![], + }; + let prohibit_opaque = tcx + .explicit_item_bounds(def_id) + .iter() + .try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor)); + debug!( + "check_opaque_for_inheriting_lifetimes: prohibit_opaque={:?}, visitor.opaque_identity_ty={:?}, visitor.generics={:?}", + prohibit_opaque, visitor.opaque_identity_ty, visitor.generics + ); + + if let Some(ty) = prohibit_opaque.break_value() { + visitor.visit_item(&item); + let is_async = match item.kind { + ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => { + matches!(origin, hir::OpaqueTyOrigin::AsyncFn(..)) + } + _ => unreachable!(), + }; + + let mut err = struct_span_err!( + tcx.sess, + span, + E0760, + "`{}` return type cannot contain a projection or `Self` that references lifetimes from \ + a parent scope", + if is_async { "async fn" } else { "impl Trait" }, + ); + + for (span, name) in visitor.selftys { + err.span_suggestion( + span, + "consider spelling out the type instead", + name.unwrap_or_else(|| format!("{:?}", ty)), + Applicability::MaybeIncorrect, + ); + } + err.emit(); + } + } +} + +/// Checks that an opaque type does not contain cycles. +pub(super) fn check_opaque_for_cycles<'tcx>( + tcx: TyCtxt<'tcx>, + def_id: LocalDefId, + substs: SubstsRef<'tcx>, + span: Span, + origin: &hir::OpaqueTyOrigin, +) -> Result<(), ErrorGuaranteed> { + if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() { + let reported = match origin { + hir::OpaqueTyOrigin::AsyncFn(..) => async_opaque_type_cycle_error(tcx, span), + _ => opaque_type_cycle_error(tcx, def_id, span), + }; + Err(reported) + } else { + Ok(()) + } +} + +/// Check that the concrete type behind `impl Trait` actually implements `Trait`. +/// +/// This is mostly checked at the places that specify the opaque type, but we +/// check those cases in the `param_env` of that function, which may have +/// bounds not on this opaque type: +/// +/// ```ignore (illustrative) +/// type X = impl Clone; +/// fn f(t: T) -> X { +/// t +/// } +/// ``` +/// +/// Without this check the above code is incorrectly accepted: we would ICE if +/// some tried, for example, to clone an `Option>`. +#[instrument(level = "debug", skip(tcx))] +fn check_opaque_meets_bounds<'tcx>( + tcx: TyCtxt<'tcx>, + def_id: LocalDefId, + substs: SubstsRef<'tcx>, + span: Span, + origin: &hir::OpaqueTyOrigin, +) { + let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); + let defining_use_anchor = match *origin { + hir::OpaqueTyOrigin::FnReturn(did) | hir::OpaqueTyOrigin::AsyncFn(did) => did, + hir::OpaqueTyOrigin::TyAlias => def_id, + }; + let param_env = tcx.param_env(defining_use_anchor); + + let infcx = tcx + .infer_ctxt() + .with_opaque_type_inference(DefiningAnchor::Bind(defining_use_anchor)) + .build(); + let ocx = ObligationCtxt::new(&infcx); + let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs); + + // `ReErased` regions appear in the "parent_substs" of closures/generators. + // We're ignoring them here and replacing them with fresh region variables. + // See tests in ui/type-alias-impl-trait/closure_{parent_substs,wf_outlives}.rs. + // + // FIXME: Consider wrapping the hidden type in an existential `Binder` and instantiating it + // here rather than using ReErased. + let hidden_ty = tcx.bound_type_of(def_id.to_def_id()).subst(tcx, substs); + let hidden_ty = tcx.fold_regions(hidden_ty, |re, _dbi| match re.kind() { + ty::ReErased => infcx.next_region_var(RegionVariableOrigin::MiscVariable(span)), + _ => re, + }); + + let misc_cause = traits::ObligationCause::misc(span, hir_id); + + match infcx.at(&misc_cause, param_env).eq(opaque_ty, hidden_ty) { + Ok(infer_ok) => ocx.register_infer_ok_obligations(infer_ok), + Err(ty_err) => { + tcx.sess.delay_span_bug( + span, + &format!("could not unify `{hidden_ty}` with revealed type:\n{ty_err}"), + ); + } + } + + // Additionally require the hidden type to be well-formed with only the generics of the opaque type. + // Defining use functions may have more bounds than the opaque type, which is ok, as long as the + // hidden type is well formed even without those bounds. + let predicate = + ty::Binder::dummy(ty::PredicateKind::WellFormed(hidden_ty.into())).to_predicate(tcx); + ocx.register_obligation(Obligation::new(misc_cause, param_env, predicate)); + + // Check that all obligations are satisfied by the implementation's + // version. + let errors = ocx.select_all_or_error(); + if !errors.is_empty() { + infcx.err_ctxt().report_fulfillment_errors(&errors, None, false); + } + match origin { + // Checked when type checking the function containing them. + hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {} + // Can have different predicates to their defining use + hir::OpaqueTyOrigin::TyAlias => { + let outlives_environment = OutlivesEnvironment::new(param_env); + infcx.check_region_obligations_and_report_errors( + defining_use_anchor, + &outlives_environment, + ); + } + } + // Clean up after ourselves + let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types(); +} + +fn check_item_type<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) { + debug!( + "check_item_type(it.def_id={:?}, it.name={})", + id.owner_id, + tcx.def_path_str(id.owner_id.to_def_id()) + ); + let _indenter = indenter(); + match tcx.def_kind(id.owner_id) { + DefKind::Static(..) => { + tcx.ensure().typeck(id.owner_id.def_id); + maybe_check_static_with_link_section(tcx, id.owner_id.def_id); + check_static_inhabited(tcx, id.owner_id.def_id); + } + DefKind::Const => { + tcx.ensure().typeck(id.owner_id.def_id); + } + DefKind::Enum => { + let item = tcx.hir().item(id); + let hir::ItemKind::Enum(ref enum_definition, _) = item.kind else { + return; + }; + check_enum(tcx, &enum_definition.variants, item.owner_id.def_id); + } + DefKind::Fn => {} // entirely within check_item_body + DefKind::Impl => { + let it = tcx.hir().item(id); + let hir::ItemKind::Impl(ref impl_) = it.kind else { + return; + }; + debug!("ItemKind::Impl {} with id {:?}", it.ident, it.owner_id); + if let Some(impl_trait_ref) = tcx.impl_trait_ref(it.owner_id) { + check_impl_items_against_trait( + tcx, + it.span, + it.owner_id.def_id, + impl_trait_ref, + &impl_.items, + ); + check_on_unimplemented(tcx, it); + } + } + DefKind::Trait => { + let it = tcx.hir().item(id); + let hir::ItemKind::Trait(_, _, _, _, ref items) = it.kind else { + return; + }; + check_on_unimplemented(tcx, it); + + for item in items.iter() { + let item = tcx.hir().trait_item(item.id); + match item.kind { + hir::TraitItemKind::Fn(ref sig, _) => { + let abi = sig.header.abi; + fn_maybe_err(tcx, item.ident.span, abi); + } + hir::TraitItemKind::Type(.., Some(default)) => { + let assoc_item = tcx.associated_item(item.owner_id); + let trait_substs = + InternalSubsts::identity_for_item(tcx, it.owner_id.to_def_id()); + let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds( + tcx, + assoc_item, + assoc_item, + default.span, + ty::TraitRef { def_id: it.owner_id.to_def_id(), substs: trait_substs }, + ); + } + _ => {} + } + } + } + DefKind::Struct => { + check_struct(tcx, id.owner_id.def_id); + } + DefKind::Union => { + check_union(tcx, id.owner_id.def_id); + } + DefKind::OpaqueTy => { + check_opaque(tcx, id); + } + DefKind::ImplTraitPlaceholder => { + let parent = tcx.impl_trait_in_trait_parent(id.owner_id.to_def_id()); + // Only check the validity of this opaque type if the function has a default body + if let hir::Node::TraitItem(hir::TraitItem { + kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)), + .. + }) = tcx.hir().get_by_def_id(parent.expect_local()) + { + check_opaque(tcx, id); + } + } + DefKind::TyAlias => { + let pty_ty = tcx.type_of(id.owner_id); + let generics = tcx.generics_of(id.owner_id); + check_type_params_are_used(tcx, &generics, pty_ty); + } + DefKind::ForeignMod => { + let it = tcx.hir().item(id); + let hir::ItemKind::ForeignMod { abi, items } = it.kind else { + return; + }; + check_abi(tcx, it.hir_id(), it.span, abi); + + if abi == Abi::RustIntrinsic { + for item in items { + let item = tcx.hir().foreign_item(item.id); + intrinsic::check_intrinsic_type(tcx, item); + } + } else if abi == Abi::PlatformIntrinsic { + for item in items { + let item = tcx.hir().foreign_item(item.id); + intrinsic::check_platform_intrinsic_type(tcx, item); + } + } else { + for item in items { + let def_id = item.id.owner_id.def_id; + let generics = tcx.generics_of(def_id); + let own_counts = generics.own_counts(); + if generics.params.len() - own_counts.lifetimes != 0 { + let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) { + (_, 0) => ("type", "types", Some("u32")), + // We don't specify an example value, because we can't generate + // a valid value for any type. + (0, _) => ("const", "consts", None), + _ => ("type or const", "types or consts", None), + }; + struct_span_err!( + tcx.sess, + item.span, + E0044, + "foreign items may not have {kinds} parameters", + ) + .span_label(item.span, &format!("can't have {kinds} parameters")) + .help( + // FIXME: once we start storing spans for type arguments, turn this + // into a suggestion. + &format!( + "replace the {} parameters with concrete {}{}", + kinds, + kinds_pl, + egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(), + ), + ) + .emit(); + } + + let item = tcx.hir().foreign_item(item.id); + match item.kind { + hir::ForeignItemKind::Fn(ref fn_decl, _, _) => { + require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span); + } + hir::ForeignItemKind::Static(..) => { + check_static_inhabited(tcx, def_id); + } + _ => {} + } + } + } + } + DefKind::GlobalAsm => { + let it = tcx.hir().item(id); + let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) }; + InlineAsmCtxt::new_global_asm(tcx).check_asm(asm, id.hir_id()); + } + _ => {} + } +} + +pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, item: &hir::Item<'_>) { + // an error would be reported if this fails. + let _ = traits::OnUnimplementedDirective::of_item(tcx, item.owner_id.to_def_id()); +} + +pub(super) fn check_specialization_validity<'tcx>( + tcx: TyCtxt<'tcx>, + trait_def: &ty::TraitDef, + trait_item: &ty::AssocItem, + impl_id: DefId, + impl_item: &hir::ImplItemRef, +) { + let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return }; + let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| { + if parent.is_from_trait() { + None + } else { + Some((parent, parent.item(tcx, trait_item.def_id))) + } + }); + + let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| { + match parent_item { + // Parent impl exists, and contains the parent item we're trying to specialize, but + // doesn't mark it `default`. + Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => { + Some(Err(parent_impl.def_id())) + } + + // Parent impl contains item and makes it specializable. + Some(_) => Some(Ok(())), + + // Parent impl doesn't mention the item. This means it's inherited from the + // grandparent. In that case, if parent is a `default impl`, inherited items use the + // "defaultness" from the grandparent, else they are final. + None => { + if tcx.impl_defaultness(parent_impl.def_id()).is_default() { + None + } else { + Some(Err(parent_impl.def_id())) + } + } + } + }); + + // If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the + // item. This is allowed, the item isn't actually getting specialized here. + let result = opt_result.unwrap_or(Ok(())); + + if let Err(parent_impl) = result { + report_forbidden_specialization(tcx, impl_item, parent_impl); + } +} + +fn check_impl_items_against_trait<'tcx>( + tcx: TyCtxt<'tcx>, + full_impl_span: Span, + impl_id: LocalDefId, + impl_trait_ref: ty::TraitRef<'tcx>, + impl_item_refs: &[hir::ImplItemRef], +) { + // If the trait reference itself is erroneous (so the compilation is going + // to fail), skip checking the items here -- the `impl_item` table in `tcx` + // isn't populated for such impls. + if impl_trait_ref.references_error() { + return; + } + + // Negative impls are not expected to have any items + match tcx.impl_polarity(impl_id) { + ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {} + ty::ImplPolarity::Negative => { + if let [first_item_ref, ..] = impl_item_refs { + let first_item_span = tcx.hir().impl_item(first_item_ref.id).span; + struct_span_err!( + tcx.sess, + first_item_span, + E0749, + "negative impls cannot have any items" + ) + .emit(); + } + return; + } + } + + let trait_def = tcx.trait_def(impl_trait_ref.def_id); + + for impl_item in impl_item_refs { + let ty_impl_item = tcx.associated_item(impl_item.id.owner_id); + let ty_trait_item = if let Some(trait_item_id) = ty_impl_item.trait_item_def_id { + tcx.associated_item(trait_item_id) + } else { + // Checked in `associated_item`. + tcx.sess.delay_span_bug(impl_item.span, "missing associated item in trait"); + continue; + }; + let impl_item_full = tcx.hir().impl_item(impl_item.id); + match impl_item_full.kind { + hir::ImplItemKind::Const(..) => { + let _ = tcx.compare_assoc_const_impl_item_with_trait_item(( + impl_item.id.owner_id.def_id, + ty_impl_item.trait_item_def_id.unwrap(), + )); + } + hir::ImplItemKind::Fn(..) => { + let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id); + compare_impl_method( + tcx, + &ty_impl_item, + &ty_trait_item, + impl_trait_ref, + opt_trait_span, + ); + } + hir::ImplItemKind::Type(impl_ty) => { + let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id); + compare_ty_impl( + tcx, + &ty_impl_item, + impl_ty.span, + &ty_trait_item, + impl_trait_ref, + opt_trait_span, + ); + } + } + + check_specialization_validity( + tcx, + trait_def, + &ty_trait_item, + impl_id.to_def_id(), + impl_item, + ); + } + + if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) { + // Check for missing items from trait + let mut missing_items = Vec::new(); + + let mut must_implement_one_of: Option<&[Ident]> = + trait_def.must_implement_one_of.as_deref(); + + for &trait_item_id in tcx.associated_item_def_ids(impl_trait_ref.def_id) { + let is_implemented = ancestors + .leaf_def(tcx, trait_item_id) + .map_or(false, |node_item| node_item.item.defaultness(tcx).has_value()); + + if !is_implemented && tcx.impl_defaultness(impl_id).is_final() { + missing_items.push(tcx.associated_item(trait_item_id)); + } + + // true if this item is specifically implemented in this impl + let is_implemented_here = ancestors + .leaf_def(tcx, trait_item_id) + .map_or(false, |node_item| !node_item.defining_node.is_from_trait()); + + if !is_implemented_here { + match tcx.eval_default_body_stability(trait_item_id, full_impl_span) { + EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable( + tcx, + full_impl_span, + trait_item_id, + feature, + reason, + issue, + ), + + // Unmarked default bodies are considered stable (at least for now). + EvalResult::Allow | EvalResult::Unmarked => {} + } + } + + if let Some(required_items) = &must_implement_one_of { + if is_implemented_here { + let trait_item = tcx.associated_item(trait_item_id); + if required_items.contains(&trait_item.ident(tcx)) { + must_implement_one_of = None; + } + } + } + } + + if !missing_items.is_empty() { + missing_items_err(tcx, tcx.def_span(impl_id), &missing_items, full_impl_span); + } + + if let Some(missing_items) = must_implement_one_of { + let attr_span = tcx + .get_attr(impl_trait_ref.def_id, sym::rustc_must_implement_one_of) + .map(|attr| attr.span); + + missing_items_must_implement_one_of_err( + tcx, + tcx.def_span(impl_id), + missing_items, + attr_span, + ); + } + } +} + +pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) { + let t = tcx.type_of(def_id); + if let ty::Adt(def, substs) = t.kind() + && def.is_struct() + { + let fields = &def.non_enum_variant().fields; + if fields.is_empty() { + struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit(); + return; + } + let e = fields[0].ty(tcx, substs); + if !fields.iter().all(|f| f.ty(tcx, substs) == e) { + struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous") + .span_label(sp, "SIMD elements must have the same type") + .emit(); + return; + } + + let len = if let ty::Array(_ty, c) = e.kind() { + c.try_eval_usize(tcx, tcx.param_env(def.did())) + } else { + Some(fields.len() as u64) + }; + if let Some(len) = len { + if len == 0 { + struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit(); + return; + } else if len > MAX_SIMD_LANES { + struct_span_err!( + tcx.sess, + sp, + E0075, + "SIMD vector cannot have more than {MAX_SIMD_LANES} elements", + ) + .emit(); + return; + } + } + + // Check that we use types valid for use in the lanes of a SIMD "vector register" + // These are scalar types which directly match a "machine" type + // Yes: Integers, floats, "thin" pointers + // No: char, "fat" pointers, compound types + match e.kind() { + ty::Param(_) => (), // pass struct(T, T, T, T) through, let monomorphization catch errors + ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok + ty::Array(t, _) if matches!(t.kind(), ty::Param(_)) => (), // pass struct([T; N]) through, let monomorphization catch errors + ty::Array(t, _clen) + if matches!( + t.kind(), + ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) + ) => + { /* struct([f32; 4]) is ok */ } + _ => { + struct_span_err!( + tcx.sess, + sp, + E0077, + "SIMD vector element type should be a \ + primitive scalar (integer/float/pointer) type" + ) + .emit(); + return; + } + } + } +} + +pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) { + let repr = def.repr(); + if repr.packed() { + for attr in tcx.get_attrs(def.did(), sym::repr) { + for r in attr::parse_repr_attr(&tcx.sess, attr) { + if let attr::ReprPacked(pack) = r + && let Some(repr_pack) = repr.pack + && pack as u64 != repr_pack.bytes() + { + struct_span_err!( + tcx.sess, + sp, + E0634, + "type has conflicting packed representation hints" + ) + .emit(); + } + } + } + if repr.align.is_some() { + struct_span_err!( + tcx.sess, + sp, + E0587, + "type has conflicting packed and align representation hints" + ) + .emit(); + } else { + if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) { + let mut err = struct_span_err!( + tcx.sess, + sp, + E0588, + "packed type cannot transitively contain a `#[repr(align)]` type" + ); + + err.span_note( + tcx.def_span(def_spans[0].0), + &format!( + "`{}` has a `#[repr(align)]` attribute", + tcx.item_name(def_spans[0].0) + ), + ); + + if def_spans.len() > 2 { + let mut first = true; + for (adt_def, span) in def_spans.iter().skip(1).rev() { + let ident = tcx.item_name(*adt_def); + err.span_note( + *span, + &if first { + format!( + "`{}` contains a field of type `{}`", + tcx.type_of(def.did()), + ident + ) + } else { + format!("...which contains a field of type `{ident}`") + }, + ); + first = false; + } + } + + err.emit(); + } + } + } +} + +pub(super) fn check_packed_inner( + tcx: TyCtxt<'_>, + def_id: DefId, + stack: &mut Vec, +) -> Option> { + if let ty::Adt(def, substs) = tcx.type_of(def_id).kind() { + if def.is_struct() || def.is_union() { + if def.repr().align.is_some() { + return Some(vec![(def.did(), DUMMY_SP)]); + } + + stack.push(def_id); + for field in &def.non_enum_variant().fields { + if let ty::Adt(def, _) = field.ty(tcx, substs).kind() + && !stack.contains(&def.did()) + && let Some(mut defs) = check_packed_inner(tcx, def.did(), stack) + { + defs.push((def.did(), field.ident(tcx).span)); + return Some(defs); + } + } + stack.pop(); + } + } + + None +} + +pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, sp: Span, adt: ty::AdtDef<'tcx>) { + if !adt.repr().transparent() { + return; + } + + if adt.is_union() && !tcx.features().transparent_unions { + feature_err( + &tcx.sess.parse_sess, + sym::transparent_unions, + sp, + "transparent unions are unstable", + ) + .emit(); + } + + if adt.variants().len() != 1 { + bad_variant_count(tcx, adt, sp, adt.did()); + if adt.variants().is_empty() { + // Don't bother checking the fields. No variants (and thus no fields) exist. + return; + } + } + + // For each field, figure out if it's known to be a ZST and align(1), with "known" + // respecting #[non_exhaustive] attributes. + let field_infos = adt.all_fields().map(|field| { + let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did)); + let param_env = tcx.param_env(field.did); + let layout = tcx.layout_of(param_env.and(ty)); + // We are currently checking the type this field came from, so it must be local + let span = tcx.hir().span_if_local(field.did).unwrap(); + let zst = layout.map_or(false, |layout| layout.is_zst()); + let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1); + if !zst { + return (span, zst, align1, None); + } + + fn check_non_exhaustive<'tcx>( + tcx: TyCtxt<'tcx>, + t: Ty<'tcx>, + ) -> ControlFlow<(&'static str, DefId, SubstsRef<'tcx>, bool)> { + match t.kind() { + ty::Tuple(list) => list.iter().try_for_each(|t| check_non_exhaustive(tcx, t)), + ty::Array(ty, _) => check_non_exhaustive(tcx, *ty), + ty::Adt(def, subst) => { + if !def.did().is_local() { + let non_exhaustive = def.is_variant_list_non_exhaustive() + || def + .variants() + .iter() + .any(ty::VariantDef::is_field_list_non_exhaustive); + let has_priv = def.all_fields().any(|f| !f.vis.is_public()); + if non_exhaustive || has_priv { + return ControlFlow::Break(( + def.descr(), + def.did(), + subst, + non_exhaustive, + )); + } + } + def.all_fields() + .map(|field| field.ty(tcx, subst)) + .try_for_each(|t| check_non_exhaustive(tcx, t)) + } + _ => ControlFlow::Continue(()), + } + } + + (span, zst, align1, check_non_exhaustive(tcx, ty).break_value()) + }); + + let non_zst_fields = field_infos + .clone() + .filter_map(|(span, zst, _align1, _non_exhaustive)| if !zst { Some(span) } else { None }); + let non_zst_count = non_zst_fields.clone().count(); + if non_zst_count >= 2 { + bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, sp); + } + let incompatible_zst_fields = + field_infos.clone().filter(|(_, _, _, opt)| opt.is_some()).count(); + let incompat = incompatible_zst_fields + non_zst_count >= 2 && non_zst_count < 2; + for (span, zst, align1, non_exhaustive) in field_infos { + if zst && !align1 { + struct_span_err!( + tcx.sess, + span, + E0691, + "zero-sized field in transparent {} has alignment larger than 1", + adt.descr(), + ) + .span_label(span, "has alignment larger than 1") + .emit(); + } + if incompat && let Some((descr, def_id, substs, non_exhaustive)) = non_exhaustive { + tcx.struct_span_lint_hir( + REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS, + tcx.hir().local_def_id_to_hir_id(adt.did().expect_local()), + span, + "zero-sized fields in `repr(transparent)` cannot contain external non-exhaustive types", + |lint| { + let note = if non_exhaustive { + "is marked with `#[non_exhaustive]`" + } else { + "contains private fields" + }; + let field_ty = tcx.def_path_str_with_substs(def_id, substs); + lint + .note(format!("this {descr} contains `{field_ty}`, which {note}, \ + and makes it not a breaking change to become non-zero-sized in the future.")) + }, + ) + } + } +} + +#[allow(trivial_numeric_casts)] +fn check_enum<'tcx>(tcx: TyCtxt<'tcx>, vs: &'tcx [hir::Variant<'tcx>], def_id: LocalDefId) { + let def = tcx.adt_def(def_id); + let sp = tcx.def_span(def_id); + def.destructor(tcx); // force the destructor to be evaluated + + if vs.is_empty() { + if let Some(attr) = tcx.get_attrs(def_id.to_def_id(), sym::repr).next() { + struct_span_err!( + tcx.sess, + attr.span, + E0084, + "unsupported representation for zero-variant enum" + ) + .span_label(sp, "zero-variant enum") + .emit(); + } + } + + let repr_type_ty = def.repr().discr_type().to_ty(tcx); + if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 { + if !tcx.features().repr128 { + feature_err( + &tcx.sess.parse_sess, + sym::repr128, + sp, + "repr with 128-bit type is unstable", + ) + .emit(); + } + } + + for v in vs { + if let Some(ref e) = v.disr_expr { + tcx.ensure().typeck(tcx.hir().local_def_id(e.hir_id)); + } + } + + if tcx.adt_def(def_id).repr().int.is_none() { + let is_unit = |var: &hir::Variant<'_>| matches!(var.data, hir::VariantData::Unit(..)); + + let has_disr = |var: &hir::Variant<'_>| var.disr_expr.is_some(); + let has_non_units = vs.iter().any(|var| !is_unit(var)); + let disr_units = vs.iter().any(|var| is_unit(&var) && has_disr(&var)); + let disr_non_unit = vs.iter().any(|var| !is_unit(&var) && has_disr(&var)); + + if disr_non_unit || (disr_units && has_non_units) { + let mut err = + struct_span_err!(tcx.sess, sp, E0732, "`#[repr(inttype)]` must be specified"); + err.emit(); + } + } + + detect_discriminant_duplicate(tcx, def.discriminants(tcx).collect(), vs, sp); + + check_transparent(tcx, sp, def); +} + +/// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal +fn detect_discriminant_duplicate<'tcx>( + tcx: TyCtxt<'tcx>, + mut discrs: Vec<(VariantIdx, Discr<'tcx>)>, + vs: &'tcx [hir::Variant<'tcx>], + self_span: Span, +) { + // Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate. + // Here `idx` refers to the order of which the discriminant appears, and its index in `vs` + let report = |dis: Discr<'tcx>, idx: usize, err: &mut Diagnostic| { + let var = &vs[idx]; // HIR for the duplicate discriminant + let (span, display_discr) = match var.disr_expr { + Some(ref expr) => { + // In the case the discriminant is both a duplicate and overflowed, let the user know + if let hir::ExprKind::Lit(lit) = &tcx.hir().body(expr.body).value.kind + && let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node + && *lit_value != dis.val + { + (tcx.hir().span(expr.hir_id), format!("`{dis}` (overflowed from `{lit_value}`)")) + // Otherwise, format the value as-is + } else { + (tcx.hir().span(expr.hir_id), format!("`{dis}`")) + } + } + None => { + // At this point we know this discriminant is a duplicate, and was not explicitly + // assigned by the user. Here we iterate backwards to fetch the HIR for the last + // explicitly assigned discriminant, and letting the user know that this was the + // increment startpoint, and how many steps from there leading to the duplicate + if let Some((n, hir::Variant { span, ident, .. })) = + vs[..idx].iter().rev().enumerate().find(|v| v.1.disr_expr.is_some()) + { + let ve_ident = var.ident; + let n = n + 1; + let sp = if n > 1 { "variants" } else { "variant" }; + + err.span_label( + *span, + format!("discriminant for `{ve_ident}` incremented from this startpoint (`{ident}` + {n} {sp} later => `{ve_ident}` = {dis})"), + ); + } + + (vs[idx].span, format!("`{dis}`")) + } + }; + + err.span_label(span, format!("{display_discr} assigned here")); + }; + + // Here we loop through the discriminants, comparing each discriminant to another. + // When a duplicate is detected, we instantiate an error and point to both + // initial and duplicate value. The duplicate discriminant is then discarded by swapping + // it with the last element and decrementing the `vec.len` (which is why we have to evaluate + // `discrs.len()` anew every iteration, and why this could be tricky to do in a functional + // style as we are mutating `discrs` on the fly). + let mut i = 0; + while i < discrs.len() { + let hir_var_i_idx = discrs[i].0.index(); + let mut error: Option> = None; + + let mut o = i + 1; + while o < discrs.len() { + let hir_var_o_idx = discrs[o].0.index(); + + if discrs[i].1.val == discrs[o].1.val { + let err = error.get_or_insert_with(|| { + let mut ret = struct_span_err!( + tcx.sess, + self_span, + E0081, + "discriminant value `{}` assigned more than once", + discrs[i].1, + ); + + report(discrs[i].1, hir_var_i_idx, &mut ret); + + ret + }); + + report(discrs[o].1, hir_var_o_idx, err); + + // Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty + discrs[o] = *discrs.last().unwrap(); + discrs.pop(); + } else { + o += 1; + } + } + + if let Some(mut e) = error { + e.emit(); + } + + i += 1; + } +} + +pub(super) fn check_type_params_are_used<'tcx>( + tcx: TyCtxt<'tcx>, + generics: &ty::Generics, + ty: Ty<'tcx>, +) { + debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty); + + assert_eq!(generics.parent, None); + + if generics.own_counts().types == 0 { + return; + } + + let mut params_used = BitSet::new_empty(generics.params.len()); + + if ty.references_error() { + // If there is already another error, do not emit + // an error for not using a type parameter. + assert!(tcx.sess.has_errors().is_some()); + return; + } + + for leaf in ty.walk() { + if let GenericArgKind::Type(leaf_ty) = leaf.unpack() + && let ty::Param(param) = leaf_ty.kind() + { + debug!("found use of ty param {:?}", param); + params_used.insert(param.index); + } + } + + for param in &generics.params { + if !params_used.contains(param.index) + && let ty::GenericParamDefKind::Type { .. } = param.kind + { + let span = tcx.def_span(param.def_id); + struct_span_err!( + tcx.sess, + span, + E0091, + "type parameter `{}` is unused", + param.name, + ) + .span_label(span, "unused type parameter") + .emit(); + } + } +} + +pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) { + let module = tcx.hir_module_items(module_def_id); + for id in module.items() { + check_item_type(tcx, id); + } +} + +fn async_opaque_type_cycle_error(tcx: TyCtxt<'_>, span: Span) -> ErrorGuaranteed { + struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing") + .span_label(span, "recursive `async fn`") + .note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`") + .note( + "consider using the `async_recursion` crate: https://crates.io/crates/async_recursion", + ) + .emit() +} + +/// Emit an error for recursive opaque types. +/// +/// If this is a return `impl Trait`, find the item's return expressions and point at them. For +/// direct recursion this is enough, but for indirect recursion also point at the last intermediary +/// `impl Trait`. +/// +/// If all the return expressions evaluate to `!`, then we explain that the error will go away +/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder. +fn opaque_type_cycle_error(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) -> ErrorGuaranteed { + let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type"); + + let mut label = false; + if let Some((def_id, visitor)) = get_owner_return_paths(tcx, def_id) { + let typeck_results = tcx.typeck(def_id); + if visitor + .returns + .iter() + .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id)) + .all(|ty| matches!(ty.kind(), ty::Never)) + { + let spans = visitor + .returns + .iter() + .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some()) + .map(|expr| expr.span) + .collect::>(); + let span_len = spans.len(); + if span_len == 1 { + err.span_label(spans[0], "this returned value is of `!` type"); + } else { + let mut multispan: MultiSpan = spans.clone().into(); + for span in spans { + multispan.push_span_label(span, "this returned value is of `!` type"); + } + err.span_note(multispan, "these returned values have a concrete \"never\" type"); + } + err.help("this error will resolve once the item's body returns a concrete type"); + } else { + let mut seen = FxHashSet::default(); + seen.insert(span); + err.span_label(span, "recursive opaque type"); + label = true; + for (sp, ty) in visitor + .returns + .iter() + .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t))) + .filter(|(_, ty)| !matches!(ty.kind(), ty::Never)) + { + struct OpaqueTypeCollector(Vec); + impl<'tcx> ty::visit::TypeVisitor<'tcx> for OpaqueTypeCollector { + fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow { + match *t.kind() { + ty::Opaque(def, _) => { + self.0.push(def); + ControlFlow::CONTINUE + } + _ => t.super_visit_with(self), + } + } + } + let mut visitor = OpaqueTypeCollector(vec![]); + ty.visit_with(&mut visitor); + for def_id in visitor.0 { + let ty_span = tcx.def_span(def_id); + if !seen.contains(&ty_span) { + err.span_label(ty_span, &format!("returning this opaque type `{ty}`")); + seen.insert(ty_span); + } + err.span_label(sp, &format!("returning here with type `{ty}`")); + } + } + } + } + if !label { + err.span_label(span, "cannot resolve opaque type"); + } + err.emit() +} -- cgit v1.2.3